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INVERSION OF STRONG GROUND MOTION AND TELESEISMIC 

WAVEFORM DATA FOR THE FAULT RUPTURE HISTORY OF THE 1979 

IMPERIAL VALLEY, CALIFORNIA, EARTHQUAKE 

BY STEPHEN H. HARTZELL AND THOMAS H. HEATON 

ABSTRACT 

A least-squares point-by-point inversion of strong ground motion and tele- 

seismic body waves is used to infer the fault rupture history of the 1979 Imperial 

Valley, California, earthquake. The Imperial fault is represented by a plane 

embedded in a half-space where the elastic properties vary with depth. The 

inversion yields both the spatial and temporal variations in dislocation on the 

fault plane for both right-lateral strike-slip and normal dip-slip components of 

motion. Inversions are run for different fault dips and for both constant and 

variable rupture velocity models. Effects of different data sets are also investi- 

gated. Inversions are compared which use the strong ground motions alone, the 

teleseismic body waves alone, and simultaneously the strong ground motion and 

teleseismic records. The inversions are stabilized by adding both smoothing and 

positivity constraints. 
The moment is estimated to be 5.0 x 102s dyne-cm and the fault dip 90 ° + 5 °. 

Dislocation in the hypocentral region south of the United States-Mexican border 

is relatively small and almost dies out near the border, Dislocation then increases 

sharply north of the border to a maximum of about 2 m under Interstate 8. Dip- 

slip motion is minor compared to strike-slip motion and is concentrated in the 

sediments. The best-fitting constant rupture velocity is 80 per cent of the local 

shear-wave velocity. However, there is a suggestion that the rupture front accel- 

erated from the hypocenter northward. The 1979 Imperial Valley earthquake can 

be characterized as a magnitude 5 earthquake at the hypocenter which then 

grew into or triggered a magnitude 6 earthquake north of the border. 

INTRODUCTION 

The 15 October 1979 (23:16:54) Imperial Valley earthquake (ML = 6.6) provided 

a wealth of strong-motion records. Twenty-two records were obtained from the U.S. 

Geological Survey network in the Imperial Valley within an epicentral distance of 

60 km (Brady et al., 1980) and seven records were obtained from the northern Baja 

California strong-motion array (Brune et al., 1982). The strong-motion records, 

together with the teleseismic recordings, make the 1979 Imperial Valley earthquake 

the best-instrumented, moderate-sized event to date, with the possible exception of 

the 1971 San Fernando earthquake. The complicated topographic and geologic 

setting of the San Fernando earthquake makes it difficult to study. In comparison, 

the structure of the Imperial Valley is relatively simple, consisting of a deep 

sedimentary basin with relatively fiat-lying layers. Furthermore, a recent seismic 

refraction study of the area (Fuis et al., 1982) yielded fairly detailed information on 

the P-wave velocity structure. Thus, recordings of the 1979 Imperial Valley earth- 

quake provide us with a unique opportunity to construct detailed and physically 

realistic models of the rupture history and wave propagation for this earthquake. 

Failure to adequately model records from this earthquake would seriously undermine 

our confidence in the validity of previous modeling studies of earthquakes for which 
less data is available. 

To date, the strong-motion data set has formed the basis of a number of studies. 
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Niazi (1982) determined acceleration directions using the horizontal ground motions 

across a differential array at E1 Centro (station locations indicated by DIF in Figure 

7). This array consists of five digital accelerometers positioned on a north-south 

line 210 m long. From these data, Niazi inferred that the rupture propagated 

northwestward from the epicenter in Mexico. Niazi further estimated an average 

rupture velocity of 2.7 km/sec during the first 6 sec of faulting. Spudich and 

Cranswick (1982) have also analyzed the E1 Centro differential array data. They 

calculated apparent velocities of particular phases by cross-correlating records. 

Their work implies an average rupture velocity of 2.5 km/sec at depth, but also 

suggests that the rupture velocity was lower during the first few seconds of faulting 

and that the rupture accelerated as it moved to the north. Their analysis also 

suggests that large high-frequency vertical accelerations (0.6 to 1.74 g) recorded on 

several strong-motion records near E1 Centro are due to P waves originating from 

the vicinity of the Imperial fault where it crosses Interstate 8 and at a depth of 

approximately 8 km. Archuleta (1982) proposed the alternative interpretation that 

the large vertical accelerations are a surface-reflected PP phase originating further 

to the south near Bonds Corner at a depth of about 4 km. By examining polarization 

diagrams of particle velocity for stations near the trace of the fault, Archuleta 

(1982) estimated an average rupture velocity of 2.5 to 2.6 km/sec. 

Three previous studies have used the strong-motion data to estimate the distri- 

bution of slip for the 1979 earthquake: Hartzell and Helmberger (1982), Olson and 

Apsel (1982), and Le Bras (1983). Hartzell and Helmberger (1982) used forward 

modeling to deduce the slip distribution. Their model is characterized by an average 

rupture velocity of 2.5 to 2.7 km/sec (0.8 to 0.9 times the basement shear-wave 

velocity). The slip is predominantly below a depth of 5 km, north of the hypocenter 

and south of the E1 Centro area. Two regions of noticeably larger slip were suggested, 

particularly one located under Interstate 8, which is held to be responsible for the 

large vertical accelerations recorded near E1 Centro. They estimated the moment 

from strong-motion records to be 5.0 × 1025 dyne-cm, which was shown to be 

consistent with the amplitudes of teleseismic shear waves. Olson and Apsel (1982) 

used a least-squares inversion. They parameterized the problem by dividing the 

Imperial fault plane into sections, 2 with depth and 10 along the strike of the fault. 

Each section, or subfault, is allowed to rupture during five separate time intervals, 

each separated by 0.75 sec. Their slip distribution is significantly smoother than 

the model of Hartzell and Helmberger (1982). The major differences in the two 

models may be due to the different parameterizations of the problem. Hartzell and 

Helmberger (1982) used a constant rupture velocity, with fixed timing, requiring 

that the waveforms be explained by spatial variations in slip. Olson and Apsel 

(1982) set the problem up with more capacity for temporal variation and less spatial 

variation in slip. They obtained a trend in dynamic slip which implied a horizontal 

rupture velocity between 4.0 and 5.0 km/sec, which is greater than the local shear- 

wave velocity. This slip, although more smoothly distributed than the patch of large 

dislocation in the Hartzell and Helmberger (1982) model, is located in the same 

place and may be a manifestation of the same phenomenon. The present study has 

a more balanced trade-off between spatial and temporal model parameters than 

these previous two studies. Olson and Apsel (1982) obtained a moment of 9.1 × 1025 

dyne-cm. 
Le Bras (1983) used an inversion scheme which minimizes a cross-correlation 

error function between the synthetic waveform and the data. A constant rupture 

velocity is used, but the mechanism (strike, dip, and rake) of each subfault is allowed 
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to vary somewhat about a pure right-lateral, strike-slip, 90°-dipping fault. He found 

that the fits to the strong-motion records are improved by allowing the strike, dip, 

and rake to vary by _+10". As in the previous studies, the Le Bras (1983) model is 

characterized by an average rupture velocity of about 2.5 km/sec, with most of the 

slip below 5 km and north of the hypocenter but south of the E1 Centro area. He 

estimated the moment to be 5.0 × 1025 dyne-cm. 

In this paper, unlike the previous studies, we model both the teleseismic body 

waves and the local strong-motion records. The teleseismic data are included in an 

attempt to add additional constraints on the rupture process. We also wish to 

address a basic question: What details of the rupture history can be deduced from 

(1) teleseismic data alone, (2) near-source data alone, and (3) the combined tele- 

seismic and near-source data sets? This is an important question, since good local 

instrument coverage is rare and most earthquake source studies must depend on 

teleseismic data alone. Heaton (1982) recently demonstrated the difficulties involved 

in modeling teleseismic body waves and strong ground motions simultaneously with 

a forward modeling approach and showed the inconsistencies which can develop 

between models obtained by forward modeling of limited data sets. Thus, one of the 

objectives of this paper is to explore the similarities and differences of inversion 

models based on different data sets. The data are modeled by using a constrained, 

stabilized, least-squares inversion technique. The problem is parameterized to yield 

the best-fitting (in a least-squares sense) dislocation on a spatially and temporally 

discretized fault. 

FORWARD PROBLEM 

Before pursuing the inverse problem, several forward models of the teleseismic 

body waves were run. These calculations are done to investigate the dip of the 

Imperial fault and to see what contributions individual phases make to the tele- 

seismic waveforms. Hartzell and Helmberger (1982) obtained a model of the distri- 

bution of dislocation for the 1979 earthquake by forward modeling of just the strong- 

motion data. It is also of interest to see how well this model predicts the teleseismic 

body waves. 

Figure I shows the seismic velocity structures used throughout this study to 

compute strong ground motion (dashed curves) and teleseismic synthetics (solid 

curves). The local P-wave velocity structure (Table 1) is based closely on the 

refraction results of Fuis et  al. (1982) and is an average velocity structure for profile 

6NNW-13SSE of that study, which runs approximately down the axis of the 

Imperial Valley. The S-wave velocities are obtained by assuming (1) a Poisson solid 

(a = ~f3 ~) below a depth of 5 km and (2) linearly increasing Poisson's ratio for 

depths less than 5 km such that a = 2.37/~ at the free surface. TiLe structure used 

to compute the teleseismic waveforms (Table l) consists of three layers over a half- 

space and approximates the gradient structure used in the near-source region. This 

simplified structure greatly reduces the computational effort required to model 

teleseismic body waves from a finite fault. Use of the layered structure to compute 

the teleseismic body waves is justified by their longer period and the steep teleseismic 

take-off angles. The computation of teleseismic body-wave synthetics for a three- 

dimensional finite fault is done by a Green's function summation technique. Heaton 

(1982) gives a full explanation of the method. The teleseismic synthetics in this 

paper include the responses of all rays with up to two internal reflections in the 

layered stack. All conversions between phases occurring at the free surface are 

included as well as the more important internal conversions. The amplitudes of 
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rays having a greater number of internal reflections are much smaller and can be 

omitted. Point source responses for sources embedded within the gradient structure 

(approximated by many layers) were computed using a Haskell propagator matrix 

technique and compared favorably with responses computed using the generalized 

ray technique and assuming the simplified velocity model. The Haskell matrix 

method is not used in the rest of this study because the analysis requires the 

separation of the responses of down-going (P, S) and up-going (pP, sP) phases, a 

modification not yet implemented in the Haskell method. 

The teleseismic, long-period P and S H  waves predicted by the Hartzell and 

Helmberger (1982) model 9WM are shown in Figures 2 and 3, respectively. All 

WWSSN P and SH waveforms of acceptable quality between 30 ° and 90 ° are shown. 

In both figures the synthetic is the second, lighter trace. The amplitude in microns 

is given for each synthetic assuming a moment of 5.0 × 1025 dyne-cm. This moment 

was obtained by Hartzell and Helmberger in their study of the strong-motion 

records. The waveforms and amplitudes of the P waves are fairly well-matched. The 
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FIG. 1. Near-field velocity structure used to compute strong-mohon synthetics and far-field velocity 
structure used to compute telese~smxc body-wave synthetms. 

S H  waveforms are well modeled except for the two nodal stations MAL and SJG, 

which appear to be contaminated by noise. Perhaps the most obvious difference is 

the much longer, complicated waveforms of the observed P waves, lasting for over 

1 min. The waveform complexities arrive much too late to be explained by source 

effects, and may be due to structural complexities in the source and receiver regions. 

We will mention the long P-wave durations again when we discuss the record section 

length to be used in the inversion. In general, the Hartzell and Helmberger (1982) 

near-source model does a good job of predicting the teleseismic body-wave ampli- 

tudes, and a fair job of modeling the waveforms. 

Hartzell and Helmberger (1982) and Olson and Apsel (1982) both assumed a 

vertical dip for the Imperial fault. However, Archuleta (1982) used epicentral 

distributions and results of seismic refraction studies (Fuis et al., 1982) to argue in 

favor of a 75°NE dip. Well-located epicenters (horizontal error less than 2.5 km) 

along the Imperial fault tend to cluster on the east side of the fault (Johnson, 1979). 

Upon first inspection, this pattern suggests that the Imperial fault dips to the east 
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at about 75 ° . However, Johnson (1979) argued convincingly that many of these 

earthquakes are not actually occurring on the Imperial fault plane. It appears that 

the seismicity is actually occurring along a collection of north-south-trending planes 

aligned along the northwest-southeast-trending Imperial fault. The resulting pat- 

tern is one in which seismicity is distributed to the northeast of the observed fault 

trace, thus creating the illusion of a dipping fault. The dip of the Imperial fault is 

explored further in Figures 4 and 5. These two figures compare long-period P and 

SH synthetics, respectively, for different dips at four stations widely spaced in 

TABLE 1 

CRUSTAL STRUCTURES 

Depth (km) a (km/sec) fl (km/sec) p (gm/cm 3) 

Near-Source Crustal Structure* 

0.0 1.9 08 1.80 

5.0 5.5 3.0 2.55 

110 5.6 314 2.70 

11.5 7.2 4.16 2.80 

Teleselsmic Crustal Structuret 

0.0 2.75 1 25 2 0 

2.5 4.25 2.25 2 25 

5 0 5.55 3.1 2.65 

11.0 7 2 4.2 2.8 

* Elastic parameters vary hnearly between the horizons. 

¢ Elastm parameters constant between the borlzons. 
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FIG 2. Comparison of observed (top trace) and computed (bottom trace) teleseismic, long-period, 
vertical P waves for model 9WM of Hartzell and Helmberger (1982). Amplitudes of synthetms are for a 
moment of 5.0 × 102~ dyne-cm. 
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azimuth. The 9WM model of Hartzell and Helmberger (1982) is used. Synthetics 

are shown for dips of 80 ° west to 75 ° east in 5 ° increments. From the amplitudes 

and waveforms in Figures 4 and 5, it is difficult to pick one dip which explains the 

data better than any other. The P waves are somewhat more diagnostic than the 

SH waves. Station ANT is near nodal for P as are other stations to the south. 

These stations rule out dips of 75 ° east and shallower. We conclude that any dip in 

the range of 90 ° plus or minus 5 ° does an equally good job of fitting the data. There 

may also be small-scale variations in the strike, dip, and rake along the fault as 

suggested by Le Bras (1983). 

To determine the contributions of individual teleseismic phases to the total 

waveform, the long- and short-period P-wave synthetics for model 9WM are 

decomposed in Figure 6. Each record is shown broken down into the contributions 

of P, pP, sP, and the combined response of the remaining phases. One interesting 

feature of the ray decomposition is the fact that the P, pP, and sP phases are each 

smaller than the combined response of all other phases, particularly at longer 

Peak amplitudes given ~n microns Imperial Valley 

Tangential SH-waveforrns 
9WM 

S~rlke =145 ° Dip= 90  ° 

Rake = 180 ° Mo=5xlO 25 dyne-crr 

GEO 15.4 

MAL 2.9 SJG 8.8 

~ E  ESK ~ " ~  TU 

o 

Fro. 3. Comparison of observed (top trace) and computed (bottom trace) teleselsmic, long-period 
tangential SH waves for model 9WM of Hartzell and Helmberger (1982). Amplitudes of synthetics are 
for a moment of 5.0 x 1025 dyne-cm 

periods. This result is explained when one considers the gradient-like nature of the 

earth structure assumed. Since there is such a large velocity variation within the 

sediments, the ray which reflects off the free surface should not be expected to be 

significantly larger than rays reflecting internally in the sediments. Thus, the P, 

pP, and sP phases are each similar in amplitude or smaller than the collective 

response of all the reflected and converted phases within the sediments. Waves 

reflected from a velocity gradient are smoothly distributed in time. Thus, reflection 

off of a gradient is analogous to low-pass filtering. Therefore, the energy reflected 

from a gradient has a long-period spectrum. This explains why the combined 

response of all other phases is more prominent in the long-period records, compared 

to the phases P, pP, and sP, than in the short-period records. 

DATA SET AND PREPROCESSING 

Strong-motion data. The surface trace of the Imperial fault and the strong-motion 

stations of interest to this study are shown in Figure 7. The epicenters of both the 



FAULT RUPTURE HISTORY OF THE IMPERIAL VALLEY EARTHQUAKE 1559 

Imperial Valley 
Vertical P waveforms 

9WM 

Strike = 14:5 ° 

Dips from 80°W to 75°E 

Rake = 180 ° 

Mo = 5xlO 25 dyne-cm 

Peak amplitudes given 
in microns 

0 I0 20 .30 
I i I I 

sec 

JG 

~ 0  obs 

8 o w ~  
8 5 w ~  

85E 
__/~ 7., ~o~-,J',-_~ 

SJG _ 4.5 ANT ,. Ix9 

_ % ~ o w ~  
- ~ ~ 4 . 4 4 " 1  85W "~  

- -  Y 0.5 

A v 5.9 80E A- 2.0 

FIG. 4. Variation in long-period P waveforms with fault dip for model 9WM of Hartzell and 
Helmberger 0982). Amplitudes of synthetics are for a moment of 5.0 × 10 ~5 dyne-cm. 
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FIG. 5. Varmtion in long-period SH waveforms with fault dip for model 9WM of Hartzell and 
Helmberger (1982). Amplitudes of synthetics are for a moment of 5.0 × 102~ dyne-cm 
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1979 and 1940 Imperial Valley earthquakes are indicated by stars (Chavez et al., 

1982). The instruments forming the E1 Centro strong-motion array are labeled 

numbers 1 through 13. The two horizontal components from the following 12 

stations are used in the inversion: from the E1 Centro array numbers, 3, 4, 5, 7, 8, 

10, and 11, the E1 Centro differential array station, Calexico, Meloland, Holtville, 

and Bonds Corner. 

The vertical components of strong ground motion are not used because of 

incomplete knowledge of the seismic velocity structure. The P-wave velocities are 

fairly well-known from refraction surveys. However, the S-wave velocities have 

been deduced from the P-wave velocities assuming a particular distribution of 

Poisson's ratio. Poisson's ratio controls the S-minus-P time. Therefore, if we have 

misjudged Poisson's ratio, we cannot simultaneously match the correct arrival time 

of the P and S waves. Hartzell and Helmberger (1982) noted this problem and 
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Fro. 6. Decomposition by phase (P, pP, sP, and all other phases combined) of selected long- and 
short-period, teleselsmm, vertical P waves for model 9WM of Hartzell and Helmberger (1982). 

observed that the vertical synthetics match the observations better if they are 

shifted in time a small amount relative to the horizontal components. To avoid this 

problem, we have chosen to model only the horizontal components, which are 

predominantly shear-wave energy. 

The Green's functions used to calculate the strong-motion synthetics are com- 

puted with the DWFE (Discrete Wavenumber/Finite Element) code of Olson (1982), 

which is similar to the finite-difference method of Alekseev and Mikhailenko (1979, 

1980). The advantage of this code is that it can easily handle linear gradients in 

material properties, such as encountered in the upper 5 km of the Imperial Valley 

(Figure 1). The Green's functions include all theoretical arrivals within the specified 

time interval and are valid in the frequency band from 0.0 to 2.0 Hz. 

Since a linear, least-squares inversion is to be used, care must be taken to use 

only linear operations when processing the data. We wish to model the velocity 
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records, rather than the displacements, because the velocities preserve more of the 

high-frequency information. Traditionally, strong-motion records have been proc- 

essed with a parabolic baseline correction and band-pass filtered with an Ormsby 

filter (Trifunac, 1971; Trifunac et al., 1973); however, the baseline correction 

procedure is a nonlinear operation. We have applied an alternative straightforward 

processing procedure. The digitized accelerograms (U.S. Geological Survey phase I 

data) are firstly linearly interpolated to a uniform time step of 0.01 sec. The 

instrument correction is applied and the records are integrated to velocity by a 

trapezoidal rule. The velocity records are then band-pass filtered from 0.1 to 1.0 Hz 

with a Butterworth filter (Oppenheim and Schafer, 1975). To preserve zero phase 

shift, the filter is applied twice, once in the forward direction and once in the reverse 

direction. Finally the records are linearly interpolated to a uniform time step of 0.2 
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Fro. 7 Local map of the Imperial Valley showing the surface traces of the Imperial and Brawley 
faults and the locations of strong-motion instruments. 

sec. The synthetics are band-pass filtered in an identical manner and linearly 

interpolated to the same time step of 0.2 sec. 

In the least-squares inversion, it is necessary to specify the relative timing between 

the observed and synthetic records. This correlation is accomplished by relating 

both records back to the origin time of the earthquake. To relate the observed 

records with the origin time, the trigger time of the instrument is required. Of the 

12 strong-motion stations used in this study, seven have readable trigger times. The 

trigger times for the remaining five stations are estimated in the following manner. 

Initial trigger times are estimated based on the station's distance from the epicenter 

and the trigger times of nearby instruments. A preliminary inversion of the data is 

done using a constant rupture velocity of 0.8# (technique to be discussed in the 

following section). The observed and synthetic records for this inversion are then 

compared. Of the five stations without trigger times, the synthetics for four of them 
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fit the observations significantly better with a small time shift. The time shifts are 

no greater than 1 sec. All the following inversions of the strong-motion records then 

use these new estimates of the trigger times. 

Another important parameters to be considered in the inversion problem is the 

record length to be used. Two different lengths were tried for the strong-motion 

data, 17.5 and 35 sec. For most of the stations, the strong shaking is over in 10 sec 

or less, thus initially it may not be clear if a long record section need be used. 

However, the important consideration is not the amplitude of the records, but the 

time required for the rupture front to propagate down the entire length of the model 

fault plus the time required for the slowest phase of interest to travel to the most 

distant station used in the inversion. If shorter record sections are used, the 

dislocation on the more remote sections of the fault will be less well constrained. 

When 17.5 sec of record is used, artificially large dislocations are obtained on the 

ends of the fault. Therefore, a record length of 35 sec is used. 

Teleseismic data. The teleseismic data set consists of 19 long-period, vertical P 

waves, 10 long-period, tangential SH waves, and 7 short-period, vertical P waves. 

The station distribution can be seen in Figures 2 and 3. Small signal amplitudes 

and high noise levels make stations to the west and southwest unusable. The long- 

period records are band-pass filtered from 0.0166 to 1.0 Hz. The short-period records 

are band-pass filtered from 0.075 to 1.0 Hz. A zero phase shift Butterworth filter is 

used in all cases. The filtering is done to remove long-period drift and high-frequency 

noise. The teleseismic records are sampled at a uniform time step of 0.25 sec for 

the long periods and 0.1 sec for the short periods. 

The teleseismic synthetics are calculated in the same manner as discussed 

previously for the forward problem. The same source-time function is used for the 

teleseismic synthetics as for the strong-motion synthetics. Attenuation is entered 

with the Futterman Q operator (Futterman, 1962) with constant t* = T/Q (Carpen- 

ter, 1966), where T is the ray travel time and Q is the average seismic quality factor 

along the ray. We have used the following values for t*: 4.0 for long-period SH, 1.0 

for long-period P, and 0.7 for short-period P. The synthetics are band-pass filtered 

with the same filter as used on the data and interpolated to the same uniform time 

step. 

Great care must be taken with the teleseismic records to obtain accurate enough 

timing for the inversion. An error in timing of 1 sec corresponds to an error in 

location of the rupture front on the fault of 2.5 km for a rupture moving at 80 per 

cent of the shear-wave velocity. To obtain this kind of accuracy or better, it is 

necessary to pick arrival times from short-period records. However, the first arrivals 

on the short-period P-wave records have a very emergent character (see Figure 8). 

It is not possible to pick the first arrival on these records to the required accuracy. 

To solve this problem, we calculate the expected first P-wave arrival time for the 

Imperial Valley earthquake from the observed local origin time and from station 

residuals derived for the 1968 Borrego Mountain earthquake. The first arrival time 

for the Imperial Valley earthquake, 7'i, at a particular station is given by 

dT 
T1 -- 0i + (T~ - OB) + (AI - AB) - ~  +(dB + di)~, (1) 

where 0i, is the origin time of Imperial Valley, TB -- 0B is the travel time for Borrego 

Mountain, Ax - AB is the difference in station distance for Imperial Valley and 

Borrego Mountain, dT/dA is the P-wave ray parameter (based on Jeffreys-Bullen 
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earth model), d B -  d~ is the difference in hypocentral depths for Imperial Valley 

and Borrego Mountain, and ~ is the vertical slowness = [1/2 _ (dT/dA)2]~/2. Table 

2 shows the details of the timing calculation. The Borrego Mountain earthquake is 

used because of its proximity to the Imperial Valley earthquake and because it has 

an impulsive first arrival. The first arrival times for Borrego Mountain, Ts, are 

taken from the ISC catalog. Errors in T~ are estimated to be __1/2 sec for the long- 

period records and +IA sec for the short-period records. The short-period P waves 

in Figure 8 are aligned using the calculated first arrival times (indicated by the 

leftmost vertical line). It would be very difficult to pick these times from only an 

examination of the records. Accordingly, the ISC picks for this event have large 

errors. 

Record length is also an important consideration for the teleseismic records. A 

rupture initiating at the hypocenter 5 km south of the international border and 

propagating the full length of the observed ground breakage is over in about 17 sec. 

Short Period P Waves 

L 0.[[ 

lOsec 

FIG. 8. Teleseismic, short-permd, vertical P waves. Farst vertical line is the initial P-wave arrival 
time Second vertical line indicates arrival time of significant energy 6 sec later. Peak amphtudes given 
in microns. 

Yet from Figure 8, we see that  the short-period P waves have durations of over 1 

min. Peak amplitudes often do not occur until late in the records. The same 

complexities are seen in the long-period P waves. Figure 9 compares the long-period 

P waves recorded at BOG for the Imperial Valley earthquake and the 26 April 1981 

(ML = 5.6) Westmorland earthquake, which also occurred in the Imperial Valley, 

36 km north of E1 Centro. Both events exhibit long, complicated P waveforms. The 

fact that this complexity is seen for large and small earthquakes alike in the Imperial 

Valley strongly suggests that it is not a source effect. Our teleseismic Green's 

functions, which include the responses of reflected and transmitted rays for flat- 

lying layers, cannot explain the long-record durations in Figures 8 and 9. We do 

not have a definitive explanation for the later arriving energy. However, the 

observations suggest trapping of energy either within the valley by lateral hetero- 

geneities, nonplanar interfaces, and/or dipping structures or by similar mechanisms 
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n e a r  t h e  receiver .  S ince  our  m o d e l  does  n o t  inc lude  t he se  s t ruc tu res ,  we use only  

the  ini t ia l ,  p r i m a r y  p o r t i o n s  o f  t he  P - w a v e  records  in  t he  invers ion .  T h e  record  

l eng ths  used  are: 30 sec for  l o n g - p e r i o d  P waves ,  35 sec for  l ong -pe r iod  SH waves,  

TABLE 2 

TELESEISMIC ARRIVAL TIMES 

d T  ( d T  
Station TB TB - 0B -~  5,i d--~ 5,1 - 5,B) ~-~ ~ (dB - dl)~ Tx 

(mm sec) (sec) (kin) (kin) (sec/km) (se(~) (iTllrl sec) 
(sec/km) (sec) 

NNA 38:56.0 596 .9  6504.28 6407.28 0.0645 -6.26 0.154 -0.62 26:44.5 

ANT 40:26 686 9 7939.58 7843.01 0.0555 -5.36 0.157 -0.63 28:15.4 

ARE 39:43.8 644 .7  7252 29 7155.15 0.059 -5.73 0.156 -0.62 27:32.8 

WES 36:06.5 427 .4  4028.33 3991.82 0.077 -2.81 0.148 -0.59 23"58.5 

COL 36-11.8 432 .7  4129 .1  4214.57 0.076 6.50 0.148 -0.59 24.13.1 

GDH 37:52.9 533 .8  5528.19 5553.88 0.068 1.75 0.152 -0.61 25:49.4 

NUR 41:17 0 737 .9  9035.42 9070.39 0 0485 1.70 0 159 -0.64 29:13.5 

KEY 40:34.1 695 .0  8218.67 8262.85 0.0535 2.36 0.158 -0.63 28:31.2 

KON 40:55.5 716 .4  8590.13 .8614.57 0.0515 1 26 0.159 -0.64 28.51.5 

BEC 37:01.0 481 .9  4770 28 4712.31 0.0725 -4.20 0.150 -0.60 24:51.6 

SJG 37:31.7 512 .6  5233.33 5152.61 0.0705 -6.02 0.151 -0  60 25:20.5 

TRN 38:28 4 569 .3  6096.81 6011.49 0 066 -5.63 0.153 -0.61 26:17.6 

CAR 37:58.0 538 .9  5602.88 5514.55 0.0685 -6.05 0.152 -0.61 25-46.7 

LPS 35.19.0 3 7 9 . 9  3434.82 3338.65 0.080 -7.7 0.146 -0.58 23:06.1 

BOG 37:45.0 525 .9  5380 55 5285.75 0.070 -6  64 0.151 -0.60 25:33.2 

MAT 41:19 737.9 9109.18 9206.39 0.047 4.57 0.160 -0.64 29:18.3 

BLA 35:03.5 364 .4  3263.18 3211.89 0.080 -4  10 0.146 -0.58 22:54.2 

MBC 37:02 3 483 2 4799.68 4863.41 0.072 4.59 0.150 -0.60 25:01.7 

YKC 35:02 362.9 3261 03 3321.58 0.080 4.76 0.146 -0  58 23:01.6 

RES 36:58.4 4 7 9 . 3  4766.69 4817.84 0.072 3.68 0.158 -0.63 24:56.8 

MNT 35:50 410.9 3859.49 3831.88 0.0785 -2.17 0.147 -0.59 23"42.6 

ALE 38:13.8 5 5 4 . 7  5864.50 5916.14 0.067 3.46 0.153 -0.61 26:12.0 

FCC 35:05.2 366 .1  3283 81 3311.96 0.080 2.25 0.146 -0.58 23:02 3 

BOG P waves 

1979 

1981 

Imperial Valley M,= 6.6 

Westmorland ML: 5.6 

1.4 

1 ,J 

20 sec 

FIG. 9. Comparison of long-period, vertical P waves at BOG for 1979 Imperial Valley and 1981 
Westmorland earthquakes. Peak amphtudes given in mmrons. 

a n d  20 sec for s h o r t - p e r i o d  P waves .  T h e  SH waves  are  s imple  and  the  full  d u r a t i o n  

of  t he  w a v e f o r m s  is used.  

INVERSION METHOD 

W e  r e p r e s e n t  t he  r u p t u r e  sur face  wi th  a p lane .  T h i s  fau l t  p l ane  is d iv ided  in to  

subfau l t s  as shown  in F igure  10. T h e  bas ic  a p p r o a c h  is t he  same  used  by T r i f u n a c  
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(1974) although many of the restrictions on model and structure parameters have 

been relaxed. Figure 10 is a side view of the Imperial fault from the west where the 

plunge axis runs down the dip of the fault. The locations of the E1 Centro array, 

Interstate 8, and the international border are indicated with arrows (refer to Figure 

7). The fault is divided into 56 subfaults, all 3 km long and with the four depth 

intervals: 0 to 2.5 km, 2.5 to 5.0 km, 5.0 to 7.5 km, and 7.5 to 10.5 km. Synthetic 

ground motions are calculated for both a right-lateral, strike-slip dislocation and a 

normal (east-side down) dislocation of constant amplitude over each of the subfaults. 

Each of these calculations is repeated for every strong motion and teleseismic 

station in the inversion. The same Green's function summation and interpolation 

method is used as employed by Heaton (1982) and Hartzell and Helmberger (1982). 

We assume the epicenter of Chavez e t  al. (1982), approximately 5 km south of the 

border. The hypocenter is at a depth of 10.5 kin, located in the bottom right-hand 

corner of subfault 48 in Figure 10. A rupture front propagates from the hypocenter 

at a constant fraction of the local shear-wave velocity. For a medium with no 

changes in shear-wave velocity, the rupture front would describe a circle of growing 

radius. For a medium with changing seismic velocities, such as the Imperial Valley 

(see Figure 1), the rupture front slows as it enters lower velocity material and no 

0 

v 

[.d -4 -  
r,.9 
z 

J 
{5_ 

- 8 "  

-If 

Array I8  Border  
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2 6 I0 14 18 22 26 50 54 58 42 

5 7 II [5 19 25 27 31 35 39 4-5 

4 8 12 16 20 24 28 32 36 4-01 44 
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46 50 

47 51 

48 52 

55 

54 

55 

56 

i i ~ i i i i i i i 

0 4 8 12 16 20 24 28 32 36 40 

STRIKE (km) 

FIG. 10 Plane  of the  Imperial  faul t  showing the  56 subfaul ts  used  m the  revers ion modehng  of the  
s t rong-mot ion  and  teleselsmic records. Nor th  is to the  left and  the  hypocenter  is in the  bottom right- 
hand corner of subfaul t  48. 

longer describes a circle. Ray tracing, is used to define the position of the rupture 

front at any given point in time. Thus, the rupture front in our models is not 

circular [see Archuleta (1982), Figure 13, for an example of this calculation]. 

Although the velocity structure used to calculate the teleseismic synthetics is a 

simplified version of the structure used in the near-field (Figure 1), the advance of 

the rupture front is constrained to be the same as in the near-field calculations. 

Thus, the timing is consistent between the teleseismic and strong-motion sythetics. 

The dislocation time history at any point on the fault is assumed to be the time 

integral of a triangle with a 0.2-sec rise and a 0.5-sec fall, for a total rise time of 0.7 
s e e .  

The observed and synthetic records form an overdetermined system of linear 
equations, 

A x  -~ b, (2) 

where A is the matrix of synthetics, b is the data vector, and x is the solution vector 

of the subfault dislocation weights. This system of linear equations is shown 
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schematically in Figure 11. Each column of A is composed of the synthetics, strung 

end to end, for a particular subfault and a particular mechanism (either strike-slip 

or normal) for all the stations in the inversion. Similarly, b is formed by stringing 

all the observation records end to end. Thus, each time point on each record is 

explicitly included in the inversion. The number of columns of A depends on the 

number of elements in x. The elements of x are the amounts of strike-slip and dip- 

slip dislocations to be applied to each subfault to fit the observations. Figures 12 

and 13 show a few subfault synthetics for selected strong-motion and teleseismic 
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Dmtocahon on subfautt 2 
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Schematm of least-squares waveform inversion [equation (2)]; see text for detaded expla- 

stations. The number at the beginning of each trace is the subfault number (refer 

to Figure 10). Synthetics are shown for three vertical columns of subfaults; one near 

the northern end of the fault (subfaults 5 to 8), one near the middle (subfaults 29 

to 32), and one near the southern end of the fault (subfaults 45 to 48). There are 

two synthetics for each subfault; the first is for a strike-slip mechanism and the 

second is for a dip-slip mechanism. The number at the end of each trace is the peak 

velocity in centimeters/second for the strong-motion synthetics and the peak 

displacement in microns for the teleseismic synthetics. In this example, the fault 

dip is 90 ° and the rupture velocity is 0.8ft. We see from the strong-motion synthetics 
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in Figure 12 that there is significant variation in waveform both with depth and 

along the strike of the fault. These changes in waveform are important for resolving 

details on the fault. Using larger subfaults would force averaging over larger areas 

of the fault and some of the details would be obscured. Consider the 230 ° component 

of station EL7 (El Centro array station 7) shown in Figure 12. The subfault 5 

synthetic is mosty direct S; the subfault 45 synthetic is mostly Love waves. From 

subfaults 5 and 45, we see that surface wave energy is still arriving from the southern 

end of the fault long after the rupture has passed by this station. Data of this type 

help constrain the amount of shallow versus deep faulting. The teleseismic subfault 

synthetics in Figure 13 do not show the waveform variations along the length of 

the fault that are seen in the near-field. However, they do change significantly with 

depth. Two teleseismic subfault synthetics located at the same depth are distin- 

guished from one another by their timing. This is why, as we discussed above, 

accurate timing of the teleseismic records is so important. 

We can solve equation (2) by linear least squares, but the solution is unstable. 

The instability arises because A is an ill-conditioned matrix (condition number of 

several hundred), meaning that a small change in the data results in a large change 

in the solution. The problem may be stabilized by appending linear stability 

constraints giving 

where F x  ~ d is the set of linear constraints and ), is a scalar weight. By so doing, 

we sacrifice some of the fit to the data, but by adjusting h, a satisfactory compromise 

can be obtained. The stability constraints may take several forms. We have tried 

three: (1) moment minimization, (2) smoothing, and (3) filtering of singular values. 

If F = I, the identity matrix, and d = 0, then II x II = [F~=I x~] 1/2 is minimized while 

still requiring that the data be fit. Large, poorly resolved elements of x which do 

not contribute significantly to matching the waveforms will be forced to zero. 

Alternatively, if the set of equations F x  -~ d has a form such that x~ - xj -- 0 where 

i and j  are the indices of adjacent subfaults, then the solution is constrained to have 

a smoothly varying spatial distribution. Finally, we may high-pass filter the singular 

values of the A matrix. Assume that the singular value decomposition of A is U S  V T, 

where U and V are orthogonal matrices, S is the diagonal matrix of singular values, 

and T indicates the transpose of the matrix. Then if F = V H V  T and d = 0, where 

H is a diagonal matrix with [H],, = 0, i < k and = 1, i > k, then the parts of the 

solution corresponding to small singular values are minimized. This approach has 

been used by Olson and Apsel (1982). Actually, all three of the above stabilization 

techniques yield quite similar results. We favor the second or smoothing method. 

Smoothing stabilization has an obvious physical interpretation which works well 

with the way we have discretized the fault plane. Each subfault has a starting and 

stopping phase associated with it. If large variations in dislocation are allowed 

between adjacent subfaults, the starting and stopping phases will be large and the 

data will be modeled as a linear combination of these phases. Since the starting and 

stopping phases are an artifact of the parameterization of the problem and have 

nothing to do with the earthquake source, completely erroneous results may be 

obtained when too large a subfault is used. If only a few large subfaults are used, 

there is not sufficient spatial resolution of fault details. Therefore, our approach 

has been to divide the fault into a large number of relatively small subfaults and to 
then apply smoothing constraints. 
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In addition to the above stabilization, the solution is constrained to be nonnega- 

tive, i.e., x~ > 0. Without this constraint, the dislocations on adjacent subfaults are 

free to change sign. Besides being physically undesirable, such a condition leads to 

destructive interference between subfaults and an unstable solution. The nonnega- 

tive least-squares problem is solved using routine NNLS from Lawson and Hanson 

(1974). The dimensions of equation (3) are generally quite large; typical runs involve 

an A matrix with dimensions of 9468 by 112 or 7044 by 336. The inversion of 

matrices of such large dimension can lead to severe computational inefficiency on 

computers of limited core storage capability. These large matrices are accommodated 

by using a sequential Householder transformation technique (Lawson and Hanson, 

1974). With this method, the m x n matrix A is sequentially upper triangularized 

taking k rows at a time, where m _>- k _-> n. 

All the strong-motion records are normalized to a peak amplitude of 1.0 unit. 

Thus each record has equal weight in the inversion. Without this normalization, a 

least-squares inversion would fit large-amplitude records very well and tend to 

ignore smaller amplitude records. Such a scheme can give biased results when trying 

to invert for a three-dimensional slip pattern where good station coverage is 

important. Runs have also been made without this normalization and the results 

are very similar. The teleseismic, long-period P waves are normalized to a peak 

amplitude of 0.5 units. The teleseismic records have large amplitudes over their 

entire length, while the strong-motion records have low amplitudes for a large 

portion of their length. Since we are using a point-by-point inversion, it is necessary 

to use a smaller normalization on the teleseismic records so that they will have the 

same total weight as the strong-motion records. As we have mentioned, the timing 

of the teleseismic records is crucial. It is not possible to obtain as accurate S arrival 

times as we did for the P waves. Without good timing the S H  waveforms could 

introduce erroneous time shifts in the inversion. The S H  waves have therefore been 

multiplied by 0.01 in the inversion. Even so, the S H  waveforms are fit well, indicating 

that they are consistent with the models derived from the P waves. Considerable 

difficulty arose in modeling the short-period P waves. Therefore, on many of our 

later runs, the short-period records were multiplied by 0.01. 

INVERSION RESULTS 

Our basic philosophy has been to run many different inversions, not just one or 

two. We have varied the type and number of records in the inversion, the type and 

amount of stabilization/smoothing, and the weighting of records. Over 30 separate 

inversions have been investigated. Table 3 lists the more noteworthy. The quantity 

II b - A x  II is the euclidean norm of the misfit between the data and the synthetics. 

This number can be used to compare different runs having the same input data, 

i.e., strong-motion records alone or teleseismic records alone, etc. The primary fault 

parameters we have varied are the fault dip and the rupture velocity. The rake is 

free to vary from pure right-lateral strike-slip to pure dip-slip (east-side down) as a 

function of position on the fault in each inversion. The strike is fixed at N143°W, 

which is the average trend of the surface trace of the Imperial fault. Inversions are 

initially run with the rupture velocity constrained to be a constant fraction of the 

local shear-wave velocity. This constraint is then relaxed and the rupture velocity 

is allowed to vary within set limits. 
Figure 14 is the first of several figures with similar formats. Each frame in Figure 

14 shows contours of dislocation in centimeters on the Imperial fault plane. The 

area covered is the same as the base map in Figure 10. Although the dislocation is 
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TABLE 3 

S U M M A R Y  OF I N V E R S I O N  RUNS 
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Model No Dip Rupture Moment x 10 ~ [[ b - A x  I Type 
(°) Velocity (dyne-cm) 

27 

18 

19 

14 

21 

34 

25 

33 

26 

30 

31 

32 

90 0 85/3 5.6 13.20 Strong motion 

80 0.93 5.5 13.99 Strong motion 

80 0.853 5.7 13.71 Strong mohon 

80 0.8~ 7 3 13.37 Strong mohon 

80 0 73 9.1 14.10 Strong motion 

90 0 93 3 9 15.85 Teleseismlc 

90 0 853 3.9 15.90 Teleseismm 

90 0 73 4.1 16.07 Teleselsm,c 

80 0.853 2.9 17.19 Teleselsm,c 

90 0.853 4.7 15 88 Strong motion and teleseismic 

90 0 83 5.1 15 76 Strong motion and teleselsmm 

80 0 83 4.1 16.47 Strong motmn and teleselsmic 

90 0.753, 0 8fl, 0.853 4.9 15.02 Strong motmn and teleselsmic 

90 0.853, 0.853 + 0.5 4 9 14.87 Strong motion and teleseismic 

sec, 0.853 + 1 0 sec 

80 0.853, 0.853 + 0.5 4.0 15 96 Strong motion and telese~smm 

sec, 0.853 + 1.0 sec 

90 0.853, 0 853 + 0.5 7.3 7.84 Short-permd P only 

sec, 0.85f~ + 1.0 sec 

90 0 853 3.8 9.25 Short-permd P only 
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FIG. 14. Contours of dislocation in cenhmeters (right-lateral, stroke-slip component only) on the 
Imperial fault plane. Figure compares reversion results using different data sets and different rupture 
velocities. Horizontal and vertmal axes are in kdometers. Each frame of the figure covers the same area 
as in Figure 10. Model numbers are the same as m Table 2 

c o n s t a n t  over  each  subfau l t  in t h e  invers ions ,  a smal l  a m o u n t  o f  s m o o t h i n g  is done  

in t h e  c o n t o u r  p lo ts  for  d i sp lay  purposes .  F igure  14 shows how the  so lu t ion  changes  

wi th  d i f f e ren t  c o n s t a n t  r u p t u r e  ve loc i t ies .  On ly  the  s t r ike-s l ip  c o m p o n e n t s  o f  m o t i o n  

are  p ic tu red .  T h e  t h r ee  f r ames  on the  lef t  a re  i nve r s ions  o f  the  s t r o n g - m o t i o n  da t a  

a lone ,  a n d  the  t h r e e  f r a m e s  on  the  r igh t  a re  i nve r s ions  of  t he  t e l e se i smic  da t a  alone.  
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The model numbers of the inversions runs are indicated in Figure 13 and in all the 

following figures. These numbers can be used to refer to the tabulated information 

in Table 3. 

First consider the strong-motion solution alone. The most obvious feature is the 

rather localized, deep patch of larger dislocation. For the purpose of discussion, we 

shall refer to this feature as an asperity. There is a clear trade-off between the 

location of the asperity along the fault and the rupture velocity. There is also a 

relationship between the maximum dislocation and the assumed rupture velocity. 

The maximum dislocation is large for both a fast rupture (0.9fl) and a slow rupture 

(0.7/3), and goes through a minimum for a rupture velocity near 0.85~. The maximum 

dislocation at the asperity is controlled primarily by the amplitudes of the E1 Centro 

array station records. For a high rupture velocity, the asperity is shifted northward 

to a point under the array, which is a near-nodal position for SH waves radiated to 

the array stations. Accordingly, the dislocation must be increased to match the 

observed amplitudes. For a low rupture velocity, the asperity is at a greater distance 

from the array and the dislocation must also be increased. 

The teleseismic inversions on the right side of Figure 14 do not show as much 

detail as the strong-motion solutions, but they do have the same general character. 

The dislocation is small in the hypocentral region, grows to a maximum under 

Interstate 8, and then decays past the array stations. The position of the maximum 

dislocation is much less sensitive to the rupture velocity. This observation can be 

used to great advantage in simultaneous inversion. The teleseismic records constrain 

the timing or position of gross features on the fault while the strong-motion records 

resolve more of the details. The maximum dislocations for the teleseismic inversions 

are significantly less than the strong-motion solutions; however, they cover a broader 

area and the moments are similar. From Table 3, the moment estimate from the 

strong-motion inversions is about 5.7 × 102~ dyne-cm, while the moment from the 

teleseismic inversions is about 4.0 × 1025 dyne-cm. Heaton (1982) observed the 

same trend for the San Fernando earthquake. He obtained a slightly larger estimate 

of the moment from strong-motion data than from teleseismic body waves. 

Figure 15 compares inversions of different data sets. Both the strike-slip and dip- 

slip parts of the solution are shown. The top two frames in Figure 15 show the 

inversion results using only the strong-motion data. The middle pair is an inversion 

of only the teleseismic data, and the bottom pair is a simultaneous inversion of the 

strong-motion and teleseismic data. The simultaneous inversion, model 31, is our 

best-fitting solution assuming a constant rupture velocity. The fault dip is 90 °, the 

rupture velocity is 0.8~ (= 2.5 km/sec in the basement material below 5 kin), and 

the moment is 5.1 )< 1025 dyne-cm (see Table 3). The dip-slip motion is much less 

than the strike-slip motion and is concentrated in the upper 5 km of sediments. 

The strike-slip motion is relatively small in the hypocentral region, drops to 20 cm 

or less near the border, then grows dramatically to 2 m under Interstate 8. North 

of the E1 Centro array, the dislocation drops off rapidly and is about 50 per cent 

strike-slip and 50 per cent dip-slip. The bottom of the fault is not well resolved in 

model 31 or in many of our other inversions, due to the imposed bottom boundary 

at 10.5 kin. There is no reason why the fault could not be extended deeper except 

that the cost of computation is increased. 

From our experimentation with different fixed-rupture velocities, we noticed that 

certain aspects of the strong-motion records are explained better by a rupture 

velocity greater than 0.8f~, while other features are explained better by a rupture 

velocity less than 0.8~. To accommodate these observations, several inversions are 
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done where the rupture velocity is allowed to vary within set limits. This generali- 

zation is accomplished by allowing each subfault to rupture three separate times. 

Model W2 in Figure 16 shows the results of an inversion of this type. Rupture is 

allowed to occur within any of three windows: T1, 7'2, and T~. 7'1 is the part of the 

dislocation which occurs within 0.7 sec of the passage of a rupture front traveling 

at 0.85fl. T2 is the cumulative dislocation within 1.2 sec after the passage of the 

rupture front, and 7'3 is the cumulative dislocation within 1.7 sec after the passage 

of the rupture front. Model W2 is our preferred solution. Both the strong-motion 

and teleseismic records are used in this inversion. The dip of the fault plane for 

model W2 is 90 ° and the moment is 4.9 × 1025 dyne-cm (see Table 3). The time 

separation of 0.5 sec between 7'1, TB, and 713 is not arbitrary. If the separation is 

too small, then the model will not allow sufficient latitude in the rupture velocity/ 

time function. If the separation is too large, on the order of the period of the data, 

destructive interference can result between the waveforms of different time windows, 
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rupture velocltms Model numbers are the same as m Table 3 

causing instability. Such instabilities can also result if the separation between 

windows is small, but the total number of time windows is large. 

Frame T~ of model W2 is actually quite similar to model 31 (Figure 15). However, 

model W2 fits the strong-motion and teleseismic records significantly better. The 

improvement in fit is due to the fact that different sections of the fault are now 

allowed to rupture in time as required to explain the data. In Figure 17, the 

dislocations which take place in each of the three separate time windows of model 

W2 are plotted separately, in contrast to the cumulative plot in Figure 16. The 

strike-slip part of the solution is shown. We see that in moving from the fast rupture 

frame, 7'1 (= 0.85fl), to the slow rupture frame, T3 (= 0.85fl + 1.0 sec), the locus of 

maximum dislocation shifts to the south. This observation can be interpreted in 

one of two ways. First, the region of the fault plane near the border and 5 to 10 km 

north may have ruptured at a lower velocity, about 0.7/~. The asperity under 
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Interstate 8 ruptures at a considerably higher velocity, about 0.9~. To preserve 

continuity, the rupture front must have accelerated from the border to the asperity. 

The second interpretation has the faulting during T2 and T3 occurring as afterslip. 

The entire fault may have broken with a high rupture velocity. Faulting in the 

region of the asperity occurs abruptly with little afterslip, whereas most of the 

dislocation on the fault plane south of the asperity occurs sometime after the 

passage of the rupture front. One may alternatively view this model as a variable 

rise time on the fault plane. Our analysis cannot distinguish between these two 

models. 

The surface offsets for model W2 are generally consistent with observations of 

surface faulting. Observed displacements become large 5 km north of the border 

and extend northward for about 30 km (Sharp et al., 1982). In model W2 the 

contours of dislocation take a sharp turn upward and increase in amplitude also 

about 5 km north of the border. In our model, significant surface faulting extends 

northward for about 25 km. The surface subfaults average over the top 2.5 km, so 

one should not expect the dislocations on these elements to agree in detail with the 

surface dislocations. It is also of interest to compare model W2 with model 9WM 

of Hartzell and Helmberger (1982). Model 9WM does not have the complicated 

timing of W2, but if we compare just the final dislocations, the two models are quite 

similar. Both models have relatively small amounts of faulting at the hypocenter 

and a minimum in slip near the border. The dislocation in the hypocentral region 

of 9WM is larger than in W2. However, model 9WM does not allow for a bilateral 

rupture and must concentrate more slip in a smaller area. Both models have an 

asperity under Interstate 8 with about 2 m of slip. Model 9WM has another local 

maximum about 5 km north of the border. In model W2, the second maximum is 

replaced by a broader region of large dislocation with no intervening minimum. 

Evidence for the localized maximum in dislocation under Interstate 8 can be seen 

directly in the short-period P waves. The short-period records in Figure 8 are low 

amplitude for the first 6 sec. Six seconds into the records there is a clear increase 

in amplitudes. The hypocenter in model W2 (Figure 16) is 36 km from the northern 

end of the fault. Six seconds corresponds to 15 km for a rupture velocity of 2.5 km/ 

sec (0.8~ in the basement material), which places the rupture front at the 21 km 

mark in Figure 16. This position is at the beginning of the asperity. The asperity is 

superimposed on a much broader region of relatively large dislocation about 20 km 

long and entirely north of the border. The 1979 Imperial Valley earthquake appears 

to be actually two earthquakes; a magnitude 5 earthquake at the hypocenter south 

of the border, followed by a magnitude 6 earthquake north of the border. 

Model W3 in Figure 18 is another simultaneous strong-motion-teleseismic, multi- 

time window inversion like model W2. The only difference between W2 and W3 is 

the dip of the fault. W3 has a dip of 80 ° to the east (W2 assumes a vertical fault 

plane). The major effects of introducing a nonvertical dip are to eliminate a lot of 

the deeper dislocation (below 8 km) and to reduce the peak dislocation from 180 to 

120 cm. Model W3 fits the strong-motion records as well as W2, but does a poorer 

job of explaining the teleseismic records. The poorer fit to the teleseismic body 

waves is primarily due to the misprediction of the P-wave first motions at the near- 

nodal stations to the south (NNA, ANT, and ARE). 

Figures 19 through 23 compare the strong-motion and teleseismic records with 

the synthetics for the simultaneous inversion models: W2, W3, and 31. The strong- 

motion data and synthetics in Figures 19 and 20 are plotted on the same vertical 

scales to facilitate comparison of amplitudes. The best-fitting, constant-rupture- 
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velocity inversion, model 31, does a noticeably poorer job of matching the strong- 
motion records than W2 and W3. The more complicated timing of models W2 and 
W3 seems to be required by the data. The amplitudes of the long-period, teleseismic 

synthetics for all three models match the data fairly well (Figures 21 and 22). 
Although all three models W2, W3, and 31 give reasonable fits to the strong-motion 
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and long-period, teleseismic waveforms, model W2 provides a slightly better overall 

fit (Table 3). Unfortunately, none of the models match the short-period P waves 

(Figure 23). Stations like BLA and RES, where there is fairly good amplitude 

agreement, also have better waveform agreement than stations like MAT, where 

the amplitude of the data is much larger than the synthetics. MAT appears to be 

contaminated by large-amplitude arrivals which are not produced by our models. 

As we mentioned above, the short-period P waves have long durations which appear 

not to be explainable by a reasonable source model in a fiat-lying, layered structure 

(see Figure 8). Therefore, we cannot expect to model the entire short-period record. 

Figure 23 shows the synthetics for a fourth model, W5. Model W5 also results 

from a multi-time window inversion, but only the short-period P waves are used. 

The first 12.5 sec of the records are inverted in order to avoid the complications of 

later arrivals. The fits for model W5 are quite good; however, the source model is 
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unreasonable. Figure 24 shows the contours of dislocation for model W5. The time 

windows T1, T2, and T3 are the same as in models W2 and W3. The dip-slip part of 

the solution is much too large and bears no resemblance to any previous inversion. 

Furthermore, the synthetics for W5 are dominated by the dip-slip component of 

slip (compare short-period, strike-slip and dip-slip amplitudes in Figure 13). In 

model W5, both the strike-slip and dip-slip dislocations continue to grow to the 

north until they terminate at the northern end of the fault. Part  of this problem 

may be due to the abrupt truncation of the records after 12.5 sec, necessitating a 

large stopping phase. Also, the separation between time windows may be too large 

for the short-period data, destablizing the inversion. The strike-slip component of 

W5 does, however, have some similarities with model W2 (Figure 16). Both are 

small in the hypocentral region and both begin to increase a few kilometers north 

of the border. Thus, we do not consider the inversion of teleseismic short-period 
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records to be without hope. However, care must be exercised to obtain a stable 

inversion. It would be judicious to first obtain experience inverting short-period 

waveforms for less complicated earthquakes before tackling the intricacies seen in 

records of the Imperial Valley earthquake. 
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for three inversion models' W2, W3, and 31 

In Figure 25, the observed and predicted peak velocities of the 230 ° component 

for the E1 Centro array stations are plotted as a function of distance from the fault. 

The observed amplitudes in Figure 25 are lower than those reported by Brady et al. 

(1980) because of the inversion preprocessing discussed earlier. In general, the 
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synthetics overestimate the velocities close to the fault and underestimate the 

velocities further from the fault. The large amplitude variation with distance from 

the fault seen in synthetic records of model W2 is caused by several effects, the 

most important being radiation pattern. In model W2, SH-wave radiation nodes 

occur near array stations 4 and 10 for SH waves produced by the asperity located 
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beneath Interstate 8. An SH-wave radiation maximum occurs at array station 7, 

which is located directly along the strike of the asperity. The amplitude of the 

synthetic at array station 7 is further increased by the directivity effect due to a 

rupture front which traverses the asperity at a velocity very close to the local shear- 

wave velocity. For stations close to the fault, directivity serves to increase the 
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amplitude and decrease the pulse width of the direct SH-wave arrival. One way to 

decrease the variation in amplitudes for synthetics for the array stations is to move 

the asperity to the south. This decreases the variation across the array due to both 
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radiation pattern and directivity. Model 21, also shown in Figure 25, is a model 

which assumes a low rupture velocity and for which the asperity is located about 10 

km south of Interstate 8 (see Figure 14). Although this model does a better job of 

fitting the amplitude variation seen across the array, it does a poor job of modeling 
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both the records of stations south of the E1 Centro array and the teleseismic body 

waves. Another alternative is to decrease the effect of radiation pattern by allowing 

local variations in fault strike and dip along the fault similar to those suggested by 

Hartzell and Helmberger (1982) and Le Bras (1983). Such variations eliminate the 

well-defined radiation nodes and maxima present in our simple planar models. The 

net effect would be the reduce amplitudes near the strike of the fault and increase 

them further from the fault. 

After all the forward modeling done by Hartzell and Helmberger (1982) and the 

inversion modeling in this study, considerable insight has been gained into the kind 

of station distribution needed to resolve the details of rupture on a three-dimentional 

surface. In the case of a shallow strike-slip fault such as the Imperial fault, an array 

along the strike of the fault, offset from the surface trace by half the maximum 

fault depth, is far more diagnostic for resolving source details than an array 

perpendicular to the fault strike. In Figure 7 this pattern would be a succession of 

Bonds Corder stations parallel to the fault. Nevertheless, a great deal can be and 

has been learned about strong-motion wave propagation from the perpendicular-to- 

the-fault array. 

CONCLUSIONS 

The moment of the Imperial Valley earthquake is estimated to be 5.0 × 1025 dyne- 

cm from the simultaneous inversion of local strong motions and teleseismic body 

waves. Teleseismic waveforms indicate a fault dip of 90 ° _ 5 °. Dislocation in the 

hypocentral region (~5 km south of the border) is relatively small and drops off to 

20 cm or less in the region of the border. The dislocation then increased rapidly 

with distance north of the border to a maximum of about 2 m under Interstate 8. 

Faulting dies out a short distance north of the E1 Centro array. Dip-slip faulting is 

minor compared to strike-slip and is concentrated in the sediments. The 1979 

Imperial Valley earthquake appears to have initiated with a magnitude 5 earthquake 

at the hypocenter which then grew into, or triggered, a magnitude 6 earthquake 

north of the border. The best-fitting constant rupture velocity model has a rupture 

velocity of 0.8/~ (= 2.5 km/sec below 5 km). There is a suggestion of a variable 

rupture velocity (or variable rise time), with the rupture front accelerating from 

about 0.7~ near the hypocenter to 0.9fl under Interstate 8. Directivity is important 

for the E1 Centro array stations. The best-fitting simultaneous inversion model 

(W2) is not fundamentally different from model 9WM of Hartzell and Helmberger 

(1982). This study demonstrates that dislocation models can be obtained from 

teleseismic body waves alone that are consistent with models obtained from local 

strong-motion data. 
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