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Abstract 

Obtaining high-precision, long-term sequences of vegetation water content (VWC) is of great significance for 

assessing surface vegetation growth, soil moisture, and fire risk. In recent years, the global navigation satellite 

system-interferometric reflection (GNSS-IR) has become a new type of remote sensing technology with low cost, 

all-weather capability, and a high temporal resolution. It has been widely used in the fields of snow depth, sea level, 

soil moisture content, and vegetation water content. The normalized microwave reflectance index (NMRI) based 

on GNSS-IR technology has been proven to be effective in monitoring changes in VWC. This paper considers the 

advantages and disadvantages of remote sensing technology and GNSS-IR technology in estimating VWC. A point-

surface fusion method of GNSS-IR and MODIS data based on the GA–BP neural network is proposed to improve the 

accuracy of VWC estimation. The vegetation index products (NDVI, GPP, LAI) and the NMRI that unified the temporal 

and spatial resolution were used as the input and output data of the training model, and the GA–BP neural network 

was used for training and modeling. Finally, a spatially continuous NMRI product was generated. Taking a particular 

area of the United States as a research object, experiments show that (1) a neural network can realize the effective 

fusion of GNSS-IR and MODIS products. By comparing the GA–BP neural network, BP neural network, and multiple 

linear regression (MLR), the three models fusion effect. The results show that the GA–BP neural network has the best 

modeling effect, and the r and RMSE between the model estimation result and the reference value are 0.778 and 

0.0332, respectively; this network is followed by the BP neural network, in which the r and RMSE are 0.746 and 0.0465, 

respectively. MLR has the poorest effect, with r and RMSE values of 0.500 and 0.0516, respectively. (2) The spatiotem-

poral variation in the 16 days/500 m resolution NMRI product obtained by GA–BP neural network fusion is consistent 

with that in the experimental area. Through the testing of GNSS stations that did not participate in the modeling, the 

r between the estimated value of the NMRI and the reference value is greater than 0.87, and the RMSE is less than 

0.049. Therefore, the method proposed in this paper is optional and effective. The spatially continuous NMRI products 

obtained by fusion can reflect the changes in VWC in the experimental area more intuitively.
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Introduction
Surface vegetation is one of the critical components of 

terrestrial ecosystems, and the water content in the veg-

etation canopy is approximately 40–80% (Elvidge 1990), 

playing an essential role in soil formation and environ-

mental changes. Vegetation water content (VWC) is one 

of the main factors controlling plant photosynthesis, 

respiration, primary productivity, and biomass. It plays 

an essential role in plant physiological status, vegetation 

function, drought, and fire risk assessment (Peñuelas 

et al. 1993). Because a plant is covered with soil, its water 

content will affect the monitoring of soil moisture, and 

the correct estimation of VWC can improve the accuracy 
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of soil moisture inversion (Jin et  al. 2017b). �erefore, 

obtaining high-precision, long-term sequences of VWC 

is of considerable significance to the study of surface veg-

etation and soil moisture.

In 1980, the European Space Agency (ESA) first pro-

posed that GPS L-band signals could be used as ocean 

scatterometers (Hall 1988). Subsequently, in 1993, ESA’s 

Martin-Neria first introduced the concept of PARIS and, 

for the first time, used GPS-reflected signals to achieve 

ocean height measurements (Martin-Neira 1993). Since 

then, foreign scholars have realized that GPS-reflected 

signals might serve as a new remote sensing method 

(Liu et al. 2007). �erefore, two new GNSS remote sens-

ing technologies have been proposed: Global Navigation 

Satellite System-Reflection (GNSS-R) remote sensing 

technology and Global Navigation Satellite System-Inter-

ferometric Reflection (GNSS-IR) remote sensing tech-

nology. However, GNSS-R technology needs to receive 

both direct and reflected signals from the satellite at the 

same time. �erefore, it requires an instrument with 

both a left-handed circularly polarized (LHCP) antenna 

and a right-handed circularly polarized (RHCP) antenna. 

�erefore, GNSS-R technology has higher requirements 

for hardware and a higher cost; thus, it has limited its 

development and promotion to a certain extent. GNSS-

IR technology requires only an ordinary geodetic receiver 

to perform experiments and has the characteristics of 

being low cost, useful in all weather, high accuracy, and 

high spatiotemporal resolution.

GNSS-IR technology was first proposed by Professor 

Larson of the University of Colorado. Larson and others 

separated the direct and reflected components from the 

GPS signal-to-noise ratio (SNR) observations and studied 

the reflected components and the surrounding environ-

ment of the station. �e results show that the ampli-

tude of the reflected components can reflect the overall 

change in the surrounding soil moisture (Larson et  al. 

2008a). Subsequent research found that the reflected 

signal could well reflect the evolution of soil moisture 

within 5 cm of the soil surface. �ere is a certain corre-

lation between the reflected signal phase, satellite height 

angle change, and soil moisture content; however, when 

the soil moisture content is less than 10%, the correlation 

weakens (Larson et  al. 2008b, 2010). Considering that 

GNSS-IR technology can realize the estimation of surface 

environmental parameters, Larson and others extended 

GNSS-IR technology to snow depth monitoring and pro-

vided a series of results for the development of GNSS-

IR technology (Larson et al. 2009; Larson and Nievinski 

2013; Larson 2016). Since then, GNSS-IR technology has 

been widely used to monitor changes in the surface envi-

ronment, such as soil moisture (Larson 2016; Liang et al. 

2019; Ren et  al. 2019), sea level (Larson et  al. 2013; Jin 

et al. 2017a), and snow depth (Zhang et al. 2017, 2018). In 

terms of vegetation detection, Small and others used the 

GPS noise statistic  MP1 root mean square (RMS) for the 

first time to qualitatively estimate the growth of plants. 

�ey noted that the SNR data in the reflected signal 

could reflect the growth of vegetation (Small et al. 2010). 

Chew and others used a model for soil moisture inversion 

to quantitatively analyze VWC and SNR and the actual 

reflection surface height. �e results show that when 

VWC does not exceed 1.5  kg/m2, the vegetation water 

content and SNR amplitude have a linear relationship 

(Chew et al. 2014). Chen and others proposed a method 

based on the amplitude and frequency analysis of the 

interference pattern of the SNR to eliminate the influence 

of VWC in soil moisture retrieval and achieved excel-

lent results (Chen et al. 2016). In terms of VWC, Larson 

and others defined a daily VWC metric based on the 

amplitude of the reflected signal based on the relation-

ship between the SNR amplitude and VWC, which is the 

normalized microwave reflection index (NMRI) (Larson 

and Small 2014). In 2004, verification was performed at 

four grassland sites in Montana, and the results showed 

that under the conditions of similar vegetation and cli-

mate, the NMRI and VWC have a strong correlation, and 

the VWC can be more accurately retrieved by the NMRI 

(Small et al. 2014). At present, the Plate Boundary Obser-

vatory (PBO) in the United States provides daily NMRI 

data. However, because the NMRI data are based on GPS 

stations, only VWC changes within 1000 m2 around the 

station are monitored. Additionally, the interval between 

GNSS stations of the PBO observation network is large, 

and spatial continuity cannot be achieved. �erefore, the 

application of the NMRI product is further limited.

In recent years, with the rapid development of remote 

sensing technology and imaging spectroscopy tech-

nology, it is relatively easy to obtain large-scale and 

long-term VWC data using remote sensing technology. 

Due to the different sensors, the current remote sens-

ing technology can be divided into optical remote sens-

ing and microwave remote sensing. Among them, the 

normalized difference vegetation index (NDVI), leaf 

area index (LAI), gross primary productivity (GPP) and 

other vegetation indexes provided by MODIS satellites 

belonging to optical remote sensing are widely used in 

VWC research (Tucker et al. 2005). Although these veg-

etation indexes have a high spatial resolution, due to the 

defects of optical sensors, the vegetation index images 

are easily affected by clouds and smog, resulting in the 

loss of information. Additionally, the NDVI is primarily 

regarded as an indicator of vegetation greenness. �ese 

indexes are used to infer the biomass and LAI and other 

vegetation indexes (Gutman and Ignatov 1998; Paruelo 

et  al. 1997; Wylie et  al. 2002). Because environmental 
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factors such as plant type and hydrometeorology have 

different effects on VWC and “greenness,” the NDVI can-

not be used to accurately estimate the VWC. At present, 

microwave remote sensing has also been used to success-

fully estimate VWC (Brakke et al. 1981; Owe et al. 2001). 

Although microwave remote sensing is not affected by 

clouds and fog, its spatial resolution is low. Some scholars 

have proposed a method of fusing the effects of optical 

remote sensing images and microwave remote sensing 

(Dasgupta and Qu 2006). However, due to the significant 

difference in the spatial resolution between the two, the 

accuracy and spatial resolution of the fusion results are 

weak in practical applications. �erefore, using remote 

sensing technology to estimate VWC has certain flaws.

At present, how to make full use of multisource data 

to achieve the fusion of multisource data has become a 

research hotspot. Multisource data fusion has a complex 

nonlinear relationship, and machine learning technology 

can better solve nonlinear problems. �erefore, many 

scholars have conducted multisource data fusion and 

research using machine learning technology and have 

achieved good results (Li et al. 2017; Xu et al. 2018; Yuan 

et  al. 2020). In summary, the NMRI products based on 

GNSS-IR can better reflect the changes in VWC. �e 

vegetation index products based on remote sensing tech-

nology have the characteristics of being large-scale and 

having a long-term series. In this paper, a fusion inver-

sion method of GNSS-IR and remote sensing data based 

on the GA–BP neural network is proposed. �e spatial 

resolution of optical remote sensing is better than that of 

microwave remote sensing. �erefore, this article selects 

MODIS vegetation index products for experiments. �e 

GA–BP neural network is used to achieve effective fusion 

of the two and fully exploit their advantages. Finally, a 

spatially continuous NMRI product map is established. 

To compensate for the limitations of the original NMRI 

product space, this product is used to better estimate 

VWC.

Model principle and methodology
GNSS‑IR and NMRI principles

�e core observational measurement of GNSS-IR is SNR 

data. SNR is a composite signal of direct component Ad 

and reflected component Ar. �e commonly used receiv-

ers are currently designed to be right-handed circularly 

polarized, resulting in Ad ≫ Ar. Because Ad is much larger 

than Ar, the direct signal Ad is a trend term. It deter-

mines the overall change in SNR. �e reflected signal 

Ad appears as a local periodic fluctuation. Because Ad 

and Ar differ significantly, they can be separated by using 

low-order polynomials. �ere is a fixed frequency sine 

(cosine) function relationship between the separated 

reflection components Ar and sin(θ) (Chew et al. 2013). 

�e reflection component can be expressed as follows:

In the formula, θ, λ, and h represent the satellite height 

angle, carrier wavelength, and vertical distance from the 

antenna phase center to the reflection point, respec-

tively, and A and φ represent the amplitude and phase of 

the reflection component, respectively. If t = sin(θ) and 

f = 2 h/λ, then Equation (1) can be expressed as follows:

�e NMRI is a comprehensive index used to evaluate 

the amplitude change of the reflected signal. �e core 

is to calculate the RMS of the pseudo-range multipath 

index MP1 on the L1 carrier. MP1 is defined as (Estey and 

Meertens 1999):

In the equation, P1 is the pseudo-range observation 

on the L1 carrier; f1 and f2 are the carrier frequencies of 

L1 and L2, f1 = 1575.42  MHz, f2 = 1227.6  MHz; λ1 and 

λ2 are the carrier wavelengths of L1 and L2, λ1 = 0.19 m, 

and λ2 = 0.24 m; φ1 and φ2 are the L1 and L2 carrier phase 

observations. �e calculation of the NMRI is based on 

the RMS value of MP1, and its calculation method is as 

follows:

In the equation, RMSMP1
 is the RMS value of MP1 on 

a single day, and max
(

RMSMP1

)

 is the average value of 

RMSMP1
 in the top 5% after the RMSMP1

 values are ranked 

from large to small.

GA–BP neural network

Considering the time and space complexity of GNSS-

IR and MODIS data, it is difficult to achieve effective 

fusion using only linear methods. �erefore, this article 

attempts to use the artificial neural network (ANN) of the 

typical BP neural network model for experimental analy-

sis. �e BP neural network was proposed by McClelland 

and Rumelhart (Rummelhart et al. 1986; Mcclland et al. 

1986). It is a multilayer feedforward neural network that 

can better handle nonlinear problems. Its main structure 

is composed of an input layer, a hidden layer, and an out-

put layer. Each layer is formed by several neurons, and 

the output value of each neuron is determined by the 

input value, action function, and threshold. �e learning 

(1)Ar = A cos

(

4πh

�
sin (θ) + ϕ

)

(2)Ar = A cos
(

2π ft + ϕ
)

(3)MP1 = P1 −
f 2
1

+ f 2
2

f 2
1

− f 2
2

�1ϕ1 +
2f 2

2

f 2
1

− f 2
2

�2ϕ2

(4)NMRI =

max
(

RMSMP1

)

− RMSMP1

max
(

RMSMP1

) .
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process of the BP neural network includes two processes: 

forward information propagation and error backward 

propagation. In the forward propagation process, the 

input information is transmitted from the input layer 

through the hidden layer to the output layer, and the out-

put value and the expected value are compared. If there is 

an error, the error is propagated back along the original 

connection path, and the weights of the neurons in each 

layer are modified layer by layer to reduce the error. �is 

cycle is repeated until the output results meet the accu-

racy requirements (Alpaydin 2004). �e BP neural net-

work topology is shown in Fig. 1.

In Fig. 1, x1, x2, …, xn is the input value of the BP neural 

network; ym is the output value of the neural network; wij 

is the connection weight of input layer neurons and hid-

den layer neurons; wjk is the connection weight of hidden 

layer neurons and output layer neurons.

Although the BP neural network can better address 

nonlinear problems, it still has flaws (Srinivas and Deb 

1994). �e first is related to the BP neural network mod-

eling process. To reduce network errors and improve 

accuracy, the number of hidden layer neurons must be 

appropriately selected. However, there is no specific cal-

culation method for the optimal number of hidden layer 

neurons. Second, the initial weights and thresholds of 

the BP neural network are randomly generated. Each 

node and weight of the BP neural network will affect the 

output. �erefore, the adaptation process and the global 

approximation process are time-consuming, resulting in 

a slow convergence of the network. Finally, the BP neural 

network uses a gradient descent method, which has local 

optimization problems.

To solve the shortcomings of the above BP neural 

network, this paper uses the genetic algorithm (GA) to 

optimize the BP neural network. �e GA is a parallel 

random search optimization method formed by simu-

lating genetic mechanisms and biological evolution in 

nature (Holland 1975). �is method is based on the sam-

ple fitness function and selects, intersects, and mutates 

the initial population to guide learning and determine 

the search direction. Because it uses the population to 

search, it can use random methods to find the optimal 

solution in multiple regions of the global solution space, 

making it particularly suitable for large-scale parallel pro-

cessing (Goldberg 1989). Considering the defects of the 

BP neural network and the advantages of the GA, the two 

are combined to construct the GA–BP neural network 

algorithm. First, the GA is used to optimize the weights 

and thresholds of the BP network to reduce the range 

of weights and thresholds. Subsequently, the optimized 

weights and thresholds are inputted to the BP neural net-

work and solved accurately to improve the training accu-

racy and speed of the BP neural network. �e GA–BP 

model algorithm flow is shown in Fig. 2.

Methodology

�e methodologies of GNSS-IR and MODIS fusion 

inversion based on the GA–BP neural network are as 

follows:

1. Study area setting. Select an area where the GNSS 

stations are evenly distributed, the terrain is diverse, 

and the climate change is significant;

2. Data collection. Among them, the NMRI data came 

from PBO H2O (https ://gnss-h2o.Jpl.nasa.gov/index 

.php), and the three MODIS vegetation index prod-

ucts came from the Google Earth Engine (GEE) 

(https ://devel opers .googl e.com/earth -engin e/datas 

ets/). Detailed information on each product is shown 

in Table 1.

3. Data preprocessing and data set construction. First, 

we discuss the effect of GNSS-IR and MODIS fusion 

in the short term. First, we extract the correspond-

ing vegetation index values from the three vegeta-

tion images based on the latitude, longitude, and date 

of the 37 GNSS stations and establish a raw data-

set consisting of the NMRI, NDVI, GPP, LAI, Lat, 

and Lon. Subsequently, the correlation between the 

NMRI and three vegetation indexes was analyzed to 

verify whether all three indexes could be included in 

modeling. Finally, the time resolution of NMRI, GPP, 

and LAI was unified to 16  days through averaging, 

and a modeling dataset with 16  days/500  m resolu-

tion was finally established. In the modeling dataset, 

the NDVI, GPP, LAI, LAT, and LON are the input of 

modeling and the output of NMRI modeling.

4. Establish a training model. In the modeling dataset, 

the data of 34 stations are selected as the model input 

sequence and use the corresponding NMRI as the 

model output sequence. Follow the steps in Fig. 2 of Fig. 1 BP neural network topology

https://gnss-h2o.Jpl.nasa.gov/index.php
https://gnss-h2o.Jpl.nasa.gov/index.php
https://developers.google.com/earth-engine/datasets/
https://developers.google.com/earth-engine/datasets/
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“GA–BP neural network” section to train the GA–BP 

model.

5. Model testing and accuracy inspection. Extract the 

NDVI, GPP, LAI, latitude and longitude of each pixel 

in the vegetation index image of the predicted date. 

�ese data are input into the trained model, and 

finally, a spatially continuous 16  days/500  m resolu-

tion NMRI product is generated. Finally, the accuracy 

test and evaluation are carried out through GNSS 

stations that are not involved in modeling.

�e inversion process is shown in Fig. 3.

Study area
PBO is currently the only observing network based on 

the GNSS-IR principle. �is network is based on GNSS-

IR technology, and the daily estimates of vegetation mois-

ture content, soil moisture, and snow depth are widely 

used in GNSS-IR technology research. Figure 4 is a sche-

matic diagram of GNSS stations deployed by PBO in the 

western United States (30°  N–50° N, 95° W–125°  W). 

GNSS-IR and MODIS products have significant differ-

ences in temporal and spatial resolution. �erefore, it is 

considered that if the distance between GNSS stations 

is large and the distribution of the stations is sparse, it 

may result in poor local modeling results. �e terrain 

around the station, regional climate change, and other 

factors may affect the effectiveness of the model. �ere-

fore, this paper considers the above three factors com-

prehensively and selects the blue area (39°  N–44.5°  N, 

111°  W–114°  W) as the experimental area. �e GNSS 

station distribution in this area is relatively uniform, the 

terrain is diverse, and climate change is significant, which 

can better train the model. �e DEM map and Landsat 

image of this area are shown in Fig. 5.

Fig. 2 GA–BP model algorithm flow

Table 1 Product details

Index Resolution Product Time

NMRI Daily/station PBO  H2O 2010.7.78–2010.10.16

NDVI 16 days/500 m MOD13A1 2010.7.28–2010.10.16

GPP 8 days/500 m MOD17A2H 2010.7.78–2010.10.16

LAI 4 days/500 m MCD15A3H 2010.7.78–2010.10.16
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Figure  5b shows that there are 37 stations in this 

area, with different distribution locations and densities. 

Among them, 34 circles represent the stations involved 

in modeling. �ree triangles (P112, P354, P359) repre-

sent the stations that were not included in the mode-

ling, as they were used as later verification data. With 

reference to Figs. 4 and 5 and analysis of existing data, 

the upper half of the study area is southeast Idaho, and 

the lower half is northern Utah; Idaho and Utah both 

have a temperate continental climate. Because it is far 

from the ocean and blocked by the terrain, the humid 

air mass is difficult to reach, so it is dry and less rainy. 

It has the characteristics of hot and humid summers 

and cold and dry winters. Among them, the blue box 

in Fig.  5b is the famous Great Salt Lake Desert in the 

United States, and the red box is the Great Salt Lake. 

�e area contains more minerals, so the vegetation is 

thinner. �erefore, the VWC of the region selected in 

this paper will have significant differences in time and 

space to verify the accuracy of the inversion results 

later.

Results and analysis
In this paper, the correlation coefficients (r) of the NMRI, 

NDVI, GPP, and LAI vegetation indexes from 37 stations 

in the experimental area from July 28, 2010, to October 

16, 2010, are calculated using the linear regression princi-

ple, and the results are shown in Fig. 6.

Fig. 3 Experimental flowchart
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It can be seen from Fig.  6 that there are 30 stations 

whose correlation coefficient between the NMRI and 

NDVI exceeded 0.6, accounting for 81% of the total sta-

tions. �ere are 29 stations whose correlation coefficient 

between the NMRI and GPP exceeded 0.6, accounting for 

78% of the total stations. �ere are 25 stations with a cor-

relation coefficient between the NMRI and LAI greater 

than 0.6, accounting for 68% of the total stations. �e 

NMRI, NDVI, GPP, and LAI all have strong correlations, 

and the selected NDVI, GPP, and LAI can participate in 

modeling.

To better verify the modeling effect of the GA–BP 

model, this paper compares the GA–BP neural network, 

BP neural network, and multivariable linear regression 

model (MLR). First, determine the number of hidden 

neurons in the model according to the empirical formula 

m =
√
n + l + a . In the formula, m is the number of 

hidden layer nodes; n and l are the input layer and out-

put layer nodes, respectively; and a is a positive integer 

between 1 and 10. Because the number of neurons in the 

input layer is five (i.e., the NDVI, GPP, LAI, Lon, and Lat) 

and the number of neurons in the output layer is one (i.e., 

the NMRI), the value range of the neurons in the hid-

den layer is m = [3, 14]. Subsequently, this paper uses a 

cross-validation method that is randomly run 500 times 

to select the best number of hidden layers. �e results are 

shown in Table 2.

Table  2 shows that the nine hidden layer neurons 

appear most often. �e average root mean square error 

(RMSE) value of the test at this time is relatively small. 

Subsequently, this paper randomly shuffles the dataset 

established in step 3 and divides it into training and test 

sets and inputs three models at the same time, running 

50 times in a loop. Compare the modeling effects of the 

three models by testing whether the r and RMSE of the 

set are less than the threshold. �e results are shown in 

Table 3.

From the table above, we can see that, after using the 

three models of BP, GA–BP, and MLR, the number of 

r values of the test set that are greater than 0.6 is 22, 

23, and 13, respectively; the number of RMSEs in the 

test set that are less than the threshold is 35, 35, and 34, 

respectively. Based on the analysis of the numbers of r 

and RMSE that are less than the threshold, we can see 

that both the BP neural network and the GA–BP neural 

network are better than the MRL result, and the GA–

BP neural network is slightly better than the BP neural 

network. To further compare the modeling effects of 

the three models, this paper uses K-fold cross-valida-

tion to further analyze the models. First, a part of the 

data is separated from the dataset established in step 3 

as a test set, and the remaining data are divided into ten 

parts as a training set. Subsequently, the training model 

was repeated ten times, nine training datasets were 

Fig. 4 PBO site distribution
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selected for training each time, and the remaining data-

set was used for validation. �e test data were used to 

test the model effect. Finally, the test results obtained 

by running the three models ten times were averaged. 

�e results are shown in Fig. 7.

We can see from Fig. 7 that, among the three models, 

the GA–BP neural network has the best modeling effect, 

and the r and RMSE values of the estimated results are 

77.8% and 0.0332, respectively. Following the BP neural 

network, the estimated r and RMSE values are 74.6% 

and 0.0465, respectively. �e MLR model has the worst 

modeling effect, with r and RMSE estimated at 50% and 

0.0516, respectively. �is result is consistent with the 

results shown in Table 3. Based on the above results, both 

the BP neural network and the GA–BP neural network 

are relatively stable and better than the MLR results. 

However, GA–BP neural network modeling works bet-

ter. �erefore, the GA–BP neural network adopted in 

this paper is used for modeling. In this paper, the estab-

lished dataset is randomly divided into 70%, 15%, and 

15%, which are used as the training, confirmation, and 

test sets, respectively. According to the algorithm flow of 

Fig. 2, the GA–BP model is trained, and the model with 

the best training effect is selected after multiple pieces 

of training. Figure 8 shows the change in the reciprocal 

of sum-squared errors of the genetic algorithm and the 

change in the fitness function. �e model training accu-

racy is shown in Fig. 9.

It can be seen from Fig. 8 that when the number of iter-

ations is less than 10, the sum-squared errors and fitness 

functions tend to be stable. �e GA finds the gene chain 

with the smallest error energy as much as possible at the 

global level, reducing the possibility that the simple BP 

neural network is easy to oscillate and does not converge 

(or locally converge). It can be seen from Fig. 9 that the r 

values of the training and testing parts have reached 0.86 

and 0.64, respectively, and the overall modeling accuracy 

has reached 0.79. �e test part RMSE was calculated as 

0.031. �erefore, the trained model is feasible and effec-

tive. �us, using the model trained above to perform 

Fig. 5 DEM map and satellite map of the study area: a DEM map; b Landsat map
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inversion, six spatially continuous 16 days/500 m resolu-

tion NMRI product maps were obtained. Figure 10 shows 

six spatially continuous NMRI product maps. Figure  11 

shows the NDVI, GPP, and LAI images on July 28 and 

October 16.

By comparing the NDVI, GPP, and LAI images at the 

same time, it was found that the spatial distribution of 

the NMRI in the test area was relatively consistent with 

the NDVI, GPP, and LAI. From the spatial distribution of 

the NMRI in Fig. 10, it can be seen that the NMRI values 

in the eastern and northwestern mountains of the experi-

mental area are high, and the NMRI values in the Great 

Salt Lake and Great Salt Lake Desert areas in the south-

west are low. �is result is consistent with the geographi-

cal characteristics of the experimental area described in 

“Study area” section. From the time distribution, com-

paring Figs.  10 and  11, we found that as the weather 

became colder, the vegetation growth in most areas of 

the experimental area decreased significantly, and the 

water content of the vegetation decreased significantly. 

�is change agreed with the climate characteristics of 

cold and dry winters in the experimental area. �rough 

Fig. 6 Correlation analysis between NMRI, NDVI, GPP, and LAI

Table 2 Hidden layer number selection

Number of hidden 
layers

Frequency RMSE average Number of hidden 
layers

Frequency RMSE average

3 33 0.0394 9 56 0.0400

4 27 0.0392 10 55 0.0404

5 28 0.0415 11 51 0.0397

6 38 0.0400 12 47 0.0412

7 39 0.0405 13 45 0.0400

8 43 0.0413 14 38 0.0390

Table 3 Comparison of running results of three models

Model r RMSE threshold (0.005)

< 0.6 > 0.6 Less than Greater than Less 
than a threshold 
percentage (%)

BP 28 22 35 15 70

GA–BP 27 23 35 15 70

MLR 37 13 34 16 68
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the consistency of the NMRI spatial distribution with 

the NDVI, GPP, and LAI in Figs. 10 and 11, the feasibil-

ity of point-surface fusion was preliminarily verified. To 

further verify the accuracy of spatially continuous NMRI 

products, the NMRI values of three non-participating 

stations in the six spatially continuous NMRI images 

obtained by modeling were extracted and compared with 

the reference values of the NMRI provided by PBO H2O. 

�is paper uses the three indicators of r, RMSE, and 

maximum inversion error (Max) for accuracy analysis. 

�e results are shown in Fig. 12.

It can be seen from Fig. 12 that the r between the inver-

sion value and the actual value of the three stations is 

higher than 0.87, which shows that there is a strong cor-

relation between the inversion results and the actual 

value; for the RMSE, P359 is the largest among the three 

stations, reaching 0.049. �e other two stations are less 

than 0.03; for MAX, P359 is the largest among the three 

stations, reaching 0.082, and the other two stations are 

less than 0.046. It can be seen that the errors obtained 

at the three stations are small, and there are no gross 

errors; thus, the inversion results obtained are valid and 

accurate.

It can be seen from Figs. 10 and 11 that there are still 

some inconsistencies in the generated spatially continu-

ous NMRI map. For example, in the southwestern part 

of the map, this region has a low resolution of vegetation 

moisture content, and the NMRI value is relatively close, 

which cannot accurately reflect the changes in vegetation 

moisture content in this region. In the images in Fig. 10e, 

f, it is obvious that there is an overestimation of the veg-

etation water content in this area. Combining Fig. 5b, we 

see there is no PBO H2O station in this area. �erefore, 

this may be because no GNSS stations from this area are 

included in modeling. Ultimately, the effect and accuracy 

of local modeling were affected, resulting in an abnor-

mal NMRI value in this area. �erefore, there may be a 

large relationship between the fusion effect and the dis-

tribution of GNSS stations. For regions with GNSS dis-

tribution, it is feasible and effective to use GA–BP neural 

network to establish a point-plane fusion model to finally 

obtain a spatially continuous NMRI product.

Fig. 7 Comparison of K-fold cross-validation of three models: a BP; b GA–BP; c MLR

Fig. 8 Genetic algorithm optimization results: a reciprocal of sum-squared errors; b fitness function
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Conclusion and future research
�e accurate and long-term monitoring of VWC is of great 

significance to environmental scientific research. Given 

the current limitations of using GNSS-IR technology and 

remote sensing technology to monitor VWC changes. 

Based on the idea of multisource data fusion, this paper 

proposes a method of point-surface fusion using neural 

networks to integrate MODIS three vegetation indexes: 

the NDVI, GPP, LAI, and NMRI products based on GNSS-

IR. �eoretical analysis and experimental results show that 

(1) the NDVI, GPP, and LAI all have strong correlations 

with the NMRI. (2) We compared the effect of point-sur-

face fusion of three models: the GA–BP neural network, 

BP neural network, and MLR. �e results show that the 

GA–BP neural network has the best modeling effect, and 

the r and RMSE values between the model estimation 

result and the reference value are 0.778 and 0.0332, respec-

tively; it was followed by the BP neural network, with r and 

RMSE values of 0.746 and 0.0465, respectively; MLR had 

the poorest effect, with r and RMSE values of 0.500 and 

0.0516, respectively. �erefore, the GA–BP neural net-

work can be used to achieve a productive fusion of GNSS-

IR and MODIS data. (3) �e spatiotemporal variation in 

the 16 days/500 m resolution NMRI product obtained by 

point-surface fusion is consistent with that in the experi-

mental area. �e estimated results of the six spatially con-

tinuous NMRI products were extracted and compared 

with the reference values. �e r values of both were higher 

than 0.87. �e RMSE values were less than 0.049, and the 

MAX values were less than 0.082.

Fig. 9 Model training accuracy
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Fig. 10 Inversion results: a 2010-07-28 NMRI; b 2010-08-13 NMRI; c 2010-08-29 NMRI; d 2010-09-14 NMRI; e 2010-09-30 NMRI; f 2010-10-16 NMRI
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Fig. 11 Vegetation index products: a 2010-07-28 GPP; b 2010-07-28 LAI.; c 2010-07-28 NDVI; d 2010-10-16 GPP; e 2010-10-16 LAI; f 2010-10-16 

NDVI
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In summary, this paper proposes that the GNSS-IR 

and MODIS point-surface fusion model based on the 

GA–BP neural network is feasible and effective, and the 

resulting spatially continuous NMRI products can be 

used to better, and more intuitively, represent the VWC 

changes in the region. It was found through experi-

ments that the distribution distance between GNSS 

stations in the experimental area had a great impact on 

the modeling results. If the number of GNSS stations in 

the study area is small or the distance between the sta-

tions is considerable, it will affect the modeling effect of 

the local area. �erefore, to further verify the method 

of this paper, the impact of modeling after encrypting 

GNSS stations by the technique of spatial interpola-

tion will be discussed in depth later. In addition, more 

VWC-related remote sensing products will be incorpo-

rated for modeling.
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