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A general framework is given for computing the torques that are needed for moving a 
flexible arm exactly along a given trajectory. This torque computation requires a 
dynamic generator system, as opposed to the rigid case, and can be accomplished both 
in an open- or in a cbsed-loop fashion. In the open-loop case, the dynamic generator is 
the full or reduced order inverse system associated to the arm dynamics and outputs. In 
order to successfully invert the arm dynamics, the torque generator should be a stable 
system. The stability properties depend on the chosen system output, that is on the 
robot variables (e.g., joint or end-effector) to be controlled. The same inversion 
technique can be applied for closed-loop trajectory control of flexible robots. A simple 
but meaningful nonlinear dynamic model of a one-link flexible arm is used to illustrate 
different feasible control strategies. Simulation results are reported that display the 
effects of the system output choice on the closed-loop stability and on the overall 
tracking performance. 
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INTRODUCTION 

Control of flexible robot arms is a challenging problem which has recently 
received increasing attention: Using different linear or nonlinear dynamic 
models.'-3 several strategies have been proposed based on linear quadratic 
theory: singular perturbations,' adaptive ~ontrol,"'~ pseudo-linearization,H and 
nonlinear decoupling techniques.' Both the tracking and the point-to-point 
control have been considered. 

It is appealing to try to find the analogue for flexible arms of the so-called 
computed torque or inverse control method for rigid robots.'" For rigid arms a 
model-based nonlinear static state-feedback transforms the closed-loop system 
into a linear and decoupled system made of input-output strings of double 
integrators. The tracking of desired trajectories is then easily achieved on the 
linear side of the problem. Similar results are obtained both for joint-based and 
for  cartesian-based control schemes.' I 

While the extension of these nonlinear techniques to joint level control of 
flexible arms seems to be quite straightforward,'.l2 problems arise for the 
end-effector trajectory control. The basic limitation is due to the noncolo- 
cation of actuators and controlled outputs!*' Even when considering ap- 
proximated linear models for flexible arms, the nonminimum phase nature of 
the end-effector control problem makes the exact reproduction of trajectories 
a hard task. 

It is still not clear how to compute torques which will move the end-effector 
along a desired trajectory, at least in nominal conditions. Some results were 
given in Ref. 13 for a linear dynamic model of a one-link flexible arm. The 
computation of the torque in this case is intrinsically an open-loop off-line 
process since i t  requires the a priori knowledge of the whole desired trajectory. 
On the other hand, instability may be a limitation of nonlinear decoupling laws 
for end-effector control of multilink flexible arms.I4 

In this article fundamental issues related to the control problem o f  flexible 
arms are investigated using nonlinear inversion techniques"." as the main 
theoretical tool. It will be shown how the feasibility of both open-loop and 
closed-loop control approaches for trajectory tracking is essentially related to 
the stability properties o f  a certain dynamic system associated to the plant, the 
so-called reduced order inuerse systemI7 of the input-state-output flexible arm 
dynamics. 

With the aid of a simple nonlinear model of a one-link flexible arm, the key 
concepts of system inversion are illustrated and act as a guide for more 
complex cases. It will be shown how the selection of the output used for 
inversion control effects both the accuracy of the arm end-point tracking and 
the actuator torque requirements. Moreover, the present analysis suggests a 
mechanical design of the arm which yields always exact reproduction of 
end-effector trajectories by enforcing the stability of the inversion based 
controller. 
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ROBOT DY NAMlC MODELS 

always be set into the standard form 
Using a Lagrangian approach, the dynamic model of a robot arm can 

where qE R" are the generalized coordinates of the robot system and U E  R" 
are the generalized external forces acting on the system. 

For rigid arms the above model is readily obtained after computation of the 
total kinetic and potential energy."' In this case n = m = N, the number of arm 
joints. The same procedure applies when lumped elasticity is considered; in 
particular, arms with concentrated joint elasticity are modeled by similar 
equations but with n = 2N, m = N." 

For distributed link flexibility, finite order approximate models can be 
obtained in several ways, e.g., using finite-element methods' or assumed 
modes of deforrnation.2*3 For a flexible robot arm with N actuated joints, 
m =  N and n-m>O is the number of generalized coordinates used to 
describe flexibility. 

In any case, the matrix B of generalized inertia will be a positive definite 
and symmetric matrix for all q, while the vectors c and e will respectively 
contain the Coriolis and centrifugal terms, and the gravitational and elastic 
forces. G is a n x rn matrix of full column rank m, defining the way inputs u 
act on the generalized coordinates q. 

For ease of notation, the Einstein summation convention will be used from 
now on. The second order dynamics of the arm is then rewritten as 

where dji = dij are elements o f  the inverse D(q) = B-'(q). The terms ci can be 
computed directly from the inertia matrix as 

where the index after the comma stands for derivative with respect to that 
component of q. 

Dissipative terms can be included in the model and added to the expression 
of c i .  I n  summary, noninertial, potential and dissipative terms can be grouped 
into a vector n(q, q') of components 

where the last term models friction at the motor axis and/or internal damping 
of the flexible structure. 
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INVERSION TECHNIQUES 

A set of independent output functions defining the objectives of control can 
be associated to the robotic system. For simplicity, outputs are chosen to 
depend only on the generalized coordinates q (and not on q) as 

y = h(q) 

with Y E  R", and the number of outputs is taken equal to the number of 
available control inputs. For a flexible robot, y may specify any location along 
the arm. Accordingly, h(q) will be the direct kinematics associated to this 
point. If a joint-level strategy is chosen, h will depend only from joint 
coordinates, i.e., from a subset of q. In the following it is also assumed that the 
whole state (q,q) of the system is accessible, although this is not always 
necessary. 

Following Refs. I5 and 16 the inversion algorithm yields 

yk = hk(q), 

y k  = hk,j(q)dj + hk.ij(q)diqj 

yk = hk,j(q)dj 

= hk,j(q)dij(q)[gik(q)Uk - q)1+ hk,ij(q)didj 

In order to recover the inputs u from the knowledge of the first'two time 
derivatives of the outputs, the (generally not symmetric) matrix 

has to be nonsingular. If all the rows of this matrix are not identically zero 
then A(q) is also the decoupling matrix of the ~ystem. '~ 

For rigid arms, A(q) is globally invertible in the case of joint-based control 
strategies. For end-effector control this result holds except for singular points, 
where the Jacobian J(q) looses full row rank. It is interesting to mention that 
there are robotic structures, such as planar rigid arms with concentrated 
elasticity at the joints, for which the above decoupling matrix is singular for all 
configurations q.'* In these cases the inversion algorithm proceeds involving 
higher order output derivatives. 

For robots with flexible links, the invertibility of A(q) is a generic property 
and may fail only for special definitions of the output parameters. This concept 
will be illustrated further in an example in a later section. Without 
burdening the development, it will be assumed here that A(q) has a global 
inverse A-'(q). If this were not the case, similar results could be obtained 
exploiting the inversion technique as in Ref. 18. Thus, the above relationships 
can be solved for the inputs u as 

Uh = aii(q)[yk + hk,j,,(q)dij(q)ni(q, 9) - hk.ij(q)didjl 
(1) 

= 4(q ,  q. f )  
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These equations will be used next to study open-loop and closed-loop control 
strategies. 

CONTROL OF FLEXIBLE ARMS 

Open-Loop Control 

First, a known result for rigid manipulators is restated in the present setting. 
For a N-jointed nonredundant rigid robot, the open-loop torques u that drive 
the system outputs y so as to reproduce a desired C'-trajectory Ydes(t) are 
directly computed from 

where 

all vectors being N-dimensional ( n  = rn = N). This is exactly the off-line 
"computed torque" method for rigid robots."'." To fix ideas, the above pair of 
relations may be the standard inverse of the manipulator direct and differential 
kinematics. Due to the presence of the second time-derivative of the output in 
the inversion process, exact output reproduction of a desired trajectory is 
possible only if this has bounded acceleration. Moreover, the system initial 
conditions (i.e., q(0) and q(0)) have to be matched with the desired ones.I2 

A more involved situation arises in flexible robots, where n > rn. For this 
class of arms, the knowledge of y&(f) and of its time derivatives is not enough 
to determine the required torques instantaneously, i.e., in a sraric way. Instead, 
a dynamic inverse system has to be used inside the open-loop torque genera- 
tor. The physical purpose of this additional dynamics is to generate the natural 
behavior of those system variables which are not directly constrained by the 
outputs specification. Such a natural behavior is the one obtained under the 
action of the inversion-based intput u* in (1). This inverse dynamic system 
may be a full or reduced order one. 

Full Order lnversion 

According to the general method,I5 the required open-loop torques are 
obtained as follows. Given yics( r )  and matched initial state conditions, in- 
tegrate the n second order nonlinear ODE 

which describe the robot full dynamics under the action of the input u* in (1). 
Note that only the highest (second) order derivative of the desired output is 
needed here. Moreover, ydcs enters into the system in a linear fashion, acting 
;IS an input. 
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Labelling qdes(t) and q&s( t )  the time evolutions obtained by integration, the 
torques needed to follow the desired trajectory are computed as 

which is the torque reference produced by the dynamic generator that will be 
fed into the flexible manipulator. Indeed, if integration is performed with 
infinite precision then qdcs( t )  and qdcs(t) satisfy 

Reduced Order lnversion 

Full order inversion requires the integration of n second-order differential 
equations. However, from the inversion algorithm rn independent algebraic 
equations are obtained which may be used to determine m generalized 
coordinates. The remaining n - rn coordinates are generated without redun- 
dancy via a reduced inverse dynamic system of order n - m. 

First, partition q into (q", qb) with q" E R"-", qb E R" in such a way that qb 
is uniquely determined from Ydcs(t) and q"(t) as the qf;es(ydea, 9") which satisfies 

Note that not any partition of q is valid. The implicit function theorem has to 
be invoked for the explicitability of the chosen qb. This implies that in the 
equation 

the corresponding partition of the Jacobian J into two blocks [ J " ,  J b ]  is such 
that locally J~ is nonsingular. Consequently qf;cs(ydcs, ydcs, q", q") is computed 
also from (4). 

Hence, for a given ydcs(t) and matched initial state conditions, the in- 
tegration of the following n - rn second order nonlinear ODE 

gives the associated behavior for q;,J t )  and q&( 1 ) .  With the obtained time- 
profiles, the open-loop tarques are determined as before using (3). 

It is worth noting that in the reduced order inverse dynamic equations, 
beside the desired output acceleration, also the desired output and its first 
time-derivative appear through q2e.K and q i e s .  
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Closed-Loop Control 

The above analysis was performed having in mind the open-loop deter- 
mination of torques capable of moving the chosen outputs of the robotic 
system exucdy along a given trajectory. When the system is in its nominal 
conditions, these computed torques force the robot to behave as desired. As 
usual, feeding back the currerit state may improve disturbance rejection and 
counterbalance perturbations due to off-nominal conditions. This is obtained 
at the cost of additional measurement and real-time processing capabilities. 

The closed-loop strategy is derived directly from the previous inversion 
algorithm and provides the following nonlinear static state-feedback law: 

u = CJ(q)D(q) G(q)l-'lv + J(q>D(q)n(q, 4) - .h, 4)qJ 
(6)  

= u*(q, q, v) 

where v is the additional control input. The closed-loop system behavior is 
described in a canonic form, once the new generalized coordinates (q", y) are 
used in place of q = (q", q'): 

The first set of Eq. (7) describes the input-output relation between v and y, 
which is linear and decoupled. Stabilization of the input-output behavior can 
be realized using standard linear techniques in the design of v,  e.g., by PD 
control. The second set of equations is the unobservable part of the system, 
the so-called sink. Note that a forcing term v appears in these equations. 

STABILITY ISSUES 

The three proposed control schemes are shown in Figure 1. The actual 
feasibility of any of these approaches relies on the stability properties of an 
associated dynamic system: respectively, the full order inverse dynamics, the 
reduced order inverse dynamics and the unobservable dynamics. Under the 
working hypothesis of invertibility of the decoupling matrix A(q), it is possible 
to prove that the stability properties of these three dynamic systems are just 
the same." Stated differently, the open-loop and the closed-loop implemen- 
tation of the same inversion control strategy either both work or both fail. 

The study of the global stability of the unobservable dynamics is not an easy 
task. The presence of the reference input v makes it a nonstationary system, 
which in the general case is a nonlinear one. Indeed, the stability of the local 
linear approximation may be studied. However, interesting results are obtained 
by considering the stability properties of the zero-dynamics associated to the 
robotic system. In general, this is the dynamics which is left in a given 
nonlinear system once the input is chosen in such a way as to constrain the 
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Figure 1. Open-loop and closed-loop control schemes. 

output to be zero (or constant)." This concept collapses into the ordinary one 
of zeros of the transfer function if the given system is linear. It is proved in 
Ref. 19 that in order to conclude on the local stability of the overall system, it 
is enough to show asymptotic stability of this dynamics. In analogy with the 
linear case, nonlinear systems with asymptotically stable zero-dynamics are 
called minimum-phase systems. 

For the flexible robot arm, chosen an output y, the zero-dynamics is 
obtained when y ( t )  = 0. From the first row of (7), this implies also y = v = 0 
which substituted in the second row gives the actual expression of the 
zero-dynamics. This dynamical behavior is strictly related to the one asso- 
ciated with the elastic coordinates, once the control loop has been closed. 
Ensuring local stability of these variables may already be a satisfactory result, 
due to the sqtall deformations in play. 

It is worth noting that, in spite of dynamic instability, a particular choice of 
initial conditions for the elastic variables q" describing the zero-dynamics in 
(7). may possibly lead to a bounded evolution of these in time. As a con- 
sequence, the output trajectory may be reproduced in a stable way if the whole 
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system is properly initialized at time f = 0. This is a way of explaining also the 
results obtained in Ref. 13. However, these suitable initial conditions vary in 
dependence of the whole trajectory to be tracked and therefore the in- 
itialization of the system is necessarily an off-line non-causal procedure. 

A CASE STUDY 

In order to illustrate some possible strategies for the exact trajectory control 
of flexible robot arms, and their inherent limitations, a simple one-link planar 
arm will be considered. The link flexibility is modeled by one linear torsional 
spring located at a generic point along the link. The link is driven at the joint 
by a direct drive motor. Thus, n = 2 and m = N = 1. 

The two generalized coordinates are: q l ,  which denotes the rigid rotation at 
the motor hub, and q2, the flexible angular rotation. The link is divided into 
two rigid parts (Fig. 2), each o f  length 4 ,  mass m i ,  center of mass at lCi and 
inertia Ii with respect to this point. Motor and payload mass and inertia can be 
included in the proximal and distal part of the link. At  the motor axis, the 
viscous friction coefficient is f , .  The spring has an elasticity constant k and a 
damping factor f2 ,  modeling the internal frictions in the structure. 

The dynamic model is the following: 

where 

and the model coefficients have the expressions 

@ Center of mass 

+ 
Figure 2. A simple model of flexibility for a one-link robot. 
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As output of the system a parametrized function can be taken which is a 
linear approximation of the angle a to a generic point P on the flexible link, as 
seen from .the motor axis (Fig. 3). Since 

then 

For A = 0, y = q1 and the control strategy is performed at the joint-level; for 
A = 1, a task-level strategy is chosen since y is now the angle pointing at the 
end-effector. 

The inversion algorithm gives after two derivatives: 

where the arguments of the various functions have been dropped. The output 
parameter A has to be chosen such that 

in correspondence to all values attained by q2. This guarantees that the output 
acceleration depend explicitly on the applied torque (i.e., the scalar A(q) # 0). 
Then, the above relation can be solved for the torque u giving in analogy to 
(1): 

Figure 3. State and output definitions for the flexible link. 
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To generate the open-loop torque required to move point P with a given 
angular acceleration y,,,, u = u*(q, q, y&s) is plugged into the full dynamic 
equations of the arm as in (2) and these are integrated, starting from the 
current initial conditions. 

To obtain a reduced order torque generator, q is partitioned into q" = q2, 
the elastic coordinate, and qb = ql .  Using for q1 and its time-derivative the 
expressions 

the reduced dynamics to be integrated is simply the dynamic equation of q2, 
with u = u*(q2, q z ,  ydcs, ydi,,,, ydcs) substituted therein as in ( 5 ) .  

As pointed out in the previous section, the stability of both these two 
open-loop processes is equivalent to  the stability of the closed-loop system 
obtained setting y = u and using (10) as a nonlinear static state-feedback law 
on the robot arm. In particular, the equation of the unobservable part is found 
from 

Using the relations between the minor of a matrix and the elements of its 
inverse, it  is possible to simplify terms. The dosed-loop equations are rewrit- 
ten as 

where the new coordinates ( y ,  q2) have been used. It is evident that the 
critically stable input-output behavior can be stabilized by pole-placement. 

The associated zero-dynamics is computed by setting y = y = u = 0; since 

the zero-dynamics is given by 

where p(A) = Al l / ( l l  + AI2). Local asymptotic stability of the equilibrium point 
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q2 = 4 2  = 0 of this system is guaranteed for 

Choosing the nondimensional parameter A in the above interval ensures that 
the given control scheme, beside imposing the desired time-profile to the 
output, leads also to a stable closed-loop behavior. By analogy, the same 
conclusion can be drawn for the open-loop torque generation process. 

A series of remarks are now in order. 
Remark 1 .  The value A" has a nice physical interpretation. Consider the 

arm at rest in its undeformed configuration. Hence, q(0) is such that q2(0) = 0. 
At time t = 0, apply a unitary step torque; the system accelerations are then 

In correspondence to the computed A" the parametrized output takes on the 
form 

Thus, yAe(0) = 0; the point P(A") on the link is the one with initial zero angular 
acceleration. 

Remark 2. The same interpretation of A' applies if a dynamic model of the 
arm is used which is linearized around the undeformed configuration. In this 
case an input-output transfer function can be associated to the state space 
model. Then, A" specifies the boundary in the output definition between 
systems of minimum phase (having pairs of zeros on the imaginary axis) and of 
non-minimum phase (having positivelnegative pairs of real zeros). 

Remark 3. The choice A = 0  is always a feasible one and results in a 
joint-based control strategy. This case has already been considered in.'.'' 
Without additional control action, this approach leads to oscillations of the 
end-effector which are generally only lightly damped. 

Remark 4 .  Depending on the mechanical structure, the value of A" may or 
may not be larger than 1. In the first case, this implies that a desired trajectory 
can be assigned to the end-effector in a stable way. Otherwise, instability 
occurs in the associated open-loop torque generation and in the relative 
closed-loop control strategy (see e.g., Ref. 14 for a two-link example). 

Remark 5 .  If each sublink of the arm described by (8) is assumed to be a 
uniform thin rod, it is easy to see that A"=2/3. Note that all of the above 
considerations hold also in the case of distributed elasticity. For example, a 
flexible beam with one parabolic deformation mod2 and uniform mass dis- 
tribution has A" = 4/5, closer to the arm tip. 
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Remark 6. The optimal choice af A in the given interval is an interesting 
issue. If A' is strictly less than 1, then performance can be evaluated in terms 
of the actual behavior of the end-effector for different admissible values of A. 

SIMULATION RESULTS 

The proposed inversion control law for trajectory tracking has been simu- 
lated on the flexible one-link arm (8) using the following set of parameters: 
li = 0.5 m, ICi = 0.25 m, mi = 0.1 kg, f i  = 0.01 Nm s/rad, for i = 1,2. The spring 
elasticity is K = 10 Nmlrad. The desired angular trajectory to be tracked has a 
bang-bang symmetric acceleration profile; its maximum value is 4 rad/s2 and 
the whole trajectory is 0.6 s long, resulting in a total rotation of 0.36 rad. A 
second-order Runge-Kutta method is used for integration with a 1 msec step 
size. 

A first set of simulations was performed for the case of uniform mass 
distribution ( 4  = mJ?/12, i = 1,2) and is reported in Figures 4-6. In this case 
A' = 2/3 and the results are relative to three feasible values of A,  respectively 
0, 0.3 and 0.6. The plots shown are the angular output y(A) in (9), the angular 
motion y(1) of the tip, their difference d = y(A) - y(l), the applied torque u in 
(1  O), and the evolution of the two coordinates q1 and q2.  

In all cases the controlled output y(A) behaves as desired. It is easy to see 
that moving from a joint-based control strategy ( A  = 0) towards inversion 
control of a point along the link implies a benefit on the accuracy of the tip 
trajectory, with a large reduction of its vibratory behavior. The price to pay is 
an increased torque requirement. Note that the torque oscillates around 
average values of *0.27 Nm, which are the ones that would be required if the 
arm was rigid. Indeed, a smoother reference trajectory used in place of the 
bang bang profile, would result in smaller excursions of the torque. 

When a A larger than A' is attempted for directly assigning the behavior of 
the arm tip, instability occurs in the inversion-based control scheme. This 
results in an explosion of the closed-loop torque just after few instants of 
simulation. The same happens in the process of open-loop torque generation. 

It can be seen from the analytic expression of A" that this critical value can 
be increased by adding inertia I2 to the distal sublink and/or pushing further 
the location lc2 of its center of mass. A redistribution of masses helps to this 
purpose. Note also that adding a payload to the arm has a similar positive 
effect. If lc2 is not modified, an inertia Z2 three times as large as in the uniform 
case would bring A' to 1, thus enabling exact control of the tip motion. 

Figures 7 and 8 refers to the case when the mechanical parameters are such 
that A' = 1.5. In this case, using A = 1 leads to a feasible approach and this is 
confirmed by the exact tracking of the tip angular trajectory shown in Figure 
7(a). I n  this case the internal variable q 2  vibrates in counterphase with q1 (note 
the different scales in Figure 7(b)). Therefore the torque is still oscillatory and 
the total requirement is not reduced as compared to the one in Figure 6(b). 
However, we may somewhat relax the end-effector tracking accuracy by 
choosing again A = 0.6. Figure 8 refers to this case and confirms that a 
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Figure S(b). Torque, q1 and q2 (q2 is multiplied by 5). 
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valuable reduction is obtained for the torque with still a good tracking 
performance of the tip. 

CONCLUSIONS 

The problem of exact reproduction of smooth trajectories for flexible 
robotic arms has been considered. A general framework has been presented 
for designing control laws based on system inversion. Open-loop reference 
torque generation and closed-loop state-feedback control, are always feasible 
when the unobservable dynamics associated to the chosen outputs is asymp- 
totically stable. This is the critical issue to be addressed in the definition of the 
system outputs. In particular, the properties of the zero-dynamics-the non- 
linear analogue of the concept of zeros of linear systems-play a central role. 

It has been shown on a simple flexible arm that joint trajectories with 
bounded acceleration can be exactly reproduced in a inherently stable way, 
using the inversion-based control. This result can be generalized to flexible 
robot arms with any number of links, each of which has any finite number of 
flexible modes. 

The same inversion strategy may become unstable if the control objective is 
to follow exactly a given end-effector trajectory. This can be seen from the 
instability of the associated zero-dynamics. The results available in the lit- 
erature about the nonminimum phase characteristics of end-effector control 
using liner models of flexible match with this observation. Noncolo- 
cation of actuators and outputs is usually a reasonable explanation of this 
effect. 

However, it has been shown that other stable control strategies are feasible. 
In particular, there exists a continuous set of points along the flexible arm that 
can be assigned any desired smooth trajectory. This is the same as saying that 
the behavior of the flexible arm can be stiflened by feedback at any of these 
points. The simulation study confirms the intuitive idea that choosing as 
controlled output a point in this set which is closer to the end-effector results 
in a smaller tracking error of the tip, although in a larger torque requirement. 
Also, mechanical structures which are intrinsically stable from the point of 
view of end-effector trajectory tracking can be devised. 
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