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Inverted Hierarchical Neuro-Fuzzy BSP System:
A Novel Neuro-Fuzzy Model for Pattern

Classification and Rule Extraction
in Databases

Laercio Brito Gonçalves, Marley Maria Bernardes Rebuzzi Vellasco, Member, IEEE,
Marco Aurélio Cavalcanti Pacheco, and Flavio Joaquim de Souza

Abstract—This paper introduces the Inverted Hierarchical
Neuro-Fuzzy BSP System (HNFB 1), a new neuro-fuzzy model
that has been specifically created for record classification and rule
extraction in databases. The HNFB 1 is based on the Hierarchical
Neuro-Fuzzy Binary Space Partitioning Model (HNFB), which
embodies a recursive partitioning of the input space, is able to
automatically generate its own structure, and allows a greater
number of inputs. The new HNFB 1 allows the extraction of
knowledge in the form of interpretable fuzzy rules expressed by
the following: If is and is , then input pattern belongs to
class . For the process of rule extraction in the HNFB 1 model,
two fuzzy evaluation measures were defined: 1) fuzzy accuracy and
2) fuzzy coverage. The HNFB 1 has been evaluated with different
benchmark databases for the classification task: Iris Dataset, Wine
Data, Pima Indians Diabetes Database, Bupa Liver Disorders,
and Heart Disease. When compared with several other pattern
classification models and algorithms, the HNFB 1 model has
shown similar or better classification performance. Nevertheless,
its performance in terms of processing time is remarkable. The
HNFB 1 converged in less than one minute for all the databases
described in the case study.

Index Terms—Binary space partitioning (BSP), neuro-fuzzy sys-
tems, pattern classification, rule extraction.

I. INTRODUCTION

NEURO-FUZZY [1] are hybrid systems that combine the

learning capacity of neural nets [2] with the linguistic

interpretability power of fuzzy inference systems [3]. These

systems have been evaluated quite intensively for the pattern

recognition task. This is mainly due to a number of factors: the

applicability of the learning algorithms developed for neural

nets; the possibility of promoting implicit and explicit knowl-

edge integration; and the possibility of extracting knowledge

in the form of fuzzy rules. Most of the existing neuro-fuzzy
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systems, however, present limitations with regard to the number

of inputs allowed and/or to the limited (or nonexistent) form to

create their own structure and rules [4]–[6].

The Hierarchical Neuro-Fuzzy Binary Space Partitioning

Systems (HNFB) [7]–[9] allow a greater number of inputs

and, in addition, are able to generate their own structure, thus

automatically creating their rule base. These models make use

of a recursive partitioning method that successively divides the

input space into two regions. This recursive partitioning may

be represented by a binary tree that illustrates the successive

hierarchical subdivisions of the input space. It has been shown

by Brown and Harris [10] that a rule base using a hierarchical

structure leads to a linear growth in the number of rules.

The original HNFB created by de Souza [7], [8], however,

is not ideal for pattern classification applications for two rea-

sons. The first reason is because the HNFB model has only one

output, and in order to use it as a classifier, it is necessary to

create different range values at the output, each range repre-

senting a particular class. This range criterion may have a nega-

tive influence on the system’s performance, since ranges that are

defined as being contiguous in the model may be attempting to

represent totally disjoint classes in the input space. The second

reason is because the original HNFB model makes use of the

Takagi–Sugeno [11] inference method, which reduces the rule

base interpretability.

The main objective of this work was then to create a new hi-

erarchical neuro-fuzzy binary space partitioning (BSP) model

dedicated to pattern classification and rule extraction, called the

Inverted HNFB or HNFB , which is able to extract classifica-

tion rules such as the following: If is and is , then input

pattern belongs to class . This new hierarchical neuro-fuzzy

model is denominated inverted because it applies the learning

process of the original HNFB to generate the model’s structure

and then inverts it in order to validate the results and extract the

rule base.

This paper has been divided into four additional sections.

Section II summarizes the original HNFB system, describing

its architecture, its basic cell, and the learning algorithm. Sec-

tion III introduces the new HNFB model with a description

of its basic cell and its architecture. Section III also describes

the rule extraction process, presenting the definition of fuzzy

accuracy and fuzzy coverage used to evaluate the generated

1094-6977/$20.00 © 2006 IEEE
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Fig. 1. (a) BSP partitioning. (b) BSP tree referring to BSP partitioning.

rules. Section IV presents the case studies, describing the

benchmark databases employed and the performance obtained

with the HNFB model in the classification task. Finally, the

conclusions that have been drawn from this study are presented

in Section V, together with model extensions that are being

undertaken.

II. HIERARCHICAL NEURO-FUZZY BSP MODEL

Current neuro-fuzzy systems present two basic limitations:

the low number of inputs with which they can efficiently work

and the limited (and in some cases, nonexistent) process through

which they create their own structure and rules. The first limita-

tion is related to the “curse of dimensionality” generated by the

large number of rules that results from the partitioning of the

input space in a grid form.1

The HNFB makes use of a hierarchical partitioning called bi-

nary space partitioning (BSP), which divides the space succes-

sively, in a recursive way, in two regions. Fig. 1 presents an ex-

ample of a BSP partitioning in a two-dimensional (2-D) space,

defined by variables and .

BSP partitioning is flexible and minimizes the problem of

the exponential growth of rules, since it only creates new rules

locally according to the training set. Its main advantage is that it

automatically builds its own structure. This type of partitioning

employs recursive processes in its generation, which results in

models with a hierarchy in their structure and, consequently,

hierarchical rules.

A. Basic Neuro-Fuzzy BSP Cell

An HNFB cell can be seen as a neuro-fuzzy minisystem

that performs binary fuzzy partitioning of the input space.

The HNFB cell generates a precise (crisp) output after a de-

fuzzification process. Fig. 2(a) illustrates the cell’s structure.

In this cell, represents the input variable; and are the

membership functions low and high, respectively, that generate

the antecedents of the two fuzzy rules; and is the consequent

of rule . Fig. 2(b) presents a simplified schematic of the cell.

The linguistic interpretation of the mapping implemented by

the HNFB cell is given by the following set of rules:

1A neuro-fuzzy system with five input variables, each with its universe of
discourse divided into four fuzzy sets, may obtain a total of 1024 rules (4 ).
If the number of inputs is raised to 20, and the same division of the universes
of discourse is used, the result is an unmanageable total of 1.099.511.627.776
rules (4 ).

Fig. 2. (a) Neuro-fuzzy BSP cell. (b) Neuro-fuzzy BSP cell schematic symbol.

Rule 1: If , then .

Rule 2: If then .

Each rule corresponds to one of the two partitions generated

by BSP partitioning. When the inputs occur in partition 1, it is

rule 1 that has a higher firing level. When they occur in partition

2, it is rule 2 that has a higher firing level. Each partition can

in turn be subdivided into two parts by means of another HNFB

cell. The profiles of membership functions and are presented

by the following:

(1)

(2)

where is the sigmoid inflexion point and is the sigmoid

inclination at . The (crisp) output of an HNFB cell,

which corresponds to the cell’s defuzzification process, is given

by the weighted average shown in

(3)

Considering that the membership function is the comple-

ment to 1 of membership function , the HNFB cell’s output

can be expressed by

(4)

where represents the rule firing level, given by ;

, and each in (4) corresponds to one of the three

possible consequents:

1) a singleton—the case where constant

(Takagi–Sugeno order 0);

2) a linear combination of the inputs—the case where

Takagi-Sugeno order 1

where is the system’s th input, represents the

weights of the linear combination, and is equal to the

total number of inputs; the weight, with no input,

corresponds to a constant value (bias);

3) the output of a cell of a previous level—the case where

, where represents the output of a generic

cell “j”, whose value is also calculated by (4).
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Fig. 3. (a) Example of an HNFB system. (b) Input space partitioning of the HNFB system.

B. HNFB Architecture

An HNFB model may be described as a system that is made

up of interconnected HNFB cells. Fig. 3 illustrates an HNFB

system along with the respective partitioning of the input space.

In this system, the initial partitions 1 and 2 (“BSP 0” cell)

have been subdivided; hence, the consequents of its rules are the

outputs of subsystem 1 and subsystem 2, respectively. In turn,

subsystem 1 has as consequents and , while subsystem

2 has and as its consequent. Note that, consequent

is the output of the “BSP 12” cell. The output of the system in

Fig. 3(a) is given by

(5)

The example in Fig. 3 is linguistically translated by the fol-

lowing set of rules:

If is low then

{If is low then

If is high then

{If is low then

If is high then

}

}

If is high then

{If is low then

If is high then }

where

membership functions that define the level 0

partition, which corresponds to the “BSP 0”

cell;

membership functions that define the subdivi-

sion 1, which corresponds to the “BSP 1” cell;

membership functions that define the subdivi-

sion 2, which corresponds to the “BSP 2” cell;

membership functions that define the subdivi-

sion 12, which corresponds to the “BSP 12”

cell.

C. Learning Algorithm

In the neuro-fuzzy literature the learning process is gener-

ally divided in two parts: 1) the identification of the structure

Fig. 4. Learning algorithm of HNFB model.

and 2) the adjustments of parameters. The HNFB model fol-

lows the same process. However, only one algorithm carries

out both learning tasks simultaneously. The HNFB system has

a training algorithm based on the gradient descent method [2]

for learning the structure of the model (the linguistic rules) and

its fuzzy weights. The consequents ( ’s) and the parameters

that define the profiles of the membership functions of the an-

tecedents (parameters and ) are regarded as the fuzzy weights

of the neuro-fuzzy system.

The learning algorithm of the HNFB model is performed in

six steps, as illustrated in the flowchart of Fig. 4.

Learning Steps:

1) An initial bipartition is created, dividing the input

space into two parts, through two fuzzy sets—high

and low, for the input variable (see Section III-E for

variable selection methodology). In this step, the first

BSP cell is created, which is called root cell.

2) Each weight , consequents of the first

two rules, are initialized with the average of the target

values of the output patterns that fall in the biparti-

tioning of index . For example, to calculate the initial
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value of the weight , all target values that fall in bi-

partition 2 are summed and then divided by the number

of patterns that fall in bipartition 2. This process also

applies to the bias constant in the case of using linear

combination as the rule’s consequent. The parameter

(the sigmoid inflexion point, see (1)) is initialized with

a value equal to the half of the universe of discourse

of the cell’s input variable. The other sigmoid param-

eter is initialized, heuristically, with a value equal to

twice the inverse of the universe of discourse. The fol-

lowing equations illustrate the initialization process of

these parameters:

(6)

(7)

where and are the lower and upper limits

of the universe of discourse of the cell’s input variable.

3) The system total error is then calculated for

all the training set, according to the following

root-mean-square (rms) error expression:

(8)

where number of patterns in the training set and

and are the output value of the HNFB system

and the desired output value for the pattern of index

, respectively. When this error is below the desired

minimum, the learning process stops; otherwise, the

learning process continues with step .

4) The least-mean squares (LMS) [2] is used to calculate

the rule’s consequents , and the gradient descent

method is employed to adjust the fuzzy weights and

(rule’s antecedents parameters).

5) Each bipartition is evaluated regarding its contribu-

tion to the total rms error and regarding the acceptable

minimum error. Each bipartition with an unacceptable

error is separated. The evaluation of the error gener-

ated for the data set that falls on the partitioning , for

example, is calculated by

(9)

where and are the rules’ firing levels for pattern

, as mentioned in Section II-A.

For each separated bipartition, a new node in the

BSP tree is allocated, if not limited by the decompo-

sition rate , as explained hereafter. In other words,

each separated partitioning is recursively decomposed

(divided in 2). Two new membership functions are then

generated for the selected variable (see Section III-E),

which constitute the two partitions just created. The

Fig. 5. (a) HNFB cell schematic symbol. (b) HNFB cell.

motivation for including the rule’s firing levels ( and

) in this formula definition is to measure the contri-

bution of each partition in the total error.

6) Back to step to continue the learning process.

1) Decomposition Rate: In order to prevent the system’s

structure from growing indefinitely, a parameter, named de-

composition rate , was created. It acts as a limiting factor for

the decomposition process. Its value is usually in the interval

[0.001, 0.05]. During the learning process, the decomposition

rate is constantly compared with the population density of

patterns that fall in a specific bipartition. When population

density of patterns (the rate between the number of patterns of a

bipartition and the total number of patterns) falls below the de-

composition rate, this bipartition cannot be further partitioned,

which limits the size of the structure.

Therefore, a very low value for can result in a very big

structure, compromising the generalization capability. On the

other hand, if a large value is chosen, the structure might be too

small to learn the patterns with the desired accuracy.

III. INVERTED HIERARCHICAL NEURO-FUZZY BSP MODEL

The new inverted HNFB model, or HNFB , was specifically

designed to overcome the deficiencies of the original model for

performing pattern classification tasks. This new system sup-

ports as many outputs as the number of classes desired, which

considerably improves the interpretability of the rules. In addi-

tion, since it does not need to define ranges to specify pattern’s

classes, its performance is also improved with regard to classi-

fication problems.

The following subsections describe, respectively, the struc-

ture (input space partitioning) learning algorithm, the basic cell

that composes the new HNFB model, and the inverted clas-

sification architecture.

A. Learning the Input Space Partitioning

The HNFB model makes use of the same learning al-

gorithm that is employed in the original HNFB model [7] to

establish the input space partitioning. Among the different

training configurations of the original HNFB, the HNFB

model utilizes the LMS method to calculate the rules’ conse-

quents ( ’s), and the gradient descent method to calculate the

rules’ antecedent parameters ( and in (1)). This configuration

provided faster convergence. After this first learning phase,

the structure is inverted, and the architecture of the HNFB

model is obtained. The basic cell of this new inverted structure

is described hereafter.
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Fig. 6. (a) Original HNFB architecture obtained from a database containing three classes. (b) Inversion of the architecture shown in Fig. 5(a). (c) Connection of
the inverted architecture to T-conorm cells.

B. Basic Inverted-HNFB Cell

Similarly to the original HNFB model, a basic in-

verted-HNFB cell is a neuro-fuzzy minisystem that performs

fuzzy binary partitioning in a particular space according to the

membership functions described by (1) and (2). However, after

a defuzzification process, the inverted-HNFB cell generates

two crisp outputs instead of just one. Fig. 5(a) shows the

basic representation of the inverted-HNFB cell, and Fig. 5(b)

illustrates the interior of the inverted-HNFB cell.

By considering that membership functions (high) and

(low) are complementary, the (crisp) outputs of an HNFB cell

are given by

(10)

(11)

where corresponds to one of the following two possible cases:

1) is the input of the first cell—the case in which ,

where the value ‘1” represents the entire input space,

that is, the entire universe of discourse of the variable

that is being used as the cell’s input;

2) is the output of a cell of a previous level—the case

in which , where represents one of the two

outputs of a generic “j” cell, whose value is also calcu-

lated by (10) or (11).

C. Inverted-HNFB Architecture

As mentioned previously, the HNFB model employs the

learning algorithm of the original HNFB model to obtain its

structure. Afterwards, the generated structure is inverted, in

order to perform the classification task. Fig. 6(a) presents an

example of the original HNFB architecture obtained during the

training phase of a database containing three distinct classes,

while Fig. 6(b) shows how the HNFB model is obtained,

after the inversion process.

In the HNFB architecture shown in Fig. 6(b), it may be

observed that the classification system has several outputs ( to

), one for each existing leaf in the original HNFB architecture.

The outputs of the leaf cells of the system in Fig. 6(b) ( to )

are calculated by means of the following equations (considering

the use of complementary membership functions ):

(12)

(13)

(14)

(15)

(16)

where and follow the same definitions described in Sec-

tion II-B.

Once the output of each leaf cell of the HNFB system has

been calculated, these cells are linked to the T-conorm neurons

[see Fig. 6(c)] so that the final output of the pattern classification

system may be obtained. This procedure is described hereafter.

D. Determining HNFB System Outputs

After the inversion has been performed, the outputs are con-

nected to T-conorm cells (the OR operator) that define the classes

[see Fig. 6(c)]. The T-conorm cell (in this case, class1, class2, or

class3) with the highest output value defines the class to which

the pattern presented to the system belongs. The initial proce-

dure for linking the leaf cells to the T-conorm neurons consists

of connecting all the leaf cells with all the T-conorm neurons,

according to the number of classes in which the database is or-

ganized. Once this connection has been made, it is necessary to

establish weights for these links. For the purpose of assigning

these weights, a learning method based on the LMS [2] has been

employed.

After the weights have been determined, it is necessary to de-

fine which T-conorm operators will be used for obtaining the

final output of the HNFB model. In the example of Fig. 6(c),
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Fig. 7. (a) ANFIS minisystem (with one input) for selecting variables for the HNFB model. (b) ANFIS partitioning of one input with eight fuzzy sets.

the outputs of the three T-conorm neurons are calculated ac-

cording to the following:

T-conorm class 1

(17)

T-conorm class 2

(18)

T-conorm class 3

(19)

where , are the outputs of the leaf cells;

, , and are the weight of the

link between the leaf cell and the T-conorm neuron ; and

is the T-conorm operation used for processing the output of the

neuron.

In this paper, the limited-sum T-conorm operator [12] has

been used. This operator is the most appropriated in this case,

since it considers all inputs in the output calculation. Another

T-conorm operator that is very popular in the literature, the max,

only takes the maximum membership value into account, ig-

noring the membership values of other inputs.

The final output of the HNFB system is specified by the

highest output obtained among all the T-conorm neurons, de-

termining the class to which the input pattern belongs.

E. Variable Selection for Each HNFB Cell

In most pattern classification applications, the databases con-

tain a large number of attributes, many of which are irrelevant

or redundant. The strategy for selecting the variable employed

by each HNFB cell consists of ordering the attributes of the

database in a decreasing order of relevance from the informa-

tion point of view [13]. In the particular case of the HNFB and

HNFB models, selecting the relevant attribute for each cell

avoids unnecessary partitioning and yields more compact BSP

tree structures, which result in better generalization, fewer rules,

and a higher level of interpretability.

In the HNFB , the strategy employed for selecting vari-

ables is based on the Adaptive Network-Based Fuzzy Interence

System (ANFIS) neuro-fuzzy model proposed by Jang [4]. The

HNFB makes use of ANFIS minisystems with only one input

divided into eight fuzzy sets, as may be observed in Fig. 7(a).

In this case, the input space is divided into eight partitions, as

shown in Fig. 7(b).

The variables selection algorithm chooses an attribute

from the database and trains the ANFIS minisystem during a

specified number of cycles. Next, the classification error for that

attribute is calculated. Another attribute is then chosen, and the

system is trained with the same number of cycles. After all at-

tributes have been chosen, they are ordered according to their

error (lowest training error first). Once the attributes have been

ordered according to their relevance, each one is used as input

for each level of the BSP tree during the learning process and

construction of the HNFB architecture. The same input (at-

tribute) is used for all the nodes of the same level.

F. Fuzzy Rule Extraction

One of the main advantages of the HNFB model is that

it is capable of generating interpretable rules for the purpose

of extracting information from a specific database. Differently

from the original HNFB, the rules extracted in this model are of

the following type: If is high and is big and and is hot,

then class .

In order to perform the rule extraction, the HNFB model

makes use of the inverted BSP structure before it is connected

to the T-conorm neurons [see Fig. 6(b)]. In this approach, each

partition of the input space (leaf node) will have an associated

rule. However, it is important to point out that since the Inverted

HNFB is a fuzzy system, the elements of each partition belong

to all the existing classes, with different membership levels.

Therefore, each partition of the resulting BSP structure gener-

ates subrules, each of which has an evaluation degree that is

determined by the fuzzy accuracy and fuzzy coverage (see Sec-

tion III-F-2)).

This new rule extraction process consists of the following

steps:

1) routing on the BSP tree, calculating the firing level of

each rule in each partitioning;

2) evaluation of the rules with the use of fuzzy accuracy

and coverage.

These steps are described in the following subsections.

1) Routing of the BSP Tree: In order to illustrate the HNFB

rule extraction methodology, let us consider the hypothetical

database shown in Table I that consists of eight patterns (A to

H) of two attributes (age and weight) and two classes {0, 1}.

In the case of crisp trees, each pattern either belongs or does

not belong to a partition, whereas in the fuzzy case, all the pat-

terns in Table I (A, B, C, , H) are present to a different degree

in all partitions. Therefore, the first step in the HNFB model’s

rule extraction process consists of calculating each pattern’s

membership level in all the existing partitions (leaf nodes). This

calculation is performed by routing on the BSP tree and making
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TABLE I
DATABASE USED AS AN EXAMPLE IN THE

RULE EXTRACTION METHOD

Fig. 8. Firing level (�) of each rule (partition) using product as T-norm
operator.

the intersection (T-norm operator) of the membership degrees

presented by each pattern in the membership functions of each

level in the tree.

Fig. 8 presents, for the database in Table I, the result of each

pattern’s firing level in each partition (tree node), which is

calculated with the use of the “product” T-norm. Patterns that

belong to class 0 are highlighted.

As may be observed in Fig. 8, all patterns are present in all

partitions, to a greater or lesser extent, regardless of the class

to which they belong. Therefore, it may be noticed that each

routing process results in an antecedent that classifies all classes

that exist in the database and generates subrules for each parti-

tion. Each subrule’s degree of suitability is defined by the fuzzy

accuracy and coverage, as described in the next section. It must

be noticed, however, that the resultant firing levels indicate the

degree each pattern belongs to each partition. Therefore, Fig. 8

illustrates that patterns belonging to class 1 (in white) are better

represented by partition 1, since they have higher membership

degrees to this specific partition.

2) Rule Evaluation: In order to evaluate the subrules gener-

ated in each partition, two fuzzy evaluation measures were de-

fined: fuzzy accuracy and fuzzy coverage.

a) Fuzzy accuracy: The accuracy of a rule measures how

well it is applied to the data [14]. In order to determine how

suitable a particular fuzzy rule describes a specific class , the

fuzzy accuracy measurement was created, as shown in

(20)

where is the accuracy of the rule for class

in partition ; is the membership level of pattern of class

in partition ; is the membership level of pattern in partition

(regardless of the class); is the total number of patterns of

class ; and is the total number of patterns in partition .

In the case of databases with different numbers of patterns per

class, the correction factor must be applied to compensate

for nonuniform pattern distribution. The corrected fuzzy accu-

racy is calculated by

(21)

(22)

where

correction factor for the accuracy of class in partition

;

total number of classes;

number of patterns of class ;

number of patterns of class .

In the case of the example presented in Table I, the patterns

are distributed uniformly in each class (four patterns for each

class); therefore, the value of is 1, and therefore, the

for classes 0 and 1 in partition 1 are the

following (see Fig. 8):
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TABLE II
DESCRIPTION OF THE FEATURES OF THE DATABASES EMPLOYED

From these results, it can be concluded that patterns be-

longing to partition 1 are more related to class 1, since the

accuracies for this partition are 0.755 and 0.245 for classes

1 and 0, respectively. In other words, the partition’s subrule

associated with class 1 is more precise and adequate to describe

the specific database.

The sum of the accuracy of all classes in a specific partition

is always equal to 1, since each node’s membership functions

are complementary, and each pattern’s level of presence in each

partition is calculated by the intersection of all the firing levels

in each node with the use of the product operator.

The sum of each pattern’s membership levels in all the par-

titions is also equal to 1 on account of the features mentioned

previously (complementary functions and product operator).

b) Fuzzy coverage: Fuzzy coverage supplies a measure of

how comprehensive a rule is in relation to the total number of

patterns in the rule base, i.e., it measures “how many” patterns

are affected by the rule at hand. The definition of fuzzy coverage

is given by

(23)

where fuzzy coverage of partition ;

total number of patterns in the database; is the membership

level of pattern in partition ; and is the number of patterns

in partition .

Due to the aforementioned features (complementary mem-

bership functions and product operator), the composition of all

the rules covers the total number of patterns. In other words, the

sum of the fuzzy coverage of all partitions is equal to 1.

Again, using Fig. 8, the for all three parti-

tions are calculated as follows:

These results indicate that, from the three partitions created,

partition 1 (and its associated rule) encompasses (covers) more

patterns than partitions 2 and 3. It must be emphasized, how-

ever, that as the hierarchical structure increases, the fuzzy cov-

erage associated with each partition decreases, as bigger struc-

tures result in more partitions and, consequently, less patterns

associated with each partitioning.

IV. CASE STUDIES

In order to evaluate the performance of the HNFB model,

five benchmark classification databases were selected among

those most frequently employed in the area of neural nets and

of neuro-fuzzy systems: Iris Dataset, Wine Data, Pima Indians

Diabetes Database, Bupa Liver Disorders and Heart Disease.

All these databases can be found in ftp://ftp.ics.uci.edu/pub/ma-

chine-learning-databases/

• Iris Dataset: a classification data set based on charac-

teristics of a plant species (length and thickness of its

petal and sepal) divided into three distinct classes (Iris

Setosa, Iris Versicolor and Iris Virginica);

• Wine Data: data set resulting from chemical analyses

performed on three types of wine produced in Italy

from grapevines cultivated by different owners in one

specific region;

• Pima Indians Diabetes Database: data set related to

the diagnosis of diabetes (with or without the disease)

in an Indian population that lives near the city of

Phoenix, Arizona;

• Bupa Liver Disorders: data set related to the diagnosis

of liver disorders and created by BUPA Medical Re-

search, Ltd.;

• Heart Disease: data set related to diagnoses of people

with heart problems.

Table II presents a summary of the main features of each data-

base that has been used in this study.

A. Classification Performance

In the case of the Iris Dataset, Wine Data, Pima Indians Dia-

betes Database and Bupa Liver Disorders, in order to generate

the training and test sets, the total set of patterns was randomly

divided into two equal parts (database1.dat and database2.dat).

Each of these two sets was alternately used either as a training

set or as a test set. Table III below summarizes the results ob-

tained in the classification of these four data sets with the use of

the HNFB model.
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TABLE III
RESULTS OBTAINED WITH THE HNFB MODEL FOR THE CLASSIFICATION OF FOUR DATABASES: IRIS DATASET, WINE DATA,

PIMA INDIANS DIABETES DATABASE, AND BUPA LIVER DISORDERS

TABLE IV
COST MATRIX OF THE RESULTS

As may be observed from Table III, there is a tradeoff between

the hit percentage attained for classification and the number of

rules generated. By decreasing the decomposition rate, it is pos-

sible to obtain better classification results, but the number of

rules is increased, which reduces the model’s interpretability.

The average values (in bold type) of each application will be

used for comparisons with other classification methods later on

in Section IV-B (see Table VI).

As for the Heart Disease database (extracted from the

StatLog project [15]), the tests were carried out with the use

of the 9-Fold Cross Validation methodology [15], the same

approach used by all algorithms that were analyzed by the

StatLog project. This method consists of partitioning the

database into nine subsets (heart1.dat, heart2.dat, heart3.dat,

heart4.dat, heart5.dat, heart6.dat, heart7.dat, heart8.dat, and

heart9.dat), where eight subsets are used for training and the

remaining subset is used for testing (validation). The process

is repeated nine times in such a way that each time a different

subset of data is used for testing.

Thus, the database was randomly segmented into nine subsets

with 30 elements each. Each subset contains about 56% of Class

1 records (without heart disease) and 44% of Class 2 records

(with heart disease).

The methodology also makes use of a cost matrix, which is

described in Table IV. The purpose of such a matrix is to pe-

nalize wrongly classified records in different ways, depending

on the class. The weight of the penalty for Class 2 records that

are classified as Class 1 records is 5, while the weight of the

penalty for Class 1 records that are classified as Class 2 records

is 1.

Therefore, the cost of wrongly classifying the patterns in the

training and test data sets is given by (24) and (25), respectively,

as follows:

(24)

(25)

where

cost in the training set;

cost in the test set;

number of patterns that were wrongly classified as be-

longing to Class 1;

number of patterns that were wrongly classified as be-

longing to Class 2;

total number of patterns in the training set;

total number of patterns in the test set.

Table V presents the errors and costs of the training and test

sets along with the number of rules and the decomposition rates

for the HNFB model.

Upon closer inspection of Table V, it may be observed that the

configuration of the heart8.dat database as a test subset obtained

lower errors and consequently a lower cost for the HNFB

model.

Fig. 9 illustrates the tree structure obtained by the HNFB

model for the eighth test (in bold type in Table V). The

T-conorm links are not shown in this diagram because they

would make it more difficult to understand the rule extraction

process.

It may be observed in Fig. 9 that only nine of the 13 attributes

of the database were used for achieving a satisfactory perfor-

mance ( , , , and were not used). By means of tree

routing, it is possible to extract the rules that describe the Heart

Disease database. Some of the fuzzy rules extracted for Class

1 from the tree structure in Fig. 9 are listed hereafter. (The left

side of each HNFB cell is considered low partition and the

right side the high partition.)

Sub_rule 1:

If is low and If is low and If

is low

then

[Accuracy: 0,7688/Coverage: 0,1314]

Sub_rule 2:

If is low and If is low and If

is high and If is low and If is low

then
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TABLE V
RESULTS OBTAINED BY THE HNFB MODEL FOR THE CLASSIFICATION OF THE HEART DISEASE DATABASE

[Accuracy: 0,7704/Coverage: 0,4695]

Sub_rule 3:

If is low and If is low and If

is high and If is low and If is

high

then

[Accuracy: 0,7084/Coverage: 0,02969]

B. Comparison With Other Models

The results obtained for the Iris Dataset, Wine Data, Pima

Indians Diabetes Database, and Bupa Liver Disorders data sets

were compared with the results described in [16] where the per-

formance of several models is presented: NN (nearest neighbor),

kNN ( nearest neighbor, FSS (nearest neighbor with forward

sequential selection of feature), and BSS (nearest neighbor with

backward sequential selection of feature). In addition, HNFB

model has also been compared with other methods such as MFS

(multiple feature subsets) [17], CART (CART decision tree)

[18], C4.5 (C4.5 decision tree) [19], FID3.1 (FID3.1 decision

tree) [20], MLP (multilayer perceptron) [2], and NEFCLASS

[21]. Finally, the performance of HNFB was compared with

the original hierarchical neuro-fuzzy BSP models (see Table VI)

HNFB, HNFB_fixed (which is the HNFB model with the same

variable for all cells in the same level), HNFB_adaptive (the

HNFB model with different variables for cells in the same level),

and the Hierarchical Neuro-Fuzzy Quadtree (NFHQ) model [9],

which uses the Quadtree partition of the input space [22].

Table VI presents a summary of the results obtained by the

various different systems. The best performance for each data

set, measured in terms of each model’s hit percentage, is high-

lighted in bold type.

The classification results found for the Heart Disease data set

were compared with the results found in the StatLog project

[15]. According to the StatLog project methodology, compar-

ison consists of calculating the average cost produced by the

nine data subsets used for validation. Table VII presents the av-

erage cost for the nine training and test subsets. The result of the

HNFB model, which obtained the best performance (lowest

average training and test costs) among all the systems presented

[15], is highlighted in bold.

As can be seen from Table VII, the result obtained with the

test set is better than with the training set. This uncommon re-

sult might be due to the fuzzy hierarchical recursive partitioning

employed in the HNFB , where more partitions are created in

regions where the function complexity is more accentuated. In

addition, due to the fuzzy aspect of the model, the generalization

capability is enhanced when compared with more rigid classi-

fication methods. Therefore, the combined features of hierar-

chical partitioning and fuzzy mapping result in a more accurate

model.

V. CONCLUSION AND FUTURE STUDIES

This paper has introduced and evaluated the Inverted Hierar-

chical Neuro-Fuzzy BSP System (HNFB ), a new neuro-fuzzy

model that was specially created for the task of pattern classifi-

cation and fuzzy rule extraction. The HNFB model belongs

to the new class of neuro-fuzzy systems, called Hierarchical

Neuro-Fuzzy Systems [7]–[9], which allow a greater number

of inputs and are able to generate their own structure, thus cre-

ating automatically their rule base. These models employ a re-

cursive partitioning method that successively divides the input

space into two regions.

The new model was tested on several benchmark applications

that are common in the area of computational intelligence. The

case studies demonstrated that the HNFB model performs the

pattern classification task quite well. In most cases, the results

obtained with the HNFB model proved to be as good as or

better than the best results found by the other models and al-

gorithms with which it was compared. The performance of the

HNFB models is remarkable in terms of processing time. For

all the databases described in the case studies, the models con-

verged in an order of magnitude of less than one minute of pro-

cessing time on a Pentium III 500 MHz computer.

The number and quality of the rules that were extracted

proved to be suitable for knowledge extraction applications.

The fuzzy rules obtained after the learning phase were evaluated

by means of fuzzy accuracy and fuzzy coverage measurements.

These measurements attempt to supply clear information on the

“crispness” and “coverage” of each rule.

The model is being modified so as to allow the implementa-

tion of Mamdani fuzzy inference systems [23], generating a new

model called HNFB_Mamdani. Preliminary results have been
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Fig. 9. Tree structure of the HNFB model for the eighth test in Table V.

TABLE VI
COMPARISON OF THE AVERAGE PERFORMANCE OF SEVERAL

CLASSIFICATION SYSTEMS

reported in [24]. In this case, the output T-conorm operators are

replaced by fuzzy sets, yielding rules of the following type: If

is high and is big and and is hot then is low.

The variable selection methodology is also being altered to

include two new model-free methods, called least-squares esti-

TABLE VII
TABLE COMPARING THE AVERAGE COST IN THE TRAINING AND

TEST SET OF SEVERAL CLASSIFICATION SYSTEMS EVALUATED

FOR THE HEART DISEASE DATABASE

mator (LSE) [25] and single-input effectiveness (SIE) [26]. Al-

though the approach employed in this work provided good re-

sults, the one-dimension mini-ANFIS system has two disadvan-

tages: it is a model-based strategy, where the good (or bad) per-

formance might be associated with the model itself, not with the

variable under analysis; and it does not take into consideration

any dependency or correlation that might exist between vari-
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ables. The two new methods were selected to overcome these

drawbacks, and preliminary results [27] have demonstrated their

superior performance.

In addition, in order to create potentially smaller trees, the

strategy that has been employed for selecting variables, in which

the same attribute is presented as input for all the nodes that

belong to the same level in the hierarchy (fixed strategy), will

be modified so as to allow a different variable to be selected

for each tree node, regardless of its hierarchical level (adaptive

strategy). The fixed strategy tends to generate unnecessary parti-

tioning due to the fact that the selected variable is not always the

most suitable one for all the nodes of that level. The advantage

of the fixed strategy is its low computational cost, since feature

selection is performed only once, before the learning process.
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