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ABSTRACTWeb searh engines use highly optimized ompression shemesto derease inverted index size and improve query through-put, and many index ompression tehniques have been stud-ied in the literature. One approah taken by several reentstudies [7, 23, 25, 6, 24℄ �rst performs a renumbering of thedoument IDs in the olletion that groups similar doumentstogether, and then applies standard ompression tehniques.It is known that this an signi�antly improve index om-pression ompared to a random doument ordering.We study index ompression and query proessing teh-niques for suh reordered indexes. Previous work has fousedon determining the best possible ordering of douments. Inontrast, we assume that suh an ordering is already given,and fous on how to optimize ompression methods and queryproessing for this ase. We perform an extensive study ofompression tehniques for doument IDs and present newoptimizations of existing tehniques whih an ahieve signif-iant improvement in both ompression and deompressionperformanes. We also propose and evaluate tehniques forompressing frequeny values for this ase. Finally, we studythe e�et of this approah on query proessing performane.Our experiments show very signi�ant improvements in in-dex size and query proessing speed on the TREC GOV2olletion of 25:2 million web pages.
Categories and Subject DescriptorsH.3.3 [INFORMATION STORAGE ANDRETRIEVAL℄:Information Searh and Retrieval.
General TermsAlgorithms, Performane
KeywordsInverted index, searh engines, index ompression, IR queryproessing, doument ordering
1. INTRODUCTIONLarge web searh engines need to proess thousands ofqueries per seond over tens of billions of pages. Moreover,the results for eah query should be returned within at mosta few hundred milliseonds. A signi�ant amount of researhand engineering has gone into addressing these tremendousperformane hallenges, and various optimizations have beenproposed based on tehniques suh as ahing, data om-pression, early termination, and massively parallel proess-ing. We fous on one important lass of optimizations, index�Current AÆliation: CSE Dept., Polytehni Inst. of NYU.
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ompression. Inverted index ompression is used in all majorengines, and many tehniques have been proposed [27, 30℄.Informally, an inverted index for a olletion of doumentsis a struture that stores, for eah term (word) ourringsomewhere in the olletion, information about the loationswhere it ours. In partiular, for eah term t, the indexontains an inverted list It onsisting of a number of indexpostings. Eah posting in It ontains information about theourrenes of t in one partiular doument d, usually theID of the doument (the doID), the number of ourrenesof t in d (the frequeny), and possibly other informationabout the loations of the ourrenes within the doumentand their ontexts. The postings in eah list are usuallysorted by doID. For example, an inverted list It of the formf56; 1; 34gf198; 2; 14; 23g might indiate that term t oursone in doument 56, at word position 34 from the beginningof the doument, and twie in doument 198 at positions 14and 23. We assume postings have doIDs and frequeniesbut do not onsider other data suh as positions or ontexts.Many tehniques for inverted index ompression have beenstudied in the literature; see [27, 30℄ for a survey and [1, 2,3, 31, 28, 14℄ for very reent work. Most tehniques �rst re-plae eah doID (exept the �rst in a list) by the di�erenebetween it and the preeding doID, alled d-gap, and thenenode the d-gap using some integer ompression algorithm.Using d-gaps instead of doIDs dereases the average valuethat needs to be ompressed, resulting in a higher ompres-sion ratio. Of ourse, these values have to be summed upagain during deompression, but this an usually be donevery eÆiently. Thus, inverted index ompression tehniquesare onerned with ompressing sequenes of integers whoseaverage value is small. The resulting ompression ratio de-pends on the exat properties of these sequenes, whih de-pend on the way in whih doIDs are assigned to douments.This observation has motivated several authors [7, 23, 25,6, 24℄ to study how to assign doIDs in a way that opti-mizes ompression. The basi idea here is that if we assigndoIDs suh that many similar douments (i.e., doumentsthat share a lot of terms) are lose to eah other in the doIDassignment, then the resulting sequene of d-gaps will be-ome more skewed, with large lusters of many small valuesinterrupted by a few larger values, resulting in better om-pression. In ontrast, if doIDs are assigned at random, thedistribution of gaps will be basially exponential, and smallvalues will not be lustered together. In pratie, IR systemsmay assign doIDs to douments in a number of ways, e.g., atrandom, in the order they are rawled or indexed, or basedon global measures of page quality (suh as Pagerank [9℄).As we disuss later, in some ases it is diÆult or impossibleto hange the way doIDs are assigned, but there are manyother senarios where reordering of douments ould be usedto improve index ompression.In this paper, we follow the doument reordering approahstudied in [7, 23, 25, 6, 24℄. However, while previous work



has foused on �nding the best ordering of douments in aolletion, we fous on the next step, how to optimize atualindex ompression and query proessing given some suitabledoument ordering obtained from previous work. In partiu-lar, we extensively study and optimize state-of-the-art om-pression tehniques for doIDs, and propose new algorithmsfor ompressing frequenies, under suh optimized orderings.Frequeny values tend to be small ompared to doID gaps(on average when a word ours in a web page it oursonly 3 to 4 times), and thus di�erent tehniques are neededto improve their ompression. We further study the impatof doID reordering on query throughput, and propose andstudy a new index optimization problem motivated by thetrade-o� between speed and ompression ratio of the variousmethods. Overall, our experimental results show very sig-ni�ant improvements in both overall index size and queryproessing speed in realisti settings. To our knowledge, noprevious work has looked at ompression of frequenies, orat overall query proessing performane, under the doumentreordering approah.The remainder of this paper is organized as follows. Inthe next setion, we provide some tehnial bakground anddisuss related work. Setion 3 desribes our ontributionsin more detail. In Setion 4 we study tehniques for doIDompression, while Setion 5 fouses on ompression of fre-quenies. Setion 6 evaluates query proessing performane,and Setion 7 studies hybrid shemes that apply di�erentompression tehniques to di�erent lists based on query load.Finally, Setion 8 provides onluding remarks.
2. BACKGROUND AND RELATED WORKIn this setion, we �rst outline several known index om-pression tehniques that we use in our work. We then disussprevious work on reordering for better inverted index om-pression, and disuss the appliability of this approah inreal systems. Subsetion 2.4 desribes blok-wise ompres-sion and skipping in IR query proessors, and Subsetion 2.5introdues the TREC GOV2 data set used by us.
2.1 Index Compression TechniquesReall that in inverted index ompression, our goal is toompress a sequene of integers, either a sequene of d-gapsobtained by taking the di�erene between eah doID andthe previous doID, or a sequene of frequeny values. Inaddition, we always dedut 1 from eah d-gap and frequeny,so that the integers to be ompressed are non-negative but doinlude 0 values. We now sketh some known tehniques thatwe use and build on in this paper, in partiular variable-byte(var-byte) oding [22℄, Rie oding [27℄, Simple9 (S9) [2℄ andthe losely related S16 [28℄, PForDelta [14, 31℄, and binaryInterpolative Coding (IPC) [17℄. We provide brief outlinesof these methods to keep the paper self-ontained; for moredetails, please see the ited literature. All methods exeptIPC were reently implemented and evaluated in [28℄, and wewill reuse and extend these highly tuned implementations.Var-Byte Coding: Variable-byte (var-byte) ompressionrepresents an integer in a variable number of bytes, whereeah byte onsists of one status bit, indiating whether an-other byte follows the urrent one, followed by 7 data bits.Thus, 142 = 1 � 27 + 16 is represented as 10000001 0001000,while 2 is represented as 00000010. Var-byte ompressiondoes not ahieve a very good ompression ratio, but is sim-ple and allows for fast deoding [22℄ and is thus still used inmany systems.Rie Coding: This method ompresses a sequene of in-tegers by �rst hoosing a b suh that 2b is lose to the average

value. Eah integer n is then enoded in two parts: a quo-tient q = bn=(2b) stored in unary ode using q + 1 bits,and a remainder r = n mod 2b stored in binary using b bits.Rie oding ahieves very good ompression on standard un-ordered olletions but is slower than var-byte, though thegap in speed an be redued by using an optimized imple-mentation desribed in [28℄.S9: Simple9 (S9) oding is an algorithm proposed in [2℄that ombines good ompression ratio and high deompres-sion speed. The basi idea in S9 is to try to pak as manyvalues as possible into a 32-bit word. This is done by divid-ing eah word into 4 status bits and 28 data bits, where thedata bits an be partitioned in 9 di�erent ways. For example,if the next 7 values are all less than 16, then we an storethem as 7 4-bit values. Or if the next 3 values are less than512, we an store them as 3 9-bit values (leaving one databit unused).Simple9 uses 9 ways to divide up the 28 data bits: 281-bit numbers, 14 2-bit numbers, 9 3-bit numbers (one bitunused), 7 4-bit numbers, 5 5-numbers (three bits unused),4 7-bit numbers, 3 9-bit numbers (one bit unused), 2 14-bitnumbers, or 1 28-bit numbers. The 4 status bits store whihof the 9 ases is used. Deompression an be optimized byhardoding eah of the 9 ases using �xed bit masks, andusing a swith operation on the status bits to selet the ase.S16: Simple16 (S16) [28℄ uses the same basi idea as S9,but has 16 ways of partitioning the data bits, where eah ofthe 16 ases uses all 28 data bits. The result is that S16 ap-proximately mathes the speed of S9, while ahieving slightlybetter ompression. We note here that there are other meth-ods related to S9, suh as Relate10 and Carryover12 [2℄, thatalso ahieve improvements over S9 in ertain ases.PForDelta: This is a ompression method reently pro-posed in [14, 31℄ that supports extremely fast deompres-sion while also ahieving a small ompressed size. PForDelta(PFD) �rst determines a value b suh that most of the val-ues to be enoded (say, 90%) are less than 2b and thus �tinto a �xed bit �eld of b bits eah. The remaining values,alled exeptions, are oded separately. If we apply PFD tobloks ontaining some multiple of 32 values, then deom-pression involves extrating groups of 32 b-bit values, and�nally pathing the result by deoding a smaller number ofexeptions. This proess an be implemented extremely eÆ-iently by providing, for eah value of b, an optimized methodfor extrating 32 b-bit values from b memory words. PFDan be modi�ed and tuned in various ways by hoosing dif-ferent thresholds for the number of exeptions allowed, andby enoding the exeptions in di�erent ways. We use somemodi�ations to PFD proposed in [28℄, but also add in thispaper additional ones that ahieves signi�antly better per-formane in terms of both size and speed.Interpolative Coding: This is a oding tehnique pro-posed in [17℄ that is ideal for the types of lustered or burstyterm ourrenes that exist in real large texts (suh as books).In fat, the goal of the doument reordering approah is toreate more lustered, and thus more ompressible, term o-urrenes, and Interpolative Coding (IPC) has been shownto perform well in this ase [6, 7, 23, 24, 25℄.IPC di�ers from the other methods in an important way: Itdiretly ompresses doIDs, and not doID gaps. Given a setof doIDs di < di+1 < : : : < dj where l < di and dj < r forsome bounding values l and r known to the deoder, we �rstenode dm where m = (i + j)=2, then reursively ompressthe doIDs di; : : : ; dm�1 using l and dm as bounding values,and then reursively ompress dm+1; : : : ; dj using dm and ras bounding values. Thus, we ompress the doID in the



enter, and then reursively the left and right half of thesequene. To enode dm, observe that dm > l+m� i (sinethere are m � i values di; : : : dm�1 between it and l) anddm < r � (j �m) (sine there are j �m values dm+1; : : : djbetween it and r). Thus, it suÆes to enode an integer inthe range [0; x℄ where x = r� l� j+ i� 2 that is then addedto l +m � i + 1 during deoding; this an be done triviallyin dlog2(x+1)e bits, sine the deoder knows the value of x.In areas of an inverted list where there are many doumentsthat ontain the term, the value x will be muh smaller thanr� l. As a speial ase, if we have to enode k doIDs largerthan l and less than r where k = r � l � 1, then nothingneeds to be stored at all as we know that all doIDs properlybetween l and r ontain the term. This also means thatIPC an use less than one bit per value for very dense termourrenes.Evaluation: Index ompression tehniques are usuallyevaluated in terms of: (1) The ompression ratio, whih de-termines the amount of main memory needed for a memory-based index or the amount of disk traÆ for a disk-based in-dex. State-of-the-art systems typially ahieve ompressionratios of about 3 to 10 versus the naive 32-bit representation,while allowing extremely fast deompression during invertedlist traversals. (2) The deompression speed, typially hun-dreds of millions of integers per seond, whih is ruial forquery throughput. In ontrast, ompression speed is some-what less ritial, sine eah inverted list is ompressed onlyone during index building, and then deompressed manytimes during query proessing.We note that there are two di�erent ways to evaluate theompression ratio. We an onsider the total size of the in-dex; this models the amount of spae needed on disk, andalso the amount of main memory needed if the index is heldentirely in main memory during query proessing. Alter-natively, we an measure the ompressed size of the invertedlists assoiated with an average query under some query load;this models the amount of data that has to be transferredfrom disk for eah query if the index is entirely on disk (andalso the amount of data that has to be moved from mainmemory to CPU as this an beome a bottlenek in highlyoptimized systems). In reality, most systems ahe part ofthe index in memory, making a proper evaluation more om-pliated. We onsider both ases in our experiments, but �ndthat the relative ordering of the algorithms stays the same.
2.2 Document Reordering and Related IdeasSeveral papers have studied how to reorder douments forbetter ompression [7, 23, 25, 24, 6℄. In partiular, the ap-proahes in [7, 23, 25, 6℄ �rst perform some form of textlustering on the olletion to �nd similar douments, andthen assign doIDs by traversing the resulting graph of do-ument similarities in a Depth-First-Searh [7℄ or TSP-likefashion. Subsequent work in [24℄ looked at a muh simplerapproah, assigning doIDs alphabetially aording to URL,and showed that this method basially mathes the perfor-mane of previous tehniques based on text lustering. Notethat suh an alphabetial ordering plaes all douments fromthe same site, and same subdiretory within a site, next toeah other. This results in improved ompression as suhdouments tend to have the same topis and use the samewriting style.We use alphabetial assignment of doIDs in all our exper-iments, but our tehniques work with any of the approahes.Our fous is not on �nding a better assignment of doIDs, buton exploiting an existing assignment using optimized om-pression and query proessing tehniques. In ontrast, previ-

ous work onsidered only a few standard tehniques for doIDompression, and did not onsider frequeny ompression orquery proessing.Another related problem is the ompression of inverted in-dexes for arhival olletions, i.e., olletions that ontaindi�erent versions of douments over a period of time, withoften only minor hanges between versions. This problem hasreently reeived some attention in the researh ommunity[11, 15, 29, 5℄, and the basi idea is also to exploit similaritybetween douments (or their versions). The tehniques usedare di�erent, and more geared towards getting very large ben-e�ts for olletions with multiple very similar versions, as op-posed to the reordering approah here whih tries to exploitmore moderate levels of similarity. In future work, it wouldbe very interesting to ompare these di�erent approahes ondouments with di�erent degrees of similarity. For example,the alphabetial ordering used here ould be easily extendedto versioned olletions (by sorting �rst by URL and thenby version number), and ould in fat be seen as providingan alternative eÆient implementation of the approah in [5℄that is based on merging onseutive postings in a list.
2.3 Feasibility of Document ReorderingIR systems may assign doIDs to douments in a numberof ways, e.g., at random, in the order they are rawled or in-dexed, or sometimes based on global measures of page quality(suh as Pagerank [9℄) that an enable faster query proess-ing through early termination. The doument reordering ap-proah in this paper and the previous work in [7, 23, 25, 6,24℄ assumes that we an modify this assignment of doIDs tooptimize ompression. While this is a reasonable assumptionfor some systems, there are other ases where this is diÆultor infeasible. We now disuss two ases, distributed indexstrutures, and tiering and early termination tehniques.Large-sale searh engines typially partition their dou-ment olletion over hundreds of nodes and then build a sep-arate index on eah node. If the assignment of doumentsto nodes is done at random, then a loal reordering of do-uments within a node might not give muh bene�t. On theother hand, if pages are assigned to nodes based on a host-level assignment or alphabetial range-partitioning, then wewould expet signi�ant bene�ts. However, this might re-quire hanges in the arhiteture and ould impat issuessuh as load balaning.Doument ordering is also ompliated by the presene oftiering and other early termination mehanisms, whih arewidely used in urrent engines. In a nutshell, these are teh-niques that avoid a full traversal of the inverted lists for mostqueries through areful index layout, whih often involvessome reordering of the douments. In some approahes, suhas a doument-based tiering approah [21℄, or a partitioningof inverted lists into a small number of hunks [19, 16℄, re-ordering for better ompression an be applied within eahtier or hunk. Other approahes may assign doIDs based onPagerank [9℄ or other global doument sores mined from theolletion [20℄, or use a di�erent ordering for eah list [13℄; inthese ases our approah may not apply.
2.4 Query Processing in Search EnginesQuery proessing in state-of-the-art systems involves a num-ber of phases suh as query parsing, query rewriting, andthe omputation of omplex, often mahine-learned, rankingfuntions that may use hundred of features. However, at thelower layer, all suh systems rely on extremely fast aess toan inverted index to ahieve the required query throughput.In partiular, for eah query the engine typially needs to



traverse the inverted lists orresponding to the query termsin order to identify a limited set of promising douments thatan then be more fully sored in a subsequent phase. Thehallenge in this initial �ltering phase is that for large ol-letions, the inverted lists for many ommonly queried termsan get very long. For example, for the TREC GOV2 olle-tion of 25:2 million web pages used in this paper, on averageeah query involves lists with several million postings.Current systems typially use a style of query proessingalled doument-at-a-time (DAAT) query proessing, whereall inverted lists assoiated with a query are opened for read-ing and then traversed in an interleaved fashion. This ap-proah has several advantages: (a) it performs extremely wellon the AND and WAND [10℄ style queries ommon in searhengines, (b) it enables a very simple and eÆient interfae be-tween query proessing and the lower-level index deompres-sion mehanism, and () it allows for additional performanegains through forward skips in the inverted lists, assumingthat the postings in eah list are organized into bloks ofsome small size that an be independently deompressed.In our experiments, we use an optimized DAAT query pro-essor developed in our group, and we organize eah invertedlist into bloks with a �xed number of postings. We hoose128 postings as our default blok size (shown to perform well,e.g., in [28℄), and keep for eah inverted list two separatearrays ontaining the last doID and size of eah blok inwords in (almost) unompressed form. This allows skippingof bloks during query proessing by searhing in the arrayof last doIDs. All deompression is performed in terms ofbloks; to add another ompression method to our query pro-essor it suÆes to supply a method for unompressing thedoIDs of a blok, and one to unompress the frequenies. (Ablok onsists of all 128 doIDs followed by all 128 frequenyvalues.) This design is highly useful in Setion 7, where weuse several ompression tehniques within the same index.One interesting result of our experiments is that reorder-ing of douments, in addition to improving ompression, alsospeeds up index traversal in a DAAT query proessor. In par-tiular, our query proessor (with no hanges in the software,and independent of ompression method) performs more andlarger forward skips during index aess in the reordered ase,and as a result deompresses less than half as many bloksper query as in the unordered ase. Note that this is relatedto, but di�erent from, reent work in [8, 12℄ that shows howto hoose an optimal set of forward pointers (basially, howto hoose variable blok boundaries) for eah list based on ananalysis of the query load. Thus, we reorder douments whilekeeping blok sizes onstant, while [8, 12℄ modify blok sizeswhile keeping the ordering onstant; it would be interestingto see how the approahes work in ombination, and whetherthe reordering ould be improved by onsidering query loads.
2.5 The TREC GOV2 Data SetFor our experiments, we use the TREC GOV2 data setof 25:2 million web pages from the gov domain that is dis-tributed by the US National Institute of Standards and Teh-nology (NIST) and used in the annual TREC ompetitions.This data is widely used for researh in the IR ommunity,thus allowing others to repliate our results. It is based on a2004 rawl of the gov domain, and is also aompanied by aset of 100000 queries (the 2006 EÆieny Task Topis) thatwe use in our evaluation.While the data set does not represent a omplete snapshotof the gov domain at the time of the rawl, it nonethelessontains a fairly signi�ant subset of it. This is importantsine our tehniques perform best on \dense" data sets suh

as GOV2 that are based on a fairly deep rawl of a subsetof domains. In ontrast, a \sparse" set of 25:2 million pagesrawled at random from the many billions of pages on theweb would not bene�t as muh.
3. CONTRIBUTIONS OF THIS PAPERIn this paper, we study the problem of optimizing om-pression and query proessing performane given a suitableassignment of doIDs. Previous work in [7, 23, 26, 6, 24℄foused on �nding a good doID assignment, and then eval-uated the assignment by ompressing doIDs using standardtehniques. In ontrast, we fous on how to best exploit agiven assignment by optimizing ompression and query pro-essing tehniques for this ase. Our ompression odes areavailable at http://is.poly.edu/westlab/. Our main on-tributions are as follows:(1) We propose new versions of the PForDelta (PFD) ap-proah and ompare them with state-of-the-art teh-niques in the literature as well as new variants that aretuned for both speed and ompression ratio. Our ex-perimental results show that our versions of PFD anahieve signi�ant improvements in size and speed.(2) We look at the problem of optimizing the ompressionof frequeny values under suh assignments. Previouswork only onsidered doIDs, but we show that frequen-ies an also be ompressed signi�antly better throughsuitable doID assignment. Our main ontribution hereis the appliation of transformations inspired by move-to-front oding to improve the ompressibility of fre-queny values.(3) We study the impat of doID reordering on overallindex size and query throughput on the TREC GOV2data set of 25:2 million web pages. We observe a redu-tion in minimum index size by about 50% over the aseof a random doID ordering, resulting in a minimalsize of about 3:45 GB for a full-text index of the en-tire olletion. We also show that the doID reorderingleads to signi�ant improvements in query throughputon onjuntive queries for doument-at-a-time (DAAT)query proessors by reduing the number of randomseeks in the index, in addition to any bene�ts obtainedvia the redution in index size.(4) The various ompression tehniques studied by us showa trade-o� between speed and ompression ratio. Thus,the tehniques that ahieve the smallest size are muhslower than the fastest ones, whih in turn result in alarger index size. This motivates us to study hybridindex organizations that apply di�erent ompressionshemes to di�erent lists. We set up a formal opti-mization problem and show that by seleting a suitableompression sheme for eah list based on an analysisof a query log, we an simultaneously ahieve almostoptimal size and speed.
4. DOCID COMPRESSIONIn this setion, we perform a detailed study of ompressiontehniques for doIDs. In partiular, we �rst study distribu-tions of doIDs on TREC GOV2 data set, and then disussstate-of-the-art ompression methods and propose our newalgorithms, and �nally we evaluate all these methods throughsome preliminary experiments.
4.1 Distributions of DocIDsThe performane of a ompression method depends on thedata distribution it is applied to. For inverted index ompres-



sion, ompression is best when there are many small numbers.The optimized assignment of doIDs is intended to inreasethe number of small numbers and thus improve ompressionperformane. In Figure 1, we show a histograms of d-gapsfor the TREC GOV2 data set under three di�erent order-ings of douments: original, whih we get from the oÆialTREC GOV2 data set; sorted, where doIDs are re-assignedby us after we sort their URLs, as in [24℄; and random, wheredoIDs are assigned at random.From Figure 1 we an see that the sorted ordering resultsin more small gaps than the other two kinds of indexes, sug-gesting a higher ompression ratio. In addition, the d-gapsfor the original ordering have a similar histogram as thosefor the random ordering, suggesting that the ompressionmethods will very likely have a similar performane. Fur-thermore, we analyze individual inverted lists and �nd thatsuh a reordering results in more lusters (not shown in theFigure 1), i.e., sequenes of onseutive small d-gaps.
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Figure 1: Histograms of d-gaps for inverted lists orre-sponding to 1000 random queries on the TREV GOV2data set, under three di�erent orderings: original, sortedand random. The x-axis is the number of bits required torepresent d-gaps in binary, and the y-axis is the perent-age of suh d-gaps. (Thus, the �rst point is for 1-gaps,the seond for 2-gaps, the third for 3-gaps plus 4-gaps,and so on.)
4.2 Optimizing PForDelta compressionWe now desribe two modi�ations to PFD that ahievesigni�ant improvements over the versions in [31, 14, 28℄.Reall that the implementations of PFD in previous workenode a blok of 128 value by �rst alloating 128 b-bit slots,and then for those 90% of the values less than 2b diretlystoring them in their orresponding slots. For eah valuelarger than 2b, alled a exeption, we store an o�set valuein the exeption's orresponding slot indiating the distanefrom the urrent exeption to the next one, and the atualvalue of the exeption in some additional spae after the 128b-bit slots. One disadvantage of suh a ode struture is thatwhen two onseutive exeptions have a distane of morethan 2b, we have to use more than one o�set to represent thedistane, by foring additional exeptions in between thesetwo exeptions. We annot solve this problem by simplyinreasing b sine this would waste lots of bits on 90% ofvalues; but if we derease bmore exeptions will be produed.This means in partiular that this version of PFD annotpro�tably use any values of b less than b = 3, but this aseis very important in the reordered ase.To overome this problem, we present a new ode stru-ture for PFD by storing the o�set values and parts of theexeptions in two separate arrays (while we still maintain128 b-bit slots). In partiular, for an exeption, we store itslower b bits, instead of the o�set to the next exeption, in itsorresponding slot, while we store the higher overow bitsand the o�set in two separate arrays. These two arrays an

be further ompressed by any ompression method, and we�nd that S16 is partiularly suitable for this. We all thisapproah NewPFD.Our seond improvement is in the seletion of the b valuefor eah blok. As it turns out, seleting a onstant thresholdfor the number of exeptions does not give the best tradeo�between size and speed. Instead, we model the seletion ofthe b for eah blok as an optimization problem similar tothat in Setion 7. Thus, we initially assign the b with thesmallest ompressed size to eah blok, and then inreasespeed as desired by seleting a blok that gives us the mosttime savings per inrease in size, and hange the b of thatblok. We all this OptPFD. We note here that for a giventarget speed, we an easily derive simple global rules aboutthe hoie of b, instead of running the iterative optimizationabove. Thus this version an be very eÆiently implementedeven on very large olletions.
4.3 Optimizing other methodsWe now present a few minor optimizations of some othermethods that we used in our experimental evaluation.GammaDi�: This is a variation of Gamma oding that,for a given integer x, enodes the unary part of the Gammaode (that is, 1+blogx) as the di�erene between 1+blogxand the number of bits required to represent the average ofall gaps in the list. The motivation for GammaDi� is thatwhen doIDs are lustered, the di�erenes between d-gapsand their expeted average gap may be muh smaller thanthe gaps themselves.S16-128: As S9 and S16 only have 9 or 16 possible asesfor enoding numbers, sometimes they have to hoose a waste-ful ase when a better one might exist. Now suppose we havea sequene of numbers onsisting mainly of small values. Inthis ase, a version of S16 alled S16-128 an do slightly bet-ter by providing more ases for small numbers and fewer forlarger numbers.Optimized IPC: Reall that the key step of interpolativeoding (IPC) is to enode a number x in the range < lo; hi >,where lo and hi are respetively the lowest and highest possi-ble values of x. The original IPC enodes the o�set o = x�lousing a b-bit number, where b = dre and r = hi � lo + 1 isthe number of possible values of the o�set. This wastes bitsif r is not a power of 2. We an do better by using a trikfrom Golomb oding to enode o as follows: If o < 2b � r,use b�1 bits to represent o, otherwise use b bits to represento + 2b � r. (This tehnique was already desribed for IPCin [27℄.) In addition, before we apply the above optimiza-tion, we transform the range of values in suh a way that theshorter odes are applied to values in the middle of the range,sine suh values are more likely even in a highly lusteredlist. Also, while IPC is usually onsidered as a list-orientedmethod, meaning it starts by enoding the median of the en-tire list, we apply it to bloks of a ertain size. As it turnsout, this also improves ompression if we hoose a good bloksize. In partiular, blok sizes of the form 2b � 1 appear towork best, and thus we hoose bloks of 127 values for ourimplementation.
4.4 Preliminary ExperimentsBefore presenting our results, we desribe our experimentalsetup, whih we also use in later setions. For the data set,we used the TREC GOV2 data set. We then seleted 1000random queries from the supplied query logs; these queriesontain 2171 unique terms. All experiments were performedon a single ore of a 2.66GHz Intel(R) Core(TM)2 Duo CPUwith 8GB of memory.



sorted original randomlist-IPC w/o opt 0.95 2.70 2.83list-IPC 0.88 2.46 2.57blok-IPC 0.85 2.40 2.51Table 1: Compressed size in MB/query for doIDs us-ing a basi list-wise IPC (without optimizations), a list-wise version with all other optimizations enabled, and itsblok-wise version, under the original, sorted, and ran-dom orderings.In Table 1, we ompare the original IPC, whih is list-wise,with its improved version with our various optimizations andits blok-wise version with our optimizations, on the GOV2data set under the original, sorted, and random orderings.From Table 1, we an observe the following: First, all IPCalgorithms work signi�antly better on the d-gaps under thesorted ordering than under the other two orderings; seond,both list-wise and blok-wise IPC with our optimizations aremuh better the original IPC, but blok-wise IPC with ouroptimizations ahieves the best ompression.
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OptPFDFigure 2: Compressed size in MB/query versus deom-pression speed in million integers per seond for doIDs,using PFD, NewPFD, and OptPFD under the sorted or-dering. The points from left to right for PFD and New-PFD orrespond to the following perentages of exep-tions: 5%, 8%, 10%, 20%, and 30%. For OptPFD, the pointsorrespond to di�erent target speeds for the optimizationand their orresponding sizes.Compared to IPC, the main advantage of PFD is thatdeoding is very fast. In Figure 2, we show the trade-o�sbetween deompression speed and ompressed size for PFD,NewPFD, and OptPFD as introdued above. From Figure 2,we see that OptPFD an always ahieve a muh smallerompressed size for a given deoding speed than the othermethod. Thus, hoosing b not based on a global thresholdon exeptions, but based on a global target speed, ahieves amuh better trade-o� than the naive global threshold used inPFD and NewPFD. While OptPFD is still worse than IPC interms of ompressed size, deompression is muh faster thanfor any version of IPC (as we will show later). We also ranexperiments under the original doument ordering, and ob-served slightly smaller but still signi�ant gains for OptPFDover PFD and NewPFD, while PFD and newPFD were over-all similar in performane.In Figure 3, we ompare the average ompressed size perquery of the doIDs for most of the state-of-the-art invertedindex ompression methods on the TREC GOV2 data setunder the original, sorted, and random orderings. For eahdata set, we show results of twelve ompression methods:
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Figure 3: Compressed size in MB/query for doIDs us-ing twelve methods, under the original, sorted, and ran-dom orderings.var-byte, S9, S16, S16-128, OptPFD, Delta oding, Gammaoding, GammaDi�, Rie oding, a variant of Rie odingalled RieVT desribed in [27, 18℄ whih essentially pro-motes the impliit probabilities of small gaps, the blok-wiseinterpolative oding with our above optimizations, and en-tropy, whih uses the global frequeny distribution of theompressed integers. For OptPFD, we hose a setting thatminimizes the ompressed size.From Figure 3, we make the following observations: First,just as Figure 1 suggested, many ompression methods anahieve a muh better ompression ratio on the d-gaps underthe sorted ordering than under the other two orderings; se-ond, all ompression methods on d-gaps under the originalordering ahieve similar performanes with those under therandom orderings; third, IPC ahieves the best ompressionperformane among all methods; fourth, OptPFD is quiteompetitive with all other methods (even with IPC, althoughit is slightly worse than IPC in terms of size). One disadvan-tage of IPC is that its deompression is slow. In ontrast, allother methods to the left of the entropy method are fairlyfast, and muh faster than those further to the right.
5. FREQUENCY COMPRESSIONFrequeny values tend to be quite small, and unlike doIDs,they are not in sorted order. In this setion, we �rst disussthe e�et of doID reordering on frequenies, and then pro-pose more e�etive ompression algorithms. In partiular, weshow that reordered frequenies an be transformed in suha way that their entropy is lowered signi�antly, leading tobetter ompression.
5.1 Effect of Reordering on FrequenciesFrequeny values by themselves are not hanged at all byreordering, and thus reassigning doID by sorting URLs doesnot a�et the distribution of frequenies. However, suh anordering results in more loal lusters of similar values. Thisan be shown by omparing the ompressed size of ontext-sensitive and ontext-free methods. The former methods,whih inlude IPC, S9, S16, and OptPFD, exploit the neigh-bor information to enode a number, while the latter meth-ods, suh as gamma or delta oding, enode eah numberindependently, resulting in no hange in ompression afterreordering.In Figure 4, we display the ompressed size of the fre-queny data under state-of-the-art ompression methods onthe TREC GOV2 data set, using original, sorted, and ran-dom orderings. From Figure 4, we see exatly what wewould expet: The ontext-sensitive methods (all methodsto the left of entropy) get better ompression results underthe sorted ordering than under the other orderings, while
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Figure 4: Compressed size in MB/query for frequeniesusing twelve methods, under the original, sorted, and ran-dom orderings.the other methods get the same results under all three order-ings. We also notie that for the ontext-sensitive methods,ompression under the original ordering has very similar per-formane with that under the random ordering. As before,IPC ahieves the best ompression performane.However, none of the existing methods takes advantage ofthe loal lusters reated by the sorted ordering to furtherredue ompressed size. In the following, we show that un-der suh an ordering, the ontext information of frequeniesan be further exploited to redue frequeny values and thussigni�antly improve ompression.
5.2 New AlgorithmsThe basi idea is that we exploit the ontext informationof frequenies to transform them into even smaller values,using one of the following two tehniques: a version of Move-To-Front oding (MTF) [4℄, and a method we all Mostly-Likely-Next (MLN). More preisely, we propose to performa transformation on the frequeny values before ompressingthem with other ompressors.Move-To-Front (MTF): The MTF [4℄ transform is usedas an important part of Burrows-Wheeler transform-basedompression [27℄. Its basi idea is that, as long as a numberhas been seen lately, it will be represented by an index thatis likely to be smaller than its own value, in a separate in-dex array whose �rst element is always the number we justsaw. For example, given a list of numbers [5; 5; 5; 3; 2; 2℄, andassuming that all numbers are in the range [1,5℄, we keep aseparate index array whih is initialized as < 1; 2; 3; 4; 5 >.We �rst enode the �rst number 5 as its index in the indexarray, whih is the same as own value 5, and then move 5to the front of the index array suh that next time when wemeet 5 again we will enode it as the index in the index array,whih is 1, instead of the real value 5. From then on, when-ever we meet a value, we enode it as its index in the indexarray and move it to the front of the index array. Therefore,the original list ould be enoded as < 5; 1; 1; 4; 4; 1 >. Fromthe example we an see that MTF works well espeially whenthere is a luster of numbers of the same value.We experimented with several MTF-based mehanisms forpreproessing frequeny values. While the basi MTF versionahieved some bene�ts, we found that other variants that donot diretly teleport the last used element to the �rst slotin the array atually performed better. In the end, meth-ods that move the last used value from its urrent positioni to a position suh as i=2 or 2i=3 ahieved overall best per-formane in our experiments. We also note that MTF mayslow down the speed of deompression, espeially when therange of values is large, sine we have to do exatly the samemove-to-front operations for all numbers to be deoded.Most-Likely-Next (MLN): An alternative alled MLN

is also used to transform numbers to smaller values, but anoverome some problems of MTF. In a nutshell, MLN usesa table that stores for eah value (within some limited range[0 : : : Q�1℄) whih values are most likely to follow. Thus, forQ = 16, MLN would rely on a 16�16 array, preomputed foreah list, that lists in position (i; j) the (j + 1)th most likelyvalue to follow a value of i. Conversely, when applying MLN,we replae eah value with its rank in the array indexed bythe value of its predeessor. (For values � Q, no tranforma-tion is applied.) Thus, MLN needs to store an array for eahlist. However, in our experiments, MLN outperformed thebest version of MTF in terms of both size and deompres-sion speed. Both MTF and MLN result in signi�ant runsof 1 values in the transformed set of frequenies, sine manyfrequeny values under the ordered list are followed by moreourrenes of the same value.
5.3 Experimental ResultsWe start by omparing the performane of our PForDeltavariants, PFD, NewPFD, and OptPFD, on frequeny val-ues under sorted doument ordering. The results are shownin Figure 5, where we see that again OptPFD signi�antlyoutperforms the other two versions in terms of the trade-o�between deoding speed and size.
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OptPFDFigure 5: Compressed size in MB/query versus deom-pression speed in million integers per seond for frequen-ies, using PFD, NewPFD and OptPFD, under sortedordering.In Table 2, we ompare the average ompressed sizes of thefrequeny data per query on the TRECGOV2 data set, underthe original, sorted, and random orderings. We use three dif-ferent versions eah for list-oriented and blok-oriented IPC:The best version from before, a version that uses MTF, andone that uses MLN. list bloksorted orig rand sorted orig randIPC 1.26 1.65 1.71 1.21 1.59 1.65IPC-MTF 0.93 1.65 1.75 0.89 1.59 1.69IPC-MLN 0.92 1.58 1.65 0.89 1.52 1.59Table 2: Compressed size in MB/query for frequenies,under the original, sorted, and random orderings, usingIPC, IPC with MTF, and IPC with MLN, for list- andblok-oriented methods.From Table 2 we make the following observations: First,as with doIDs, IPC performs muh better under sorted or-dering than under the original and random orderings, andthe blok-wise versions always perform better than their list-wise ounterparts; seond, for frequenies under the sortedordering, the versions with MTF and MLN are muh betterthan the one without them; third, IPC with MLN slightlyoutperforms IPC with MTF.



basi MTF MLNblok IPC 1.21 0.89 0.89s9 1.65 1.53 1.52s16 1.57 1.44 1.43s16-128 1.50 1.38 1.37NewPFD 1.88 1.73 1.72OptPFD 1.63 1.43 1.31entropy 1.45 1.13 1.14var-byte 4.63 4.63 4.63rie 1.88 1.70 1.69gammaDi� 2.16 1.80 1.79rieVT 1.72 1.44 1.43gamma 1.64 1.52 1.28Table 3: Compressed size in MB/query for frequeniesunder sorted doument ordering.Both MTF and MLN an also be applied to the other al-gorithms to get better ompression ratios. From Table 3, weobserve the following: First, the entropy is greatly reduedby either MTF or MLN; seond, all methods exept var-byteimprove over their basi versions, no matter whether theyuse MTF or MLN; third, MLN is usually better and nevermuh worse than MTF. We also tried MTF and MLN trans-formations of d-gaps for doIDs, but there was no bene�t.
6. QUERY PROCESSING PERFORMANCEIn previous setions, we studied the ompression ratios ofvarious tehniques on random queries, but did not onsiderdeompression speed, total index size, and query proessingperformane. In this setion, we study these issues in detail.We start out with deompression speed. In the experi-ments, we used the optimized deompression methods from[28℄ for var-byte, Rie oding, S9, and S16, and S16-128, New-PFD with �xed threshold 10% for exeptions, OptPFD withminimum ompressed size, and the best blok-wise version ofIPC. (We did not try to implement optimized deompressorsfor gammaDi�, rieVT, gamma, and delta oding, as thesemethods are known to be relatively slow.) In Table 4 wegive for eah method the deoding speed in millions of inte-gers deoded per seond for three ases: Deompression ofdoIDs, and deompression of frequenies with and withoutMLN transformation. doID freq freq-MLNvar-byte 637 729 273s9 748 846 269s16 691 898 267s16-128 498 550 245NewPFD 1055 1120 298OptPFD 1102 1034 212rie 489 404 199IPC 55 51 52Table 4: Deoding speeds in millions of integers deodedper seond, for doIDs, frequenies, and frequenies withMLN transformation.The results in Table 4 are overall not surprising. NewPFDand OptPFD are the fastest tehniques, though S9, S16, S16-128, and var-byte are also quite eÆient. In ontrast, IPC ismuh slower. Adding MLN slows down the faster methodssigni�antly, but does not impat slow methods suh as IPCmuh. We note that additional inreases in speed an beobtained for OptPFD by trading o� size versus speed.Next, we look at total index size. For this, we built blok-wise ompressed indexes for three methods that we believeprovide the most interesting trade-o�s between deompres-sion speed and ompressed size: IPC, NewPFD, and OptPFD.We ompare ordered and unordered indexes, and for orderedindexes we provide numbers both with and without MLN.The results are shown in Table 5. We see very signi�antimprovements in index size through doument reordering.The best ompression is obtained with IPC, using MLN

for frequenies, whih results in a total index size of around3:45 GB. This ompares to an index size of about 3:88 GB forthe smallest size under OptPFD, using sorted doID orderingand MLN for frequenies. In fat, even without MLN (whihas shown earlier slows down OPTPFD signi�antly) we anobtain an index size only slightly larger than 4 GB. In on-trast, NewPFD results in muh larger index sizes, of 5.5 GBand more, showing the bene�t of OptPFD over NewPFD.We note that many other sizes between 4 GB and 5.5 GBan be obtained by trading o� size versus speed in OptPFD(though even the smallest size results in fairly fast deoding).However, note that even NewPFD is muh better than thebest unordered results, and that all the ordered indexes anbe ompletely held in main memory given realisti memorysizes of 4 to 6 GB. sorted originalIPC New Opt IPC New OptdoID 2617 3746 2853 5365 6122 5903freq 1142 2027 1255 1363 2307 1653total 3759 5773 4108 6728 8429 7556f+MLN 834 1844 1023 { { {total 3451 5590 3876 { { {Table 5: Compressed index size in MB for the en-tire TREC GOV2 data set, for IPC, NewPFD with 10%threshold on exeptions, and OptPFD optimized for min-imal index size. For the sorted ase, we provide numbersfor frequenies and total index sizes with and withoutMLN.Another interesting observation is that the ratio of fre-queny data to doID data is muh smaller than in our pre-vious experiments. The reason is that when looking at totalindex size, we inlude a large amount of data in shorter (butnot very short) lists, while our query-based measurementsare skewed towards longer lists. In shorter lists, d-gaps arelarger while frequeny values tend to be smaller, ompared tolonger lists. The bene�ts of OptPFD over NewPFD for om-pressed size also tend to be larger on these lists, partiularlyfor frequenies.Next, we look at query proessing speed for intersetion-based queries using BM25 ranking. Table 6 shows queryperformane for an index ompressed with OptPFD (but noMLN for frequenies) using ordered and unordered doIDassignments, under the assumption that all index data is inmain memory. Somewhat surprisingly, the ordered index isabout twie as fast as the unordered one! Note that this isnot due to savings in disk aesses, as all the data is in mainmemory, and also not due to hanges in deompression speed,as the ordering has only a moderate impat on the speed ofOptPFD. Instead, as shown in Table 6, this is mainly due tothe ordered index deoding muh fewer bloks of data thanthe unordered one. sorted originalrunning time (ms/query) 6.15 12.08num of doIDs deoded (million/query) 0.71 1.53num of freqs deoded (million/query) 0.53 1.04Table 6: Running time and number of deoded doIDsand frequenies for OptPFD on the GOV2 data set.In fat, this inrease in speed an be explained in a sim-ple and intuitive way. Consider the shortest list in a query.Under DAAT query proessing, almost all of the shortest listwill be deompressed, and most doIDs in this list will gen-erate a lookup into the next longer list. If the doIDs in theshortest list are lustered, then more of these lookups willhit the same blok of the next longer list, while other bloksdo not get hit at all and do not have to be deompressed.(Informally, if we throw enough balls uniformly at random



into n bins we will hit almost all bins, but if our throws arelustered in ertain areas, then many more balls are neededto hit most bins.) A formal analysis of this phenomenon isompliated dependenies between terms and queries withmore than two terms, and we leave this for future work.Finally, we also give query proessing speeds for other om-pression methods, in partiular IPC and NewPFD, with andwithout doID reordering. Note that the number of deom-pressed bloks per query does not hange, as all methods usethe same bloks of 128 postings. As we see in Table 7, wealso get signi�ant improvements in query proessing speedfor the other methods by using ordered indexes. However,the method ahieving the best ompression, IPC, is muhslower than the faster methods. NewPFD is even faster thanOptPFD, but as shown in Table 5, the index size is muhlarger. Moreover, the same speed at lower index size ouldbe obtained by trading size for speed within OptPFD (notshown here). sorted originalIPC 29.44 59.18NewPFD 4.98 9.74OptPFD 6.15 12.08Table 7: Running times in ms per query for IPC (withMLN), NewPFD, and OptPFD.
7. MIXED-COMPRESSION INDEXESIn previous setions, we have seen that using reordered in-dex strutures results in signi�ant improvements in indexsize and query proessing speed. However, the best methodin terms of size, IPC, whih outperforms all other methodsby a signi�ant margin, is fairly slow and an deompressonly about 50 million integers per seond. The fastest meth-ods, PForDelta and its variants, i.e., PFD, NewPFD andOptPFD, are around 20 times faster, but produe a largerindex (though the index size for PForDelta under reordereddoIDs is still better than for the best method without re-ordering). Thus, there is a trade-o� between size and speedamong the di�erent methods.This motivates the question of whether we an get a bettertrade-o� by ombining di�erent ompression methods in thesame index. Our index setup an easily aomodate di�erentompressors within the same index (or even the same list), asall ompression is performed in a blok-wise fashion. More-over, from studies on inverted index ahing, we know thatdi�erent parts of the index have very di�erent aess frequen-ies; e.g., in [28℄ more than 90% of all index aesses an beserved from a ahe of 30% of the index size. Thus, we ouldexploit this highly skewed aess pattern, by ompressing fre-quently aessed inverted lists using a very fast method, andother lists using a slower method that gives better ompres-sion. Our goal is for the resulting index to have both sizeand speed lose to the best ahieved by any method.More formally, we are interested in the following problems:Problem 1: Given a limit t on the average time for pro-essing a query, and a set of available ompression methods,selet for eah inverted list a ompression method suh thatthe overall index size is minimized, while satisfying the timelimit t.Problem 1': Given a limit t on the average time for pro-essing a query, a limit b on the amount of I/O bandwidth (inMB/s) that is available, a ahing poliy P that uses somemain memory to ahe index data, and a set of available om-pression methods, selet for eah inverted list a ompressionmethod suh that the total amount of main memory that hasto be available for ahing is minimized, while satisfying thelimits on t and b.

In the �rst problem, we are looking at a main-memory res-ident index, and our goal is to minimize the amount of mem-ory we need to provide, given a (feasible) time onstraint.Our hope is that by relaxing the time onstraint very slightlyversus the minimum, we an very substantially derease thememory requirement. The seond problem looks at an indexthat is partially ahed in memory (a very ommon setup inpratie), and the goal is to minimize the amount of memorythat needs to be provided for ahing to assure that the avail-able I/O-bandwidth does not beome the main bottlenek ofthe system. Note that the �rst problem is the speial ase ofthe seond where b = 0, i.e., no disk aess is allowed. Also,there are obviously many other ways to set up these opti-mization problems, inluding duals of the above, or setupsthat model the searh arhiteture in more detail.Due to spae onstraints, we fous on Problem 1. Theproblem is obviously NP-Complete due to its relationship toBin Paking, but we would expet a very good approximationvia simple greedy approahes in this ase. In partiular, wetake the following approah:(a) Selet a suÆiently large query trae. For eah avail-able ompression method, build an index and issue thequeries against this index.(b) For eah inverted list Iw for a term w, and eah om-pression method , measure the following: (i) s(w),the ompressed size of list Iw under method , and (ii)t(w), the total amount of time spent deompressingthe list using method  over the given query log.() Initially, assign to eah inverted list the ompressionmethod that gives the smallest size.(d) Now repeatedly greedily selet a list Iw and hange itsompression method to a faster but less spae-eÆientmethod, until the time onstraint is satis�ed. In par-tiular, in eah step, hoose the list Iw that minimizes(s0(w)� s (w))=(t(w)� t0) over all w and all meth-ods 0 6=  where  is the ompression method urrentlyused for Iw. In other words, hoose the list and om-pression method that gives you the smallest inrease inindex size per time saved.1We note that query proessing time in our setup onsists ofthe time for deompression and the times for other tasks suhas intersetion and sore omputation, and that the latterare independent of the ompression methods used (sine allmethods use the same blok size for deompression). Thus,we an easily hek if the time onstraint is satis�ed in (d)without reexeuting the query trae. Also, for best results itis useful to treat the frequenies and doIDs of a list sepa-rately, as most queries deompress fewer frequeny data thandoID data.We implemented the above method, and ran it on 99000of the 100000 queries on the TREC GOV2 data set, leavingthe other 1000 for testing the performane of the resultingon�guration. In Figure 6, we show results for a hybrid in-dex ombining IPC and OptPFD. As shown, while IPC re-quires about 29 ms per query, we an get less than 12 mswith almost the same size by using a hybrid index. We alsonote the version of OptPFD that we used only minimizesompressed size, and that a better overall tradeo� than theone in the �gure ould be ahieved by seleting di�erent set-tings for OptPFD. (In fat, this hybrid index optimization1We assume here that both enumerator and denominator arestritly positive.



problem motivated the optimization problem underlying thesize/speed tradeo� for OptPFD in Figure 2.)
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Figure 6: Total index size in MB versus proessing speedper query in milliseonds, for a hybrid index involvingOptPFD and IPC. The leftmost point is for pure IPCand the rightmost for pure OptPFD.
8. CONCLUSIONSIn this paper, we have studied ompression and query pro-essing in inverted indexes with optimized doument order-ing. Previous work has foused on �nding doument order-ings that minimize index size under standard ompressionshemes. In ontrast, we fous on how to tune ompressionshemes and maximize query througput given a good order-ing. Our experimental results show signi�ant bene�ts inompressed index size and query throughput.Our work motivates several interested open questions. First,we showed that query proessing bene�ts from more eÆientskipping in reordered indexes. This was a natural side prod-ut of reordering, but additional improvements might be pos-sible by ombining reordering with the ideas in [8, 12℄ forseleting blok boundaries in ompressed indexes.Seond, as mentioned in Subsetion 2.2, there is an inter-esting relationship between ompression of reordered indexesand eÆient indexing of arhival olletions. We are ur-rently investigating how to apply the ideas in this paper toarhival olletions. We are also looking at performane op-timizations that allow faster deompression of interpolatedodes, and at how to �nd doument orderings that are bet-ter than the alphabetial ordering studied in [24℄ and usedby us in this paper.Aknowledgements: This researh was partially sup-ported by NSF Grant IIS-0803605, and by a grant fromGoogle.
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