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Abstract. Let P and Q be two idempotents on a Hilbert space. In this
note, we prove that the invertibility of the linear combination λ1P + λ2Q is
independent of the choice of λi, i = 1, 2, if λ1λ2 �= 0 and λ1 + λ2 �= 0.

Let H be a Hilbert space, and let all bounded linear operators on H be denoted
by B(H). An operator P ∈ B(H) is said to be idempotent if P 2 = P . The
set P of all idempotents in B(H) is invariant under similarity; that is, if P ∈ P
and S ∈ B(H) is an invertible operator, then S−1PS is still an idempotent since
(S−1PS)2 = S−1PSS−1PS = S−1P 2S = S−1PS. An idempotent P is called an
orthogonal projection if P 2 = P = P ∗, where P ∗ is the adjoint of P . Moreover,
for an idempotent P ∈ P, there exists an invertible operator U ∈ B(H) such that
U−1PU is an orthogonal projection. In fact, if P ∈ P, then P can be written in
the form of

P =
(

I P1

0 0

)
with respect to the space decomposition H = R(P )⊕R(P )⊥, where R(M) denotes
the range of the operator M . In this case, we have(

I P1

0 I

) (
I P1

0 0

) (
I −P1

0 I

)
=

(
I 0
0 0

)
,

where P̃ =
(

I −P1

0 I

)
is invertible and P̃−1 =

(
I P1

0 I

)
. An operator A ∈

B(H) is said to be positive if (Ax, x) ≥ 0 for all x ∈ H. If A is positive, then A
1
2

denotes the positive square root of A.
In recent years, a number of researchers have considered questions concerning

the idempotents and linear combinations of idempotents (see [1]-[8]). Particularly,
some researchers pay much attention to the study of linear combinations of two
idempotents ([1], [5]). For example, if Pi, i = 1, 2, are idempotents in the finite-
dimensional space Cn, J. K. Baksalary and O. M. Baksalary ([1]) have proved
that the nonsingularity of P1 + P2 is equivalent to the nonsingularity of any linear
combination c1P1 + c2P2, where c1 + c2 �= 0. In the present note, we will study the
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invertibility of linear combinations of two idempotents on an infinite-dimensional
Hilbert space. We obtain the main result, which is similar to [1], but the idea of
the proof is different from [1].

Theorem 1. Let P and Q in B(H) be two idempotents. If λ1 and λ2 are nonzero
complex numbers and λ1+λ2 �= 0, then the invertibility of λ1P +λ2Q is independent
of the choice of λi, i = 1, 2.

To prove Theorem 1, we need some lemmas which are well known, so the proofs
are omitted.

Lemma 2. Let A =
(

A11 A12
A21 A22

)
be a bounded linear operator on H⊕K. Then

A is a positive operator if and only if A11 ≥ 0, A22 ≥ 0, A12 = A∗
21 and there exists

a contraction D from K into H such that

A =

(
A11 A

1
2
11DA

1
2
22

A
1
2
22D

∗A
1
2
11 A22

)
.

Lemma 3. Let A ∈ B(H) be invertible and Ã =
(

A B
C D

)
∈ B(H⊕K). Then Ã

is invertible if and only if D − CA−1B is invertible.

Lemma 4. Let A ∈ B(H) be a positive operator. Then the following statements
hold:

(1) R(A) ⊆ R(A
1
2 ) and R(A) = R(A

1
2 ), where K denotes the closure of K;

(2) R(A) is closed if and only if R(A) = R(A
1
2 );

(3) R(A) = H if and only if A is invertible.

Proof. Let P and Q be two idempotents. By the discussion above, since λ1P +
λ2Q is invertible if and only if λ1S

−1PS + λ2S
−1QS is invertible, to consider the

invertibility of λ1P + λ2Q, without loss of generality, we can assume that one of P
and Q is an orthogonal projection. For example, assume that Q is an orthogonal
projection. Of course, Q is a positive operator. In this case, by Lemma 2, P and
Q have the following operator matrix forms:

P =
(

I P1

0 0

)
and Q =

(
Q1 Q

1
2
1 DQ

1
2
2

Q
1
2
2 D∗Q

1
2
1 Q2

)
with respect to the space decomposition H = R(P ) ⊕ R(P )⊥, where Q1 and Q2

are positive operators on R(P ) and R(P )⊥, respectively, and D is a contraction
operator from R(P )⊥ into R(P ).

Suppose λ1 �= 0 and λ2 �= 0. If λ1P + λ2Q is invertible, that is, the operator
matrix

λ1P + λ2Q =

(
λ1I + λ2Q1 λ1P1 + λ2Q

1
2
1 DQ

1
2
2

λ2Q
1
2
2 D∗Q

1
2
1 λ2Q2

)
is invertible, then R((λ2Q

1
2
2 D∗Q

1
2
1 , λ2Q2)) = R(P )⊥. By Lemma 4, R(Q2) ⊆

R(Q
1
2
2 ) and observing that R((λ2Q

1
2
2 D∗Q

1
2
1 , λ2Q2)) ⊆ R(Q2)

1
2 ⊆ R(P )⊥, then

R(Q
1
2
2 ) = R(P )⊥.

By Lemma 4 again we have
R(Q2) = R(P )⊥.
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This shows that Q2 is invertible. In this case, by Lemma 3, λ1P +λ2Q is invertible
if and only if

λ1I + λ2Q1 − (λ1P1Q
− 1

2
2 + λ2Q

1
2
1 D)D∗Q

1
2
1

is invertible.
Since Q1 is a positive contraction on R(P ) and Q2 is an invertible positive

contraction on R(P )⊥, then Q1 as an operator on R(P ) and Q2 as an operator on
R(P )⊥ have the following operator matrix forms:

Q1 =

⎛⎝ 0 0 0
0 I 0
0 0 Q11

⎞⎠ , Q2 =
(

Q22 0
0 I

)
with respect to the space decomposition

R(P ) = N (Q1) ⊕N (I − Q1) ⊕ (R(P ) � (N (Q1) ⊕N (I − Q1)))

and the space decomposition

R(P )⊥ = (R(P )⊥ �N (I − Q2)) ⊕N (I − Q2),

respectively.
Then denote H0 = N (Q1), H1 = N (I−Q1), H2 = R(P )�(N (Q1)⊕N (I−Q1)),

H3 = R(P )⊥ � N (I − Q2) and H4 = N (I − Q2), Q11 and I − Q11 are injective
positive contractions on H2 and Q22 is an invertible positive contraction on H3

with 1 /∈ σp(Q22), where σp(M) denotes the point spectrum of the operator M . In
this case, P and Q have the following matrix representations:

(1) Q =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0
0 I 0 0 0

0 0 Q11 Q
1
2
11D1Q

1
2
22 0

0 0 Q
1
2
22D

∗
1Q

1
2
11 Q22 0

0 0 0 0 I

⎞⎟⎟⎟⎟⎟⎠
and

(2) P =

⎛⎜⎜⎜⎜⎝
I 0 0 P11 P12

0 I 0 P21 P22

0 0 I P31 P32

0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠
with respect to the space decomposition H =

⊕4
i=0 Hi. If we let

Q0 =

(
Q11 Q

1
2
11D1Q

1
2
22

Q
1
2
22D

∗
1Q

1
2
11 Q22

)
,

then Q being an orthogonal projection implies that Q0 is also an orthogonal pro-
jection on H2 ⊕H3. That is, Q0 = Q2

0. Hence we have

Q2
0 =

⎛⎝ Q11 Q
1
2
11D1Q

1
2
22

Q
1
2
22D

∗
1Q

1
2
11 Q22

⎞⎠ ⎛⎝ Q11 Q
1
2
11D1Q

1
2
22

Q
1
2
22D

∗
1Q

1
2
11 Q22

⎞⎠
=

⎛⎝ Q2
11 + Q

1
2
11D1Q22D

∗
1Q

1
2
11 Q

3
2
11D1Q

1
2
22 + Q

1
2
11D1Q

3
2
22

Q
3
2
22D

∗
1Q

1
2
11 + Q

1
2
22D

∗
1Q

3
2
11 Q2

22 + Q
1
2
22D

∗
1Q11D1Q

1
2
22

⎞⎠
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and ⎛⎝ Q11 Q
1
2
11D1Q

1
2
22

Q
1
2
22D

∗
1Q

1
2
11 Q22

⎞⎠
=

⎛⎝ Q2
11 + Q

1
2
11D1Q22D

∗
1Q

1
2
11 Q

3
2
11D1Q

1
2
22 + Q

1
2
11D1Q

3
2
22

Q
3
2
22D

∗
1Q

1
2
11 + Q

1
2
22D

∗
1Q

3
2
11 Q2

22 + Q
1
2
22D

∗
1Q11D1Q

1
2
22

⎞⎠ .

Comparing the two sides of the above equation, we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Q11 = Q2
11 + Q

1
2
11D1Q22D

∗
1Q

1
2
11,

Q
1
2
11D1Q

1
2
22 = Q

3
2
11D1Q

1
2
22 + Q

1
2
11D1Q

3
2
22,

Q
1
2
22D

∗
1Q

1
2
11 = Q

3
2
22D

∗
1Q

1
2
11 + Q

1
2
22D

∗
1Q

3
2
11,

Q22 = Q2
22 + Q

1
2
22D

∗
1Q11D1Q

1
2
22.

Observing that Q11, IH2 − Q11, Q22 and IH3 − Q22 are injective, we get

(3)

⎧⎪⎪⎨⎪⎪⎩
IH2 = Q11 + D1Q22D

∗
1 ,

D1 = Q11D1 + D1Q22,
D∗

1 = Q22D
∗
1 + D∗

1Q11,
IH3 = Q22 + D∗

1Q11D1,

where IHi
denotes the identity on Hi, i = 2, 3. From the last of equations (3), we

see that IH3 − Q22 = D∗
1Q11D1, and hence Q11D1 is injective. From the second of

equations (3) we see that

(IH2 − Q11)D1 = D1Q22.

On the other hand, from the first of equations (3) we get

(IH2 − Q11)D1 = D1Q22D
∗
1D1.

Equating these two expressions for (IH2−Q11)D1 and using the injectivity of D1Q22

then leaves us with
IH3 = D∗

1D1.

In a similar vein, from the second of equations (3) we have D1(IH3−Q22) = Q11D1,
while from the last of equations (3) we have D1(IH3−Q22) = D1D

∗
1Q11D1. Equating

these two expressions for D1(IH3 − Q22) and using the injectivity of Q11D1 then
gives

IH2 = D1D
∗
1 .

With this identity, the first of equations (3) can then be rewritten as

Q11 = D1(IH3 − Q22)D∗
1 .

We have thus arrived at the system of equations⎧⎨⎩
D1D

∗
1 = IH2 ,

D∗
1D1 = IH3 ,

Q11 = D1(IH3 − Q22)D∗
1 .

Denote Q̂ = Q11. Then

Q0 =
(

Q̂ Q̂
1
2 (I − Q̂)

1
2 D1

D∗
1Q̂

1
2 (I − Q̂)

1
2 D∗

1(I − Q̂)D1

)
.
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Now λ1P + λ2Q has the following operator matrix form:

λ1P + λ2Q = λ1

⎛⎜⎜⎜⎜⎝
I 0 0 P11 P12

0 I 0 P21 P22

0 0 I P31 P32

0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠

+ λ2

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0
0 I 0 0 0

0 0 Q11 Q
1
2
11D1Q

1
2
22 0

0 0 Q
1
2
22D

∗
1Q

1
2
11 Q22 0

0 0 0 0 I

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
λ1I 0 0 λ1P11 λ1P12

0 (λ1 + λ2)I 0 λ1P21 λ1P22

0 0 λ1I + λ2Q̂ λ1P31 + λ2Q̂
1
2 (I − Q̂)

1
2 D1 λ1P32

0 0 λ2D
∗
1Q̂

1
2 (I − Q̂)

1
2 λ2D

∗
1(I − Q̂)

1
2 D1 0

0 0 0 0 I

⎞⎟⎟⎟⎟⎠
with respect to the space decomposition H =

⊕4
i=0 Hi.

Denote

Q̄0 =
(

λ1I + λ2Q̂ λ1P31 + λ2Q̂
1
2 (I − Q̂)

1
2 D1

λ2D
∗
1Q̂

1
2 (I − Q̂)

1
2 λ2D

∗
1(I − Q̂)D1

)
.

Obviously, if λ1 + λ2 �= 0, the invertibility of the operator λ1P + λ2Q on H is
equivalent to the invertibility of Q̄0 on H2 ⊕H3. Moreover, by Lemma 3, that Q̄0

is invertible if and only if I − Q̂ and

λ1I + λ2Q̂ − (λ1P31 + λ2Q̂
1
2 (I − Q̂)

1
2 D1)λ−1

2 D∗
1(I − Q̂)−1D1λ2D

∗
1Q̂

1
2 (I − Q̂)

1
2

are invertible. Noting that D1D
∗
1 = IH2 and λ1λ2 �= 0, we have

λ1I + λ2Q̂ − (λ1P31 + λ2Q̂
1
2 (I − Q̂)

1
2 D1)λ−1

2 D∗
1(I − Q̂)−1D1λ2D

∗
1Q̂

1
2 (I − Q̂)

1
2

= λ1(I − P31D
∗
1Q̂

1
2 (I − Q̂)−

1
2 ).

This shows that the invertibility of Q̄0 is only dependent on the invertibility of
the operator I − P31D

∗
1Q̂

1
2 (I − Q̂)−

1
2 if both λ1 and λ2 are not zero; that is, the

invertibility of Q̄0 is independent of the choice of λ1 and λ2 if both λ1 and λ2 are
not zero.

In other words, the invertibility of λ1P + λ2Q is independent of the choice of λ1

and λ2 if both λ1 and λ2 are not zero and λ1 + λ2 �= 0. �

Remark. By the proof of Theorem 1, if R(P ) ∩ R(Q) = {0}, the invertibility of
λ1P +λ2Q is independent of the choice of λ1 and λ2 if both λ1 and λ2 are not zero.

The following consequence is immediate.

Corollary 5. Let P and Q be two idempotents and R(P )∩R(Q) = {0}. Then the
following statements hold:

(1) P + Q is invertible if and only if P − Q is invertible;
(2) In addition, R(P̃ )∩R(Q̃) = {0}, and P +Q is invertible if and only if P̃ +Q̃

is invertible, where K̃ = I − K.
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Proof. (1) It is clear from the Remark above.
(2) Obviously, P̃ and Q̃ are idempotents. Since R(P̃ ) ∩ R(Q̃) = {0}, P̃ + Q̃ is

invertible if and only if P̃ − Q̃ is invertible by (1). But

P̃ − Q̃ = I − P − (I − Q) = −(P − Q),

so P̃ − Q̃ is invertible if and only if P −Q is invertible. By (1), P −Q is invertible
if and only if P + Q is invertible. �

Corollary 6. Let P and Q be two orthogonal projections such that P +Q is invert-
ible and R(P )∩R(Q) = {0}. Then P −Q, 1− PQ, P + Q− PQ are all invertible.

Proof. If R(P )∩R(Q) = {0}, then H1 = {0}. Observe that in the proof of Theorem
1, P + Q has the following operator matrix:

P + Q =

⎛⎜⎜⎝
I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ +

⎛⎜⎜⎜⎝
0 0 0 0

0 Q11 Q
1
2
11D1Q

1
2
22 0

0 Q
1
2
22D

∗
1Q

1
2
11 Q22 0

0 0 0 I

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
I 0 0 0

0 I + Q11 Q
1
2
11(I − Q11)

1
2 D1 0

0 D∗
1Q

1
2
11(I − Q11)

1
2 D∗

1(I − Q11)
1
2 D1 0

0 0 0 I

⎞⎟⎟⎟⎠
with respect to the space decomposition H = H0⊕(

⊕4
i=2 Hi). Then the invertibility

of P +Q implies that I−Q11 is invertible. A direct calculation can show that 1−PQ
and P + Q − PQ are all invertible. �
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