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INVERTIBILITY PRESERVING LINEAR MAPS ON L(X)

A. R. SOUROUR

Abstract. For Banach spaces X and Y , we show that every unital bijec-
tive invertibility preserving linear map between L(X) and L(Y ) is a Jordan
isomorphism. The same conclusion holds for maps between CI + K(X) and
CI +K(Y ).

1. Introduction and statement of main results

In this article, all vector spaces are over the complex field and all algebras are
assumed to have an identity 1. The spectrum of an element a is denoted by σ(a).
A linear map φ from an algebra A to an algebra B is called unital if φ(1) = 1
and is called invertibility preserving if φ(a) is invertible in B for every invertible
element a ∈ A. It is called an anti-homomorphism if φ(ab) = φ(b)φ(a) for every
a and b ∈ A, and a Jordan homomorphism if φ(ab + ba) = φ(a)φ(b) + φ(b)φ(a)
for all a and b ∈ A, or equivalently φ(a2) = (φ(a))2 for every a ∈ A. As usual,
a bijective antihomomorphism (respectively Jordan homomorphism) is called an
anti-isomorphism (respectively a Jordan isomorphism).

The algebra of all continuous linear operators on a Banach space or, more gen-
erally, a locally convex space X is denoted by L(X), and the (nonunital) algebra of
compact operators is denoted by K(X). The dual space of X is denoted by X ′ and
the adjoint of an operator T is denoted by T ∗. For x ∈ X and f ∈ E′, we denote
by x⊗ f the rank one operator on X given by u→ f(u)x.

We now state our main result, characterizing bijective invertibility preserving
linear maps between the algebras L(X) and L(Y ) or the algebras CI + K(X) and
CI +K(Y ).

Theorem 1.1 (Main theorem). Let X and Y be Banach spaces over the complex
field and let φ be a unital bijective linear map from L(X) onto L(Y ) or from CI +
K(X) onto CI +K(Y ). The following conditions are equivalent.

(a) φ preserves invertibility.
(b) φ is a Jordan isomorphism.
(c) φ is either an isomorphism or an anti-isomorphism.
(d) Either

(i) Y is isomorphic to X and φ(T ) = A−1TA for every T ∈ L(X), where A
is an isomorphism from Y to X ; or
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14 A. R. SOUROUR

(ii) Y is isomorphic to X ′ and φ(T ) = B−1T ∗B for every T ∈ L(X), where
B is an isomorphism from Y to X ′.

Remarks. 1. The map φ is not assumed to be continuous in any topology. The
conclusion implies that if it preserves invertibility, then it must be continuous when
L(X) and L(Y ) are equipped with any of the standard operator topologies.

2. The equivalence of (b) and (c) is true for any additive map from a ring onto
a prime ring [9, pp. 47–51]. We do not use this result here.

3. The equivalence of (c) and (d) includes the well-known result of Eidelheit
[7] characterizing isomorphisms between L(X) and L(Y ), and it also includes a
characterization of anti-isomorphisms.

4. If L(X) is anti-isomorphic to L(Y ), then both X and Y must be reflexive.
Indeed, the form in (d)(ii) implies that every bounded operator on X ′ is the adjoint
of an operator on X . Considering rank one operators f ⊗ G with f ∈ X ′ and
G ∈ X ′′, we conclude that X must be reflexive. Thus X ′, and hence also Y , are
reflexive.

5. The case of a nonunital map φ can be reduced to the unital case by considering
the map ψ defined by ψ(x) = φ(1)−1φ(x). We state the conclusion formally.

Corollary 1.2. A bijective linear map φ : L(X)→ L(Y ) preserves invertibility if
and only if either φ(T ) = ATB for every T ∈ L(X) or φ(T ) = CT ∗D for every
T ∈ L(X), where A : X → Y, B : Y → X, C : X ′ → Y and D : Y → X ′ are
bounded invertible operators.

The same conclusion holds for maps φ : CI +K(X)→ CI +K(Y ).

We now indicate the place these results occupy among kindred results in the
literature. The earliest result along these lines is that of Dieudonné [5] in which the
finite dimensional case of the preceding corollary is obtained implicitly. (The article
[5] deals with bijective “semilinear” maps on the algebra of square matrices over an
arbitrary field that preserve noninvertibility.) A related result is obtained by Marcus
and Purves [15] who again obtained the finite dimensional case of Corollary 1.2 for
not necessarily bijective maps.

In the presence of commutativity, results of Gleason [8] and Kahane-Zelazko
[11], refined by Zelazko [23], show that every unital invertibility preserving linear
map from a Banach algebra A to a semisimple commutative Banach algebra B is
multiplicative. (See also [16].)

Motivated by the results above, Kaplansky [12] asked when must additive invert-
ibility preserving maps on rings be Jordan homomorphisms. Of course this is not
always the case for arbitrary rings (see [12]). It is easy to construct a counterex-
ample for linear unital maps on Banach algebras. Indeed if A is obtained from a
radical algebra by adjoining an identity, then any unital linear map on A preserves
invertibility, but is rarely multiplicative. We give a concrete example illustrating
this phenomenon. Another example is given by Aupetit [1, p. 28]. More examples
are given in §3 below.

Example 1. Let A be the algebra of upper triangular n× n matrices with n ≥ 3,
and let φ(aij) = (bij) where b12 = a13, b13 = a12, and bij = aij otherwise. It is
immediate that φ is unital and preserves invertibility. However, if c is the matrix
given by c13 = c23 = 1, and cij = 0 otherwise, then φ(c2) = 0 but (φ(c))2 6= 0, and
so φ is not a Jordan homomorphism.
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INVERTIBILITY PRESERVING LINEAR MAPS ON L(X) 15

Additional related results are in [1], [4], [10] and [18]. In [1, p. 30], Aupetit
obtained a result which contains the Dieudonné-Marcus-Purves result and the
Gleason-Kahane-Zelazko result. Articles [4] and [18] contain results on invertibility
preserving positive linear maps on C∗-algebras and von Neumann algebras respec-
tively. In [10], Jafarian and the author characterized spectrum preserving linear
maps between L(X) and L(Y ).

The foregoing results suggest the following question. It is tempting to conjecture
a positive answer.

Question. Let A and B be semisimple Banach algebras and let φ be a unital
bijective linear map from A to B. If φ preserves invertibility, must it be a Jordan
isomorphism?

The converse, however, is true under very general conditions as shown in the
following proposition. As usual by a Jordan homomorphism between rings we
mean an additive map φ satisfying φ(x ◦ y) = φ(x) ◦ φ(y), where x ◦ y = xy + yx.

Proposition 1.3. Let R and R′ be two rings with identities 1 and 1′ respectively
such that in R′ the equation 2x = 0 implies that x = 0. If φ : R→ R′ is a Jordan
homomorphism whose range contains 1′, then φ preserves invertibility.

Proof. First, we show that φ(1) = 1′. By assumption, 1′ = φ(u) for some u ∈ R,
and so

2 · 1′ = φ(u+ u) = φ(1 ◦ u) = φ(1) ◦ φ(u) = φ(1) ◦ 1′ = 2φ(1).

Thus φ(1) = 1′. Next, we note that

4xyx = 2(y ◦ x) ◦ x− y ◦ (x ◦ x),

and so

φ(xyx) = φ(x)φ(y)φ(x),

for all x, y ∈ R. In particular, if a is an invertible element in R, then

φ(a) = φ(aa−1a) = φ(a)φ(a−1)φ(a).(1)

Let p1 = φ(a)φ(a−1) and p2 = φ(a−1)φ(a). From equation (1), we have p2
1 = p1

and p2
2 = p2. On the other hand

p1 + p2 = φ(a) ◦ φ(a−1) = φ(a ◦ a−1) = 2 · φ(1) = 2 · 1′.
Therefore (2 ·1′−p1)2 = 2 ·1′−p1, which leads to 2(p1−1′) = 0 and so p1 = p2 = 1′.
Thus φ(a) is invertible and φ(a−1) = φ(a)−1.

2. Spectral characterization of rank one operators

In this section, we prove a characterization of rank one operators in terms of
the spectrum, a result which may be of independent interest. The equivalence of
conditions (i) and (ii) in the following theorem is given in [10] and is used there to
characterize spectrum preserving maps. The stronger equivalence of (i) and (iii) is
what is needed to prove our main results.

Theorem 2.1. For an operator R ∈ L(X), the following conditions are equivalent:

(i) rank R ≤ 1.
(ii) For every T ∈ L(X) and all distinct scalars α and β,

σ(T + αR) ∩ σ(T + βR) ⊆ σ(T ).(∗)
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16 A. R. SOUROUR

(ii)′ Condition (∗) is satisfied for every T of rank at most 2.
(iii) For every T ∈ L(X), there exists a compact subset KT of the complex plane,

such that

σ(T + αR) ∩ σ(T + βR) ⊆ KT ,(∗∗)
for all scalars α 6= β.

(iii)′ Condition (∗∗) is satisfied for every T of rank at most 2.

We shall state and prove the equivalence of (i), (ii)′, and (iii)′ for locally convex
spaces. In particular, the main results hold when X is a dual Banach space in its
weak∗ topology and so L(X) consists of the weak∗-continuous operators. We refer
to [17] for basic results on locally convex spaces. The Hahn-Banach theorem [17,
Theorem 3.6] for locally convex spaces will be implicitly used throughout.

Proposition 2.2. Let E be a locally convex topological vector over the complex
field and let R ∈ L(E). The following conditions are equivalent.

(i) rankR ≤ 1.
(ii)′ σ(T +αR)∩σ(T + βR) ⊆ σ(T ) for every T ∈ L(E) of rank at most 2 and all

scalars α and β with α 6= β.
(iii)′ For every T ∈ L(E) of rank at most 2, there exists a compact subset KT of

the complex plane such that

σ(T + αR) ∩ σ(T + βR) ⊆ KT ,

for all scalars α 6= β.

Proof. We first show that (i) implies that (ii)′ holds for arbitrary T ∈ L(E). Assume
that rankR ≤ 1, that T ∈ L(E) and that α1 and α2 ∈ C with α1 6= α2. Further,
assume to the contrary that λ ∈ σ(T +α1R)∩σ(T +α2R) and λ 6∈ σ(T ). It follows
that α1 6= 0 and α2 6= 0 and that λ−T−αjR is not invertible for j = 1, 2. Therefore
I − αj(λ − T )−1R is not invertible, and so 1

α1
and 1

α2
belong to the spectrum of

the operator (λ− T )−1R which has rank at most 1. This is impossible, and so the
implication (i)⇒ (ii) is established.

The implication (ii)′ ⇒ (iii)′ is obvious since the spectrum of a finite rank oper-
ator is a finite subset of the complex plane.

To prove that (iii)′ ⇒ (i), assume that R satisfies condition (iii)′. First, we take
T = 0, to conclude that σ(R) contains at most one nonzero complex number. In-
deed if σ(R) contains two distinct nonzero complex numbers λ and µ, then every
complex number w belongs to σ(λ−1wR) ∩ σ(µ−1wR), contradicting the assump-
tion. Therefore there is a nonzero complex number c such that σ(T ) ⊆ {0, c}.

Next, we apply condition (iii)′, with rankT = 1. Let x ∈ E and f ∈ E′ be two
nonzero vectors and let G(z) := f((1− zR)−1x), for z ∈ C \{ 1

c}. We aim to apply
condition (iii)′ with T = x ⊗ f to conclude that the equation G(z) = w has at
most one solution for every w with |w| large enough. We start by showing that if
G(z) = w, then w ∈ σ(T + zwR), where T = x ⊗ f . Indeed if u = (1 − zR)−1x,
then u 6= 0, and

(wI − T − zwR)u = w(1− zR)u− Tu = wx− f(u)x = (w −G(z))x = 0,

establishing that w is an eigenvalue of T +zwR. If w 6∈ KT and if G(z1) = G(z2) =
w, then we have

w ∈ σ(T + z1wR) ∩ σ(T + z2wR),
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INVERTIBILITY PRESERVING LINEAR MAPS ON L(X) 17

and so z1 = z2. We have shown that, for w large enough, the equation G(z) = w
has at most one solution.

Picard’s “Big” Theorem [22, p. 283] asserts that, in a neighbourhood of an
essential singularity, an analytic function assumes all values, with at most one
possible exception, infinitely often. Consequently, the function G has poles (or
removable singularities) at each of 1

c and ∞. Thus G must be a rational function.
Indeed G(z) = P (z)/Q(z) where P and Q are polynomials, Q(z) = (cz − 1)n for
some nonnegative integer n and P (1

c ) 6= 0. We will show that degP ≤ 1 and
degQ ≤ 1. For all w large enough, say |w| > r, we know that the equation

P (z)− wQ(z) = 0(1)

has at most one solution. If deg(P −wQ) is larger than 1, then any solution of (1)
must also satisfy the equation

P ′(z)− wQ′(z) = 0.(2)

It follows that, for any such w, the corresponding solution z satisfies the polynomial
equation

Q′(z)P (z)−Q(z)P ′(z) = 0.(3)

If the polynomials Q′P − PQ′ is identically zero, then G is constant and we are
done. If not, then equation (3) has only a finite number of solutions and so the
polynomial P −wQ has degree larger than 1 for only a finite number of values of w
among {w : |w| > r}, and so P −wQ has degree at most 1 for all w large enough.
This implies that degP ≤ 1 and degQ ≤ 1. Hence

G(z) = az + b or
az + b

cz − 1

for some a, b ∈ C.
Our next step is to use this form of G to conclude that the operator R satisfies

a quadratic equation; indeed we show that R2 = 0 or R2 = cR. The form of the
function G above implies that G satisfies one of the following differential equations:

G′′(z) = 0 or (cz − 1)G′′(z) + 2cG′(z) = 0.

In particular G′′(0) = 0 or G′′(0) = 2cG′(0). Direct computation yields that
G′(0) = f(Rx) and G′′(0) = 2f(R2x). We conclude that, for every x ∈ E and
every f ∈ E′, either f(R2x) = 0 or f((R2 − cR)x) = 0. We show that this implies
that R2 = 0 or R2−cR = 0. First, for a fixed x ∈ E, we have E′ equals the union of
the two subspaces {f ∈ E′ : f(R2x) = 0} and {f ∈ E′ : f((R2−R)x) = 0} and so
one of the subspaces must be all of E′, implying that R2x = 0 or (R2−cR)x = 0. A
similar argument shows that one of the latter equations is satisfied for every x ∈ E
and hence R2 = 0 or R2 = cR.

We are now in a position to prove that R has rank one. We consider the two
cases R2 = cR and R2 = 0 separately. If R2 = cR and if rankR > 1, let u and v be
two linearly independent vectors in the range of R. Thus Ru = cu and Rv = cv.
Let f ∈ E′ be such that f(u) = 0 and f(v) = 1 and let T = v ⊗ f . If λ is any
complex number, then

λ ∈ σ
(
T +

λ

c
R

)
∩ σ

(
T +

(λ− 1)

c
R

)
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18 A. R. SOUROUR

since (T + λ
cR)u = λu and (T + (λ+1)

c R)v = λv. This contradicts condition (iii)′.
Therefore rankR ≤ 1.

Next, we consider the case R2 = 0. If rankR ≥ 2, let u2 and u4 be linearly inde-
pendent vectors in rangeR and let u1 and u3 ∈ X be such that Ru1 = u2 andRu3 =
u4. Thus u1, u2, u3, u4 are linearly independent and W := span{u1, u2, u3, u4} is a
subspace invariant under R with R|W having matrix representation(

0 0
1 0

)
⊕
(

0 0
1 0

)
relative to the basis {u1, u2, u3, u4}. Let f2 and f4 ∈ E′ be such that fi(uj) = 1 if
i = j and 0 if i 6= j and define a rank two operator T by T = u1 ⊗ f2 + 4u3 ⊗ f4.
Thus T leaves W invariant and T |W has matrix representation(

0 1
0 0

)
⊗
(

0 4
0 0

)
.

Every complex number λ belongs to σ(T + λ2R) ∩ σ(T + λ2

4 R). The contradiction
establishes the desired conclusion, i.e., rankR ≤ 1.

Proof of Theorem 2.1. The equivalence of (i), (ii)′ and (iii)′ is a special case of
Proposition 2.2. The implication (i) ⇒ (ii) is proved above. The implication
(ii)⇒ (iii) follows from the fact that the spectrum of every bounded operator is a
compact subset of the complex plane, and the implication (iii)⇒ (iii)′ is trivial.

Remark. From the above proof, it follows that if R2 6= 0, and if condition (∗) or
(∗∗) of Theorem 2.1 is satisfied for operators T of rank ≤ 1, then rankR ≤ 1. The
finite dimensional case of this observation is in [5].

We state the following variants of the above results.

Proposition 2.3. The conclusions of Theorem 2.1 and Proposition 2.2 remain
true if the spectrum is replaced by the point spectrum (i.e., the set of eigenvalues).

Proof. Omitted.

Proposition 2.4. With the same notation as in Theorem 2.1 and Proposition 2.2,
the following are equivalent.

(i) R is a scalar or rankR ≤ 1.
(ii) Condition (∗) is satisfied for every nilpotent operator T with T 2 = 0.
(iii) Condition (∗∗) is satisfied for every nilpotent operator T with T 2 = 0.

Proof. We only indicate the minor changes required in the proof of Proposition 2.2.
The rank one operator T = x ⊗ f used in that proof will be assumed to satisfy
T 2 = 0, i.e. f(x) = 0. We conclude that if f(x) = 0, then either f(R2x) = 0
or f((R2 − cR)x) = 0. It follows that either R2x = λxx or (R2 − cR)x = µxx
for scalars λx and µx; consequently either R2 is a scalar or R2 − cR is a scalar.
Since σ(R) ⊆ {0, c}, we have R satisfying one of the equations R2 = 0, R2 = c2I
or R2 − cR = 0. The first case is dealt with in Proposition 2.2. The second case,
R2 = c2I, implies that R = cI since −c 6∈ σ(R). Finally if R2 = cR and if R is not
a scalar or of rank one, then

R =

0 0 0
0 c 0
0 0 c

⊕R1
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INVERTIBILITY PRESERVING LINEAR MAPS ON L(X) 19

for some operator R1. If

T =

1 −1 0
1 −1 0
0 0 0

⊕ 0,

then T 2 = 0, and every complex number λ belongs to

σ

(
T +

λ

c
R

)
∩ σ

(
T +

λ2

c(λ− 1)
R

)
.

3. Proof of the main theorem

In this section, we shall prove the main theorem. We first show that invertibility
preserving maps are rank-reducing.

Lemma 3.1. Let A,B be two unital algebras and φ : A→ B a unital linear map.
If φ preserves invertibility, then σ(φ(a)) ⊆ σ(a) for every a ∈ A.

Proof. Obvious.

Lemma 3.2. Let X be a Banach space, Y a locally convex space and let S be a
subspace of L(X) containing all finite rank operators and containing the identity. If
φ : S → L(Y ) is a linear map which preserves invertibility and if rangeφ contains
all operators on Y of finite rank, then rankφ(T ) ≤ rankT for every T ∈ S.

Proof. We may assume without loss of generality that φ(I) = I, since we may
replace φ by the map ψ given by ψ(T ) = φ(I)−1φ(T ). If R ∈ L(X) and rankR = 1,
then condition (∗) of Theorem 2.1 is satisfied. This, together with the spectral
inclusion of Lemma 3.1, implies that

σ(φ(T ) + αφ(R)) ∩ σ(φ(T ) + βφ(R)) ⊆ σ(T )

for α 6= β. Since σ(T ) is a compact subset of the plane, and since the range of φ
contains every operator of rank at most 2, we may use Proposition 2.2 to conclude
that rankφ(R) ≤ 1. If T ∈ L(X) with rankT = n < ∞, then T can be written as
a sum of n operators of rank one. Thus φ(T ) is a sum of n operators, each having
rank at most 1, and so rankφ(T ) ≤ n. If rankT =∞, there is nothing to prove.

To prove Theorem 1.1, it suffices to prove that (a) implies (d) since the implica-
tions (d) ⇒ (c) ⇒ (b) are trivial and (b) ⇒ (a) follows from Proposition 1.3. The
implication (a)⇒ (d) is contained in Theorem 3.4 below. First, we need a lemma.

Lemma 3.3. Let E be a vector space, x ∈ E, f a linear functional on E and T
an invertible linear transformation from E to E. The transformation T − x⊗ f is
invertible if and only if f(T−1x) 6= 1. If f(T−1x) 6= 1, then T − x⊗ f is invertible
in every unital subalgebra of L(E) that contains T, T−1 and T − x⊗ f .

Proof. Since T − x⊗ f is invertible if and only if T−1(T − x ⊗ f) is, it suffices to
show that I − u ⊗ f is invertible if and only if f(u) 6= 1. If f(u) = 1, then u 6= 0
and (I −u⊗ f)u = 0, and so I −u⊗ f is not invertible. Conversely if f(u) 6= 1, we
get, by direct computation, that

(I − u⊗ f)−1 = (I + (1− f(u))−1u⊗ f),

which gives an inverse of I − u ⊗ f in every algebra containing I and I−
u⊗ f .
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20 A. R. SOUROUR

In the proof of the next result, we shall employ the notation 〈·, ·〉 to denote the
duality between a topological vector space and its dual. We consider maps from
a subalgebra A of L(X) into L(Y ). When we say that such a map φ preserves
invertibility, we mean that if T is invertible in A, then φ(T ) is invertible in L(Y ).

Theorem 3.4. Let X be a Banach space, Y a locally convex space, A a unital
subalgebra of L(X) containing all operators of finite rank, and φ : A → L(Y ) a
linear map preserving invertibility whose range contains every finite rank operator
on Y . It follows that either φ(F ) = 0 for every finite rank operator F ∈ L(X), or
φ is injective. In the latter case, either:

(i) there exist bijective linear transformations A : Y → X and B : X → Y with
A weak-weak continuous such that

φ(T ) = BTA

for every T ∈ A; or
(ii) there exist bijective linear transformations A : Y → X ′ and B : X ′ → Y with

A weak-weak∗ continuous such that

φ(T ) = BT ∗A

for every T ∈ A.

Remarks. 1. Of course the conclusion of Theorem 3.4 would also follow from the
stronger hypothesis that φ(T ) is invertible for every T ∈ A which has an inverse in
L(X).

2. If φ(I) = I, then B = A−1.
3. If Y is a Banach space, then the weak continuity of the operator A and the

closed graph theorem imply that A is bounded. The open mapping theorem implies
that A−1 is bounded and hence B is also bounded since B = φ(I)A−1.

4. We do not know of any example where φ annihilates finite rank operators. It
is conceivable that the map φ in Theorem 3.4 is always injective. Indeed this is the
case when X and Y are Hilbert spaces as shown in §6 below.

Proof. Let x ∈ X and f ∈ X ′. By Lemma 3.2, rankφ(x⊗f) ≤ 1, and so φ(x⊗f) =
y⊗g for some y ∈ Y and g ∈ Y ′. Unless y⊗g = 0, the vectors y and g are determined
by x and f up to a multiplicative constant. By a standard argument (see [7, p.
259]), the multiplicative constant can be chosen in such a way that y depends only
on one of the variables x or f and that g depends only on the other variable; i.e.,
either

φ(x⊗ f) = Bx⊗ Cf(1)

where B : X → Y and C : X ′ → Y ′ are linear transformations, or

φ(x⊗ f) = Rf ⊗ Sx(2)

where R : X ′ → Y and S : X → Y ′ are linear transformations.
We start by assuming that equation (1) is satisfied. We may also assume, with

no loss of generality, that φ(I) = I. For an arbitrary operator T ∈ A, we have

φ(I − zT − x⊗ f) = I − zφ(T )−Bx⊗ Cf.
If |z| < r := ‖T‖−1, then I−zT is invertible in A, and hence I−zφ(T ) is invertible
in L(Y ). Let

Fx,f (z) := 〈(I − zT )−1x, f〉,
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INVERTIBILITY PRESERVING LINEAR MAPS ON L(X) 21

and

Gx,f(z) := 〈(I − zφ(T ))−1Bx,Cf〉.
If Fx,f (z) 6= 1, then by Lemma 3.3 the operator I − zT − x⊗ f is invertible in

A, and so I − zφ(T )− Bx⊗ Cf is invertible in L(Y ), implying that Gx,f (z) 6= 1.
Equivalently, the equation Gx,f(z) = 1 implies that Fx,f (z) = 1. But the function
Fx,f and Gx,f are linear in the parameters x and f and so if Gx,f (x) = w 6= 0, then
Fx,f(z) = w. By analyticity of the two functions, we see that Fx,f ≡ Gx,f unless
Gx,f ≡ 0. We will show that unless Gu,g ≡ 0 for every u ∈ X and every g ∈ X ′, we
have Fx,f ≡ Gx,f for every x ∈ X and f ∈ X ′. Indeed if Gx1,f1 6≡ 0, then by the
foregoing argument

X ′ = {f : Gx1,f ≡ 0} ∪ {f : Fx1,f ≡ Gx1,f},
a union of two subspaces. Thus one of the two subspaces is all of X ′. Since
Gx1,f1 6≡ 0, then

{f : Fx1,f ≡ Gx1,f} = X ′,

i.e.

Fx1,f ≡ Gx1,f for all f ∈ X ′.
Similarly

Fx,f1 ≡ Gx,f1 for all x ∈ X.
Finally, considering Fx+x1,f+f1 and linearity, we get that Fx,f ≡ Gx,f for all x ∈ X
and f ∈ X ′. Thus we have shown that, for every T ∈ A, either

〈(I − zT )−1x, f〉 = 〈(I − zφ(T ))−1Bx,Cf〉
for all x ∈ X, f ∈ X ′ and z ∈ {ζ ∈ C : |ζ| < r}, or

〈(I − zφ(T ))−1Bx,Cf〉 = 0

for all x ∈ X, f ∈ X ′ and z ∈ {ζ ∈ C : |ζ| < r}.
Taking derivatives at 0, we obtain that, for every T ∈ A, either

〈Tx, f〉 = 〈φ(T )Bx,Cf〉(3)

for all x ∈ X and f ∈ X ′, or

〈φ(T )Bx,Cf〉 = 0(4)

for every x ∈ X and f ∈ X ′. Thus A is a union of two subspaces corresponding to
the two alternatives above, and so one of the alternatives (3) or (4) is satisfied for
all T ∈ A. If equation (4) is satisfied, then by taking φ(T ) = y ⊗ g for arbitrary
y ∈ Y and g ∈ Y ′ we have g(Bx) · 〈y, Cf〉 = 0 for every x ∈ X , y ∈ Y , f ∈ X ′ and
g ∈ Y ′. This easily implies that B = 0 or C = 0 and so φ(x⊗ f) = Bx⊗ Cf = 0.
Therefore φ(F ) = 0 for every finite rank operator F ∈ L(X).

If equation (3) is satisfied, then for every y ∈ Y , there exist Ty ∈ L(X) and
xy ∈ X such that φ(Ty)Bxy = y and hence 〈y, Cf〉 = 〈Tyxy, f〉. This shows that
there exists a linear transformation A : Y → X such that

〈Ay, f〉 = 〈y, Cf〉.(5)

In other words, C = A∗. Now equation (3) can be written in the form

〈Tx, f〉 = 〈Aφ(T )Bx, f〉,
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for every x ∈ X and f ∈ X ′. Thus

T = Aφ(T )B(6)

for all T ∈ A. It follows immediately that φ is injective.
We will show that A and B are bijective. The surjectivity of A follows imme-

diately from equation (6). To prove the injectivity of A, assume that Ay = 0 for
some y ∈ Y . Let T1 ∈ A be such that φ(T1) = y ⊗ g with g ∈ Y ′, g 6= 0. There-
fore Aφ(T1) = 0, and by equation (6), T1 = 0. Hence y ⊗ g = φ(T1) = 0 and
so y = 0. This proves that A is injective. Taking T = I in equation (6) gives
AB = I, and since A is injective, this implies that BA = I, i.e., B = A−1, and
hence φ(T ) = BTA.

The weak-weak continuity of A follows easily from equation (5).
We now consider the case where equation (2), rather than equation (1), is sat-

isfied. By a similar argument, we have that either φ(F ) = 0 for all finite rank
operators F or there exist linear transformations R : X ′ → Y and S : X → Y ′

such that

〈Tx, f〉 = 〈φ(T )Rf, Sx〉(3′)

for all x ∈ X, f ∈ X ′ and T ∈ A. Let y ∈ Y . Since the range of φ contains every
rank one operator, there exist fy ∈ X ′ and Ty ∈ L(X) such that φ(Ty)Rfy = y,
and so

〈y, Sx〉 = 〈Tyx, fy〉 = 〈x, T ∗y fy〉.
Therefore there exists a linear transformation U : Y → X ′ such that

〈y, Sx〉 = 〈x, Uy〉.(5′)

Equation (5′) implies that U is weak-weak∗ continuous, and that equation (3′) can
be written in the form

〈x, T ∗f〉 = 〈x, Uφ(T )Rf〉,
and so

T ∗ = Uφ(T )R.(6′)

Now the same argument as before establishes that U and R are bijective, that
R = U−1 and that

φ(T ) = RT ∗U.

This ends the proof of Theorem 3.4.

Remark. In all of our results, the condition on the range of φ cannot be removed
as indicated by Example 2 below. As indicated earlier, we do not know whether
the injectivity assumption in Theorem 1.1 can be removed (see also §6 below).

Example 2. Let H be a Hilbert space and let f be a nonzero linear functional on
L(H) such that f(I) = 0. Define φ : L(H)→ L(H ⊕H) by

φ(T ) =

[
T f(T )I
0 T

]
.

It follows that φ(I) = I, that φ preserves invertibility (indeed φ preserves the
spectrum; equivalently φ preserves invertibility in both directions). But φ is not a
Jordan homomorphism as can be easily seen.
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Remark. Example 2 above shows that invertibility preserving linear maps need not
be continuous. Of course if such a map is also bijective, then it is continuous by
Theorem 1.1. See also §4 below.

4. Continuity

It follows from Theorem 1.1 that a bijective invertibility preserving linear map
from L(X) to L(Y ) is norm-continuous. We give a direct proof of continuity without
assuming injectivity of φ. We shall however assume that φ is surjective. (The proof
requires only that range φ contains all finite rank operators.) Example 2 above
shows that such conditions cannot be removed.

Theorem 4.1. Let X and Y be Banach spaces. If φ : L(X)→ L(Y ) is a surjective
invertibility preserving linear map, then it is norm continuous.

Proof. By the closed graph theorem, it suffices to prove that if Tn ∈ L(X), Tn → 0
and φ(Tn) → S, then S = 0. Let Sn = φ(Tn), εn = ‖Tn‖ and denote the spectral
radius of an operator A by r(A). For every T ∈ L(X), and every scalar α, we have

r(T + αTn) ≤ ‖T + αTn‖ ≤ ‖T‖+ |α|εn.

We may assume without loss of generality that φ(I) = I, and so φ satisfies the
spectral inclusion of Lemma 3.1. Thus

r(φ(T ) + αSn) ≤ ‖T‖+ |α|εn.
Since φ is surjective, we conclude that, for every operator R ∈ L(Y ), there exists a
positive number ρ = ρR such that

r(R + αSn) ≤ ρ+ |α|εn.(1)

We will apply equation (1) to operators R of the form y ⊗ g. Toward this end let
y ∈ Y and g ∈ Y ′ be nonzero vectors, let R = y ⊗ g and let

Gn(z) := 〈(1− zSn)−1y, g〉
for z ∈ Ωn, where

Ωn := {z : |z| < ε−1
n },

and

G(z) := 〈(1− zS)−1y, g〉
for z ∈ Ω, where

Ω :=

{
z :

1

z
6∈ σ(S)

}
.

First, we claim that Gn(1
2Ωn) ⊆ {ζ : |ζ| ≤ 2ρ}. To prove this, let z ∈ C with

|z| < (2εn)−1 and let w = Gn(z). It follows that

(w − (R+ zwSn))(1− zSn)−1y = 0,

and hence w ∈ σ(R + zwSn). By equation (1), we get that |w| ≤ ρ + |z| |w|εn ≤
ρ+ 1

2 |w|, which implies that |w| ≤ 2ρ.
Next, we observe that for every z ∈ Ω, z belongs to Ωn for n large enough and

that Gn(z) → G(z). Indeed it is not hard to prove that Gn → G uniformly on
compact subsets of Ω.
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Now if k > 0 and if Bk := {z : |z| ≤ k}, then, for all n large enough, we have
Bk ⊆ 1

2Ωn and so Gn(Bk) ⊆ B2ρ. Upon taking limits, we get G(Bk ∩ Ω) ⊆ B2ρ.
Since this is true for every k > 0, we conclude that G is bounded in Ω; i.e.

|〈(1− zS)−1y, g〉| ≤My,g for z ∈ Ω,

where My,g is a positive constant. By the uniform boundedness principle, there
exists a positive constant M such that

‖(1− zS)−1‖ ≤M for z ∈ Ω.

If ζ ∈ ∂Ω and zn ∈ Ω with zn → ζ, then ‖(1 − znS)−1‖ is bounded which is
impossible [2, Theorem 14, p. 13]. Thus ∂Ω must be empty and so Ω = C. The
function (1−zS)−1 is a bounded entire function and hence, by Liouville’s Theorem,
S = 0.

5. Spectral characterization of compactness

The following is a spectral characterization of compactness for operators in sep-
arable infinite dimensional Hilbert space. It will be used in §6 to establish an
injectivity result.

Theorem 5.1. Let H be a separable infinite dimensional Hilbert space and let A ∈
L(H). The following conditions are equivalent:

(i) A is compact.
(ii) σ(T +A) ∩ σ(T ) is nonempty for every T ∈ L(H).
(iii) σ(T +A)∩σ(T ) is nonempty for every nilpotent T ∈ L(H) satisfying T 3 = 0.

Proof. If A is compact, then σ(T +A) ∩ σ(T ) includes the essential spectrum of T
which is nonempty. It remains to show that if A is noncompact, then there exists
an operator T such that T 3 = 0 and T + A is invertible. We shall consider two
cases according as A is a scalar + compact or not.

First if A is not a scalar + compact, then, by [3], A is similar to an operator on
H ⊕H ⊕H having matrix representation0 B C

0 D E
I F G

 .
We shall assume that A equals such a matrix. Let

T =

0 I −B −C
0 0 I −E
0 0 0

 .
It follows that T 3 = 0 and that

(T +A)−1 =

GD − F −G I
I 0 0
−D I 0

 .
Next, we consider the case where A is the sum of a nonzero scalar and a compact

operator. By the Riesz decomposition of operators and the Jordan decomposition
of nilpotent matrices, we may assume that

A = N1 ⊕ · · · ⊕Nm ⊕ (0⊕B)
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where each Nj is a nonzero nilpotent Jordan cell, the operator 0 acts on a space
of finite dimension k and B is invertible (the integers m or k may possibly be 0).
Thus it suffices to prove the existence of the operator T for the cases: A = Nj and
A = 0⊕B.

When A = N , a nonzero nilpotent n × n Jordan cell, we take T = (N t)n−1. It
follows easily that T 2 = 0 and that T + A is invertible. If A is invertible, we take
T = 0. If A = [ 0 0

0 B ] on H1 ⊕ H2 with dimH1 < ∞ and dimH2 = ∞, we take
T =

[
I J
−L −JL

]
, where J : H1 → H2 is an injective operator, and L : H2 → H1 is

a left-inverse of J ; i.e., LJ = I on H1. By direct computation, we get that T 2 = 0
and

(T +A)−1 =

[
I − LB−1J LB−1

−B−1J B−1

]
.

This ends the proof.

It is natural at this point to examine the implications of condition (ii) of the above
theorem in the case of finite dimensional spaces. We show that it characterizes zero
operators. We shall prove this for matrices over arbitrary fields.

Proposition 5.2. Let A be an n×n matrix over an arbitrary field F . The following
conditions are equivalent:

(i) A = 0.
(ii) σ(T +A) ∩ σ(T ) is nonempty for every T ∈Mn(F ).
(iii) 0 ∈ σ(T + A) for every nilpotent T ∈Mn(F ).

Proof. We need only show that if A 6= 0, then there exists a nilpotent matrix N
such that A + N is invertible. We use induction on n. The ideas we use here are
somewhat similar to the ideas in [21].

We start with n = 2. If A is a scalar, we may take N = 0. If A is nonscalar,
then A is similar to a matrix of the form [ 0 a

1 b ] and so we may assume that A equals
such a matrix. If we take

[
0 1−a
0 0

]
, then N2 = 0 and A+N is invertible.

Assume that n ≥ 3 and that the result is true for all matrices of size less than
n and let A be a nonzero n × n matrix. If A is a scalar, then we may again take
N = 0. If A is nonscalar, then we may, by using similarity, assume that

A =

[
1 yt

x A0

]
(1)

where A0 ∈ Mn−1(F ), x and y ∈ F (n−1) and where x 6= 0. We now show that, by
taking another similarity if necessary, we may assume that A0 6= 0. If A0 = 0, let
z ∈ F (n−1) be such that z 6= 0, but ztx = 0. Since[

1 −zt
0 I

] [
1 yt

x 0

][
1 zt

0 I

]
=

[
1 yt + zt

x xzt

]
and since xzt 6= 0, we have shown that the matrix A0 in equation (1) can be assumed
to be nonzero. Now, by the induction hypothesis, there is an (n − 1) × (n − 1)
nilpotent matrix N0 such that N0 +A0 is invertible. If we take

N =

[
0 −yt
0 N0

]
,

then N is nilpotent and N +A is invertible.
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Remark. In Proposition 5.2, unlike the situation in Theorem 5.1, we cannot always
take the nilpotent matrix N to have index of nilpotency at most 3. Indeed if A is
an n × n matrix of rank one and if N is nilpotent and A + N is invertible, then
rankN = n − 1, and so N must be similar to a Jordan cell; hence the index of
nilpotency of N is n.

6. Injectivity

If X is a separable Hilbert space, we shall show that Theorem 1.1 remains true
if we assume that φ is surjective but do not assume that it is injective. We prove
that injectivity is part of the conclusion.

Theorem 6.1. Let H be a separable Hilbert space and Y a Banach space. If
φ : L(H) → L(Y ) is an invertibility preserving linear map whose range contains
the finite rank operators on Y , then φ is one-to-one.

Proof. Again, we assume that φ(I) = I so that, by Lemma 3.1, φ satisfies the
spectral inclusion

σ(φ(T )) ⊆ σ(T ).(1)

If φ is not one-to-one, then, by Theorem 3.4, φ(F ) = 0 for every finite rank operator
F and, by continuity (Theorem 4.1), φ(K) = 0 for every compact operator K ∈
L(H).

On the other hand, if R1 is a rank one operator in L(Y ), then there exists an
R ∈ L(H) such that R1 = φ(R). For every S ∈ L(Y ), we have

σ(S + φ(R)) ∩ σ(S) 6= ∅,(2)

since the intersection includes the essential spectrum of S. If T ∈ L(H), then
equations (1) and (2) imply that σ(T + R) ∩ σ(T ) is nonempty. By Theorem 5.1,
we conclude that R is a compact operator, and hence R1 = φ(R) = 0. This
contradiction proves that φ is one-to-one.

7. Spectral characterization of rank

Theorem 2 and [10, Theorem 1] give spectral characterization of rank one op-
erators. We now give a similar spectral characterization of operators of rank less
than k for an arbitrary positive integer k (see also [14]).

Theorem 7.1. Let X be a Banach space and k a positive integer. For an operator
R ∈ L(X), the following conditions are equivalent:

(i) rankR < k.
(ii)

⋂
1≤j≤k σ(T + αjR) ⊆ σ(T ), for every T ∈ L(X) and every k distinct scalars

αj (1 ≤ j ≤ k).
(iii) For every T ∈ L(X), there exists a compact subset KT of the complex plane,

such that ⋂
1≤j≤k

σ(T + αjR) ⊆ KT

for every T ∈ L(X) and every k distinct complex numbers αj (1 ≤ j ≤ k).
Furthermore, these conditions are equivalent to condition (ii) or (iii) being
satisfied for only operators T of rank at most k.
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Proof. The implication (i) ⇒ (ii) follows in exactly the same way as in Proposi-
tion 2.2, and the implication (ii)⇒ (iii) is obvious.

We now assume that condition (iii) is satisfied for all operators T of rank at
most k. Following the proof of Proposition 2.2, by taking T = 0, we conclude
that σ(R) is finite; indeed σ(R) ⊆ {0, c1, . . . , ck−1} for nonzero complex numbers
cj (1 ≤ j ≤ k − 1).

Next let x ∈ X and f ∈ X ′ and define G on {ζ : ζ−1 6∈ σ(R)} by G(z) =
f((1−zR)−1x). As in the proof of Proposition 2.2, we conclude that, for all w large
enough, the equation G(z) = w has less than k solutions. By Picard’s Theorem,
we get that G has only removable singularities in the extended complex plane and
so G is a rational function P

Q with degP < k and degQ < k, and with the zeros

of Q included in the set {c−1
j : 1 ≤ j ≤ k − 1}. There are only a finite number

of such polynomials Q, say Q1, Q2, . . . , QN . Thus, we know that (QjG)(k) = 0 for
j = 1, 2, . . . , or N . We conclude that, for every x ∈ X and f ∈ X∗, the function G
satisfies one of N fixed (independent of x and f) linear differential equations with
polynomial coefficients and order k. As before, using the fact that a vector space is
not a union of a finite number of proper subspaces, we see that G satisfies one such
differential equation for every x and f . Using the fact that G(m)(0) = (m!)f(Rmx),
we conclude that R satisfies a polynomial equation p(R) = 0 with deg p = k.

If rankR ≥ k, then, by the standard decomposition of algebraic operators, there
is a finite dimensional subspace W of X , invariant under R such that rank(R|W ) =
k. We choose a basis for W so that

R|W = R0 ⊕ J1 ⊕ · · · ⊕ Jm,

where R0 is an upper triangular invertible l × l matrix with diagonal {c1, . . . ,
cl} and each Jj is an upper triangular tj × tj nilpotent Jordan cell. Let Z be
a closed complement of W in X and let T be an operator on X such that T |Z = 0
and

T |W = T0 ⊕ T1 ⊕ · · · ⊕ Tm,

where T0 = diag(b1, . . . , bl) with b1, . . . , bl distinct nonzero scalars, and where each
other Tj has all of its entries zero except the entry in the lower left corner where it
is equal to aj with |a1|, . . . , |am| distinct and nonzero.

We note that, for any scalar β, we have

σ(T0 + βR0) = {bi + βci : 1 ≤ i ≤ l},

and σ(Tj + βJj), 1 ≤ j ≤ m, consists of the set of the tjth roots of ajβ
tj−1. Thus

σ(T + βR) ⊇ {bi + βci : 1 ≤ i ≤ l} ∪

 ⋃
1≤i≤m

{ζ : ζti = aiβ
ti−1}

 .(1)

We observe that k = rank(R|W ) = l+ t1 + · · ·+ tm −m, and that rankT ≤ k. We
will show that, for all λ large enough, there exists a set B of k distinct complex
numbers such that λ ∈

⋂
β∈B σ(T + βR). This would be a contradiction, implying

that rankR < k. Indeed we will show that this is satisfied for all complex numbers
λ outside a finite set to be determined later. For λ ∈ C, let

βi =
λ− bi
ci

, 1 ≤ i ≤ l,
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and let βi1, βi2, . . . , βi,ti−1 be the distinct (ti − 1)st roots of λtia−1
i , for 1 ≤ i ≤ m.

Let

B := {βi : 1 ≤ i ≤ l} ∪
(

m⋃
i=1

{βij : 1 ≤ j ≤ ti − 1}
)
.(2)

We show that

λ ∈
⋂
β∈B

σ(T + βR),(3)

and that, for all λ outside a finite set, the elements listed in the definition of B are
all distinct and so |B| = l + t1 + · · · + tm −m = k. The first assertion (equation
(3)) follows easily from the inclusion (1). Indeed if β = βi for some 1 ≤ i ≤ l,
then σ(T + βR) contains bi + βici = λ, and if β = βij for some 1 ≤ i ≤ m, then

σ(T + βR) contains all of the tith roots of aiβ
ti−1
ij = λti and so contains λ. Next,

we show that, for λ outside some finite set Ω, the set B has n distinct elements.
Toward this end let

K :=

{
bicj − bjci
ci − cj

: 1 ≤ i, j ≤ l, ci 6= cj

}
,

Lsi :=
{
z : ai(z − bs)ti−1 − zticti−1

s = 0
}
,

Mij :={z : a
(tj−1)
i zti − ati−1

j ztj = 0},

L :=
⋃
{Lsi : 1 ≤ s ≤ l, 1 ≤ i ≤ m},

M :=
⋃
{Mij : 1 ≤ i, j ≤ m, i 6= j},

and

Λ := K ∪ L ∪M.

The set Λ is a finite set. We now show that, for λ 6∈ Λ, the set B has n distinct
elements; i.e. all the elements listed in defining B (equation (2)) are distinct. First

if βi = βj with i 6= j, then λ−bi
ci

=
λ−bj
cj

and so λ ∈ K ⊆ Λ. If βs = βij for some

1 ≤ s ≤ l, 1 ≤ i ≤ m, 1 ≤ j ≤ ti− 1, then (λ−bscs
)ti−1 = λti/ai, and so λ ∈ Lsi ⊆ Λ.

If βip = βjq for some i 6= j, then upon raising each side to the (ti − 1)(tj − 1)th
power, we see that λ ∈Mij ⊆ Λ. This ends the proof.

8. The algebra of regular operators on Banach lattices

For a Banach lattice X , the algebra of regular operators, i.e., linear combinations
of positive operators, is denoted by Lr(X). This is a Banach algebra if the norm
of T is defined to be the operator norm of |T | (see [19]). Let Kr(X) be the closure
of the set of finite rank operators in Lr(X) under the norm described above. The
spectrum of an element T in the algebra Lr(X) is called the order spectrum of
T and is denoted by σ0(T ). Spectrum preserving linear maps between Lr(X) and
Lr(Y ) are characterized in [20]. This can be generalized to obtain a characterization
of invertibility preserving linear maps. An examination of the proofs in this paper
and in [20] establishes that Theorem 1.1, Corollary 1.2 and Theorem 3.4 remain
valid for the algebras Lr(X) and CI +Kr(X), and that Theorems 2.1 and 7.1 and
Propositions 2.2 and 2.4 are valid where the spectrum is replaced by the order
spectrum. In particular, we have the following
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Theorem 8.1. Let X and Y be complex Banach lattices. Every unital bijective
invertibility preserving linear map from Lr(X) onto Lr(Y ) or from CI + Kr(X)
onto CI + Kr(Y ) is a Jordan isomorphism. For every such a map φ, either
φ(T ) = A−1TA or φ(T ) = B−1T ∗B where A (respectively B) is a bounded in-
vertible operator from Y onto X (respectively X∗).
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