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Abstract. In this note we prove that if

MC =
(

A C
0 B

)
is a 2×2 upper triangular operator matrix acting on the Banach space X⊕Y ,
then MC is invertible for some C ∈ L(Y, X) if and only if A ∈ L(X) and
B ∈ L(Y ) satisfy the following conditions:
(i) A is left invertible;
(ii) B is right invertible;
(iii) X/A(X) ∼= B−1(0).
Furthermore we show that σ(A) ∪ σ(B) = σ(MC ) ∪W , where W is the union

of certain of the holes in σ(MC ) which happen to be subsets of σ(A) ∩ σ(B).

1. Introduction

Du and Pan [1] have recently considered the invertible completions of partially
specified 2 × 2 upper triangular operator matrices. Their main result can be de-
scribed as follows: if MC = ( A C

0 B ) is an operator acting on the Hilbert space H⊕K,
then ⋂

C∈L(K,H)

σ(MC) = σl(A) ∪ σr(B) ∪ {λ ∈ C : n(B − λ) 6= d(A− λ)},

where σ(·), σl(·), σr(·), n(·), and d(·) denote the spectrum, the left spectrum, the
right spectrum, the nullity, and the deficiency, respectively. In this note we extend
the above result to Banach spaces and show that the passage from σ(A) ∪ σ(B) to
σ(MC) is the punching of some open sets in σ(A) ∩ σ(B).

Let L(X, Y ) denote the set of bounded linear operators from a Banach space X
to a Banach space Y and abbreviate L(X, X) to L(X). Recall [3] that T ∈ L(X, Y )
is called regular if there is an operator T ′ ∈ L(Y, X) for which

T = TT ′T ;(0.1)

then T ′ is called a generalized inverse for T . If T ∈ L(X, Y ) is left or right invertible,
then, evidently, T is regular: in this case a left or right inverse is just a generalized

Received by the editors October 26, 1996 and, in revised form, March 10, 1998.
1991 Mathematics Subject Classification. Primary 47A10, 47A55.
Key words and phrases. Spectrum, regular, 2× 2 upper triangular operator matrices.
This work was partially supported by BSRI 96-1420 and KOSEF 94-0701-02-01-3.

c©1999 American Mathematical Society

119

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



120 JIN KYU HAN, HONG YOUL LEE, AND WOO YOUNG LEE

inverse. Also if T ∈ L(X, Y ) is regular with a generalized inverse T ′, then X and
Y can be decomposed as follows (cf. [3]):

T−1(0)⊕ T ′T (X) = X and T (X)⊕ (TT ′)−1(0) = Y.(0.2)

When A ∈ L(X) and B ∈ L(Y ) are given we denote by MC an operator acting on
X ⊕ Y of the form

MC =
(

A C
0 B

)
,

where C ∈ L(Y, X).

2. A necessary and sufficient condition for invertibility of MC

We begin with:

Lemma 1. If A ∈ L(X) and B ∈ L(Y ) are both invertible, then MC is invertible
for every C ∈ L(Y, X).

Proof. The inverse of MC is
(

A−1 −A−1CB−1

0 B−1

)
.

The following is our main result. To prove the necessary condition of the invert-
ibility of MC we need the “ghost” of an index theorem due to Harte [4]:

Theorem 2. A 2 × 2 operator matrix MC is invertible for some C ∈ L(Y, X) if
and only if A ∈ L(X) and B ∈ L(Y ) satisfy the following conditions:

(i) A is left invertible;
(ii) B is right invertible;
(iii) X/A(X) ∼= B−1(0).

Proof. Suppose MC = ( A C
0 B ) is invertible for some C ∈ L(Y, X) and write

MC =
(

I 0
0 B

) (
I C
0 I

) (
A 0
0 I

)
.(2.1)

Then A is left invertible and B is right invertible. On the other hand since
( I 0

0 B ) ( I C
0 I ) and ( A 0

0 I ) are both regular, an index theorem of Harte ([4, Theorem
2]) gives

ker
(

A 0
0 I

)
× ker

((
I 0
0 B

) (
I C
0 I

))
×

(
X
Y

)/
ranMC

∼= kerMC ×
(

X
Y

)/
ran

(
A 0
0 I

)
×

(
X
Y

)/
ran

((
I 0
0 B

) (
I C
0 I

))
,

which implies

A−1(0) × B−1(0) × {0} ∼= {0} × X/A(X) × Y/B(Y ),

which gives that B−1(0) ∼= X/A(X) because A is left invertible and B is right
invertible.

For the converse observe that if A′ is a left inverse of A and if B′ is a right inverse
of B, then, as in (0.2), X and Y can be decomposed as

A(X)⊕ (AA′)−1(0) = X and B−1(0)⊕B′B(Y ) = Y.
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Then, by (iii), we have that (AA′)−1(0) ∼= B−1(0). Thus there is an isomorphism
J : B−1(0) → (AA′)−1(0). Define an operator C : Y → X by

C :=
(

J 0
0 0

)
:

(
B−1(0)
B′B(Y )

)
−→

(
(AA′)−1(0)

A(X)

)
.

Then we have that C ∈ L(Y, X), C(Y ) = (AA′)−1(0) and C−1(0) = B′B(Y ). We
now claim that MC is one-one and onto, and hence invertible. Indeed we have(

A C
0 B

) (
X
Y

)
=

(
A(X) + C(Y )

B(Y )

)
=

(
A(X) + (AA′)−1(0)

Y

)
=

(
X
Y

)
and

(
A C
0 B

) (
x
y

)
=

(
0
0

)
=⇒

{
Ax + Cy = 0
By = 0

=⇒
{

Ax = 0
By = 0 = Cy

=⇒
(

x
y

)
=

(
0
0

)
,

where the second and the third implications follow from the facts that A(X) ∩
C(Y ) = {0} and B−1(0)∩C−1(0) = {0}, respectively. This completes the proof.

The following is an extension of Du and Pan [1, Theorem 2] to Banach spaces:

Corollary 3. For a given pair (A, B) of operators we have⋂
C∈L(Y,X)

σ(MC) = σl(A) ∪ σr(B) ∪ {
λ ∈ C : (B − λ)−1(0) � Y/(A− λ)(X)

}
.

Proof. This follows at once from Theorem 2.

The following two corollaries are also immediate results from Theorem 2.

Corollary 4. For a given pair (A, B) of operators we have(
σ(A) ∪ σ(B)

) \ (
σ(A) ∩ σ(B)

) ⊆ σ(MC) ⊆ σ(A) ∪ σ(B) for every C ∈ L(Y, X).

Proof. The second inclusion comes from Lemma 1. The first inclusion follows from
the observation

MC − λ is invertible =⇒ (A− λ is invertible ⇐⇒ B − λ is invertible)
for each λ ∈ C.

Corollary 5. If MC is Fredholm and if either A or B is Fredholm, then A and B
are both Fredholm with

indMC = ind A + indB.(5.1)

Proof. The first assertion follows by applying Theorem 2 with the pair (π(A), π(B)),
where π is the Calkin homomorphism. The second assertion follows from applying
the index product theorem to (2.1).

The equality (5.1) is called the “snake lemma”. From this we can also see that
if MC is Weyl, in the sense of Fredholm of index zero, and if either A or B is
Fredholm, then A is Weyl if and only if B is Weyl.
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3. The passage from σ
(

A 0
0 B

)
to σ(MC)

From Corollary 4 we see that, in perturbing a nilpotent matrix ( 0 C
0 0 ) to ( A 0

0 B ),
σ(MC) shrinks from σ(A)∪σ(B). How much of σ(A)∪σ(B) survives? The following
theorem provides a clue:

Theorem 6. For a given pair (A, B) of operators we have

η
(
σ(MC)

)
= η

(
σ(A) ∪ σ(B)

)
for every C ∈ L(Y, X),(6.1)

where η(·) denotes the “polynomially convex hull”.

Remark. The “polynomially convex hull” (by definition, related to the behaviour
of polynomials) is the topological object obtained by “filling in holes”.

Proof. By Corollary 4 we have

σ(MC) ⊆ σ(A) ∪ σ(B) for every C ∈ L(Y, X).(6.2)

We now claim that

∂
(
σ(A) ∪ σ(B)

) ⊆ ∂ σ(MC),(6.3)

where ∂K denotes the topological boundary of K ⊆ C. Since

intσ(MC) ⊆ int
(
σ(A) ∪ σ(B)

)
,

it suffices to show that ∂
(
σ(A) ∪ σ(B)

) ⊆ σ(MC). Indeed we have

∂
(
σ(A) ∪ σ(B)

) ⊆ ∂σ(A) ∪ ∂σ(B) ⊆ σap(A) ∪ σδ(B) ⊆ σl(A) ∪ σr(B) ⊆ σ(MC),

where σap(·) and σδ(·) denote the approximate point spectrum and the defect spec-
trum, respectively: the second inclusion follows from the fact that if T ∈ L(Z) for
a Banach space Z, then ∂σ(T ) ⊆ σap(T )∩σδ(T ) and the last inclusion follows from
Corollary 3. This proves (6.3). Now the Maximum Modulus Theorem with (6.2)
and (6.3) gives (6.1).

The following corollary says that the passage from σ(A)∪ σ(B) to σ(MC) is the
punching of some open sets in σ(A) ∩ σ(B):

Corollary 7. For a given pair (A, B) of operators we have

σ(A) ∪ σ(B) = σ(MC) ∪W,

where W is the union of certain of the holes in σ(MC) which happen to be subsets
of σ(A) ∩ σ(B).

Proof. Theorem 6 says that the passage from σ(MC) to σ(A) ∪ σ(B) is the filling
in certain of the holes in σ(MC). But since, by Corollary 4,

(
σ(A)∪σ(B)

) \σ(MC)
is contained in σ(A)∩σ(B), the filling some holes in σ(MC) should occur in σ(A)∩
σ(B). This gives the result.

The following is a generalization of [2, Problem 72].

Corollary 8. If σ(A) ∩ σ(B) has no interior points, then

σ(MC) = σ(A) ∪ σ(B) for every C ∈ L(Y, X).(8.1)

In particular if either A ∈ L(X) or B ∈ L(Y ) is a compact operator, then (8.1)
holds.
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Proof. The equality (8.1) immediately follows from Corollary 7. The second as-
sertion follows from the fact that the spectrum of a compact operator is at most
countable.

One might guess that the closure of each member of W in Corollary 7 is a
connected component of σ(A) ∩ σ(B). But this is not the case. See the following:

Example 9. Let U : `2 → `2 be the unilateral shift and let K : `2 → `2 be a
diagonal operator whose diagonals form a countable dense subset of the annulus
{z ∈ C : 1 ≤ |z| ≤ 2}. Define the operators A, B and C acting on `2 ⊕ `2 by

A =
(

U 0
0 K

)
, B =

(
U∗ 0
0 K

)
and C =

(
1− UU∗ 0

0 0

)
.

Then we have

σ(A) = σ(B) = {z ∈ C : |z| ≤ 2} and σ(MC) = {z ∈ C : 1 ≤ |z| ≤ 2},
which shows that the closure of the hole, {z ∈ C : |z| < 1}, of σ(MC) is not a
component of σ(A) ∩ σ(B).

We now consider another case in which the equality in (8.1) holds. To do this
write, for T ∈ L(X),

ρl
σ(T ) = σ(T ) \ σl(T ) and ρr

σ(T ) = σ(T ) \ σr(T ).

Thus by Corollary 8 and Theorem 2 we can see that the holes in σ(MC) should lie
in ρl

σ(A) ∩ ρr
σ(B). Thus we have:

Corollary 10. If ρl
σ(A) ∩ ρr

σ(B) = ∅ then

σ(MC) = σ(A) ∪ σ(B) for every C ∈ L(Y, X).

We conclude with an application of Corollary 10.

Corollary 11. Suppose H and K are Hilbert spaces. If either A ∈ L(H) is cohy-
ponormal or B ∈ L(K) is hyponormal, then

σ(MC) = σ(A) ∪ σ(B) for every C ∈ L(K, H).(11.1)

Proof. If B is hyponormal and so is B − λ for every λ ∈ C, then (B − λ)−1(0) ⊆
(B − λ)∗−1(0). Thus if B − λ is right invertible, then it must be invertible, which
implies ρr

σ(B) = ∅. If instead A is cohyponormal, then a similar argument gives
ρl

σ(A) = ∅. Thus (11.1) follows from Corollary 10.
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