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ABSTRACT 

The elements of the inverse of a circulant matrix having only 3 non-

zero elements in each row (located in cyclically adjacent columns) are de-

rived analytically from the solution of a recurrence equation. Expressing 

any circulant as a product containing these 3-element type circulants then 

provides an algorithm for inverting circulants in general. Extension to 

generalized inverses of circulants whose row sum is zero is also made. 
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1. JFrRODUCTION 

A circulant is a square matrix of the form 

co cl c2 ... cn-1 

c n-1 co cl ... cn-2 

c = c c co ••• c • (1) n-2 n-1 n-3 

• • • 

cl c2 c3 ••• co 

It is determined by its first row and will be denoted by 

c, ••• , c ) 
2 n-1 

(2) 

Letting P = (0, 1, 0, 0, ••• , 0), then C can be expressed in terms of powers 

of Pas 

n-1 

C = L ciPi 

i=O 

We make considerable use of the following properties.of circulants: 

(i) ~ = (0, O, •••, 1, •••, 0) is a circulant with a one in the 

j + 1 position of the first row. 

(ii) Pn = Pj(~-j) =I= P0 , and so pn-j = P-j = (Pj)-l 

(iii) Multiplication of ~ circulant by Pj shifts all elements in 

each row j columns to the right in a cyclic manner, and 

multiplication by P-j·shifts them j columns to the left 

in a similar manner. 

(iv) The inverse of a circulant is a circulant 

c-1 = A = (aO' a1, a2, • • ·, an_1 ) • 

(3) 



(v) For i denoting a vector of ones, C! = s~ where s is the row 

-1 1/ sum of each row. When C exists, its row sum is s since 

-1 -1 1 = C C1 = sC 1 • - - -
(vi) The characteristic roots of C are 

n-1 . 
~. = E c.r~ , i=l,2,•••,n 
~ j=O J ~ 

n where the ri are the n roots of r = 1 • The corresponding 

characteristic vector is vi= (1 r. r~ ••• r~-1 )' • 
- ~ 2 l 

(vii) Circulants commute in multiplication. 

Circulant matrices and functions of circulant matrices arise in a vari-

ety of applications. Their uses in solid state physics are discussed in some 

detail by LOwdin, Pauncz, and de Heer [8] and by Gilbert [5]. The first of 

these considers 3 methods of obtaining the inverse of certain special circu-

lant (overlap) matrices using Chebyshev polynomials of the first and second 

kind and giving some asymptotic results. The second presents a method of 

transforming to diagonal form, inverting, and then transforming back to orig-

inal form, using the characteristic roots of a circulant C and the matrix 

which diagonalizes it, which are known. Abraham and Weiss [1] and Calaib 

and Appel [3] also utilize this fact, although their expressions for invert-

ing overlap matrices are rather complex, involving Chebyshev polynomials and 

integrals that have to be evaluated by numerical integration or infinite sums 

of complex numbers. 

In a more recent paper, Cline, Plemmons, and Worm [4] give an expression 

for the Moore-Penrose inverse of a circulant, using finite sums of terms in-

volving the characteristic roots of the matrix and powers of a primitive root 

of unity. A related expression was obtained by Good [6] in a statistical 

application. 
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The purpose of this paper is to obtain a simple and readily computable 

inverse for a circulant with real elements. In section 2 we discuss a method 

of recurrence equations for obtaining inverses of certain patterned matrices. 

This method is applied in section 3 to the circulant C = (a,b,O,o, ••• ,c) 

and simple closed for.m expressions for elements of C-l are obtained. In 

section 4 we extend the procedure to_general circulants. Finally, in section 

5 we consider the inverse of C + AJ = (c0 +A, c1 +X, c2 + ~' •••, cn-l +A), 

and obtain the MOore-Penrose inverse for singular circulants C with 
n-1 
E c. = 0 • 

i=O ~ 

2. A GENERAL METHOD OF INVERSION 

A method for inverting certain patterned matrices from recurrence equa-

tions is given in I~unias [7]. Suppose C is a patterned matrix of order n 

whose inverse is sought. Consider the equations 

z~ w 

z2 w2 
I 

c = 
• 
n z w n 

written in an obvious way as C~ = ! Their solution for ~ is z 

on writing 

for i,j = 1,2,•••,n 

-1 n j 
the i'th element of~= C ~is z. = E ai.w so that 

~ j=l J 

aij = coefficient of wj in zi • 

(4) 

-1 = C ~ and 

(5) 

(6) 



It is the pattern in C th~t gives rise to (5) being recurrent equations for 

the z. • Solving them by traditional m~thods for solving such equations gives 
~ 

an expression for z. to which (6) can be applied. 
~ 

3• 3 -ELEMENT CIRCULANTS 

3. 0 Summary 

Consider first the particular circulant with only three non-zero elements 

in each row 

c = (a,b,o, ••• ,o,c) (7) 

We find the inverse of this circulant for general n • It is apparent that 

any circulant with 3 consecutive non-zero elements in the first row and the 

remaining zero can be brought to the form of (7) by multiplication by ~ for 

appropriate j • Its inverse is then C-lP-j, representing just a cyclic shift 

of the elements of the rows of C~l • Through inverting (7) we therefore obtain 

the inverse of any circulant that has only 3 non-zero elements in its first 

row, located in cyclically consecutive positions. Such a matrix we will call 

a 3-element circulant. 

We denote the inverse of C by A, which is of course a circulant: 

-1 ( C =A= a a ••• a ) 0 1 n-1 

For convenience, the expressions obtained in the remainder of this section for 

a., j = 0, 1, • • •, n-1, the elements of A, are summarized in the following theorem. 
J 

Effort has been made to express them in their most computable form. 

.. 
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~~-1 For y1 and y2 being roots o~ the quadratic equation by2 + ay + c = 0, 

namely 

elements o~ the inverse c-1 =A= (a0 a1 ••• an_1) o~ the 3-e1ement circulant 

C = (a b 0 • • • 0 c) o~ order n are as ~ollows: 

(a) C is singular wheD a + b + c = 0 or when n is even and a = b + c • These 

cases are there~ore excluded in (b)--(e). 

(b ) When a 2 - 4bc > 0 and b F 0 

- y2 J"=O 1 ••• n-1· 
n-j l 

n ' ' ' ' • 1 - y 
2 

(c) When a2 - 4bc < 0 

n-j-1[ ) n J = r sin(n - j. e + r sin(je) 

aj b sin e[l - 2rncos(ne) + r2n] ' 

where 

j=O, 1, • • • ,n-1 , 

(d) When a2 - 4bc = 0, (b F 0), then y1 = y2 = y = - a/2b and 

j=O, 1, • • •, n-1 

(e) When b = 0 let y = c/a, a F 0, then 

and 
n-j aj = aoY , j=l,2,•••,n-l • 
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3.1 Inversion by Recurrence Equations 

The method of section 2 applied to C of (7) gives equations Cz = w of (4) 

whose typical form is 

(8) 

Kounias [7], for a matrix like (7) but lacking the off-diagonal corner ele

ments, gives the general solution of (8) as 

i+l w i i 
z. = +pyl +qy2 

J. bw2 + aw + c 
(9) 

where y1 and y2 are roots of 

by2+ay+c=O (10) 

namely 

- a :t /a2 - ·4bc = 2b (11) 

In (9), the p and q are derived from boundary conditions on the zi deter.mined 

by the for.m of c in c~ = !' ,these being, for (7) 

This yields 

i+l 
w 

zi = ------+ 
bw2 + aw + c 

z = z 0 n and (12) 

~vhich, after writing bw2 + aw + c = b(w - y1 )(w - y2 ), expressing its recipro

cal in partial fractions and expanding those as infinite sums leads to 
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1 [ CD k k • k 
z. = (y1 - y2) E_ (yl - ~2)w1· 

1 b(y - Y. )2 k-1 1 2 

i 

- ( y1 n 
1- y 

1 

i CD 

Y1~2n) L k k k n k ( . )( - - ) y1 - y2 w ... w 
1 - y2 k=1 

(13) 

-1 . 
Now in applying (4) to (13) to obtain elements of C we use property 

-1 (iv) of section 1, and seek only the elements of the first row of C • Hence 

for using (4) we consider only z1 • Furthermore, since. we then require only 

the coefficients of wj in zi for j = 1,2,•••,n, we can in z1 ignore all powers 

of w that are outside the range 1 through n • Putting i = 1 in (13) and ig-

noring these powers gives 

n-1 
1 n) ~ ( k k) n-k 

~ yl - y2 w 
1 - y2 k=l 

The j'th element in the first row of A= c·1 is then the coefficient of wj in 

zi and this reduces to being 

for j=1,2,••• 1 n • (14) 

n 
It is easily verified, using (11), that E a1 . 1 = 1/(a + b +c), as it should, 

j=1 1 J-

in accord with property (v) of section 1. In ter,ms of (2) and (3} 
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C_n-1 
C = ai + bP + .1:' 
n n n 

and 

-1 n-1 _i c = ta.J:'¥ 
. n j=O j n 

for 

with a.j of (16) being al,j-l from (14) so that 

This is result (b) of Theorem 1. 

3.2 Existence of inverse 

iP =I 

for j=O,l,·••,n-1 • 

(15) 

(16) 

(17) 

Before proceeding to calculate (17) for elements of the inverse we must 

notice 2 situations in which alternative for.ms a.re needed and 2 cases in 

which there is no inverse. 

First, although y1 - y2 is part of the denominator of (17) it is also 

a factor of the numerator. Hence when y1 = y2, i.e. a.2 = 4bc, the factor 

y1 - y2 could be removed from both numerator and denominator of (17). How

ever, equality of y1 a.nd y2 means that the recurrence equation (8) will have 

a. solution different from that given in (9) and correspondingly the elements 

of c-1 will differ from those in (17). They a.re derived in section 3.4, and 

summarized as result (d) of Theorem 1, 

Second, (17) does not exist if y1 or y2 a.re unity. From (11) this means 

that 2b +a = ± /a2 - 4bc, in turn implying b(a. + b + c) = o, i.e., b = 0 or 

a + b + c = 0 • When b = o, the for.m of the recurrence equation (8) is 
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changed so that (9) is not its general solution and (17) does not give the 

-1 corresponding elements of C • They are derived in section 3·5 and stated 

as result (e) of Theorem 1. 

We just observed that (17) does not exist when a + b + c = 0 • This is 

so because C is then singular because, as is obvious from (7), a + b + c is 

a factor of lei . It is also clear that (17) does not exist for even values 

of n when either y1 or y2 are - 1 • From (11), this means (17) precludes an 

inverse when a- 2b = z/a2 - 4bc, i.e., b(a- b- c)= 0. The case b = 0 

has already been dealt with, but precluding a = b + c requires substantiation 

It is readily available from property (vi) of section 1, which indicates that 

n-1 for a matrix like (7), of order n, the latent roots are ;\.. = a + br + cr 
i i 

, 
where ri satisfies rn = 1. For n even, one, such ri is- 1, which gives 

A = a - b - c which is zero for a = b + c and there is then no inverse. Hence 

a + b + c = 0 and a = b + c for even n constitute the exclusions of part (a) 

of Theorem 1. 

3.3 Calculation of Inverse 

Other than the exclusions just discussed, the calculation of (17) presents 

no problems when y1 and y2 are real. But when they are complex, calculation 

of (17) as it stands would involve manipulation of complex numbers even though 

the resulting value is always real. Avoidance of complex numbers can be 
I 

achieved ~y using some elementary trigonometry. 

Note that from (ll) y1 and y2 will be complex only when 4bc > a2 and 

this can occur only when b and c have the same sign. Define 
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which is always real, and 

a . -1/,A!:bc. - a2 j ) -1 J a2 
= sJ.n \ 2b r = sin 1 - 4bc • 

Then for i = ~~ 

yl ~ r(cos e + i sin e) and y2 = r(cos e - i sin e) 

Substitution of these values into (17) along with utilizing de Moivre's 

theorem [that (cos a + i sin e)n = cos(ne) + i sin(ne)J leads after a little 

reduction to (17) becoming 

_ rn-j-l[sin(n - j)e + rn sin(je)] 

aj b sin 9[1 - 2rn cos(ne) + r2n] 
(18) 

for j=O,l,•••,n-1 

This is result (b) of Theorem 1. It is real, and is quite computable. It is, 

of course, applicable o~y when 4b~ > a2 · and not when any of a + b + c = 0, 

a - b - c = 0 for even n, b = 0 or a2 = ~be are true. 

3.4 Inverse when a2 = 4bc I. 

Continuing to exclude a + b + c = 0, and a - b - c for n even, we here 

derive C-l for a2 = 4bc • In this case y1 = y2 = y = - a/2b of (11) and the 

recurrence equation (8) now has not (9) as its solution, but 



-11-

i+l 
w 

zi = ------ + (:p + qi)yi 
bw2 + aw + c 

where p and q are again determined from the initial conditions (12). This leads 

after a little manipulation to 

[ ] 
i~ w ( 1 - wn) n-:fl y w 

zi = -------- + -- + i yi + ----
by(y-w)(l-yn) 1-yn w-y b(y-w)2 

(19) 

for i=l, 2, • • ·, n and for y= - a/2b • 

Again, in applying (6) to (19) we only need find elements of the first 

row of C-l and so can consider (19) just for i = 1 • This, after expanding 

the terms (y - w)-l and (y - w)-2, becomes 

'·-

n-1 ( n) ny wl-w I t:;'f -~ (1- --w: -1) I (k + ll'J)k 
k=O by2 1 - y k=O 

z = ----------
1 

The coefficient of wj for j = 1,2,•••,n in this is 

yn-j ( n n + 1 - j) 
b(l - yn) 1 - y 

-1 and so for (16) the elements of the first row of C are 

n-1-j 
a. = Y ( n n- j) 

J b(l - yn) 1 - y 
for j=O,l,···,n-1 • 

This is section (d) of Theorem 1. As before, it is easily verified that 
n-1 

t a. = 1/(a + b +c) • 
j=O J 

(20) 

(21) 

(22) 



3·5 2-Element Circulants 

Section 3.2 indicates that when b = 0 in a 3-element circulant the recur-

renee equation is modi~ied and requires a different solution. This is so be

cause b = 0 reduces the matrix to being a 2-element circulant of the for.m 

C = (a 0 ~ ••• 0 c) 

The recurrence equation (~) is now 

for which a general solution is 

with 

i 
czi-l + az1 = w 

y = - c/a 

(23) 

The coefficients p and q are derived from the boundary condition z0 = zn' so 

leading to 

_ w [ i ~ - w~i]. z - w - • i n 
c + aw - y 

Putting i = 1 and expanding (c + aw)-l = (1 - y/w)-1/aw gives 

~ ~ 

_ 1 [ L k 1-k y(l - wn) L. k -J z -- yw - yw • 1 a 1 n 
k=O - y k=O 

The coefficient of w in this is 
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and that of wj for j = 2,·••,n is 

Hence with C of (23) being of the for.m 

n+l-j y 

_n-1 
C = ai + c.t' 

its inverse is (16) with 

1 
ao = 

a(l - yn) 

and 

a. = n-j for 
J aoY 

This result is section (e) in Theorem 1. 

= 1/(a +c), as it should. 

4. k-ELEMENT CIRCULANTS 

j 

where y = -c/a 

(24) 

= 1, 2, • • • ,n-1 

n-1 
It is easily verified that Ea. 

j=O J 

The 3-element circulants are easy to invert in the manner described be-

cause they give rise to second-order recurrence equations whose solution de-

pends on a quadratic equation, and this can always be solved. Inverting a 

k-element circulant, one having k consecutive cyclic elements with first and 

last being non-zero, will correspondingly come from solving a (k -1)-order 

recurrence equation, whose solution depends upon a polynomial equation of 

order k - 1 • Whenever this permits of simple factorization the recurrence 

equation can be solved and the elements of the inverse obtained by deriving 

the coefficient of wj in zi • Even with simple factorization of the polynomial, 
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the algebra is likely to be tedious for k exceeding 3 or 4 • However, we now 

show how Theorem 1 can be used directly to obtain the inverse of a k-element 

circulant of order n • 

Suppose 

C = (c0, c1, ••• , ck-l' o, o, 
k-1 i 

···, 0) = E c.P 
i=O l. 

(25) 

is a k-element circulant of order n • We note that multiplication by appro

priate rJ puts any k-element circulant into this for.m; and any circulant of 

order n may be regarded as an n-element circulant. Suppose the polynomial 

corresponding to (25) 

(26) 

has roots a1, a2, • • •, 5k-l • Then it follo~o~s that 

is a product of k - 1 two-element circulants •. If k - 1 is even, (k - 1)/2 . 
pairs of roots may be formed as (5il'ai2 ) i = 1,2,•••,(k- 1)/2, where complex 

conjugate roots will occur in pairs, to yield 

(k-1)/2 
C = 1 (P - 5il I)(P - 8i2I) = (28) 

i=l 

l<lhere 

Thus C is the product of (k - 1)/2 three-clement circulants, and 

-1 (k-rr/2 )-1 
C = (p2 + o:.P + "1. 

I l. 1 
(29) 

i=l 
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each of which can be obtained explicitly from Theorem 1 • If (k - 1) is odd, 
•. - ' ··. '"'f ., :. 

C is the product of one 2-element and (k - 2)/2 three-element circulants and 

an expression similar to (29) is obtained. 

Thus the inversion of a k-element circulant reduces to finding the roots 

of a polynomial of order k - 1 and the multiplication of (k - 1)/2, or 

1 + (k - 2)/2, circulants. 

5 • THE lNVERSE OF C + ~J 

n-1 i 
Let J be a square matrix with every element unity, that is J = E P • 

i=O 
In this section we consider the inverse of C + ~J both when C is non-singular 

and when the row sums of C are zero. This latter case arises frequently in 

statistical applications, as for example in Anderson [2]. 

5.1 C Non-Singular 

Let s denote the row sum of C so that CJ = sJ • Solving 

for ¢ we obtain 

(C + A.J)(C-l + ¢J) = I 

(C + AJ)-l = C-l - _ __;A. __ J • 
s (s + ni-) 

Thus when k elements in the row of an n-element circulant are all the same, 

the inverse of that n-element circulant is easily derived from (30) using the 

inverse of an (n - k)-element circulant. It also follows from (30) that 

(C + A.J)-1 - (C + 9J)-l = - (>- - 9) J • 
( s + l1A )( s + ne) 

(31) 
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5.2 C Singular.-Generalized Inverse 
n-1 . 

When the row sum of Cis zero the characteristic root t c.(l)1 corre
i=O 1 

sponding to the vector ! is zero. This is the only zero root when C has rank 

n - 1 and (C + ~J) then has one root nA and the remaining are the non-zero 

roots of C • This is an important case since this is precisely the situation 

for the infor.mation matrix obtained from an experimental design known as a 

connected block design developed cyclically from an initial set of blocks 

[Anderson (2)]. We show that when the row sum of C is zero the circulant 

Q = (c + ~J)-1 (32) 

is a generalized inverse of C (meaning only tha.t cQC = C) • First, if sQ is 

the row sum of Q, property ( v) of section 1 gives 

and 

Also by definition, Q(C + AJ) = I so that 

When C ha.s a zero ro-t~ sum 

sc = 0 and JC = 0 (33) 

and 

Then 

-1 
CQC = C - n CJ = C • (35) 



Hence for C having zero row sum, Q = (C + ~J)-l is a generalized inverse of 

C • Similarly 

C(Q + TJ)C = C + ~sCJC = C , 

showing for any T that Q + TJ = ( C + ~J) -l ·+ TJ is also a generalized inverse 

of C • From this, we establish the following theorem. 

Theorem 2 When C is a circulant of order n and rank n - l with row sum 
~ 

sc = o, then 

(37) 

is the unique MOore-Penrose inverse of C for any non~ero ~ 

.PJ..O..c:J. Because Q* = Q + TJ for T = - l/~n2 , from (35) we see that CQ*C = C • 

Also, from (33), (34) and (37) we find that Q*C = I - (1/n)J which is symmetric; 

and by property (vii) of section l Q*c = CQ*, and so CQ* is also symmetric. 

Finally 
l ' 

Q*cQ* = (I - n- J)Q* = Q* - (sQ*/n)J 

where from (37) and (34) 

and so Q*CQ* = Q*, and the proof is complete. 

It is noteworthy from (32) and (35) ,that Q = (C + AI)-l is a generalized 

inverse of C for any non-zero A • Although for the case of non-singular C an 

expression for the difference 

D = (c + AJ)-1 - (c + aJ)-1 

was obtained in (31) on the basis of C-l in (30) existing, the analogous result 
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-1 for C not existing can also be derived. This is so because by direct multi-

plication 

D(C + 9J) = (C + ~J)-1 (C + 9J) - I 

= QC + 9QJ - I 

a - A. =--J from (}4 ). 
W.. 

Hence on using J(C + eJ)-1 = (1/ne)J from (34), 

which is exactly (31) with s = 0 • 

5.3 Calculations for 3-Element C 

When C is non-singular, (C + )..J)-l is obtained from (30) using section 

-1 (b), (c) or (d) of Theorem 1 for C • 

When C is singular with a + b + c = 0, the inverse of C + A.J must be de-

rived by adaptation of the general procedure used in section 3· The results 

are summarized in the following theorem. 

~ When C is a 3-element circulant of order n and rank n - 1, with 

non-zero elements a, b and c with a + b + c = 0, then (C + A.J)-l = A 

= (a0, a1, •••, an_1 ) where: 

(a) For y = - c/(a + c) F 1 

1 [-(n + 1) + j_ + 1 

a + 2c 2n n n(1 - y) 
- Yn-j n] ' 

1 - y 
j=O,l,2, • • • ,n-1 
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and 

(b) for y =.- c/(a + c} = 11 i.e., b = c = - ia, 

a. = -1_ _ n2 - 1 + j(n - j) , 
j )..n2 12nc 2nc 

j=O,l,•••,n-1 • 

Proof Equation (4) using C + )..J in place of C gives rise to the recurrence 
,....._~ ! 

'. 
equation 

cz. 1 + az1 + bz.+l + )..~z. = wi 1- 1 1 1 

\-lith the same boundary conditions as in (12), namely · 

z = z 0 n and 

Summing (39) and using (40) and a. + b + c = 0 gives 

~z = JL~ wi = w(l- wn) 
1 i · · )..n 1 )..n ( 1 - w) 

(39) 

(40) 

(41) 

Then, subtracting from (39) the equivalent equation having right-hand side 

i•1 t i . b 0 w \'7e ge on a.ga. n us1ng a. + + c = 

czi_1 + (a - c)z1 - (2a. + c)zi+l + (a + c)zi+2 = wi(l - w) (42) 

Defining ui = z1/wi(l - w) the recurrence equation then depends on the cubic 

(a. + c)w3x3 - (2a + c)w2x2 - (a - c)wx + c = 0 

which has roots x = 1/w, 1/w and - c/w(a + c) • Hence, writing 

y = - c/(a. + c) (44) 

the solution for z. is 
l. 

(45) 
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where a, ~~ y and 8 are constants to be determined from the boundary condi-

tions (40), the sum (41), and the general recurrence relationship (42). 

After considerable detail z. is found to be 
J. 

zi 
= w(l - wn) (1... _ 1 tn + 1 _ i + _.....:1=---....:;wy:.w.-_ 

n(l - w) M1 a + 2c 2 (1 - w )(1 - y) 
(46) 

w: y [<~ -_ ~:i -(~ ~ ~l]}) . 
On putting i = 1, ignoring te~s in wn and expanding (1 - w)-1 and (1 - w)-2, 

we find that the coefficient of wj+l in z1 for j = O,l,•••,n-1, which we call 

aj reduces to 

1 
l [-

(n + 1) +J.+ 1 n-j ] 
aj = -- - y 

~n2 + 2c 2n n(l - y) 
n a n 1- y 

(47) 

for j=O,l,2,•••,n-l 

Thus is established part (a) of Theorem 3· 

It is clear that (47) does not hold for a + 2c = 0 or y = 1 • From (44), 

these conditions are equivalent and together with a + b + c = 0 they imply 

a = - 2c and b = c • With these values the roots of (43) are all 1/w and so 

the solution to (42) is, in place of (45) 

2 i z1 = (a + ~i + Yi )(1 - w) + 8w (1 - w) (48) 

After further tedious manipulation to detennine a, ~~ y and 8 of (48), using 

(40), (41) and (42), all with a = - 2c and b = c, the expression for z. becomes 
J. 
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z. = w(l- wn) + w(l-wn) }[2 + n(l -w)] (i-n+ 1) 
~ "An2 ( 1 - w) 2nc ( 1 - -w )2 \ 2 

_ [ 12 _ ( n + 1 H2n + 1)] (1 _ w) _ 2w ( __L _ nwi-~ )\ 

6 '1.-w 1-w J 
Putting i = 1, ignoring ter.ms in wn and expanding negative powers of (1 - w) 

' 

we reduce z1 to 

co CD 

zl = [, 1n
2 

_ (n - 1)(n - 5 j I wk _ n - 1 L kwk 

~ 12nc k=1 2nc k=l 

CD 

+ ~ ~ 
k=2 

k (k - 1)w 

The coefficient of w in this is 

co 

1 ) ~k(k - 1)wk nc -.. 
k=2 

1 
a =-- (n - 1) (n - 5) _ n - 1 = _1 __ n2 - 1 
11 Xn2 12nc 2nc 

and the coefficient of wj for j > 1 is 

1 
= -- (n - l)(n - 52 _ (n - l)j + j - 1 _ j (j - 1) 

12nc 2nc c 2nc 

which simplifies to 

= {j - 1)(n + 1 - j) 
alj all + 

2nc 
for j=l,2, •·• • ,n • 

Hence the elements of the first row of (C + ).J)-l are 

= ~ _ n2 - 1 + j(n - j) a. 
J A.n2 12nc 2nc 

as stated in Theorem 3(b). 

for j=O,l,•••,n-1 (49) 
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