
Inverting RANSAC: Global Model Detection via Inlier Rate Estimation

Roee Litman∗ Simon Korman∗ Alex Bronstein Shai Avidan

School of Electrical Engineering, Tel-Aviv university

Abstract

This work presents a novel approach for detecting in-

liers in a given set of correspondences (matches). It does

so without explicitly identifying any consensus set, based

on a method for inlier rate estimation (IRE). Given such an

estimator for the inlier rate, we also present an algorithm

that detects a globally optimal transformation. We provide

a theoretical analysis of the IRE method using a stochas-

tic generative model on the continuous spaces of matches

and transformations. This model allows rigorous investi-

gation of the limits of our IRE method for the case of 2D-

translation, further giving bounds and insights for the more

general case. Our theoretical analysis is validated empir-

ically and is shown to hold in practice for the more gen-

eral case of 2D-affinities. In addition, we show that the

combined framework works on challenging cases of 2D-

homography estimation, with very few and possibly noisy

inliers, where RANSAC generally fails.

1. Introduction

The problem of image correspondence is a fundamental

problem in computer vision, as it arises as a primitive in

many tasks such as image retrieval, 3D reconstruction and

panorama stitching. While some works solve these types

of problems using direct methods [11, 5, 8], the vast major-

ity of recent methods use large sets of matching (pairs of)

points as their entry point, later discarding the content of the

images. This is largely due to the tremendous improvement

over the last decades in algorithms for detecting stable im-

age feature points and representing them by descriptors that

are designed for the task of matching [10, 13, 14].

The desired outcome of such a point matching process is

that a large portion of the matches is accurate, while only a

few of them (preferably none) can have arbitrarily bad er-

rors. These two groups of matches are called inliers and

outliers, respectively. The final step of image matching is

therefore to robustly detect the “true” transformation under-

lying the inliers while ignoring the outliers. In practice, this
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Figure 1. Our approach is “orthogonal” to RANSAC, which

assumes a fixed error-threshold for inliers and then searches for

a model that maximizes the inlier rate. Our method works in an

opposite order: the inlier rate of matches is first estimated from the

data and then, a model that minimizes the error of such a portion

of inliers is searched for.

is most commonly formulated as the consensus set maxi-

mization problem, where the goal is to find a maximal set

of matches that agree on a model, up to some tolerance.

This work presents a different approach, as is illustrated

in Figure 1. The green curve is a cumulative error dis-

tribution of matches between a pair of images, under a

ground-truth transformation. In RANSAC (and any other

consensus-set-maximization approach), a fixed error thresh-

old is chosen and a model with a maximal number of inliers

within the threshold is searched for (depicted by vertical

red lines, for different thresholds). Our approach, on the

other hand, first estimates the true inlier rate of the matches

(about 70% in this example) and then searches for a model

with lowest possible match errors over the detected portion

of matches (depicted by the blue horizontal arrow).

The portion of inliers and the noise level of inlier

matches are generally unknown, and any a-priori choice of

error threshold is rather arbitrary. Our inlier rate estima-

tion (IRE) method makes a principled prediction based on

minimizing an indicative quantity, denoted v(p), over any

possible inlier rate p. The measure v ’counts’ the number

of transformations (or portion of transformation space) that

have a p-tile error ’similar’ to the best one possible. It turns

out that v has a very particular behavior around the true in-

lier rate, where it attains a surprisingly clear minimum.

As a combinatorial metaphor of this phenomenon, con-

sider a bag with N balls, k of which are white, and the re-

maining N−k are black. In this metaphor, white and black

balls correspond, respectively, to inliers and outliers. Also,

a ’selection’ of balls represents a transformation and v is the
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number of ’good’ possible selections. One has an estimate

k̂ of k and wishes to pick k̂ balls with as many white ones as

possible. If k̂ is an underestimate of k, there are
(

k
k̂

)

many

options to do so. On the other hand, if k̂ is an overestimate

of k, all the k white balls must be selected along with k̂− k
additional black balls, for which there are

(N−k
k̂−k

)

options.

These two cases coincide at k = k̂, where the number of

options attains its minimum.

1.1. Prior work

A globally optimal solution for consensus set maximiza-

tion can be obtained by naı̈vely going through all possible

subsets of matches, a task of exponential magnitude. Nev-

ertheless, many heuristics for its efficient approximation or

full solution have been suggested in the literature, some

with theoretical guarantees. These works, at large, can be

divided into the following two categories.

RANSAC based techniques In RANSAC [4], the space

of parameters is explored by repeatedly selecting random

subsets of the matches for which a model hypothesis is fitted

and then verified. A recent comprehensive survey and eval-

uation of RANSAC techniques by Raguram et al. [16] also

suggests USAC – a uniform pipeline that combines several

of the known extensions (e.g. [2, 12, 3]) in addition to many

practical and computational considerations. USAC shows

excellent results on a variety of transformation groups (e.g.

Essential, Fundamental, Homography), in terms of accu-

racy, efficiency, and stability. Another interesting exten-

sion of RANSAC by Raguram et al. [17] claims to eliminate

the need of the inlier-threshold input of RANSAC without

harming exactness, at only a modest increase in runtime.

Global optimization techniques This line of works aims

at overcoming the unpredictability of RANSAC-based tech-

niques, which is due to their inherent random nature. Sim-

ilar to RANSAC, their formulation of consensus-set maxi-

mization uses a predefined inlier error threshold, which is a

clear disadvantage. Ollson et al. [15] presented an approach

based on theory from computational geometry. They give

an O(kη+1) polynomial time algorithm, for the case of k
matches and transformation space of η DoF. This method

could not be used in practice for spaces of more than a few

DoF. Li et al. [9] proposed a solution that formulates the

problem as a mixed integer program (MIP), which is gener-

ally NP-hard. However, they solve it exactly via relaxations,

using a tailored branch-and-bound (BnB) scheme that in-

volves solving a linear program at each node. While this

approach generalizes nicely to other domains [1, 19, 20],

unlike RANSAC it has not been shown to be efficient in

challenging real-life cases where the portion of inliers is

very small. The BnB scheme we propose involves much

simpler calculations (computing and sorting match errors)

and can be applied successfully on such challenging cases.

1.2. Contributions

This paper has three main contributions. First, a scheme

for efficiently sampling the space of transformations. Sec-

ond, an algorithm for finding the best transformation for a

set of matches, given the rate of inliers, with global guaran-

tees. This algorithm has low practical applicability without

our third, main, contribution - an algorithm (IRE) for esti-

mating the rate of inliers in a given set of matches, without

explicitly detecting them.

In addition, we present a rigorous analysis of the IRE al-

gorithm and validate our analysis in several settings. We

also show that our complete framework, which we term

GMD, can work on challenging data with accuracy com-

parable to the state-of-the-art.

2. Method

Our algorithm gets as input a set of matches between

a pair of images and a group of transformations to search

through. As opposed to common practice, our philosophy

is to first search for the rate of inliers (Section 2.3) and then

search for the transformation with the lowest possible error

over the specific rate of inliers (Section 2.2). These two

components of the algorithm rely on a sampling regime of

the space of transformations T (Section 2.1).

Preliminary definitions Let I1 and I2 be a pair of im-

ages, defined w.l.o.g. as 2D continuous entities on [0, 1]2.

A match m = (x1,x2) is an ordered pair of points x1 ∈ I1
and x2 ∈ I2 and thus we can denote the domain of matches

to be the product of image domains,M = [0, 1]2×[0, 1]2.

We denote by T a group of parametric transformations;

we are mainly interested in the typical groups of transfor-

mations between pairs of images (i.e. functions from R
2

to R
2), with different degrees of freedom (DoF), such as

Euclidean (3 DoF), Similarities (4 DoF), Affinities (6 DoF)

and Homographies (8 DoF). In some of the cases we would

like to further consider only a subspace of the group restrict-

ing, e.g., the maximum scale or the range of translation.

For any transformation t ∈ T and match m =
(x1,x2) ∈ M we define the error of the match m with

respect to t to be the Euclidean distance in I2:

err(t,m) = ‖x2 − t(x1)‖2 (1)

Furthermore, we define a “worst-case” distance between

any two transformations t1, t2 ∈ T ,

dT (t1, t2) = max
x1∈I1

‖t1(x1)− t2(x1)‖2. (2)

This distance measures how far apart can any source im-

age point be mapped by the two considered transformations.
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Figure 2. Construction of the sampling Sε : A Cartesian grid

(black points) with step size
√
2ε over the image I2 (black rectan-

gle) defines the sample. For a transformation to be a part of Sε,

it has to map all four corners of I1 to four points on the grid. An

example of a valid map is shown in green, and two non-valid maps

are shown in red.

The well-known Sampson error (see e.g. [6]) is obtained by

replacing the max in (2) with an average. dT can easily be

shown to be a metric, and will be used in the construction

of a sampling of T .

2.1. Efficient sampling of T
In what follows, we construct a nearly uniform sample

S of the transformation group T . For a given resolution

parameter ε > 0, we define a 2D Cartesian grid with step

size
√
2ε over the image I2 (or a padded version of it). The

sample Sε = {t1, . . . , tn} is simply the subset of transfor-

mations in T that map all four corners of I1 to distinct grid

points over I2, as is illustrated in Figure 2. Under the defi-

nition of the distance dT (2), the covering and packing radii

of Sε can be shown to be ε and ε/
√
2, respectively, result-

ing in an ε-net. As is done in [8], the size of the ε-net can

be shown to be O(ε−η), for T with η DoF.

Another useful property of the sample Sε can be seen by

examining the Voronoi tessellation it induces on the space

T . For any match mj ∈ M and any ti ∈ Sε, the error

err(ti,mj) differs by at most ε from the error err(t,mj) of

any other transformation t in the Voronoi cell of ti. This

follows from dT (ti, t) < ε and the triangle inequality on

dT . Furthermore, this property holds for various statistics

over the match errors in M , such as the mean, median or

any other percentile.

2.2. Searching for an optimal transformation

The algorithm presented here finds an approximation

tmin for the optimal transformation t⋆ ∈ T , given an esti-

mated inlier rate p̂. By optimal we mean that the mean of the

best p̂-tile of match errors of t⋆ is the lowest possible over

This requirement prevents usage for spaces that allow only “rigid”

rotations like similarity transforms, but it is easy to define an alternative

sampling for these cases, as is done in [7].

This means that any two samples in Sε are at least
√
2ε apart and that

any t ∈ T has at least one sample in S that is at most ε away from it.

input: Inlier-rate estimate p̂; matches M ; resolution ε;
output: Estimate tmin of the best transformation t⋆

1. Construct a sample Sε of T (Section 2.1).

2. Compute an error matrix E, with entries

eij = err(mi, tj) for eachmi ∈M (rows) and each

tj ∈ Sε (columns).

3. Sort each column of E by increasing error

(as a result every row represents a percentile p).

4. Replace each column by the cumulative average of

its entries (as a result each entry holds the average

of match errors from lower percentiles).

5. Extract from E the row ep̂, that corresponds to the

percentile p̂.

6. Find the transformation tmin, that attains the mini-

mal error in ep̂, denoted as rmin(p̂).

branch-and-bound extension

7. If ε is low enough: terminate and return tmin.

8. Discard all transformations (columns) that have

ep̂ > rmin(p̂) + ε.

9. Replace the remaining samples of Sε with their

children in Sε/2.

10. Set ε← ε/2 and go to step 2.

Algorithm 1: Finding the best transformation through

branch-and-bound (BnB).

all t ∈ T . To achieve this, we make use of the previously

mentioned sample Sε, and refine it only around promising

regions in a branch-and-bound (BnB) manner. This method

follows the lines of the template-matching method intro-

duced in [8], and is summarized as Algorithm BnB.

Since the procedure can be repeated in a recursive man-

ner, the error of the resulting tmin can approach arbitrar-

ily close to that of t⋆. In the BnB process, we are guar-

anteed to never discard the Voronoi cell that contains t⋆,

centered at some t ∈ Sε. This is due to the fact that the

error rmin(p̂) can not be lower than that of t by more than

ε. The complexity of one BnB iteration can be shown to be

O(kε−η + k log k), for k matches and T with η DoF.

2.3. Estimating the inlier rate

Since the inlier rate is seldom known in practice, we in-

troduce Algorithm IRE, a practical procedure that finds an

estimate p̂ of the “true” inlier rate p⋆ in the set of matches

M . In order to do so, we introduce a quantity (denoted by

vε(p) in the algorithm) that depends on the sample density

ε and is a function of the inlier rate p. This quantity is very

easy to compute and the main insight of the paper, is that it

attains a minimum at the “true” inlier rate p⋆. In Section 3,

we give an extensive theoretical analysis of the existence of



input: Set of matches M ; Sample resolution ε
output: Estimate p̂ of the “true” inlier rate p⋆

1. Construct a sorted error matrix E

(steps 1-3 in Algorithm BnB).

2. Calculate a column vector rmin by taking the min-

imal error from each row of E.

3. Calculate a column vector vε(p) by counting the

number of entries in each row of E that are at most

ε larger than their respective value in rmin.

4. Take p̂ to be the relative location of the minimal

value in vε(p).

Algorithm 2: Inlier Rate Estimation (IRE).

this minimum.

To understand the idea behind the method, for any inlier

rate p, think of the transformation tmin(p) - the one which

attains the minimal error over any p% of the matches. It

turns out that the closer p is to the true rate p⋆, the fewer

transformations there are with error “similar” to that of

tmin(p). Our measure vε(p) counts the number of trans-

formations that can explain p% of the matches with an error

that is within a tolerance of ε from that of tmin(p).

3. IRE Theoretic Justification

In this section we give the theoretical background behind

our IRE algorithm from Section 2.3. Our formulation of the

problem uses a generative model in which the set of matches

is drawn from a distribution, which generates both inliers

and outliers. The probabilistic properties of this model will

allow us to obtain bounds on the quantity vε and to assert

that it has a local minimum around the “true” inlier rate p⋆.

3.1. Generative model for matches

Our formulation of the distribution of matches fm be-

low, is governed by 3 main factors. First, the inlier rate p⋆,

which is the probability of a match to be an inlier rather than

an outlier. Second, the “true” transformation t⋆ ∈ T which

is used to generate inlier matches. Finally, a maximal noise

magnitude r⋆ that may be added to inlier locations.

A pair of matching points m = (x1,x2) ∈ M is drawn

from the distribution

fm(x1,x2) = f1(x1)f2(x2|x1), (3)

where first the point x1 is drawn according to some arbitrary

distribution f1(x1) on I1, followed by the point x2 which

is drawn from the conditional distribution

f2(x2|x1) = p⋆ · fin(x2|x1) + (1−p⋆) · fout(x2|x1) . (4)

For example the distribution of occurrences of interest points in an

image. We ignore the case of inlier points that are mapped under t⋆ outside

of I2, for which the inlier distribution should be zero.

In our model, the inlier distribution fin(x2|x1) places x2

at the location t⋆(x1) in I2 and adds to it random noise with

maximal magnitude of r⋆, such that err(t⋆,m) ≤ r⋆. The

outlier distribution fout(x2|x1), places the point x2 at ran-

dom in I2. We assume w.l.o.g. that x2 is placed at distance

of at least r⋆ from t⋆(x1) such that err(t⋆,m) > r⋆, since

otherwise such a match can be considered to be an inlier.

As is done in different formulations regarding distribu-

tions of inliers and outliers (e.g. in consensus set maxi-

mization problems), we will later make assumptions on the

kind of noise that is added to the inliers and on the specific

distribution of the outliers, both currently left unspecified.

3.2. Probabilistic interpretation of the model

Having defined a distribution of point matches, we can

now measure probabilities over match errors with respect to

some transformation t ∈ T . Specifically, we are interested

in the probability of a matchm to have an error below some

threshold r,

pt(r) = P{err(t,m) ≤ r} , (5)

where the probability is taken over the distribution fm of

matches m. Using this notation, it is now clear that the dis-

tribution fm (specifically f2) was defined so that pt⋆(r
⋆) =

p⋆. The probability pt(r) can be computed by marginaliz-

ing over x1 ∈ I1,

pt(r) =

∫

x1∈I1

f1(x1)qt(r|x1) dx1 (6)

where qt(r|x1) is the conditional probability for a match

with a specific source point x1 to have an error less than r.

Substituting the distribution f2 defined in (4), yields

qt(r|x1) =

∫

Br(t(x1))

f2(x2|x1) dx2 (7)

where the integration domain is the Euclidean ball of radius

r centered at the target point t(x1) in the image I2.

It is worth while pointing out the fact that there is a

monotonic non-decreasing relation between the error radius

r and the probability pt(r): the higher the error threshold is

the higher the probability of a match error to be within the

threshold. This relation enables us to introduce an equiva-

lent term for the error radius r for which pt(r) = p,

rt(p) = min r s.t. pt(r) = p . (8)

3.3. Inlier rate estimation

In this section, we formulate the probabilistic version of

Algorithm IRE. This includes, the definition of the continu-

ous counterparts of the vectors vε and rmin. We first define

rmin(p) to be the best attainable error for any transforma-

tion t ∈ T that “captures” matches with probability p,
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Figure 3. Characterizing the transformation t by the distance

dt from t⋆: For a specific point x1 ∈ I1, we look at its possible

target locations in I2. The blue ball Br⋆(t
⋆(x1)) has probability

p⋆ since it contains the inlier distribution entirely. Any transfor-

mation t is associated with a red ball Brmin(p)+δ(t(x1)). For t to

be in Ωδ(p) the red ball should contain a probability of at least p.

rmin(p) = min
t∈T

rt(p).

It is easy to see that rmin(p
⋆) = r⋆, and that this value is

achieved, possibly among others, by t⋆ (otherwise the in-

liers are governed by some other, more prominent, transfor-

mation). To define the continuous counterpart of vε, we can

no longer use the sampling resolution ε. Instead, we define

an error tolerance δ. In Algorithm IRE we implicitly link

the two parameters by setting δ = ε, which is used through-

out our experiments; however, we stress that the exact rela-

tion between these parameters requires additional research.

For every p and δ > 0, we define

Ωδ(p) = {t ∈ T : rt(p) ≤ rmin(p) + δ}, (9)

as the subset of T of transformations t with error radius

rt(p) that is at most δ larger than the optimal radius rmin(p).
We take the normalized volume of the subset Ωδ(p) to be

our indicative quantity for estimating p⋆:

Vδ(p) = Vol(Ωδ(p)) /Vol(T ). (10)

We can now formulate our main claim regarding the be-

havior of our measure Vδ(p) around the true inlier rate p⋆:

Proposition 1. If both fin and fout are uniform distribu-

tions and T is the space of 2D translations, then

p⋆ = argmin
p

Vδ(p) . (11)

Proof. Let us begin by spelling out the assumption of uni-

form fin and fout. For fin we assume that the target

points x2 of inlier matches are distributed uniformly in

Br⋆(t
⋆(x1)), i.e., on a ball of radius r⋆ around t⋆(x1). For

fout we assume that the target points x2 are distributed uni-

formly on the entire image, except Br⋆(t
⋆(x1)). We denote

Technically, for the volume to be well-defined, the space of transfor-

mations has to be equipped with a measure, w.r.t. which the set Ωδ(p) is

measurable. For general Lie groups, a natural choice is the Haar measure,

which can be computed explicitly as the transformation of the volume form

in the group parametrization domain. It can be shown that Ωδ(p) is a Borel

set, and hence is measurable.
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Figure 4. Regions in the (r⋆, p⋆) plane where Proposition 1

holds. These are the regions for which dmax(p) attains a mini-

mum at p⋆. Left: The region for δ ≪ 1, the interior of the region

is colored in gray. Note that the minimum exists for a large range

of values of p⋆ and r⋆. Right: Regions for large δ values (interior

not colored). The large extent of the region, even for large values

of δ, gives intuition on the performance with coarse sampling of

T . See Supplementary Materials for a detailed discussion.

these two constant probability densities as ρin = (πr⋆2)−1

and ρout = (1− πr⋆2)−1, respectively.

The main advantage of assuming uniform distributions

is that probability calculations reduce to area calcula-

tions. Specifically, looking at Figure 3, the probability

qt(rmin(p) + δ |x1) is the one captured in the red ball

Brmin(p)+δ(t(x1)). Its calculation can be broken down to

the inlier area (intersection of red and blue balls) weighted

by ρin and the outlier area (rest of the red ball) weighted

by ρout. It follows that qt(rmin(p)+δ |x1) depends only

on the distance dt = ‖t(x1) − t⋆(x1)‖2 between the ball

centers in I2, marked in green in Figure 3. Assuming that

ρin · p⋆ > ρout · (1− p⋆) (prominence of the inlier model),

the probability qt(rmin(p)+δ |x1) decreases as dt grows.

An equivalent way of looking at Ωδ(p) follows from the

definition of rt(p) in (8)

Ωδ(p) = {t ∈ T : pt(rmin(p)+δ) ≥ p} , (12)

which leads to a sufficient (but not necessary) condition for

a certain transformation t to be in Ωδ(p):

qt(rmin(p)+δ |x1) ≥ p, ∀x1 ∈ I1 . (13)

In other words, a ball of radius rmin(p)+δ centered around

t(x1) should contain a probability of at least p, for all x1.

In the case of 2D translations, the latter condition is also

necessary. To show that, we observe that dt is constant over

all x1 ∈ I1, and so is the probability qt(rmin(p)+δ |x1) that

depends on it. The expression for pt(r) in (6) yields pt(r) =
qt(r |x1) for every x1 regardless of f1, and condition (13)

holds iff t ∈ Ωδ(p). Since dt is constant over all x1 ∈ I1,

Ωδ(p) can be defined as

Ωδ(p) = {t : dT (t
⋆, t) ≤ dmax(p)}, (14)

using the distance dT from (2), where dmax(p) denotes the

maximal distance dT at which inequality (13) still holds.
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Figure 5. Theoretical behavior of dmax(p), rmin(p) and Vδ(p)
for 2D translations for the case of p⋆ = 20% (for a specific set-

ting of r⋆ and δ). Dashed blue curve is the optimal error rmin(p);
solid blue curve is the distance dmax(p) obtained by solving (15).

Green curve is the volume Vδ(p). Left axis corresponds to the two

blue curves; right axis corresponds to the green curve.

With this interpretation of Ωδ(p) as a ball of radius dmax(p)
(in transformation space), its volume increases monotoni-

cally with the radius, and therefore Vδ(p) attains a minimum

at p⋆ iff dmax(p) does so.

To show the existence of the latter minimum, we study

the behavior of dmax(p) around p⋆. The probability

qt(rmin(p)+δ |x1) from (13) can be expressed as

qt(rmin(p)+δ |x1) = . . . (15)

ρin · p⋆ · ψ(r⋆, rmin(p)+δ, dmax(p)) + . . .

ρout·(1−p⋆)·
[

π(rmin(p)+δ)
2 − ψ(r⋆, rmin(p)+δ, dmax(p))

]

where ψ(r1, r2, d) is the intersection area of circles of ra-

dius r1 and r2 with centers at distance d (see Supplementary

Materials for closed-form expressions of rmin and ψ). The

value of dmax(p) is found by plugging inequality (13) into

(15). By performing implicit differentiation on the result,

we show that dmax(p) attains a local minimum at p = p⋆

(full derivations in Supplementary Materials), for a large

range of values of p⋆ and r⋆, illustrated in Figure 4.

The simple form of Ωδ(p) obtained in (14) for 2D trans-

lation leads to a closed-form expression for the normalized

volume, Vδ(p) = πdmax(p)
2
/Vol(T ), following (10). As

expected for a 2D space, the volume grows quadratically

with the radius. Figure 5 shows the (analytically computed)

quantities rmin(p), dmax(p) and Vδ(p) for 2D translations

as a function of p, for a specific setting of p⋆, r⋆ and δ. As

expected, both dmax(p) and Vδ(p) attain a minimum at p⋆.

While Proposition 1 is limited to only one type of distri-

bution (uniform) and one type of transformations (2D trans-

lation), we conjecture that it holds for a much wider range

of settings and provide evidence for this in Sections 4.2 and

4.3. We discuss in Section 5 possible extensions to some

more complex real-life cases and their challenges.

4. Experimental Results

We present a series of three experiments that examine the

proposed method in a gradual manner, going from theoretic
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Figure 6. Validating Vδ(p) in a synthetic 2D translation experi-

ment. We show the normalized volume Vδ(p) for different values

of δ (shown in % of image size). A good match between theoreti-

cal (dashed) and empirical (solid) curves is observed in the vicinity

of the true inlier rate p⋆. See text for details.

to real-life cases.

4.1. 2D translation ­ Synthetic data

We first wish to validate the formula for Vδ(p) for the

case of 2D translations, presented right after the proof of

Proposition 1. Since the space of 2D translations has only

two DoF we can sample it densely, and obtain a close-to-

continuous approximation of the size Vδ(p). Figure 6 shows

results on a single instance of the problem generated accord-

ing to our model, with inlier rate p⋆ = 8% and inlier noise

r⋆ of 5% of the size of I2. We compare the volume Vδ(p) as

obtained from empirical measurements (solid lines) to the

theory (dashed lines) for several values of δ (color coded).

There is an evident match between theory and practice at a

certain interval around the true inlier rate p⋆ (black dashed

line). The extent of this interval diminishes with the in-

crease in δ, a phenomenon we discuss in the Supplementary

Materials. In addition, note that all the curves attain a min-

imum at p⋆, as predicted by Proposition 1, even for high δ
values, in accordance with the solution regions in Figure 4.

4.2. 2D affine ­ Synthetic data

While our theoretic analysis was developed for a con-

tinuous space of transformations, in practice both Algo-

rithm BnB and Algorithm IRE rely on discrete samplings

Sε of the space T . The sampling density depends mainly on

memory and time considerations, and tends to be effectively

coarser for T with many DoF. In this experiment, we exam-

ine how our IRE method works under deteriorating sam-

pling resolutions on the 2D-Affine group (6 DoF). Coarse

sampling causes the method to deviate from the continuous

version in two ways. First, the calculation of rmin is an ap-

proximation of rmin(p); however, since Sε is an ε-covering

we incur an additive error of at most ε. Second, vε(p)/|Sε|
approximates the normalized volume Vδ(ε). The fact that

the sample is relatively uniform in the distance dt (Sε has

similar covering and packing radii), ensures that sample

counting approximates well the volume.

Figure 7 presents results on two instances of the exper-

iment, which were generated in a way similar to the previ-
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Figure 7. Sensitivity to sampling of a synthetic 2D affine group

example. We show here results for two challenging examples.

Left example (low inlier rate p⋆): p⋆ = 1% and r⋆ = 1%. Right

example (high inlier noise r⋆): p⋆ = 16% and r⋆ = 8%. In each

example: The image I1 (top left) is mapped into image I2 by

an affine transformation (solid black parallelogram). 500 matches

were generated according to our model with the mentioned p⋆ and

r⋆ (inlier matches are in blue). We calculate vε using a sequence

of step-sizes εi (color coded plots), and it is evident that the loca-

tion of the minimum (black cross) stays roughly around p⋆.

ous 2D translation example. The first example is extreme in

terms of the inlier-rate and the other is extreme in terms of

the inlier-noise. Each curve (color coded by sample density

ε) shows our approximation vε(p)/|Sε| of the normalized

volume Vδ(ε). In both cases, at a range of sampling resolu-

tions, the minimum value is obtained at the true inlier rate

or relatively close to it. This stability of the IRE algorithm

under changes of the error tolerance δ is also indicated in

Figures 4 (right) and 6.

4.3. 2D homography ­ Real data

In this experiment, we test our algorithm on two datasets

containing very challenging image pairs, as the inliers are

noisy and their rate can fall well below 10%. We also com-

pare our results to USAC [16], a state-of-the-art RANSAC

method, with a publicly available implementation.

Datasets The first one was presented by Mikolajczyk et

al. [14], and was originally constructed to benchmark fea-

ture detectors and descriptors. Here we use 5 of the se-

quences - each containing 6 images where a planar object

undergoes a gradually increasing view point change. As

was suggested in the dataset, we use the pairs 1-2, 1-3, 1-

4, 1-5, 1-6, for which a ground-truth homography is pro-

vided. The second dataset was used by Raguram et al. [16]

to benchmark the USAC algorithm against other RANSAC

methods. We use a portion of this dataset which includes

image pairs related by view-point change, described by a

homography. Since the USAC algorithm requires an inlier

error-threshold, we ran it for each integer threshold from 2

pixels (the recomended default) up to 30 pixels and took the

run of the lowest threshold for which the run succeeded. For

image pairs in [16] there was no ground truth provided, and

we created one manually. In both datasets, the ground-truth

is accurate up to 1 pixel, which is sufficient for comparison.
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Figure 8. Results on 2D homography with real data. In each row

we show Left: an image pair (from [16]); Middle: the prediction

p∗ (black dashed line) of Algorithm IRE as the minimal value of

vε(p); Right: The result of Algorithm BnB (black circle) and the

result of multiple USAC runs for different thresholds (red circles),

shown against the CDF (green curve) of match-errors w.r.t. the

ground-truth transformation.

Implementation details For all images, we generated

correspondences based on matching SIFT descriptors, us-

ing the VLFeat library [18]. We used an initial sampling

resolution ε that equals a third of the minimal image di-

mension. Our Matlab implementation of Algorithm BnB

typically takes less than 10 seconds for an image pair on a

modest PC. The runtime of Algorithm IRE is negligible as

it reuses most of the calculations done in the former.

In this experiment, we applied two heuristics after step

6 of Algorithm BnB in order to accelerate it (without com-

promising the guarantees). First, we performed a depth-

first-search around tmin, possibly providing a lower rmin(p̂)
which allows us to discard more samples. This heuris-

tic is somewhat similar to the one used in [9]. Second,

we perform a local optimization of tmin by reweighted

least squares on the inliers. This heuristic may also lower

rmin(p̂), and is somewhat similar to the LO-RANSAC [3]

extension used in USAC. In addition, the local optimization

improves accuracy. The result is closer to the ground-truth

transformation (i.e. accurate in terms of Sampson error [6]).

Results Figure 8 shows results on three image pairs from

[16]. As can be seen in the middle column, the minimum

of vε(p) is prominent in all cases, and its location is close

to the “saturation” level of the (green) CDF of match errors

w.r.t. the ground-truth (shown on the right) - an indication

of the correctness of the detection. In addition, results for

USAC are shown by the red circles on the right for thresh-

olds in the interval [2,30] at steps of 3. Notice that in the

second row there are very few inliers with error < 2 and



Image pair

sequence method 1-2 1-3 1-4 1-5 1-6

bark
GMD 1.56 3.45 2.53 1.14 2.36

USAC 1.55 3.49 2.53 1.15 2.35

graffiti
GMD 0.54 1.53 1.45 6.55 fail

USAC 0.53 0.85 0.98 fail fail

graffiti 4
GMD 0.38 1.06 0.59 0.92 1.11

USAC 0.42 1.23 0.85 1.27 1.27

graffiti 5
GMD 0.75 1.23 2.00 2.51 6.63

USAC 0.62 1.51 2.03 2.52 fail

wall
GMD 1.24 0.60 1.29 1.56 2.12

USAC 1.24 0.59 1.33 1.66 2.81

Table 1. Sampson error of homography estimation in five view-

points of four scenes from [14] (each row corresponds to a scene

and each column to a pair of images, with the strength of the view-

point transformation increasing from left to right). Errors are re-

ported w.r.t ground truth, which may be up to one pixel inaccurate.

therefore USAC with such a threshold fails. Our method is

less sensitive to the level of inlier noise.

Table 1 compares the performance of our method (GMD)

to USAC [16], in terms of Sampson error (see e.g. [6]),

which compares to the ground truth transformation, over 5

viewpoint sequences from the Mikolajczyk dataset [14] (re-

fer to Supplementary Materials for more details on these

results). Both methods achieve similar accuracy, where

USAC fails on the 3 most difficult pairs while we fail only

on one. Our method can be seen to be slightly more accu-

rate compared to USAC, however in this experiment error

differences that are under one pixel might fall below ground

truth accuracy.

We now focus on the two hardest sequences (graffiti,

graffiti-5) from [14]. Figure 9 shows a possible reason for

the failures on these scenes. Specifically looking at graffiti

1-6, there seem to be virtually no correct matching SIFT

features, and hence none of the methods is expected to

work. Our method manages to solve the rest of the cases,

despite the combination of high inlier noise and low inlier

rate. For these same two sequences, Table 2 shows the es-

timated inlier rates and match errors attained by both meth-

ods. It is evident that USAC generally achieves lower match

error as the noisiest inliers are discarded, a fact that may ex-

plain why it failed on extreme cases.

5. Discussion and Future Work

We have presented and new approach to detecting a

model from matches, where the rate of inliers is estimated

first and only then the best transformation is searched for.

The method seems to perform very well in practice on chal-

lenging cases of homography estimation, even if the the-

oretic background is currently limited. We made two re-

strictive assumptions in Proposition 1, and while alleviating

these assumptions is deferred to future work, in what fol-

lows we briefly discuss the main implications.
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Figure 9. Results on the two hardest sequences from [14]. Cu-

mulative match error w.r.t the ground-truth are shown (color coded

by pair number). As the view-point difference increases, the noise

of inliers increases and their rate decreases. Our results shown by

crosses in the respective colors. See Table 2 for more details

The assumption of uniform fin and fout was rather prag-

matic to simplify the proof. Replacing the inlier (outlier)

distributions would only affect the first (second) term of

equation (15), where instead of a simple area calculation

multiplied by the uniform noise ρin (ρout), a more complex

integral would be used. For example, fin could be replaced

by the commonly assumed Gaussian noise.

The assumption of T being 2D translations is more fun-

damental, but we conjecture that it holds for a much wider

range of transformation groups, as suggested by our exper-

iments. Once this assumption is dropped, the proof must

involve calculating the value of pt(r) in (6), which can be

viewed as the expectation of qt(r|x1) over x1. The value

qt(r|x1) depends in turn on the distance dt, which now is

not constant and depends on x1. This desired property al-

leviated the need to make any assumptions on the probabil-

ity f1(x1) and made the “worst-case” analysis true for all

points x1. Nevertheless, a tight bound could be achieved by

a slightly more intricate “average-case” analysis, which we

leave for future work.
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Image pair

sequence method 1-2 1-3 1-4 1-5 1-6

graffiti

GMD
99.8% 80.2% 36.6% 12.6%

fail
0.5±0.7 1.8±1.8 2.2±3.4 8.5±14

USAC
87.8% 36.6% 19.5%

fail fail0.5±0.3 0.7±0.3 1.1±0.6

graffiti 5

GMD
99.8% 99.2% 74.2% 31.6% 9.3%
0.6±0.6 0.9±0.8 1.4±1.5 3.0±4.9 6.3±11

USAC
89.2% 66.4% 33.6% 15.3%

fail0.5±0.3 0.6±0.3 0.7±0.3 1.5±0.7

Table 2. Homography estimation inlier rates and match errors

on the graffiti and graffit-5 sequences from [14]. For each method

(GMD and USAC), the detected inlier rate is shown in the first

row, and the median±std of the inlier match errors is in the second.

USAC achieves lower errors levels since it typically classifies less

matches as inliers. Notice that GMD succeeded in two cases where

USAC did not, which are characterized by a low inlier rates with

large noise levels. See Figure 9 for more details.
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