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ABSTRACT
Routers have the ability to output statistics about pack-
ets and flows of packets that traverse them. Since however
the generation of detailed traffic statistics does not scale
well with link speed, increasingly routers and measurement
boxes implement sampling strategies at the packet level. In
this paper we study both theoretically and practically what
information about the original traffic can be inferred when
sampling, or ‘thinning’, is performed at the packet level.
While basic packet level characteristics such as first order
statistics can be fairly directly recovered, other aspects re-
quire more attention. We focus mainly on the spectral den-
sity, a second order statistic, and the distribution of the
number of packets per flow, showing how both can be ex-
actly recovered, in theory. We then show in detail why in
practice this cannot be done using the traditional packet
based sampling, even for high sampling rate. We introduce
an alternative flow based thinning, where practical inversion
is possible even at arbitrarily low sampling rate. We also in-
vestigate the theory and practice of fitting the parameters of
a Poisson cluster process, modelling the full packet traffic,
from sampled data.

Categories and Subject Descriptors
C.2.3 [Computer-communications Networks]: Network
Operations – Network monitoring; G.3 [Probability and
Statistics]:

General Terms
Measurement, Theory

Keywords
Thinning, sampling, traffic modeling, Internet data, long
range dependence, TCP flows, transform inversion, Poisson
cluster process
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1. INTRODUCTION

1.1 Motivation
Network traffic measurement is essential for traffic engi-

neering (e.g. link upgrades or traffic re-routing) and traffic
accounting (e.g. usage based pricing). Routers offer tools
such as Cisco’s Netflow [1] or Inmon’s sFlow [2] that give
information about the flows of packets that traverse them.
However the generation of detailed traffic statistics does not
scale well with link speed. This is why packet sampling tech-
niques are increasingly being used in routers [3] to export
the statistics of a portion of the traffic only. The problem
that then immediately arises is how to deal with such par-
tial measurements. One can think of this as a two step
process: first recover the statistics of the full traffic from
the retained sampled data through some inversion proce-
dure, and second, take appropriate decisions based on the
characteristics of the full traffic. While the second step is
left to traffic engineers and managers, the first corresponds
to an interesting and important task which has only recently
been attracting attention. Our aim is to provide theoretical
results for the problem of recovering statistics beyond first
order from sampled traffic, and to see how successfully such
results can be applied in practice with real traffic. We focus
mainly on two statistics: the spectral density of the packet
arrival process, and the distribution of the number of pack-
ets per flow. This implies that we limit ourselves to portions
of traffic that can be considered stationary. It also means
that we do not try to recover sample values, such as actual
number of packets in flows on the measured link, but rather
the distribution from which these samples were drawn.

Traffic statistics commonly considered vary widely de-
pending on user requirements and the capabilities of the
collection mechanism. In this paper we first place ourselves
in a general framework whereby any raw statistics of the
sampled data that we may need are considered to be avail-
able, as we focus primarily on the feasibility of the inversion
problem. In some cases these statistics may not be readily
available in today’s routers, or they may be close to impossi-
ble to provide because of real-time constraints. For example
few routers can export packet level statistics such as sizes
and timestamps of individual packets. In addition, currently
high-end routers use switched instead of shared backplanes,
and therefore not all packets are seen at any single point
of the backplane [4]. Purpose built link monitoring boxes
however, or dedicated passive measurement infrastructures
supporting offline studies based on sampled traffic, will be
capable of much finer grained storage and processing.



1.2 Terminology
The definition of an Internet Protocol (IP) flow is central

to this work. In the research community the generally ac-
cepted definition [5] is a set of packets with the same 5-tuple
{IP protocol; source address; destination address; source
port; destination port}, and with a fixed maximum inter-
packet time T0. On the other hand, IP flows are defined
slightly differently in a router where a flow can be termi-
nated due to: (i) timeout, but also (ii) protocol (FIN packet
sent by the Transmission Control Protocol (TCP)) or (iii)
memory management (the flow is terminated in order to free
resources for new flows). Another definition worth mention-
ing is found in [6] where an adaptive timeout based on flow
characteristics is used. In the rest of this paper we adopt the
first definition, i.e. 5-tuple with static timeout. The actual
value of the timeout T0 will be discussed later.

In mathematical terms, we are mainly interested in the
point process of packet arrival times and will not be con-
cerned with packet sizes. In point process theory, the action
of ‘sampling’ points along the real line is called thinning,
and we will use these two terms interchangeably. From a
theoretical perspective, one is interested in recovering as
much information as possible about the original point pro-
cess by observing a thinned version of it. We will use ‘full’
or ‘original’ to refer to the non-sampled packet traffic, and
‘sampled’ or ‘thinned’ to refer to the sampled traffic. The
process of thinning the packet process is to be understood
in general terms as the action of only recording part of the
total traffic according to a certain rule.

In this paper we will study two different sampling rules:
packet thinning, which acts directly on individual packets
and is ignorant of flows, and flow thinning, where entire flows
of packets are retained or discarded at once. Independent
and identically distributed (i.i.d.) packet thinning consists
of, for each packet in an independent manner, retaining the
packet with probability q or discarding it with probability
1− q. Similarly, i.i.d. flow thinning consists of, for each flow
independently, leaving the flow untouched with probability
q or removing it entirely with probability 1− q.

We use a hierarchy of descriptors to study the statistics
of packet traffic. We refer to packet level when describing
statistics which do not use or refer to any imposed struc-
ture or detailed modelling assumptions. Examples of packet
level statistics are the mean packet arrival rate or the spec-
tral density of the packet arrival process. Flow level is con-
cerned with statistics arising from the grouping of packets
into flows, such as the distribution of the number of packets
per flow. Finally, although of less importance here, we use
in-flow level to refer to statistics describing the placement
of packets within a flow, such as the mean arrival rate of
packets belonging to a given flow.

1.3 Previous work
In the early 1990’s, data collection on the T1 NSFNET

backbone showed that information was lost during peak pe-
riods. Sampling methods were therefore advocated in [7]
to reduce the load on the measurement infrastructure. The
aim of this work was to estimate the packet size distribution
from the sizes of sampled packets. Different sampling strate-
gies were compared: deterministically taking one in every N
packets (systematic sampling), taking on average one in N
packets (simple random sampling) or taking one packet in
every bucket of size N (stratified random sampling). In [8]

an adaptive sampling rate was proposed to optimize the re-
source allocation. An adaptive sampling technique was also
used in [9] where a bound on the sampling error for traffic
load measurement was studied. Another study of sampling
techniques can be found in [10] where the mean number of
packets and the packet size distribution are estimated from
a sampling where the number of skipped packets is a Pois-
son random variable. Sampling strategies were also used in
[11] for the detection of denial of service attacks. In [12] esti-
mates are provided from sampled traffic of the mean number
of bytes or packets of a set of packets with common prop-
erties (e.g. protocol, IP addresses, Autonomous System,...).
Because of the heavy tailed distribution of file sizes, a par-
ticular kind of sampling, known as stratified sampling [13],
is used to reduce the variance of the estimators. It basically
consists in sampling ‘more’ in the heavy tail of the distribu-
tion and gives different weights to different samples.

Each of the aforementioned studies were concerned with
a packet level description of network traffic in the sense de-
scribed above. Much closer in spirit to this paper is the
work presented in [14], where it is shown how certain first-
order IP flow level statistics can be recovered from sampled
traffic. In particular, an estimator (and its all important
variance) of the mean number of packets per flow is given.
The estimation is not blind and makes strong use of ad-
ditional information contained in the TCP packet header.
More specifically the recovery scheme requires the knowl-
edge of the number of original flows, and as it is assumed
that this is not measured directly, it must be inferred sepa-
rately. It is shown how this can be achieved by looking for
TCP SYN packets in the case of ‘ideal’ TCP flows which all
begin with a SYN packet and have infinite timeouts.

1.4 Outline and Main Contributions
We are interested in inverting sampled traffic in a statis-

tical sense, focusing mainly on two quantities: the spectral
density (packet level), and the distribution of the number
of packets per flow (flow level). In section 2 we address this
problem from a theoretical perspective. We first consider
the case of packet sampling since it is the method currently
implemented in routers. We show in particular how the the-
ory of point processes can help recover the original spectral
density from the thinned data. We also propose a theoreti-
cal scheme to recover the full distribution of the number of
packets per flow. In this respect we extend the work of [14]
where only the mean number of packets was recovered. We
then present an alternative sampling technique named flow
sampling which is as computationally feasible as packet sam-
pling, but has a more straightforward inversion mechanism
both at the packet and flow level. The inversion methods re-
quire different assumptions on the original traffic depending
on the sampling method which are carefully detailled and
justified.

The practical application of the two methods to real traffic
and the limitations of their numerical evaluation are given in
section 3. Our main contribution is the demonstration of the
fact that inversion is essentially impossible in practice in the
case of packet thinning for any useful thinning probability,
whereas flow thinning can be usefully inverted no matter
how high this probability becomes, provided enough traf-
fic is sampled. Section 4 is concerned with the application
of the sampling techniques to a recently introduced cluster
point process model of backbone traffic. It is shown how



the parameters of the model can be fitted from the thinned
data obtained from both sampling techniques in theory, not
always in practice. Finally in section 5 we conclude and dis-
cuss the computational implications of the inversion tech-
niques.

2. INVERTING SAMPLING: THEORY
In this section we study two different sampling techniques,

which we call i.i.d. packet sampling and i.i.d. flow sam-
pling. We present theoretical inversion methods to recover
the spectral density and the distribution of the number of
packets per flow from the observed thinned traffic. All quan-
tities corresponding to thinned traffic will be written with
the superscript (q), where q is the retention probability de-
fined below.

2.1 Packet sampling
In general terms, the i.i.d. packet thinning of a stationary

point process X with rate λ consists in independently keep-
ing each point of X with probability q or rejecting it with
probability 1−q to form a new point process X(q) with rate
λ(q) = qλ.

2.1.1 Packet level
The original rate can be recovered from that of the thinned

process in a straightforward way via

λ =
1

q
λ(q). (1)

A much less intuitive result links the spectral densities of
X and X(q). From [15, 16], for any simple, locally finite
and second order stationary point process X with spectral
density ΓX(ω), the spectral density of X(q) reads

Γ
(q)
X (ω) = q2ΓX(ω) + q(1− q)λ. (2)

From equations (2) and (1) the spectrum ΓX(ω) of the original
process can therefore be recovered and reads

ΓX(ω) =
1

q2

“

Γ
(q)
X (ω)− (1− q)λ(q)

”

. (3)

This powerful result gives readily accessible and very use-
ful information about the original process without making
any assumptions on its detailled structure. In particular no
modelling assumptions are required beyond stationarity.

2.1.2 Flow level
Let us assume that the original process is in fact the su-

perposition of identically distributed groups of points called
clusters. In the traffic context these are packets grouped into
flows. Let P be the discrete random variable describing the
number of points per cluster, with density pk =Pr(P = k),
distribution FP , and finite mean µP. In practice no flow of
length 0 is observed and therefore p0 = 0. Let P (q) be the
discrete random variable describing the number of packets

per flow after packet thinning, with density p
(q)
k =Pr(P (q) =

k), and distribution F
(q)
P . In this subsection our aim is to re-

cover the properties of the marginal FP of the original flows

from F
(q)
P . Since we look at the marginal only, there is no

need to assume independence between flows.
Conditioning on the number of packets in a given original

flow, the probability p
(q)
k of having a flow of size k ≥ 0 after

thinning reads

p
(q)
k =

∞
X

j=k

Pr{k packets after thinning

| j packets before thinning}pj

=

∞
X

j=k

 

j

k

!

qk(1− q)j−kpj . (4)

Equation (4) gives the densities of the thinned flows as a
function of the densities of the original flows. To invert this
relation we use results on probability generating functions
and complex analysis.

Let us first introduce some notation. In the following
C(z, r), D(z, r) and D̄(z, r) will denote respectively the cir-
cle, the open disk and the full disk with center z and radius
r. Denote by B the binomial random variable such that

Pr(B = 0) = 1 − q and Pr(B = 1) = q. Let GP(z), G
(q)
P (z)

and GB(z) be the probability generating functions of P , P (q)

and B defined respectively as

GP(z) =

∞
X

j=0

pjz
j , G

(q)
P (z) =

∞
X

j=0

p
(q)
j zj ,

and GB(z) = 1− q + qz. GP(z) and G
(q)
P (z) are defined on

the closed unit disk D̄(z, r) = D(0, 1) ∪ C(0, 1), but if FP

is heavy tailed they are only analytic on the open unit disk
D(0, 1) due to a singularity at z = 1. GB(z) is an entire
function (analytic for all z ∈ C).

By definition of i.i.d. packet thinning, P (q) can be ex-
pressed as a sum of P i.i.d. binomial random variables. From
results on the generating function of a compound distribu-
tion the following relation holds:

G
(q)
P (z) = GP(GB(z)) for z ∈ D̄(0, 1). (5)

This equation is the transform domain version of equation
(4). Since G−1

B (D̄(0, 1)) = D̄(1 − q, q), one can obtain GP

from equation (5) as

GP(z) = G
(q)
P

“z − (1− q)

q

”

for z ∈ D̄(1− q, q). (6)

Now, as we see from equation (5), the probabilities pj that
we wish to calculate can be obtained by picking out the co-
efficients of a power series expansion of GP about the origin.
However, equation (6) only gives an inversion formula for
GP for z ∈ D̄(1 − q, q), a closed disk which lies within the
unit circle and is centered at z0 = 1−q. (see the thick circle
in figure 1(a)). It does not give us GP over the full unit
disk, nor an expansion about the origin. We consider how
to circumvent these difficulties in a moment.

Using standard results on generating functions, the mean
number of packets per flow can be recovered via

µP =
dGP

dz

˛

˛

˛

z=1
=

1

q

dG
(q)
P

dz

˛

˛

˛

z=1
=
µ

(q)
P

q
. (7)

Let FP be a heavy tailed distribution such that

1− FP (x)
x→+∞∼ L

xα
, (8)

where L > 0 and 1 < α < 2. From equations (8) and (6)
one can show by using a Tauberian theorem [17, p.333] that



F
(q)
P has tail behaviour

1− F
(q)
P (x)

x→+∞∼ L(q)

xα
, (9)

where

L(q) = qαL. (10)

The thinned distribution for the number of packets per flow
is therefore also heavy tailed with the same index but re-
duced tail mass. In fact the Tauberian theorem used above
is even stronger and gives an equivalence between equa-
tions (8) and (9). This means that if a heavy tailed is ob-
served in the thinned traffic, it must come from the original
traffic, and cannot have been created by the thinning pro-
cess itself. From equation (10) one can trivially invert the
tail prefactor:

L =
1

qα
L(q). (11)

We now present two different theoretical schemes to re-
cover the original probability densities.

Scheme 1: Analytic continuation
Our aim is to construct a power series expansion of GP

about the origin in order to recover the pj via expansion
on the left in equation (5). In principle, since GP is ana-
lytic in D(0, 1) and from equation (6) its values are known
on D(1 − q, q) which lies inside D(0, 1), GP is known on
D(0, 1) through analytic continuation. The required expan-
sion about the origin can therefore be found. Carrying this
through in practice however is not straightforward.

We denote by z0 = 1−q the origin of the original analytic
domain D0 = D(z0, q). Within D0 it is easy to show from
equation (6) that the following power series expansion holds:

GP(z) =

∞
X

n=0

a0
n(z − z0)

n, z ∈ D0. (12)

where the coefficients obey

a0
n =

p
(q)
n

qn
(13)

and the radius of convergence is r0 = q.
The basic principle we employ is to choose a point z1 ∈ D0

and to expandGP as a power series about it. The coefficients
of this new series can then be obtained by comparing with
the series of equation (12) evaluated at z = z1, and are

a1
j =

∞
X

n=j

 

n

j

!

a0
n(z1 − z0)

n−j . (14)

Consider how this works for the simple case of q ∈ [0.5, 1]
where we are able to choose z1 to be the origin, as illus-

trated in figure 1(a) for q = 0.6. Substituting a0
n = p

(q)
n

qn into

equation (14) and noting from equation (5) that a1
j = pj in

this case, we have

pj =
∞
X

n=j

 

n

j

!

(−1)n−j

qn
(1− q)n−jp(q)

n , (15)

which converges for q ∈ [0.5, 1]. An alternative way to de-
rive this inversion formula is to directly apply a combinato-
rial identity to invert equation (4). The identity in question

states ([18], p.49), with no convergence criteria given, that
Bk =

P

∞

j=k

`

j
k

´

Aj and Aj =
P

∞

k=j

`

k
j

´

(−1)k+jBk are in-
verses. In the present context this identity can only help us
for q ∈ [0.5, 1], a very mild degree of thinning.

For q ∈ [0, 0.5) z1 cannot be chosen at the origin, and we
adopt a recursive procedure involving a sequence {zk}, k=1,
2, · · · l, of points along the real axis obeying 1 > z0 > z1 >
· · · zl = 0, zl being the origin itself (figure 1(b) illustrates the
case where q= 0.1 and l= 5). At the kth stage, zk will be
chosen to lie inside the circle of convergence Ck−1 from the
previous stage, and GP will be expanded in a power series
centered about zk, whose coefficients ak

j will be obtained
through those of the previous stage:

ak
j =

∞
X

n=j

 

n

j

!

ak−1
n (zk − zk−1)

n−j . (16)

Since zk lies inside the unit circle where we know GP is
analytic, its circle of convergence Ck will first encounter a
singularity at z = 1, and so the corresponding radius of
convergence will be rk = 1−zk. In this way, as the sequence
{zk} marches towards the origin the radii of convergence
increase monotonically to 1. In fact the zk can be chosen so
that the origin is approached geometrically: a minimum of
d− log2(q)e iterations is required. As before, the coefficients
of the final power series will be the desired densities, that is
pj = al

j .

Scheme 2: Cauchy integral
A second theoretical scheme to recover the original pj is

based on another important result of complex analysis: the
Cauchy integral formula, which for our particular problem
reads

pj =

I

S

GP (z)

zj+1
dz, (17)

where S can be any closed contour containing the origin. In-
version methods based on equation (17), including methods
using inverse Fourier transforms and damping techniques,
are summarized in [19]. They work well when one can di-
rectly evaluate GP on a contour including the origin. (In
some queuing problems for instance one has an explicit ex-
pression for the generating function to be inverted for the
corresponding probability densities). Methods have also
been developed to remove the aliasing terms caused by the
unavoidable discretization of the integral in the numerical
evaluation of equation (17), both when Fp is light tailed [20]
and heavy tailed [21]. Note that for q > 0.5, we can choose
S = C0 and the Cauchy integral can be directly evaluated
along this contour. However for q < 0.5 we first have to
infer the values of GP on some suitable contour S and then
use equation (17) to recover the pj .

A common method to do so is to use Padé approximants.
It consists in approximatingGP at the point z = z0 by a quo-
tient of two polynomials P (z) and Q(z), of degree L and M
respectively, and then evaluating P (z)/Q(z) at the desired
values of z. Details on the determination of these polynomi-
als and convergence issues can be found for instance in [22].
In our case we evaluate the Padé approximants on a contour
S chosen to be the unit circle. The main drawback of the
Padé approximation is that there are no general bounds on
the error. The natural bound in this case, that |Gp(z)| ≤ 1
on the unit circle, is not of much use.
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Figure 1: Analytic continuation method for (a) q = 0.6, and (b) q = 0.1. The thick solid dark circle represents
C0 = C(z0, q) and the thick dotted grey circle is the unit circle C(0, 1). For q = 0.6 z1 can be chosen as the origin
and an expansion made there whereas for q = 0.1 a series of analytic continuations are required, before a
point, z5, can be chosen as the origin.

While complex analysis provides elegant theoretical re-

sults for the recovery of FP from F
(q)
P , the procedures are

quite involved. Moreover, it is an ill-posed problem in the
sense that small errors in the evaluation of Gp at points in
the original domain D̄0 become magnified in the extrapola-
tion [23]. To put this in perspective, in the case of significant
thinning, say q = 0.001, we are trying to extrapolate values
from a tiny circle of radius q close to z = 1 up to the entire
unit circle. Note that equations (7) and (11) do not suffer
from this problem as z = 1 is on the circle for all q. As
we will see in section 3, the practical limitations of the two
schemes described above are so severe that only a few val-
ues for the first iteration step can be obtained numerically.
Given these fundamental difficulties at the flow level, we do
not attempt to investigate the inversion of in-flow statistics
for packet thinning. We now turn to a very different kind
of sampling, i.i.d. flow thinning, which has quite different
properties.

2.2 Flow sampling
As stated in the introduction, i.i.d. flow sampling consists

in selecting flows with probability q. Flows will be taken to
be identically distributed through an assumption of station-
arity,

2.2.1 Flow level
Since the flows that are kept by the thinning procedure are

identically the same as the original flows, all the marginal
flow properties, and in particular the distribution P of the
number of packets per flow, can be readily estimated from
the observed thinned traffic. There is no inversion prob-
lem as such (beyond estimation issues), and the value of q
plays no theoretical role. The same holds true for in-flow
statistics, which are uncorrupted by flow thinning. This is
in marked contrast with the packet thinning scenario and its
problematic inversion requirements. As for packet thinning,
no assumption of flow independence is needed at this point.

2.2.2 Packet level
We now explain how, under mild assumptions on the un-

derlying process, packet level information such as the spec-
tral density of X can be recovered.

Consider a special kind of stationary point process X(t),
well suited to flow thinning, known as a Cluster Process. Let
the arrival times {tF(i)} of flows follow a given process Y (t)
of rate λF. The cluster process X(t) is defined as

X(t) =
X

i

Gi(t− tF(i)), (18)

where Gi(t) represents the arrival process of packets within
flow i. It is assumed that the subsidiary process Gi(t) has
a finite mean number µP of packets per flow and a finite
intensity. These two conditions are necessary for X(t) to
be stationary [24]. Recent results on the spectral theory of
point processes give the form of the spectrum of X(t) in this
general case [15]. However we will keep things simple in the
following by assuming that Y (t) is a Poisson process. This
is justified by the fact that for IP traffic the true arrival
process of flows has very little influence on the spectrum of
the packet arrival process, at least for lightly loaded links
[25, 26]. In addition we will now also take flows to be mu-
tually independent. With these assumptions X(t) becomes
a Poisson Cluster Process (PCP).

Let ΓG(ω) be the ‘spectrum’ of Gi(t), more precisely the
expectation of the modulus squared of the Fourier transform
of Gi(t). The spectrum of X(t) can be shown to be simply
[16]

ΓX(ω) = λFΓG(ω). (19)

From [24] the rate of the stationary process X(t) reads

λ = λFµP. (20)

Let us now consider the effect of flow thinning a PCP.
We will make use of the well known independent splitting
property of a Poisson process [16].



Theorem 1. Let Y (t) be a Poisson process with rate λ.
Independently classify each point either as type I with prob-
ability q, otherwise as type II. Let YI(t) and YII(t) denote
the point processes composed of the type I or type II points.
Then YI(t) and YII(t) are independent Poisson processes
with rate λq and λ(1− q) respectively.

The i.i.d. sampling with probability q of the Poisson flow
arrival process Y (t) with rate λF is thus a Poisson process

Y (q)(t) with rate λ
(q)
F = qλF. This means that flow sampling

transforms X(t) into a PCP X(q)(t) with flow rate λ
(q)
F and

the same Gi(t). The rate of X(q)(t) reads λ(q) = λ
(q)
F µ

(q)
P =

qλFµP = qλ and the original rate can be recovered via

λ =
1

q
λ(p). (21)

The density spectrum of X(q)(t) reads

Γ
(q)
X (ω) = λ

(q)
F ΓG(ω) = qΓX(ω), (22)

from which the original density spectrum can be expressed
as

ΓX(ω) =
1

q
Γ

(q)
X (ω). (23)

3. INVERTING SAMPLING: PRACTICE
The previous section was concerned with theoretical in-

version methods for two different kinds of thinning. In this
section we present a numerical evaluation of these inver-
sion techniques. We begin with the packet level statistics in
3.1 before tackling the flow level statistics in 3.2. Results
concerning the estimates of first order quantities and their
confidence intervals for packet sampled traffic can be found
in [14] and will not be detailed here.

The passive measurements used to illustrate the thinning
methods are presented in table 1. They come from the
Auckland-IV [27] and Abilene NLANR [28] trace reposito-
ries. The traffic can be considered stationary for the period
of time covered by the traces.

Trace Date Local Time Rate (Mbps) Link

AUCK-d1 20010402 13:00 to 16:00 2.5 OC3
IPLS 20020814 10:00 to 10:10 418 OC48c

Table 1: Details of passive measurements.

3.1 Packet level
From equations (3) and (23), the spectrum of the full traf-

fic can be recovered from the spectrum and the rate of the
thinned traffic for both sampling techniques. When esti-
mating from data however, because of the scaling properties
of network traffic we use a wavelet based estimate of the
spectral density. Because of the linearity of the relation-
ship between the Fourier and wavelet spectra, essentially
the same inversion formulae can be used. A full description
of the wavelet approach can be found in [29] and we only
briefly summarize it here.

The (discrete) wavelet transform of a process X is defined
by coefficients dX(j, k) = 〈X,ψj,k〉, where the family {ψj,k}
is derived from the mother wavelet ψ(t), j = log2(scale), and
k ∈ N indexes time at octave j. Let X(t) be a continuous

time stationary process with power spectral density ΓX(ν).
The variance of its wavelet coefficients satisfies:

IE|dX(j, k)|2 =

Z

ΓX(ν)2j |Ψ(2jν)|2dν, (24)

where Ψ(ν) denotes the Fourier transform of ψ. If X pos-
sesses scale invariance over a range of scales, for example if it
is long range dependent (LRD), defined as a power law diver-
gence of the spectrum at the origin: ΓX(ν) ∼ c|ν|−α, |ν| →
0, with α ∈ (0, 1), then in the limit of large scales equa-
tion (24) becomes

IE|dX(j, k)|2 ∼ C2jα, j → +∞. (25)

Equation (24) can be viewed as defining a kind of wavelet
energy spectrum well suited to the study of scaling pro-
cesses. To estimate the wavelet spectrum from data, the
simple time average based variance estimates: Var(dj) =
1

nj

P

k |dX(j, k)|2, where nj is the number of dX(j, k) avail-

able at scale j, perform very well, because of the short range
dependence in the wavelet domain [29]. A plot of the loga-
rithm of these estimates against j we call the Logscale Dia-
gram (LD), in which straight lines indicate scaling.

LDs are in fact closely related to traditional Fourier spec-
trum. As a rough approximation, one would recover the (log
of the) spectral density as a function of frequency simply by
reversing the scale axis in the LD plot. Because equation
(24) is linear in ΓX(ν), and an energy preserving wavelet
normalization is being used, the relations linking the spec-
trum of the thinned and full traffic are also valid for the
wavelet spectrum.

Figure 2 illustrates the inversion methods in the (log)
wavelet domain. The thick gray line corresponds to the
wavelet spectrum of the original traffic, while the vertical
lines mark confidence intervals on the spectrum estimate at
the different scales. The straight line observed over large
scales betrays long memory.

When q is relatively large (q = 0.1), the spectrum in-
ferred from the packet thinned traffic is remarkably close to
the ‘true’ spectrum estimated directly from the full traffic,
as illustrated on figure 2(a). The fact that fine details of the
spectrum can be reproduced is due to the fact that equation
(2) is valid for any second order stationary point process.
On the other hand, the spectrum reconstructed from the
flow thinned traffic does not match the true spectrum quite
as well. While very good at large scales, the reconstruction
fails to precisely match the small scale behaviour. This is a
direct consequence of our assumption underlying the inver-
sion formula that flows are uncorrelated. The inversion is
incapable of re-inserting the flow dependencies which were
weakened by the thinning. Despite this strong assumption
however, the inverted spectrum clearly reproduces the main
features of the true spectrum.

When one moves to much smaller values of q however, as
figure 2(b) shows for q = 0.001, the flow based thinning still
gives a qualitatively accurate estimate while the inversion
technique based on packet thinning is highly inaccurate. In
fact, from the form of equation (3) one can see that the
original spectrum ΓX(ω) is recovered by measuring the dif-

ference between Γ
(q)
X (ω) and a Poisson noise. Since for small

q the confidence intervals on the estimation become so large

that Γ
(q)
X (ω) cannot be reliably distinguished from this noise,

the inversion procedure must fail. The problem clearly be-
comes steadily worse as q drops. This is significant since as
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Figure 2: Spectrum reconstruction: (a) AUCK-d1: Logscale diagrams of the original traffic, packet and flow
thinned traffic each with q = 0.1, and the two corresponding inverted estimates for the full traffic (T0 = 64s).
The top axis marks the timescale in seconds. (b) IPLS: Logscale diagrams of the original traffic, packet thinned
traffic with q = 0.001, flow thinned traffic with q = 0.0001, and the two corresponding inverted estimates for
the full traffic. Despite the fact that the flow thinned traffic is ten times thinner, the estimate recovered from
it is far better.

link rates increase a trend to ever more aggressive thinning
seems likely.

In contrast to the above, recovery of the spectrum in the
case of flow thinning does not suffer from the same drawback

as it simply involves multiplying Γ
(q)
X (ω) by a scale factor (an

upward translation on the logarithmic scale of the LD). In
fact, the quality of the estimation through the flow thinning
inversion method depends mainly on the number of flows N
remaining after thinning, the value of q being largely irrel-
evant. At constant N , the inversion method will therefore
lead to an approximately ‘constant’ error, irrespective of
the thinning probability. This point is illustrated in figure 3
where inversion based estimates are given for two values of q
at constant N . In practice however, non-stationarities and
edge effects make it difficult to accurately estimate the spec-
trum when the number of remaining flows drops too low (In
the case of the traffic used in figure 3, although there were
3 million flows, the trace was only 10 minutes long resulting
in quite strong edge effects). The near independence of the
inversion method with respect to q is a strong argument in
favour of flow based sampling for spectral estimation.

3.2 Flow level
In general, estimating the distribution of the number of

packets per flow consists of an estimation of the densities

p
(q)
j for the thinned process, followed by an inversion phase.

For flow thinning we have already seen that the inversion is

trivial, and the p
(q)
j can be estimated from a histogram. For

packet thinning however even the first phase is potentially

problematic, as a knowledge of p
(q)
0 > 0 is needed. Since

the proportion of discarded flows is not automatically ob-

served as it is in flow thinning, the quantity p
(q)
0 cannot be

estimated without extra information.

The simplest solution is to supply the total number NF

of flows with the measured sampled traffic, in the spirit of
Inmon’s sFlow [2]. Another solution proposed by [14] was
already mentioned in the introduction. Assume that each
original TCP flow has only one packet with a SYN flag and
that it is the first. Consider the set of such SYN packets.
It is clear that the probability that a given SYN packet is
retained is also q, and that this is therefore the probability

that a flow has been retained. Let N
(q)
F be the total number

of observed flows, and N
(q)
1 the number of observed pack-

ets with a SYN flag. An estimate of the number of flows

NF before thinning is NF = N
(q)
1 /q. One can construct an

estimate of p
(q)
0 via p

(q)
0 = N

(q)
F /NF .

Another important practical issue with packet thinning
concerns the consistency of the flow definition before and
after thinning. For example, in order to prevent the breakup
of flows due to their sparsity after thinning, one should at
least replace the timeout value T0 with T0/q. However this
does not eliminate all problems and extra flows can still be
created for some types of applications [14]. It is another
advantage of flow thinning that problems of this type do
not arise. The flow definition and timeout value adopted for
the full traffic applies without change after sampling.

To clearly evaluate the performance of the thinning inver-
sion techniques in isolation from other issues such as those

above, we assume in what follows that p
(q)
0 is known. In

addition, we will first assume that we know the distribution

of P and can therefore evaluate p
(q)
k numerically from equa-

tion (4). For this purpose we use a simple discrete Pareto-
like variable H with distribution

FH(k; a, β) = 1− (ak + 1)−β ∼ 1− Lk−β , k = 1, 2, · · · ,
(26)
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Figure 3: Reconstruction of the (log wavelet) spec-
tral density from flow thinning when the number of
flows after thinning is constant (N=3000). The qual-
ity of the estimation remains roughly unchanged as q
varies. The confidence intervals for q = 0.1 (omitted
for clarity) are similar to those of q = 0.01.

where a = L−1/β > 0 is a scale parameter. The mean of
H is IE[H] = a−βζ(β, 1/a) for β > 1, and is therefore fully
determined by the tail behaviour. The variance is infinite.

We first consider inversion scheme 1 (using analytic con-
tinuation) in the case where q > 0.5 for which we can calcu-
late pj from equation (15), which we repeat here:

pj =
∞
X

n=j

 

n

j

!

(−1)n−j

qn
(1− q)n−jp(q)

n . (27)

There are three main issues with the numerical evaluation
of this sum. First, it must be truncated at some n = nmax.
Second, before the asymptotic decay of the terms takes over,
their magnitudes become enormous due to the q−n factor.
The alternating sign cancels these out, but as the sum, being
a probability, must lie in [0, 1] the precision necessary is very
large unless q is close to 1. Finally, in practice there are the

additional errors from the need to estimate the p
(q)
n .

Numerical results for scheme 1 are presented in figure 4
where the truncation issue has been carefully addressed, the
estimation issue does not apply as exact values are used,
but where nonetheless precision limitations creates serious
problems. They show that using typical double precision
(Matlab was used), only the first 20 or so values of pj can be
recovered from equation (27) with q = 0.6 before dramatic
numerical instability sets in. The numerical evaluation of
scheme 2 (Padé approximants followed by the Cauchy inte-
gral formula) takes us a little further, but at the price of a
fairly intensive numerical evaluation. It was found that in-
creasing the degree of the Padé approximants did not signif-
icantly improve the accuracy of the calculations. In contrast
to these packet thinning based inversion schemes, the ‘inver-
sion’ from flow thinning, including the numerical estimation

of the p
(q)
n , provided a low cost and reliable estimation of pj ,

whose accuracy dropped gracefully as j increased as seen in

figure 4. The estimates of the p
(q)
n were made according to
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Figure 4: Inversion of the pj, light thinning: Numer-
ical evaluation of the different inversion schemes for
q = 0.6 using FP given by equation (26) with a = 1
and β = 1.5. Packet thinning inversion: Scheme 1:
even with no estimation, the inversion becomes un-
stable for small j. Scheme 2: Some improvement
at high computational cost. (L = M = 200 and 215

discretization steps for the evaluation of the Cauchy
integral). Flow thinning inversion and estimation:
starting with 106 flows, estimates are reliable, ex-
tend to much greater j, and degrade gracefully.

the following formula, where p
(q)
0 was assumed known:

p
(q)
j = (1− p

(q)
0 )o

(q)
j for j ≥ 1, (28)

where o
(q)
1 , o

(q)
2 ... are the normalized histogram estimates of

the number of packets per flow after flow thinning.
In the general case where q ∈ (0, 1], algorithms to recur-

sively compute the coefficients a
(k)
j based on the analytic

continuation idea of scheme 1 can be found in [30] and [31].
However since the particular form of the coefficients (equa-
tion (13)) prevents a precise numerical evaluation of even the
first step of the recursion, the method is not applicable here.
When the thinning procedure removes more than half of the
original packets, the inversion method for packet thinning
cannot be used in practice unless ‘infinite precision’ arith-
metic is employed. This is unlikely to be computationally
feasible in a router context.

Again, flow based thinning avoids the above problems,
and just as for the spectrum, the quality of the estimation
depends essentially on the number of flows N after thin-
ning, and not on the value of q. This is shown in figure 5
where the complementary cumulative distribution function
(CCDF) of the number of packets per flow on an OC-48 link,
and the estimated CCDFs for three different values of q, are
plotted at constant N = 3000. As expected, the quality of
the estimation of the CCDF is roughly independent of q.
However, since the estimation of heavy tails is a notoriously
difficult problem [32], one should make sure that N will be
large enough to allow a sufficiently precise estimation of the
distribution tail.

In summary, despite the fact that both sampling types
can theoretically be inverted, the numerical study carried
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out in this section reveals the following:

• The packet sampling technique leads to an excellent
reconstruction of the spectrum and a fair estimate of
the pj for j up to the order of 50 for q > 0.5. However
in the useful range q � 0.5, the quality of the spectrum
estimate is poor and deteriorates steadily as q gets
smaller and it becomes impossible to evaluate the pj

even for small j as soon as q drops below 0.5 without
extended precision arithmetic.

• The flow sampling technique gives a reasonable esti-
mate of the spectrum and an excellent estimate of the
pj for a large range of thinning probabilities. In par-
ticular, for thinning probabilities used in practice, of
the order of 1% or less, flow thinning is by far superior
to packet thinning if one is interested in recovering de-
tailed characteristics of the original traffic such as its
spectrum or the distribution of flow size.

It is worth noting at this point that if a parametric family
was chosen for FP one could try to estimate its parameters, a
much easier task than trying to numerically recover each pj .
Since no family has been identified as valid for all Internet
flows, we have not pursued this here.

4. THE BARTLETT-LEWIS PROCESS
In this section we apply both packet and flow thinning to

a particular kind of Poisson Cluster Process which is well
suited for modelling lightly loaded but highly aggregated
links such as those in network backbones. We present the
point process model and its main properties in section 4.1,
before deriving the thinning results in section 4.2. The via-
bility of fitting the model via measurements on thinned data
is investigated in section 4.3.

4.1 Definition
It was shown in [33] that a particular case of a PCP known

in the literature as a Bartlett-Lewis point process (BLPP)
[16] is well suited to model Internet backbone traffic. It is
a particular case of a PCP (see the definition in section 2.2
and equation (18)) where each cluster Gi(t) is a finite renewal
process. In such a case Gi(t) reads

Gi(t) =

P (i)
X

j=1

δ
“

t−
j−1
X

l=1

Ai(l)
”

, (29)

where δ(t) is a delta function centered at t = 0, Ai(l) de-
notes the l−th inter-arrival for flow i, and the inner sum is
defined to be zero if j = 1. P (i) is the number of packets
in flow i, normalised so that p0 = 0. In what follows we will
assume that the packet inter-arrival times within flows, de-
scribed by the random variable A, are Gamma distributed
with characteristic function

ΦA(ω) = (1− ibω)−c (30)

and density f(x), where c > 0 is the shape parameter and
b is the scale parameter. The mean and standard deviation
are given by µA = bc and σA = b

√
c. The rate of a cluster

is given by λA = 1/µA. Further discussion on the role and
meaning of the model parameters can be found in [33].

The benefits of the BLPP are numerous: not only is the
BLPP a model with physically meaningful parameters and
inherently positive marginals, but also there exists analytical
expressions for many of its statistics. The spectrum of the
BLPP is of particular interest here. Expressions for it can
be found for instance in [16, p.315] and [34, p.79], and can
be written in the form:

ΓX(ν) = λF

“ µP

λA

ΓG(ν) +
`

SG(ω) + SG(−ω)
´

”

, (31)

where ΓG(ν) is the spectral density of the stationary renewal
process with the same parameters as the finite flow renewal
process, namely

ΓG(ν) = λA

h

(1− ΦA(ω))−1 + (1− ΦA(−ω))−1 − 1
i

, (32)

and

Re(SG(ω) ) =
ΦA(ω)

(1− ΦA(ω))2

“

GP(ΦA(ω))− 1
”

. (33)

As expected equation (31) is consistent with the general
form for the spectral density of a PCP given in equation (19).

4.2 Thinning Bartlett Lewis point processes
If the PCP model is to be useful in practice, for exam-

ple for the dimensioning of backbone links, one needs to be
able to measure its parameters from data. It is therefore
of interest to see if it is compatible with either or both of
the thinning procedures. In this subsection we derive the
properties of thinned BLPPs.

Theorem 2. An i.i.d. packet thinned Bartlett-Lewis pro-
cess X(q) is also a Bartlett-Lewis process with parameters:

• flow rate: λ
(q)
F = λF (1− p

(q)
0 ),

• density of P (q): x
(q)
j =

p
(q)
j

1−p
(q)
0

, j > 0, and x
(q)
0 = 0,



• density of in-flow packet inter-arrivals:

f (q)(x) = L−1

»

qf̃(s)

1− (1− q)f̃(s)

–

.

Proof. See Appendix.

This agreable closure property of a BLPP, which is worth
mentioning in its own right, also helps to make the inversion
of its parameters analytically tractable.

Theorem 3. An i.i.d. flow thinned Bartlett-Lewis pro-

cess X(q) is also a Bartlett-Lewis process with flow rate λ
(q)
F =

qλF , x
(q)
j = pj, and f (q)(x) = f(x).

Proof. The result follows from the discussion at the end
of section 2.2.

We see that the BLPP model has almost ideal theoreti-
cal properties with respect to the interpretation of thinned
forms of itself, and the parameter inversion problem. In
the next section we briefly consider the practical side of the
question.

4.3 Fitting from thinned data
With respect to i.i.d. packet thinning, despite the attrac-

tive theoretical properties described above, most of theo-
rem 2 cannot be exploited in practice if q > 0.5. The rea-
sons are the same as those stated in section 3.2 concerning

the recovery of the pj from the x
(q)
j . Moreover, even if one

could numerically evaluate these, there would be another
inversion problem to recover the in-flow packet inter-arrival
density from its Laplace transform, with similar limitations

due, ultimately, to the very small values of all the x
(q)
j ex-

cept at j = 1 if q is small. For completeness, we note that
the relevant inversion techniques are also based on Cauchy’s
integral formula and are similar to the one presented in sec-
tion 2.1.2. They can be implemented using the Fast Fourier
Transform [19].

We turn then to fitting from i.i.d. flow thinned data, where
the simple inversion of theorem 3 presents no difficulties.
Figure 6 illustrates the procedure for p = 0.001. The re-
markable thing about this approach is that we do not need
to explicitly invert the more complex in-flow or even flow
level statistics. One merely fits the model on the thinned
data as one would normally, and then scales up the value of
λF. Figure 6 shows that the results can be good even for
p = 0.001, and as before, it is to an excellent approximation
only the total number of flows which determines the size of
the confidence intervals, not q.

5. CONCLUSIONS
We have explored in detail the question of recovering the

spectrum and the distribution of the number of packets per
flow of the packet arrival process, from sampled data. Two
kinds of sampling were used, i.i.d. packet sampling, and
i.i.d. flow sampling, with a given probability q of retaining
a packet or flow respectively. In each case, exact theoreti-
cal inversion techniques were derived. However, in the case
of packet thinning, we showed how the inversion methods
were of little to no use in practice for q small enough to
be truly useful, such as q = 0.01 or smaller, and become
much worse as q becomes smaller still. An exception to this
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Figure 6: BLPP parameter fitting from flow thinned
traffic AUCK-d1 data, thinned with p = 0.001, is
matched to the BLPP, the theoretical spectrum cal-
culated, and then inverted by simply shifting it
vertically. The inversion compares well with the
original data showing that the model can be suc-
cessfully fitted from thinned data. The same fitting
procedure applied to the full traffic is also shown.

is the asymptotic tail which can be recovered by a differ-
ent technique (although in practice it remains a very diffi-
cult problem). In sharp contrast, as flow thinning preserves
flows intact but simply reduces their number, it avoids these
problems entirely and the inversion is trivial. The perfor-
mance of inversion methods based on flow thinning does not
deteriorate with q but depends essentially on the number of
retained flows, which could be set in practice depending on
memory and computational limitations. However, the in-
version step does assume flow independence, and so cannot
capture all aspects of the traffic, whereas packet thinning
based methods can provided q is large enough. However, for
backbone links where there is strong evidence that depen-
dence between flows is weak, this may not be important.

In practice, any attempt to gather flow statistics involves
classifying individual packets into flows. For packet thin-
ning, the process is simple since only the retained packets
have to be classified. On the other hand, for flow thinning,
all packets have to be put into flows before they can be dis-
carded. This involves more computation and more memory
if one uses the traditional hash table approach with one en-
try per flow. However this might not be such a drawback
if new flow classification techniques, such as bitmap algo-
rithms [35], can be applied instead. The total number of
packets stored, for a given q, is essentially the same for both
types of thinning.

We also investigated the fitting of a useful type of clus-
ter model describing packet arrivals. It was shown that the
model class is closed under both kinds of thinning and that
exact inversion is theoretically possible. In practice how-
ever, again inversion based on packet thinned packet is not
feasible for realistic values of q, whereas inversion based on
fitting from flow based thinning performs well.
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Appendix
Proof of Theorem 2, section 4.1
Let X be a BLPP and X(q) the process resulting from its i.i.d. packet
thinning with probability q. The thinned flows are clearly i.i.d. with

marginal distribution F
(q)
P given by equation (4). Since p

(q)
0 =

P

∞

j=1(1 − q)jpj > 0, in this picture λF is unchanged but some

flows may be empty. To conform to a convention where a BLPP
has zero probability of an empty flow, we must renormalise the

p
(q)
j from equation (4) to obtain a F

(q)
P with densities x

(q)
j =

p
(q)
j

1−p
(q)
0

, j > 0, and x
(q)
0 = 0. The average flow arrival rate is then

reduced to λ
(q)
F = λF (1− p

(q)
0 ).

It is known [16] that if X is a renewal process with inter-

arrival density f(x), then the i.i.d. thinned process X(q) is another
renewal process, with inter-arrival density fq(x) whose Laplace

transform f̃q(s) reads

f̃q(s) =
qf̃(s)

1− (1− q)f̃(s)
. (34)

It follows that each finite ordinary renewal process that consti-
tutes a flow of X will become another ordinary renewal process
with the inter-arrival density above provided it has at least 2
points.

The remaining property of X(q) to specify is the arrival process
of the non-empty thinned flows. We now show that this is in

fact a Poisson process with rate λ
(q)
F . Since the flow evaporation

probability p
(q)
0 acts independently on flows, by theorem 1 on

Poisson splitting the original flow starting points (which may have
themselves been thinned) of flows which do not evaporate form a

Poisson process O of rate λ
(q)
F . Consider such a flow which has

survived thinning. There exists a random variable T ≥ 0 giving
the time interval between the original starting point and the first
non-thinned point after thinning in that flow. As this can be
viewed as an i.i.d. translation by T of the points of O, which by
a well known theorem [16] is another Poisson process of the same
rate, the result follows.


