
Inverting the Fundamental Diagram and

Forecasting Boundary Conditions: How Machine

Learning Can Improve Macroscopic Models for

Traffic Flow

Maya Briania, Emiliano Cristiania, and Elia Onofria,b

a
Istituto per le Applicazioni del Calcolo, Consiglio Nazionale delle Ricerche, Rome, Italy
bDipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Rome, Italy

March 23, 2023

Abstract

In this paper, we aim at developing new methods to join machine learn-
ing techniques and macroscopic differential models for vehicular traffic es-
timation and forecast. It is well known that data-driven and model-driven
approaches have (sometimes complementary) advantages and drawbacks.
We consider here a dataset with flux and velocity data of vehicles moving
on a highway, collected by fixed sensors and classified by lane and by class
of vehicle. By means of a machine learning model based on an LSTM
recursive neural network, we extrapolate two important pieces of infor-
mation: 1) if congestion is appearing under the sensor, and 2) the total
amount of vehicles which is going to pass under the sensor in the next
future (30 min). These pieces of information are then used to improve the
accuracy of an LWR-based first-order multi-class model describing the
dynamics of traffic flow between sensors. The first piece of information
is used to invert the (concave) fundamental diagram, thus recovering the
density of vehicles from the flux data, and then inject directly the density
datum in the model. This allows one to better approximate the dynam-
ics between sensors, especially if an accident happens in a not monitored
stretch of the road. The second piece of information is used instead as
boundary conditions for the equations underlying the traffic model, to
better reconstruct the total amount of vehicles on the road at any fu-
ture time. Some examples motivated by real scenarios will be discussed.
Real data are provided by the Italian motorway company Autovie Venete
S.p.A.
Keywords. traffic; vehicles; fundamental diagram; LWR model; machine
learning; LSTM.
MSC-2020. 76A30; 68T07.

1

ar
X

iv
:2

30
3.

12
74

0v
1

 [
cs

.L
G

]
 2

1
M

ar
 2

02
3

1 Introduction

Traffic state estimation (TSE) and traffic forecast have a long and solid tradition
which dates back to the 1950s. A very broad division of the research lines on
vehicular traffic flow modeling is summarized in the following diagram:

traffic flow models

model-driven

differential nondifferential

data-driven

micro meso macro

parametric nonparametric

Model-driven and data-driven approaches have their own advantages and draw-
backs, which were well described in, e.g., [43, 52]: Model-driven approaches
allow to inject in the simulator the human knowledge of the system, at least if
it can be reasonably translated into equations. Differences between agents can
be (stochastically) taken into account as well, including drivers’ psychological
aspects. Differential macroscopic models, in particular, can unveil the power
of methodologies based on partial differential equations (PDEs), for example
giving the right tools to compute the Wardrop equilibrium of a traffic system
on a road network [50, 8, 13]. On the other hand, this approach tends to be an
over-simplification of traffic physics since the model is never able to catch all
the features of cars and drivers. Most models are difficult to work with noisy
and fluctuated data collected by traffic sensors and the calibration of the nu-
merous parameters is quite challenging. In addition, the numerical scheme used
for the discretization of the equations (Godunov, Lax-Friedrichs, etc.), actually
needed to solve them, introducing a further, often not negligible, approximation
error. Finally, models require additional inputs which are not available in real
scenarios, such as, e.g., boundary conditions at any future time.

Data-driven approaches, instead, are more suitable to deal with the non-
linearities which characterize traffic flow and, for this reason, can be more
accurate than model-driven approaches, but they are agnostic to the physics
of traffic flow and could lead to infeasible estimation results. These meth-
ods are also not often interpretable and lack robustness. More importantly,
the generalizability of the models is often weak and they have a high depen-
dence on the training data samples. If the quality of training data is poor
(missing/overestimated/underestimated data), their predictive accuracy will be
severely weakened. Recently, many machine learning (ML) approaches were
proposed: they often rely on relatively simple structures (compared to PDEs
intricate systems) making them more lightweight from a computational point
of view, hence being more suitable for real-time applications. However, depen-
dency on large sets of historical data means that training can be computationally
very expensive and can easily lead to data overfitting.

Recent research is growing in interest toward hybrid approaches which try

2

to get the best from each of the two approaches; however, they are rarer in the
literature and each paper uses only single aspects from the two methodologies
to obtain very different results. This paper tries to advance in this research field
by proposing a computational method where ML techniques extrapolate from
data the information needed by differential macroscopic models for traffic flow.

Relevant literature

Fundamental diagram First of all, we have to mention the fundamental
diagram, which is one of the basic ingredients of all model-driven approaches,
especially at the macroscopic scale. It defines the relationship between the
flux and the density of vehicles [26, 19], see Figure 1. It is plain that the

σ ρmax ρ

f

fmax

Figure 1: Fundamental diagram f = f(ρ). The green part corresponds to the
free phase while the red part corresponds to the congested phase. Density σ
corresponds to the maximal flux fmax (road capacity). Flux is null when the
road is empty (ρ = 0) and when the road is fully congested (ρ = ρmax) and
vehicles are stopped.

flux of vehicles is null in either the case of an empty road (null density) or
in the case of a fully congested road (maximal density, stopped bumper-to-
bumper vehicles). For intermediate density levels, real data show more complex
dynamics, especially in correspondence to the maximal capacity of the road.
Indeed, drivers act differently in response to the same traffic conditions and,
in addition, accelerations and decelerations are far from being instantaneous.
As a consequence, traffic shows some instabilities [6, 35, 46]. In first-order
traffic models, the fundamental diagram can be defined by means of a single
function while second-order traffic models allow the fundamental diagram to be
multivalued, in the sense that a single value of the density can be associated with
many values of the flux, exactly as it happens in reality. Recently, an interesting
ML-based method to estimate the fundamental diagram was proposed in [41].

Model-driven Mathematical models for traffic flow first appeared in 1955-6
with the seminal papers [29, 37], which introduced the well-known LWR model.
It is a first-order (velocity-based) model constituted by a hyperbolic PDE where

3

the observed quantity is the vehicle density ρ. The model stems from the rea-
sonable analogy between vehicular dynamics and fluid dynamics. Following the
same line, the model was successively extended to the second-order to include
inertia (acceleration) effects in [36, 51] and [1, 57], giving birth to the PW
and ARZ models, respectively. Independently, in the engineering literature,
the CTM model [14] and the METANET model [32] were introduced. These
two last models are equivalent to the discretized versions of the LWR and PW
model, respectively [49]. The literature about mathematical models is huge, we
refer the reader to the surveys [49, 45, 22, 3, 39] for differential models and their
calibration, and [30] for nondifferential models (cellular automata).

Some effort was also devoted to generalizing mathematical models to road
networks. This is not a trivial task due to the junction conditions which must
be added to assure the uniqueness of the solution of the resulting system of
PDEs. We refer the reader to [5, 4], and the book [20] for basic concepts.

Another generalization of our interest is that of multi-class models. In this
case more than one class of vehicles (e.g., cars and trucks) share the same road.
Each class has a specific dynamic and the classes interact with each other in a
nontrivial manner. We refer to [17, 44, 38], and to the recent books [19, 26] for
an overview of the most used multi-class models.

Data-driven Traffic data can be collected by means of several methods and
technologies. Commonly one can have Eulerian data, provided by fixed sensors
placed along the road (which count passing vehicles), and Lagrangian data,
provided by probe vehicles equipped, e.g., with a GPS system. We refer to
[9, 10, 53] for an overview on traffic data. Typical objects under analysis are,
hence, flux f and velocity v, as opposed to the more abstract concept of density
ρ that characterizes the model-driven approaches.

Early works in data-driven mainly rely on statistical approaches based on
historical data. More recently, the broad research carried out in ML furnished
new lymph to data-driven approaches, with a large corpus of research exploiting
from the simplest to the more exotic technique to study TSE problems.

In this paper, we are mostly interested in Artificial Neural Network (ANN)
methods for traffic understanding, estimation, and prediction, see [43, 16, 34,
54, 58, 60]. ANNs mainly divide into two families: feed-forward models, like the
well-known Single- or Multi-Layer Perceptron (S/MLP) and feed-back models,
like Recursive Neural Networks (RNNs). We refer the reader to the recent
surveys [27, 48, 18, 31, 42] on this topic and, more specifically, we focus on
the use of Long Short-Term Memory RNN (LSTM-RNN, or LSTM in short)
for traffic data forecast. LSTM is a powerful tool that proved to be capable
of capturing long-range temporal feature dependencies and reducing gradient
explosion/vanishing. Among the recent literature, LSTM were often used (both
vanilla or as a building block of more complex structures) to perform analysis
and prediction on f and v: for what concerns velocity, it is the case, e.g., of [21]
that mounts a fusion deep learning approach to predict lane-level traffic speed
at two minutes, [24] that considers the correlation between car speed and car

4

type for a prediction model (LSTM + 4 layer MLP) of the highway speed at 5
minutes, and [52] that combines LSTM with a careful data preprocessing aided
with wavelets analysis to perform speed prediction at 15 minutes. For what
concerns flux, it is the case, e.g., of [59] where a temporal-spatial correlation is
integrated into a 2D LSTM network to predict traffic flow at 15 minutes, [47]
which integrates weather data with an attention model to perform short-term
prediction of the traffic volume, and [18] which describes a novel methodology
of an LSTM-based attention model to predict the upcoming flux based on 120
minutes of data (aggregated 10 minutes by 10 minutes).

Hybrid methods To overcome the shortcomings of both model- and data-
driven approaches while exploiting their potentialities, recent studies introduced
coupled methods where physics and data play together. The way the coupling
is performed in the literature is very different since a common line is yet to be
established: the physical model can be (i) injected in the training process of the
ANN, obtaining the so-called Physics-Informed Neural Networks (PINNs), (ii)
used in parallel with the ANN, as it is done, e.g., in [41], where the TSE, the
model parameter identification, and estimation of the fundamental diagram are
performed simultaneously, or (iii) used after the ANN, like in the present work
and in [23], where data are used to provide consistent boundary conditions at
junctions for macroscopic traffic flow models.

The majority of the recent works fall back into the PINNs category, where
physics is usually plugged into the model by building a custom cost function, in
particular, trying to exploit the powerfulness of deep learning models (PIDL);
it is the case, e.g., of [40] where authors focus on highway TSE with observed
data from loop detectors and probe vehicles, by building a coupled model with
a Physic-Uninformed Neural Network (PUNN) and a PINN with custom loss
function based on physical discrepancy measures. Paper [25], analogously, builds
a custom loss function relying on CTM and LWR with different fundamental
diagrams (Greenshields’, Daganzo’s, and inverse-lambda) to tackle the problem
of data sparsity and sensor noise. Another example of custom cost function
based on multiple physical aspects is given in [2], where authors perform TSE
from probe vehicles data in an urban environment by building a 6-component
loss function that is used both to reconstruct the road state and a smoothed
version of the probe trajectories. Also worth mentioning is the paper [33],
where authors introduce PIDL car-following model architectures encoded with
different popular physics-based models to predict the evolution of each vehicle’s
velocity. Finally, it is also interesting the approach based on physics regularized
Gaussian process (PRGP), like the one proposed in [56] (later extended in [55])
where a stochastic PRGP is developed and a Bayesian inference algorithm is
used to estimate the mean and kernel of the PRGP itself.

Paper contribution

In this paper, we deal with traffic data coming from a series of fixed sensors
placed along a highway. Sensors are about 1-to-20 km away from each other

5

and are able to count vehicles passing under them, estimate vehicles’ velocity,
and classify vehicles in terms of their length (dividing them, e.g., between light
and heavy vehicles). Sensor data are aggregated every minute, sent to a central
processing unit, and stored in a database. The velocity datum corresponds to
the mean of the velocities of vehicles of each type observed in the time interval
of 1 minute.

The main goal is to estimate the traffic conditions all along the road at
current and future time – in terms of macroscopic quantities like flux f , density
ρ, and velocity v – by means of a first-order multi-class LWR-like macroscopic
differential model which describes the joint dynamics of light and heavy traffic,
already introduced in [6]. More in detail, we consider 2 steps:

Nowcast. This is the traffic estimation at current time t0 (now), at every
point of the road. To do that, we split the road into several consecutive segments,
each of which starts and ends with a sensor. Then, we run the model setting the
initial time t = t0−∆tpast and the final time t = t0, where ∆tpast is a parameter.
The model runs in each segment independently and gives the evolution of the
density there. At time t0 −∆tpast we assume that the road is empty, then the
road starts filling thanks to the sensor data which act as inflow and outflow
boundary conditions. If ∆tpast is sufficiently large, the road fills completely and
a reliable density estimate is computed along each segment.

The problem arises how to employ sensor data to enforce boundary condi-
tions: mathematical models typically require density data as Dirichlet boundary
conditions, but in our case sensors do not provide this information. Alterna-
tively, one can inject the flux data directly into the numerical scheme chosen
for the discretization of the modeling equations. Unfortunately, this solution
is not always feasible because sensor data are not guaranteed to be compatible
with the solution of the numerical model; moreover, the solution is not always
the “correct” one, especially in the case of congestion events appearing between
sensors, see Section 6 for details. This is the reason why we explore a third ap-
proach: we train an ANN based on an LSTM to detect congestion formation at
sensors in real time. This is an interesting and complex problem per se, which
gives, as a by-product, a tool for inverting the concave fundamental diagram
without ambiguity, being able to distinguish the free phase from the congested
phase, see Figure 1. The tool is then used to transform the flux datum into
a density value, and inject it into the model, thus solving the incompatibility
issues mentioned above and also adding new physical information in the model,
leading, in most of the cases, to a more accurate solution.

Forecast. This is the traffic estimation at any future time t0 < t < t0 +
∆tfut, where ∆tfut is the duration of the simulation (30 min, in our case). In
this case, sensors data are not yet available, hence we forget the sensors and
we consider the whole highway as a unique long segment. We employ the same
mathematical model considered before, using the nowcast traffic estimation as
initial conditions for the density.

Since the model needs the boundary conditions for any time t0 < t < t0 +
∆tfut, i.e. it needs to have an estimation of the number of vehicles which will

6

enter and leave the road until time t0 +∆tfut, the problem arises how to enforce
these boundary conditions, which sensors clearly cannot provide at time t. To
do that, we set up a different LSTM-based ANN to predict sensor data in the
time interval [t0, t0 + ∆tfut]. More precisely, the output of the ANN will not be
the minute-by-minute flux data, since they are too fluctuating to guarantee a
reliable prediction; instead, we opt to predict the total number of vehicles in the
time interval [t0, t0 + ∆tfut]: a simpler yet useful piece of information since it
can be interpreted as a constant boundary condition that, in most of the cases,
offer a good accuracy regarding the total mass found along the whole road at
t = t0 + ∆tfut.

Paper organization

The rest of the paper is organized as follows. Section 2 introduces the traffic
flow data we considered and provides an overview of the benchmark dataset
provided by Autovie Venete S.p.A.

Section 3 introduces in general terms the structure of the ANN which will
enrich the dataset.

Section 4 discusses the training and the validation of the network which pro-
vides information about the real-time detection of congestion events. The same
section also discusses short-term (few minutes) forecast of congestion events.

Section 5 discusses the training and the validation of the network which
provides information about a mid-term (30 minutes) forecast of the expected
traffic volume at sensors.

Section 6 is devoted to the link between the enriched dataset obtained by
using the ANNs previously described and the mathematical model, in the cases
of both nowcast and forecast.

Finally, Section 7 concludes the work with some final remarks.

2 Discussing the data

At a macroscopic level, traffic flow is characterized by three state variables: the
flux f , corresponding to the number of vehicles passing through a given point
per unit of time, the density ρ, corresponding to the number of vehicles per unit
of length, and the velocity v. In the mathematical world, these quantities are
functions defined on a continuous space-time domain and the following relation
holds true

f(x, t) = ρ(x, t) v(x, t) (1)

for any point x of the road and time t. In the real world, however, these pieces of
information can only be measured as discretized samples, therefore they cannot
be calculated exactly at the same time. It is also well known that computing
ρ by inverting (1) often leads to bad results, especially for large values of ρ, cf.
[23].

Our benchmark dataset is provided by the Italian motorway company Au-
tovie Venete S.p.A. and it was collected between September 2020 and March

7

Figure 2: The Italian motorway A4 Trieste–Venice and its branches to/from
Udine, Pordenone, and Gorizia, managed by Autovie Venete S.p.A.

2022. It contains traffic data from fixed sensors located along three highways in
the North-East of Italy, namely A23, A28, and (part of the) A4, see Figure 2.
All of the highways have two lanes per direction except for the A4 which has
three lanes in some parts. As usual, vehicles have different speed limits on the
basis of their length and weight, moreover, heavy vehicles cannot use the fastest
lane.

Data are collected by 45 groups of sensors which provide, in total 301,200
records per day on average. Each group is characterized by a position x along
the road and a direction of travel and consists of 1 sensor per lane (therefore we
have 2 or 3 sensors per group). Each sensor counts every vehicle that passes in
front of it, along with its speed, and classifies it according to the German TLS
5+1 class standard [7]. The claimed error on counting is ±3% while the error on
velocity is ±max{3 km/h, 3%}. In the following, we aggregate classes 1 and 2
as light vehicles (motorcycles, cars, vans, and car trailers) and classes 3, 4, and 5
as heavy vehicles (lorries, lorry trailers, tractor vehicles and buses). In Sections
4 and 5 we will further aggregate data by class and by group, respectively.

The spatial granularity is highly variable since the distance between sensors
ranges from 1 to 20 km. The temporal granularity is instead more regular since
data are transmitted by each sensor every 1 minute, as aggregate measurements:
this means that the database stores the total number of vehicles passed in that
time interval and the average velocity per each class. The measurements are kept
for 2 hours for real-time analysis then they are moved to a separate database.
Consequently, historicized data are not available in real time.

Some remarks are in order:

• As mentioned above, large density values cannot be recovered by flux and
velocity data simply inverting the relation (1). The reason comes from
a combination of the measurement aggregation and temporal granularity
(low fluxes require long time intervals to be detected because vehicles move
slowly).

8

• Although flux data show a regularity on a daily basis, they are very fluc-
tuating from minute to minute, see Figure 3.

• Most importantly, our data cannot distinguish between an empty road
and a fully congested road. In both cases the measured flux is 0 and the
velocity is undefined.

Figure 3: Velocity and flux for light (top) and heavy (bottom) vehicles, entire
week from Monday to Sunday. We observe that the raw flux data are very
fluctuating from minute to minute, but, applying a Gaussian filter (black line),
one can recognize a certain pattern repeated on a daily basis. At night, the flux
data of all vehicles drop, while the velocity data of light vehicles become more
scattered. As expected, during the weekend, the flux of heavy vehicles is quite
low.

These remarks are important to understand how it can be difficult to detect
the formation of a congestion event in real time, which is, in turn, essential for a
good estimation and forecast of the traffic flow, even far from the sensor which
first observes the congestion. In order to better understand this point, we show
in Figure 4 four congestion events which develop with different characteristics.
In Figure 5, instead, we show two very similar traffic conditions characterized by
a flux drop, which evolve in a totally different manner: one into the free regime
and the other into the congested regime. This makes it clear that, despite it
is relatively easy to detect congestion events (distinguishing them from empty
road conditions) by observing data a posteriori (e.g., a whole day), it is very
difficult to do the same at the moment of the congestion formation.

9

Figure 4: Four congestion events with different features: (top-left) we observe
a rapid velocity drop and flux drop, then flux vanishes while velocity is unde-
fined (with some exceptions for some fast vehicles still passing); (top-right) flux
and velocity drop abruptly; (bottom-left) flux drops first, then velocity drops;
(bottom-right) velocity drops while flux is only partially lowered.

For our purposes, it is crucial to note that 17 groups of sensors out of the
45 deployed are also equipped with advanced technologies1 that, combining
Doppler radar, ultrasound emitters, and passive infrared radiation detectors,
are able to determine also stopped vehicles and intense congestion conditions,
reporting them as Boolean flags in the corresponding minute. In the following,
we will refer to these sensors as 3T sensors and we will use them as one of the
main sources of data for supervised learning purposes.

1Provided by Asim Technologies Ltd, series TT295.

10

http://www.asim-technologies.com

Figure 5: (top) Normal traffic conditions characterized by the usual high fluc-
tuation of the flux. At 7:05 the flux drops abruptly then the traffic restarts
normally; (bottom) At 11:29 a very similar situation appears but, this time,
it evolves into a queue. Beside the Gaussian filter already shown in Figure 3,
here we also show two other Gaussian filters obtained without using future data
(beyond the event horizon). Truncation is obtained assuming either Dirichlet-
like boundary conditions or Neumann-like boundary conditions. We see that
neither Gaussian filters nor raw data are enough to distinguish between the two
scenarios at the event horizon.

11

3 Supervised machine learning approach for the
dataset

In this section, we set up a unique ML-based approach to solve both the two
problems introduced in Section 1, namely the real-time detection of congestion
events, and the forecasting of the expected average flux at sensors.

As we have already recalled, among the supervised learning techniques, RNN
proved to be very effective in time series analysis. They are, in fact, a specific
class of ANN devoted to analyzing temporal sequences X = (xt)t=1,2,... with a
fixed number of features Nin (namely |xt| = Nin), where the same computing
unit is iteratively applied once per each step t of the sequence taking as input
the Nin features of the current step along with the output of the previous step.
In our case, the features which can be extrapolated from the dataset are flux f
and velocity v organized by class of vehicles and/or by lane.

In particular, LSTM-RNN is nowadays the preferred tool for many problems
related to time series, being able to capture temporal features or dependencies
also in long-range periods of time. The idea underlying the LSTM is to divide
the output ht (or hidden state, in the LSTM jargon) of each step from the
processed data that generates it, hence keeping a sort of “internal memory” ct
(or cell state) of the LSTM itself. Both ht and ct shares the same dimension
Nhid (namely |ht| = |ct| = Nhid) which also represents the “length” of the
memory (time window) the LSTM is capable to capture. In particular, the
output of the LSTM always relies only on the last Nhid steps of the series
under analysis: outputting the result after a number of steps smaller than Nhid

provides a less accurate answers. Conversely to Nin, such parameter must be
tuned with suitable approaches (hyper-tuning). The cell state can be then
updated depending on the (eventually normalized) novel input xt conditioned
over the previous output ht−1.

In practice, the LSTM update is based on four different components gf
t ,

gi
t, gc

t , and go
t (or gates, with |g·| = Nhid) that evaluate over independently

weighted combinations of ht−1 and xt as:

gf
t = sigmoid

(
bf + Wf × xt + Rf × ht−1

)
,

gi
t = sigmoid

(
bi + Wi × xt + Ri × ht−1

)
,

gc
t = tanh

(
bc + Wc × xt + Rc × ht−1

)
,

go
t = sigmoid

(
bo + Wo × xt + Ro × ht−1

)
,

(2)

where × denotes the standard matrix-vector product, and W·, R·, and b· are
called respectively input weights, recurrent weights, and biases. Such weights
are (typically) randomly assigned in the beginning and are the objective of the
training phase through the back-propagation of the error.

Each gate serves a different purpose, where the first three rule the update
of the cell state c and the fourth determine the next hidden state h (regulating

12

ct−1

ht−1

xt

ct

ht

W.Comb. W.Comb. W.Comb. W.Comb.

sigmoid sigmoid tanh sigmoid

tanh

gf
t gi

t gc
t go

t

�

�

�

+

Figure 6: Schematic structure of the LSTM computing unit evaluating input
at time t. W.Comb. represents the weighted combination with bias given as
b· + W· × xt + R· × ht−1. All the components are vectors of length Nhid but
x which is of length Nin. We recall that ht is also the output of the network.

the cell state contribution). More formally:

gf or forget gate: weakens ct−1 by applying a transformation within the range
(0, 1).

gi or input gate: decides how the candidate influences ct, being a transfor-
mation of range (0, 1).

gc or candidate gate: represents the cell input activation that regulates c,
being of range (−1, 1).

go or output gate: decides how ct will compose the output, applying a trans-
formation of range (0, 1).

Hence, (see also Figure 6 for a pictorial representation) the update rules are
given by

ct = gf
t � ct−1 + gi

t � gc
t , ht = go

t � tanh(ct), (3)

where � denotes the Hadamard (element-wise) product.
In particular, it is important to notice that the output h of the LSTM is

a Nhid vector and, consequently, it needs to be manipulated to either give a
prediction or a classification. Our tool of choice is a vanilla SLP Feed-Forward
Network that condenses the Nhid features in

- Prediction task : a Npred-lenght output o, where each entry represents an
individual prediction.

- Classification task : a Nclass-length features-vector z, where each entry
represents a class of the problem, then fed into a softmax layer to transform

13

them into a probability vector ô (of being of a specific class). We recall
the softmax function is defined component-wise as follows:

softmax(z)i =
ezi∑Nclass−1

j=0 ezj
, i = 0, . . . , Nclass − 1. (4)

The final output can be either the probability vector ô or the index of the
highest-probability class o, i.e. o = argmax(ô). Do note that ô can be
used as a confidence indicator of the prediction as the closer is max(ô) to
1, the more certain is the prediction according to the ANN.

We recall that SLP is a regular weighted combination with bias, namely the
output z of length either Npred or Nclass is obtained as zt = b+W×ht, where
W and b are a suitable-sized weight-matrix and bias-vector.

Sensor
data

Normalised
Sequence

Input
on (µ, σ)

LSTM

Nhid

hidden
units

SLP

Predict

SoftMax Classify

Prediction Mode

Classification Mode
Nin Nhid

Npred

Nclass Nclass

feedback

(R)MSE

k-Cross Entropy

Figure 7: Pipeline of the enriching tool. The sensor data sequence is globally
feature-wise normalized before feeding it in the LSTM, one step at a time.
The output of the LSTM is then processed by an MLP Network having either
a single or no hidden layer (actually resulting in a single convolution step).
Finally, depending whether it is a classification task or not, a SoftMax layer is
applied before the result is given.

To complete the pipeline of our methodology (a summary can be found in
Figure 7), we further need to specify how to evaluate the system performance
against our ground-truth data, i.e. we need to choose an error function to eval-
uate the distance of our guesses from ground truth (a loss function, in the
jargon).

- Prediction task : being the prediction output a real number, since we are
not interested in weighting differently over- and under-errors, we went
for the vanilla (Root) Mean Squared Error. Denoting with yt and ot
respectively the ground truth and the output of the network corresponding
to the input xt, we recall the (root) mean squared error being:

MSE =
1

|X|
1

Npred

|X|∑
t=1

‖ot − yt‖2 , RMSE =
√

MSE . (5)

14

- Classification task : a very common choice for Boolean classification loss
is the k-cross entropy (with k = 2). In particular, since our dataset shows
a great disequilibrium between positive and negative samples, we decide
(instead of enriching it with synthetic data that are often complex to
generate) to weight the loss entropy on the positive ratio 0 < pr < 1. We
recall that the softmax applied to a binary classification task returns a 2-
value vector ôt = (1− ôt, ôt) where ôt represents the probability that the
positive class is chosen. Hence, if yt is the ground-truth bit corresponding
to input xt – meaning that our target yt is either (1, 0) or (0, 1) – then
the weighted binary-cross entropy is defined as:

CrossEntropy = − 1

|X|

|X|∑
t=1

((
(1−pr)·yt ·ln(ôt)

)
+
(
pr ·(1−yt)·ln(1−ôt)

))
.

(6)

4 Detection and short-term forecast of conges-
tion

In this Section, we build a labeled dataset of congestion events and we use
the previously described ANN-based methodology to build two classifiers: a
first classifier Fc for performing real-time detection of congestion events, and
a second classifier Fp to perform short-term forecasting of the same congestion
events. The two classifiers act as a sort of “congestion alarm” and “congestion
pre-alarm” launchers, respectively.

4.1 Building the dataset

The dataset is created using data gathered by the 3T sensors. Since the conges-
tion event is detected by each sensor (i.e., in each lane), we decided to aggregate
the data of all classes of vehicles and working lane by lane. Therefore, the fea-
tures are the total flux f and the average velocity v of all vehicles (all classes).
(Actually, recovering a posteriori a piece of information per class is often quite
easy. In fact, if a congestion event is detected in the slow lanes and not in the
fast lane, it is highly probable that the congestion is for heavy vehicles only,
since they cannot use the fast lane, see Section 2.)

We split the data per day, so to perform an incremental training phase
using only randomized batches of days of data at a given time. Therefore, we
get dataset samples constituted by a two-feature 1440-long (24 h × 60 min)
sequence X = (x1, . . . ,x1440), with xt = (ft, vt), t = 1, . . . , 1440. The dataset
should be labeled with a suitable 1440-long Boolean array y = (y1, . . . , y1440)
reporting whether the corresponding minute t is labeled as a congestion event
or not. The array y is computed by means of a logical combination of three
different computational procedures, each of which leads to a Boolean flag. More
precisely, we have.

y = b3T ∨ bf ∨ bv,

15

where ∨ denotes the logical or and:

• b3T is the flag for the congestion event transmitted directly by the 3T
sensors. On average, the amount of daily congestion events per sensor is
pretty low (< 0.1%), hence, in order to make the dataset more balanced,
we selected the samples reporting at least ∼ 1% of positive labeling (i.e.∑1440
t=1 (b3Tt ≥ 15). We noticed that the 3T detection procedure is quite

“conservative”, meaning that it tends to report a congestion event only if
there is a stable queue under the sensor. Moreover, the exact definition
of congestion event, as well as the physical and computational procedure
used to detect it are not publicly available and they are not known by the
authors. For these reasons, we decided to enrich the true-sample with the
two following heuristics.

• bf considers the flux array f := (f1, . . . , f1440) only, along with a 10-fold
Gaussian regularization f∗ obtained via a convolution with a triangular
kernel, cf. Figure 3; a congestion event is reported at time t if the sensor
detects the following condition during the daytime (from 5 AM to 8 PM):

ft−1 < 2, ∧ ft < 2, ∧ f∗t < 2, ∧

(
1

60

t−1∑
s=t−60

fs

)
−f∗t > 2 ,

(7)
where ∧ denotes the logical and operator. The idea behind this heuristic
is that a sufficient condition for a congestion event is a low flux at the
current time combined with a sudden drop of the flux (i.e., a high average
flux in the previous time period).

• bv considers instead the velocity array v := (v1, . . . , v1440) only, along with
a regularization v∗ (obtained as before). A congestion event is reported
at time t if the sensor detects the following conditions during the daytime
(from 5 AM to 8 PM):

vt < vt−1, ∧ 0 < vt < 65, ∧ max{v∗s−vt | s = t−1, . . . , t−15} ≥ 40 .
(8)

The idea behind this heuristic is that a sufficient condition for a congestion
event is a low velocity at the current time combined with a sudden drop
of the velocity (i.e., a high velocity in the previous time period).

Remark. The two heuristics were developed under a collaboration with the
data owner and have been human-validated through over a month of direct
observations.
Remark. We point out that the two heuristics both use data that are not
available yet at time t (because of the regularizations), making them useless to
perform real-time applications.

Analyzing the average and the standard deviation of the flux data we found
that most of the sensors dispatched on A4 behave very differently from the

16

Figure 8: k-Cross Entropy (loss, on the left) and accuracy (on the right) achieved
by the training sessions for Fc at the varying of Nhid. As it can be seen, the
better parameter is Nhid = 120 (i.e. corresponding to 2 hours) suggesting that
having more data would refine the results even more.

others (µ ∼ 1e+4 vs. 2e+3 vehicles/day and σ ∼ 1e+4 vs. 5e+3). This is not
surprising since A4 connects more populated areas compared to A23 and A28.
For this reason, we split the sensors into two disjoint sets, namely high flux
(HF) and low flux (LF), being LF all the sensors in A23, A28, and in the fastest
lane of A4 (where it has 3 lanes). In the rest of this and the following section
we consider HF sensors only, the procedure and analysis for LF sensors being
similar.

We split the HF 119-day dataset {(X(d),y(d))}, d = 1, . . . , 119 (171,360
training minutes) in 96 training days and 23 validation days. The average
sample positive rate after the enrichment is pr = 4.2%, hence we weighted the
k-cross entropy function opportunely.

4.2 Training the model

We started by training the HF classifier Fc first: we performed multiple train-
ing sessions to estimate the suitable size Nhid of the memory of the LSTM.
Each training session was carried out by using the ADAM optimizer working
on randomly shuffled batches of size 24 samples over 100 epochs arranged with
9 progressive refinements of the learning rate (10 epochs per refinement).

Figure 8 reports the results in terms of loss and accuracy for the various
training sessions. We found Nhid = 120 being the most suitable parameters for
the model (with Nin = 2, Nclass = 2), yielding best accuracy of 97.70% (99.75%
if weighted w.r.t. pr) with corresponding loss value 5.2 × 10−3. We recall that
Nhid = 120 was the largest amount of data available in real-time applications
for our framework, see Section 2.

Secondly, we tackled the problem of training the classifier Fp. We fixed the
dimensions of the model – namely Nin = 2, Nhid = 120, and Nclass = 2 – and we
focused on how many minutes we could anticipate the classification of Fc without
losing too much in accuracy. The trivial way would be producing a labeled

17

Figure 9: k-Cross Entropy (loss, on the left) and accuracy (on the right)
achieved by the training sessions for Fp at the varying of the time window of
the forecasting ∆t (x-axis) both for predicting y(d) (in dashed blue) and o(d)

(in orange/green). As expected, the smaller ∆t, the better the prediction.

dataset for the forecasting task by applying a ∆t minutes shift to the vectors
y(d) in order to “bring backward” the congestion events. However, we prefer
forecasting the output o(d) of Fc itself (i.e. the argmax of the probability vector)
rather than the target y(d) of Fc. This change in objective is in fact convenient
for two main reasons: (i) the output o(d) is someway a “regularized” version
of the real target y(d), hence it should be easier to forecast; (ii) philosophically
speaking, we are expecting that a Fp alarm to be followed by a Fc one. In order
to further correct the dataset, however, we also filtered the novel target vector
from all the isolated congestion events, actually filtering the ones that probably
were false-positives of Fc.

The results of the training with the two proposed datasets are reported
in Figure 9, where loss and accuracy are compared at the varying of the ∆t
shift. Analyzing the accuracy, it can be seen that trying to forecast o(d) is in
general simpler; the loss, on the contrary, grows slower when the target is set
to y(d) actually prompting that training on o(d) is less conservative in terms
of false-positive. We found ∆t = 4 min being the most suitable parameter
(in particular with the second dataset, still having comparable loss) yielding
interesting predictions while keeping the average accuracy above 95% (with the
best peak of 96.50%, or 98.82% if weighted) with a corresponding average loss
value of 0.24, hence comparable to results obtained by Fc.

4.3 Performance evaluation of the real-time classifier Fc

Figure 10 shows a few examples of day-length classification of congestion events
for both LF and HF sensors. We report the velocity v, flux f , and the confidence
of the classification (given as ô rescaled in the interval [−1,+1], i.e. ô · 2 − 1).
We can notice that when the drop is significant only in v but not in f , the model
shows a little uncertainty to classify the event (Figure 10(top-left)); however, if
the drops involve also f , then the model is able to classify the congestion even if

18

Figure 10: Day-length classification of congestion events. Each plot reports
the velocity (top), the flux (middle) and the confidence of the model for the
classification (bottom). Left: LF sensors; Right: HF sensors.

19

they are short in time (Figure 10(top-right)). In particular circumstances, the
model is able to classify critical events also when the ground truth is uncertain,
like when the flux is close to zero and velocity is high (Figure 10(bottom-left)).
Note that this is a typical situation at night, with no congestion; finally, the
model also keeps the congestion alarm on when the critical situation is vanishing:
this comes from the fact that the model does not know the future, conversely
to the regularization applied by the heuristics (Figure 10(bottom-right)).

4.4 Performance evaluation of the short-term prediction
classifier Fp

In order to give an idea about the actual possibility to predict congestion events,
in Figure 11 we shows four cases we have commonly observed. Figure 11(top-
left) shows a very favorable case in which we are able to predict the congestion 4
minutes before the actual formation. This is possible because the velocity starts
lowering a bit before dropping down, together with the flux. Figure 11(top-
right) shows a case where a long-standing congestion is preceded by a confusing
scenario in which the congestion alarm is on and off. In this case, the congestion
pre-alarm is constantly on. Figure 11(bottom-left) shows a case where prediction
is quite hard, even for a trained human: congestion begins abruptly with a
velocity drop, and the ANN is able to predict it only 1 minute in advance.
Finally, Figure 11(bottom-right) shows an uncertain situation which can likely
evolve into a queue (but it does not, at least for some minutes). The pre-alarm is
on, and even if this is formally incorrect (the congestion pre-alarm is not followed
by a congestion alarm) the uncertainty fully justifies the ANN behavior.

5 Computation of expected traffic volume

In this section, we tackle the problem of performing mid-term prediction (30
min) of the expected traffic volume by building an ANN-based predictor P. Let
us recall that, unlike in the previous section, here we aggregate sensors belonging
to the same group (following the definition given in Section 2), while working
on the two distinct, but coupled, classes of vehicles (light and heavy). This is
important because the dynamics of the two classes are very different one from
the other and, at the same time, they are strongly interconnected.

5.1 Building the datasets

Ground-truth data y can be easily produced for each (group of) sensor, only
needing the real flux of light vehicles f l and that of heavy vehicles fh for the
t upcoming minutes. These compose the feature vector x as (f l, fh) and the
corresponding ground truth y as:

yt =

(
1

t

t+t∑
s=t+1

fls ,
1

t

t+t∑
s=t+1

fhs

)
. (9)

20

Figure 11: Top-left: at 6:30 a congestion event is correctly pre-alarmed four min-
utes in advance. Top-right: at 10:45 a congestion event begins intermittently
while a solid pre-alarm shows up. Bottom-left: a difficult-to-predict conges-
tion appears at 6:06. Bottom-right: at 8:30 an uncertain situation shows up,
characterized by below-average velocity and normal flux, then after 9:00 a clear
congestion is formed (pre-alarmed 1 minute in advance).

For what concerns the dataset creation, we selected the data collected during
the entire 2021, corresponding to 348 day-wise readings (17 days are missing due
to reported reading problems). Due to the high number of available data, we
decided to tune a predictor per group of sensors. As for the previous training,
we organized the features in day-length sequences, and we built a dataset D(g) =
{x(d); y(d)}, 1 ≤ d ≤ 348, for each group g. We extracted roughly one month of
samples from the dataset to form the test set while we used the remaining part
as the training set.

5.2 Training the model

We trained a different model P(g) per group of sensors over its corresponding
dataset D(g). In particular, we focus on the four groups representing the inflow
boundaries of the highway network under consideration: Venice (g1) and Trieste
(g2) for the A4, Conegliano (g3) for the A28, and Udine (g4) for the A23, see
Figure 2. g1 is the only group deployed on a three-lane section.

21

By adopting the same nomenclature as from Figure 7, the choice of the
input and output features requires Nin = 2 and Npred = 2, while Nhid is a
free parameter. Hence, we performed multiple training sessions to estimate
the suitable size for the memory Nhid of the LSTM. Each training session was
carried out with the ADAM optimizer, working with a variable learning rate,
piece-wise decreasing over 5 progressive learning eras of 50 epochs each (for a
total of 250 epochs).

Figure 12: Value of the RMSE, corresponding to the training of P, as a function
of the size Nhid.

Figure 12 shows the value of the RMSE as a function of the free parameter
Nhid. We found Nhid = 27 being the best parameter to correctly capture the
trend of the average flux; the average resulting error and the corresponding
statistics are reported in Table 1. Note that the RMSE reported in Figure 12
is evaluated on the normalized dataset, hence it is not comparable with results
from Table 1.

Light vehicles Heavy vehicles
2-lane 3-lane 2-lane 3-lane

Mean average-error 42.74 76.60 11.74 25.06
Max average-error 70.80 95.06 19.48 33.44
Mean standard-deviation 41.72 62.96 12.04 23.94
Mean max-error 422.64 744.40 164.46 251.24
Mean average-flux 387.74 768.16 96.52 281.42
Mean max-flux 5320.64 5864.48 1825.30 2047.10

Table 1: Error statistics in [vehicles/h] achieved by multiple trainings (with
Nhid = 27) over the four datasets D(gi) (average is performed on all minutes
available in the dataset). Values are sorted by vehicle class and number of lanes.
Average and maximum flux are also reported as benchmark values for relative
error statistics.

The question arises if it is really needed to train a different LSTM per group
of sensors or if one ANN can serve all. To address this question we report in

22

Figure 13 the error made by P(gi) tested against datasets D(gj), with i, j =
1, . . . , 4. We see that it is highly suggested to train as many ANN as groups

Figure 13: Mean error (|yt−ot|) in [vehicles/h] (light vehicles on the left, heavy
vehicles on the right) obtained by applying the network P(gi), i ∈ {1, 2, 3, 4} (x-
axis) on the mutual test-sets D(gj), j ∈ {1, 2, 3, 4} (y-axis). As it can be seen,
maximum-by-row is achieved on the main diagonal, meaning that applying a
specific ANN on a different dataset is not convenient. It is worth noticing that
maximum-by-row does not necessarily correspond to the maximum-by-column
(see, e.g., i = 1, j = 4); this phenomenon is due to the high regularity of some
datasets.

of sensors are considered.

5.3 Performance evaluation

We consider the group of sensors g2 as an example for the performance eval-
uation. Figure 14 shows the histograms of the errors (in [vehicles/h]) made
running the prediction every minute available in the test set. Figure 15

Figure 14: Error histogram of the predictions of Pg2 over its test set. Light
(left) and heavy (right) vehicles. Error is almost symmetrical w.r.t. 0.

23

shows instead the result of Pg2 on an entire day. Every minute, the ground
truth (i.e. the total number of vehicles passed in the next 30 minutes, in [vehi-
cle/h]) is compared with its ANN-predicted value, and the offset is evaluated.
Real flux f is reported along with its a posteriori regularization for reference.
It can be seen again that the error in prediction is almost symmetrical and it
usually corresponds to less than 200 vehicles/h for light vehicles and much less
for heavy vehicles.

Figure 15: Pg2-predicted vs. actually measured flux for 30 mins in the future,
minute by minute, for light (left) and heavy (right) vehicles.

Finally, Figure 16 shows an example of a single-minute prediction.

Figure 16: Zoom of a single-minute prediction of the data presented in Figure 15.
Prediction is performed at time t=8:30, where dashed data are available. The
predicted value is given by the area beneath the orange line while the target of
the prediction is represented by the value of the green shaded area (represented
also as the green dashed line for a better comparison).

6 Feeding traffic models with ML-enriched data

The tools introduced in the previous sections are useful per se, but they can also
be used in combination with other, more classical, tools for traffic estimation

24

and forecast. In this section, we try to get advantage of the pieces of informa-
tion extrapolated by data in order to improve the accuracy of the macroscopic
differential models.

6.1 Nowcast

In this section we explore the possible advantages of inverting the fundamental
diagram when estimating the current status of traffic density by means of a
macroscopic differential model. As mentioned in Section 1, we split the whole
road [xmin, xmax] into consecutive segments delimited by fixed sensors. We aim
at estimating the traffic density at the current time t0, therefore we start the
simulation at a previous time t0 −∆tpast, with ∆tpast > 0, assuming an empty
road at that time. Let us denote by NS the number of road segments (sensors
are NS + 1). Each road segment Sk := (sk, sk+1), k = 1, . . . , NS , is delimited
by two fixed sensors, located at x = sk and x = sk+1, respectively.

We begin with a simplified setting, then we move to the real one.

6.1.1 Simplified setting

We consider the classical single-lane single-class LWR model on each road seg-
ment Sk

∂tρ
k(x, t) + ∂xf(ρk(x, t)) = 0, x ∈ Sk, t ∈ (t0 −∆tpast, t0)

ρk(x, t0) ≡ 0, x ∈ Sk
ρk(sk, t) = ρkin(t), t ∈ [t0 −∆tpast, t0]
ρk(sk+1, t) = ρkout(t), t ∈ [t0 −∆tpast, t0]

(10)

where ρk ∈ [0, ρmax] is the vehicle density for some maximal density ρkmax > 0,
and ρ 7→ f(ρ) is the fundamental diagram. Let us assume, as usual, that
ρ 7→ f(ρ) is concave and denote by σ the argmax of f , i.e. f(σ) = maxρ f(ρ)
(see Figure 1). Equation (10) is defined independently on each segment. Let us
also recall that the relation (1) holds true.

Equation (10) is usually solved by numerical approximation. Let us intro-
duce a grid in the domain Sk × [t0 −∆tpast, t0], with space step ∆x and time
step ∆t. The time interval is divided into Nt intervals, while each segment Sk

is divided into Nk
x cells of length ∆x and the approximate average density in

cell Ckj , j = 1, . . . , Nk
x at time n is denoted by ρk,nj . Any conservative numerical

scheme [28] for (10) has the form

ρk,n+1
j = ρk,nj − ∆t

∆x

(
F (ρk,nj , ρk,nj+1)− F (ρk,nj−1, ρ

k,n
j)

)
, j = 1, . . . , Nk

x , (11)

where F is the numerical flux (i.e. an approximation of the flux f at the interface
between two consecutive cells). For example, in the case of the Godunov scheme,

25

we have

F (ρ−, ρ+) :=


min{f(ρ−), f(ρ+)} if ρ− ≤ ρ+
f(ρ−) if ρ− > ρ+ and ρ− < σ
f(σ) if ρ− > ρ+ and ρ− ≥ σ ≥ ρ+
f(ρ+) if ρ− > ρ+ and ρ+ > σ

. (12)

Let us consider, e.g., the right boundary condition of a given segment Sk,
which corresponds to the left boundary condition of the following segment Sk+1.
Let us also drop the index k from ρ for readability: if j = Nk

x , one could follow
a

- flux-based approach: directly inject in the scheme the flux datum fsk mea-
sured by the sensor across the interface Sk|Sk+1 in place of the numerical
outgoing flux F (ρnNx

, ρnout), without estimating the density ρout;

- density-based approach: evaluate the numerical flux F (ρnNx
, ρnout), by esti-

mating the density ρout.

The two ways are in principle both correct and the first one seems to be more
practical since sensors provide flux data only (i.e. density is not available at
all). On the other hand, flux data fs provided by the sensor are not always
compatible with the solution carried by the numerical scheme. In fact, any flux
fs outside the set of admissible values{

F (ρnNx
, ρ) : ρ ∈ [0, ρmax]

}
(13)

is not compatible with (10) and leads to negative densities, since more mass
comes out than it is available in the road, see Figure 17-left. The question
arises how to enforce the compatibility of the sensor data: a natural solution is
to project the sensor data into the admissible set of flux data (13).

Regarding the density-based approach, the idea is to use the algorithm intro-
duced in Section 4 to help invert the concave fundamental diagram, i.e. passing
from the flux data to the density data by duly distinguishing between free and
congested regimes. More precisely, given the sensor flux datum fs < fmax, the
choice between ρ and ρ′, with ρ′ 6= ρ, f(ρ) = f(ρ′) = fs, is taken depending on
the presence or not of the congestion, see Figure 17-right.

In order to discuss the difference between the two approaches, we devise
a simple numerical test. We consider an infinitely-long single-lane road. As
it is usually done in the mathematical literature, we normalize both density
and velocity in the interval [0, 1] and we choose the fundamental diagram as
f(ρ) = ρ(1 − ρ). In this case, the maximal flux is 0.25 and it is achieved for
ρ = σ := 0.5. Two sensors are located at x = sk := 0.45 and x = sk+1 := 0.8.

At initial time t = t0 − ∆tpast the road has constant density ρ = 0.45 for
x < 0.52 while the rest of the road is empty (ρ = 0). Immediately after the
initial time, an accident occurs at x = b := 0.6 and a bottleneck is formed
between the two sensors.

26

ρNx

fs

ρ ρ′

fs

Figure 17: Fundamental diagram f = f(ρ). (Left) Example of nonadmissible
sensor flux datum for the numerical flux 12: no flux fs > f(ρNx

) is compatible
with any boundary condition ρout. (Right) Given the sensor flux datum fs, the
corresponding density ρ or ρ′ is chosen depending on the presence or not of the
congestion.

Figure 18 shows the reference simulation, i.e. what we assume it is really
happening on the road and that we would ideally like to reproduce with data at
our disposal: at the initial time, a rarefaction fan immediately appears at x =
0.52 and the right part of the road starts populating. When enough vehicles have
reached the bottleneck at x = b, a queue appears and starts back-propagating.
The queue reaches the sensor at sk and continues back-propagating. From the
bottleneck on, vehicles set off at maximal flux (ρ = σ) and proceed normally.

sk sk+1b

Figure 18: Academic test. Reference solution

It is plain that, if the traffic is observed only at sensors, we cannot be able to
perceive the accident and the formation of the bottleneck in its actual position.
The effects of the accident will be visible only when the queue reaches the sensor
at x = sk.

Figure 19-left show the result obtained by the density-based approach. When
the queue is perceived at x = sk, the recorded flux fsk = 0 is correctly translated
into the maximal density ρ = 1 inverting the fundamental diagram. Therefore,
the queue continues back-propagating while, for x > sk, the traffic restarts with

27

Figure 19: Academic test. Left: density-based approach. Right: flux-based
approach

maximal flux. At x = sk+1 whatever approach is used, the solution is the same
and the traffic keeps going with the same dynamics.

Figure 19-right show instead the result obtained by the flux-based approach.
As before, when the queue reaches x = sk the sensor registers a null flux there,
and a queue starts back-propagating. Since the flux through the sensor is null,
no one moves from the sensor on, and the space between the sensors becomes
empty in a short time. At this point, the flux data at the right sensor becomes
incompatible with the traffic condition (the road is empty but the sensor per-
ceives moving vehicles). Therefore, a negative density appears at x = sk+1. For
x > sk+1 traffic dynamics restart correctly with the measured flux.

In conclusion, in this case, the density-based approach is preferable since
it catches with better precision the real scenario, and this is achieved since
the density-based approach actually puts in the simulation additional informa-
tion about the system other than the naked flux data, i.e. the discrimination
free/congested scenario.

6.1.2 Real setting

In this section, we consider real sensor data provided by Autovie Venete, see
Section 2. The major difference with respect to the previous test is that now
we deal with a three-lane highway and two classes of vehicles (light and heavy),
with coupled dynamics. The LWR-like model is generalized to this case by a
system of PDEs{

∂tρ
k
l + ∂xfl(ρ

k
l , ρ

k
h) = 0, x ∈ Sk, t ∈ (t0 −∆tpast, t0)

∂tρ
k
h + ∂xfh(ρkl , ρ

k
h) = 0, x ∈ Sk, t ∈ (t0 −∆tpast, t0)

(14)

where ρl, fl and ρh, fh are the density and flux of light and heavy vehicles, re-
spectively. Equation (14) is complemented with initial and boundary conditions
as in (10). Moreover, the two classes of vehicles do not share the road in the
same manner, being heavy vehicles not allowed in the fastest lane. The coupled

28

dynamics, with uneven space occupancy, was already derived in [6] and we refer
the reader to that paper for both the mathematical and numerical details. Here
we just recall that we consider a phase transition (cf. [11, 12, 15]) due to the
presence of two states of the system, see Figure 20:

• The partial-coupling phase, when heavy vehicles influence the dynamics of
light ones but not vice versa. Light vehicles are then mainly in the fast
lane and heavy vehicles are independent of them. In this case, the two
equations in the system (14) are partially coupled, i.e. fh only depends on
ρh, {

∂tρl + ∂xfl(ρl, ρh) = 0,

∂tρh + ∂xfh(ρh) = 0.

• The full-coupling phase, when light vehicles are too much to fit the fast
lane only and then invade the slow lane(s), influencing the dynamics of
heavy vehicles. In this case, the two equations are fully coupled and fall
in the general form of the system (14) .

light vehicles density

he
av

y
ve

hi
cl

es
 d

en
si

ty

partial
coupling

full
coupling

tr
a
n
si

ti
o
n

le
v
el

ρmax
l

ρmax
h

Figure 20: The two phases of the model (14): the density of light vehicles
determines if the dynamics is partially or fully coupled.

Figure 21 shows the families of fundamental diagrams devised for taking into
account the flux-density dependence for each class of vehicles given the density
of the other class, see [6] for more details.

We are now ready to describe the test. Let us consider a stretch of road
of length 32 km, across two segments. A sensor is located at the interface at
x = 20.5 km. A permanent bottleneck caused by the transition from 3 to 2
lanes is located at x = 29.5 km.

In the real scenario, confirmed by direct observation of Autovie Venete per-
sonnel, the bottleneck causes congestion for heavy vehicles only, which propa-
gates back and, in turn, slows down the light vehicles. As in the academic test,
the model perceives the congestion only when it reaches the sensor.

29

density

flu
x

Light vehicles

t
r
a
n
s
it
io

n
le

v
e
l

density

flu
x

Heavy vehicles

density

flu
x

Light vehicles

t
r
a
n
s
it
io

n
le

v
e
l

density

flu
x

Heavy vehicles

Figure 21: Families of fundamental diagrams in the two phases. Left: function
ρl → fl(ρl, ρh) for several values of ρh in the case of partial (top) and full
(bottom) coupling. Right: function ρh → fh(ρl, ρh) for several values of ρl in
the case of partial (top) and full (bottom) coupling.

Figure 22 shows the density and the velocity of light and heavy vehicles in
the case of flux- and density-based approaches. If the flux-based approach is
used, a piece of congestion for heavy vehicles propagates upstream the sensor
and it keeps slowing down the light vehicles (their speed is about 60 km/h),
while downstream traffic is free. If instead the density-based approach is used,
the dynamics are more complicated because the corrections ρ→ ρ′ for each class
changes the fundamental diagram of the other class, see Figure 21: downstream,
we observe a slowdown for both vehicle classes (velocity is about 20 km/h for
heavy vehicles and 100 km/h for light vehicles); upstream, both vehicle classes
are totally congested (velocity is zero). Again, the density-based approach better
matches the real scenario especially between the sensor and the bottleneck.

6.2 Forecast

In this section, we explore the possible advantage of estimating the incoming
traffic volume for traffic forecast. The idea is to run again the simulator based on
the model (14) from time t0 to time t0 +∆tfut. Conversely to the previous case,
here we aim at forecasting the traffic distribution in the whole road [xmin, xmax]

30

0 5 10 15 20 25 30

space (km)

0

20

40

60

80

100

120

de
ns

ity
 (

ve
h/

km
)

Heavy vehicles density

density based
flux based

0 5 10 15 20 25 30

space (km)

0

50

100

150

200

250

300

350

400

de
ns

ity
 (

ve
h/

km
)

Light vehicles density

density based
flux based

0 5 10 15 20 25 30

space (km)

0

10

20

30

40

50

60

70

80

90

100

110

sp
ee

d
(k

m
/h

)

Heavy vehicles speed

density based
flux based

0 5 10 15 20 25 30

space (km)

0

50

100

150

sp
ee

d
(k

m
/h

)

Light vehicles speed

density based
flux based

Figure 22: Test with real data. Density and velocity of light and heavy vehicles
for the flux- and density-based approach at time t = t0.

(with no interruption at sensors), starting from the outcome of the nowcast
procedure as initial condition for the densities (ρl, ρh). Obviously, sensor data
cannot be longer used here since they are not yet available, and the problem
arises which boundary conditions should be used. Ideally, one should estimate
the correct future inflow and outflow at each time step ∆t, but this is extremely
difficult considering the high variability of the traffic dynamics. On the opposite
side, the simplest solution is to assume ρin = 0 so as to assume that nobody
enters the road, and ρout = 0 so as to guarantee maximal outflow, but this leads
to a gradual emptying of the road starting from the inflow boundary. A possible
compromise is to set ρout = 0 for maximal outflow and keep a constant inflow,
equal to the last available datum, or an average of the last minutes, or equal to a
certain value predicted by a separate procedure. Here we consider the outcome
of the ANN set up in Section 5, which estimates the traffic volume for 30 min
in the future, directly injecting the flux datum in the numerical scheme.

In order to measure the error of the simulation, we compare the forecast
traffic density distribution x → ρF{L,H}(x, t0 + δ) at any future time t0 + δ,

δ ∈ [0,∆tfut], with the estimated nowcast x → ρN{L,H}(x, t0 + δ) computed as

soon as the data becomes available (i.e. at time t0 + δ). Relative L1-distance
between traffic densities is computed as usual

E{L,H}(t) :=
‖ρF{L,H} − ρ

N
{L,H}‖L1

‖ρN{L,H}‖L1

where ‖ρ‖L1 :=

∫ xmax

xmin

|ρ(x, t)| dx.

Figure 23 shows the error as a function of time for light and heavy vehicles

31

0 5 10 15 20

time (min)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
1
 e

rr
or

Light vehicles

no AI bound. cond.
AI bound. cond.

0 5 10 15 20

time (min)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
1
 e

rr
or

Heavy vehicles

no AI bound. cond.
AI bound. cond.

Figure 23: Normalized L1 error as a function of time with ANN-generated inflow
boundary condition (red line) and with null inflow (blue line), for light (left)
and heavy (right) vehicles.

separately, on a stretch of road of length 16 km with two lanes. We compare
the error made by using the predicted value of the incoming flux with the one
made by simply assuming a null inflow (the simplest choice). It is interesting
to note that in the ANN-aided traffic prediction, the error initially increases
and then stays bounded below about 30% for both light and heavy vehicles.
This means that, although the traffic distribution can be shifted horizontally
with respect to the real one, the total mass (i.e. the amount of vehicles) does
not differ excessively. On the contrary, using a null inflow the error rapidly
increases up to 100% and then stabilizes, as expected.

7 Conclusions

In this paper, we have proposed a hybrid model-/data-driven method for recon-
structing and predicting traffic distributions on extra-urban roads and highways.
Similar to [41, 23], the idea is to use an ANN as a joining link between real data
and the mathematical model, avoiding using the latter in the training phase of
the ANN. This approach allows exploiting the power of ML in extrapolating
information from real-time and historical data and then passing to the model a
piece of processed information that can be immediately incorporated. We have
also observed that data-driven approaches based on data measured by fixed
sensors can hardly extrapolate any kind of spatial information, i.e. information
about the spatial distribution of traffic between sensors. This is the reason why
we think that the mathematical model is essential in TSE since it catches the
right causality of traffic dynamics in space and time.

32

Acknowledgments

The authors want to warmly thank Andrea Appella and Giulia Tatafiore for
their support in analyzing and understanding data, as well as improving the
quality of the labeled dataset. The authors want also to thank Paolo Ranut
who supported this research on behalf of the motorway company Autovie Venete
S.p.A.

Funding

This work was carried out within the research project “SMARTOUR: Intelligent
Platform for Tourism” (No. SCN 00166) funded by the Ministry of University
and Research with the Regional Development Fund of European Union (PON
Research and Competitiveness 2007–2013).

E.C. and M.B. would also like to thank the Italian Ministry of Instruc-
tion, University and Research (MIUR) to support this research with funds com-
ing from PRIN Project 2017 (No. 2017KKJP4X entitled “Innovative numerical
methods for evolutionary partial differential equations and applications”).

This work was also partially funded by Autovie Venete S.p.A.
All the authors are members of the INdAM Research group GNCS.

References

[1] A. Aw and M. Rascle. Resurrection of “second order” models of traffic
flow. SIAM Journal on Applied Mathematics, 60(3):916–938, 2000.

[2] M. Barreau, M. Aguiar, J. Liu, and K. H. Johansson. Physics-informed
learning for identification and state reconstruction of traffic density. In
2021 60th IEEE Conference on Decision and Control (CDC), pages 2653–
2658. IEEE, 2021.

[3] N. Bellomo and C. Dogbe. On the modeling of traffic and crowds: A survey
of models, speculations, and perspectives. SIAM Review, 53(3):409–463,
2011.

[4] G. Bretti, M. Briani, and E. Cristiani. An easy-to-use algorithm for sim-
ulating traffic flow on networks: Numerical experiments. Discret. Contin.
Dyn. Syst. Ser. S, 7:379–394, 2014.

[5] M. Briani and E. Cristiani. An easy-to-use algorithm for simulating traffic
flow on networks: Theoretical study. Netw. Heterog. Media, 9:519–552,
2014.

[6] M. Briani, E. Cristiani, and P. Ranut. Macroscopic and multi-scale models
for multi-class vehicular dynamics with uneven space occupancy: A case
study. Axioms, 10(2):102, 2021.

33

[7] Bundesanstalt für Straßenwesen Bergisch Gladbach (BAST). Technische
lieferbedingungen für streckenstationen. Technical report, Bundesminis-
terium für Verkehr, Bau und Stadtentwicklung (BMDV), Aug 2012. [PDF],
bast.de/tls.

[8] G. Carlier and F. Santambrogio. A continuous theory of traffic congestion
and Wardrop equilibria. Journal of Mathematical Sciences, 181(6):792–804,
2012.

[9] W. Chen, F. Guo, and F.-Y. Wang. A survey of traffic data visualization.
IEEE Transactions on Intelligent Transportation Systems, 16(6):2970–
2984, 2015.

[10] A. H. Chow, Y. Li, and K. Gkiotsalitis. Specifications of fundamental dia-
grams for dynamic traffic modeling. Journal of Transportation Engineering,
141(9):04015015, 2015.

[11] R. M. Colombo. Hyperbolic phase transitions in traffic flow. SIAM J. Appl.
Math., 63(2):708–721, 2002.

[12] R. M. Colombo, P. Goatin, and B. Piccoli. Road networks with phase
transitions. J. Hyperbolic Differ. Eq., 7(1):85–106, 2010.

[13] E. Cristiani and F. S. Priuli. A destination-preserving model for simulating
Wardrop equilibria in traffic flow on networks. Networks & Heterogeneous
Media, 10(4):857, 2015.

[14] C. F. Daganzo. The cell transmission model: A dynamic representation of
highway traffic consistent with the hydrodynamic theory. Transportation
Research Part B: Methodological, 28(4):269–287, 1994.

[15] M. L. Delle Monache, K. Chi, Y. Chen, P. Goatin, K. Han, J. Qiu, and
B. Piccoli. Three-phase fundamental diagram from three-dimensional traffic
data. Axioms, 10:17, 2021.

[16] W. Du, Q. Zhang, Y. Chen, and Z. Ye. An urban short-term traffic flow
prediction model based on wavelet neural network with improved whale
optimization algorithm. Sustainable Cities and Society, 69:102858, 2021.

[17] S. Fan and D. B. Work. A heterogeneous multiclass traffic flow model with
creeping. SIAM J. Appl. Math., 75(2):813–835, 2015.

[18] W. Fang, W. Zhuo, J. Yan, Y. Song, D. Jiang, and T. Zhou. Attention meets
long short-term memory: A deep learning network for traffic flow forecast-
ing. Physica A: Statistical Mechanics and its Applications, 587:126485,
2022.

[19] A. Ferrara, S. Sacone, and S. Siri. Freeway Traffic Modelling and Control.
Springer, 2018.

34

https://www.bast.de/DE/Publikationen/Regelwerke/Verkehrstechnik/Unterseiten/V5-tls-2012.pdf?__blob=publicationFile&v=1
https://www.bast.de/EN/Traffic_Engineering/Subjects/tls/tls.html

[20] M. Garavello and B. Piccoli. Traffic Flow on Networks. American Institute
of Mathematical Sciences, 2006.

[21] Y. Gu, W. Lu, L. Qin, M. Li, and Z. Shao. Short-term prediction of lane-
level traffic speeds: A fusion deep learning model. Transportation Research
Part C: Emerging Technologies, 106:1–16, 2019.

[22] D. Helbing. Traffic and related self-driven many-particle systems. Reviews
of Modern Physics, 73(4):1067, 2001.

[23] M. Herty and N. Kolbe. Data-driven models for traffic flow at junctions.
preprint arxiv:2212.08912, 2022.

[24] Y.-L. Hsueh and Y.-R. Yang. A short-term traffic speed prediction model
based on LSTM networks. International Journal of Intelligent Transporta-
tion Systems Research, 19(3):510–524, 2021.

[25] A. J. Huang and S. Agarwal. Physics-informed deep learning for traffic
state estimation: Illustrations with LWR and CTM models. IEEE Open
Journal of Intelligent Transportation Systems, 3:503–518, 2022.

[26] F. Kessels. Traffic Flow Modelling. Springer, 2019.

[27] K. Lee, M. Eo, E. Jung, Y. Yoon, and W. Rhee. Short-term traffic predic-
tion with deep neural networks: A survey. IEEE Access, 9:54739–54756,
2021.

[28] R. J. LeVeque. Numerical Methods for Conservation Laws. Birkhäuser,
1992.

[29] M. J. Lighthill and G. B. Whitham. On kinematic waves II. A theory of
traffic flow on long crowded roads. Proc. R. Soc. Lond. Ser. A, 229:317–345,
1955.

[30] S. Maerivoet and B. De Moor. Cellular automata models of road traffic.
Physics Reports, 419(1):1–64, 2005.

[31] E. L. Manibardo, I. Laña, and J. Del Ser. Deep learning for road traffic
forecasting: Does it make a difference? IEEE Transactions on Intelligent
Transportation Systems, 2021.

[32] A. Messner and M. Papageorgiou. METANET: A macroscopic simula-
tion program for motorway networks. Traffic Engineering & Control, 31(8-
9):466–470, 1990.

[33] Z. Mo, R. Shi, and X. Di. A physics-informed deep learning paradigm for
car-following models. Transportation Research Part C: Emerging Technolo-
gies, 130:103240, 2021.

35

[34] S. Modi, J. Bhattacharya, and P. Basak. Multistep traffic speed predic-
tion: A deep learning based approach using latent space mapping con-
sidering spatio-temporal dependencies. Expert Systems with Applications,
189:116140, 2022.

[35] D. Ni, H. K. Hsieh, and T. Jiang. Modeling phase diagrams as stochastic
processes with application in vehicular traffic flow. Appl. Math. Model.,
53:106–117, 2018.

[36] H. J. Payne. Model of freeway traffic and control. Mathematical Model of
Public System, pages 51–61, 1971.

[37] P. I. Richards. Shock waves on the highway. Oper. Res., 4(1):42–51, 1956.

[38] Z. (Sean) Qian, J. Li, X. Li, M. Zhang, and H. Wang. Modeling heteroge-
neous traffic flow: A pragmatic approach. Transp. Res. Part B, 99:183–204,
2017.

[39] T. Seo, A. M. Bayen, T. Kusakabe, and Y. Asakura. Traffic state estimation
on highway: A comprehensive survey. Annual Reviews in Control, 43:128–
151, 2017.

[40] R. Shi, Z. Mo, and X. Di. Physics-informed deep learning for traffic state
estimation: A hybrid paradigm informed by second-order traffic models. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 540–547, 2021.

[41] R. Shi, Z. Mo, K. Huang, X. Di, and Q. Du. A physics-informed deep
learning paradigm for traffic state and fundamental diagram estimation.
IEEE Transactions on Intelligent Transportation Systems, 23(8):11688–
11698, 2022.

[42] D. A. Tedjopurnomo, Z. Bao, B. Zheng, F. Choudhury, and A. K. Qin.
A survey on modern deep neural network for traffic prediction: Trends,
methods and challenges. IEEE Transactions on Knowledge and Data En-
gineering, 2020.

[43] B. T. Thodi, Z. S. Khan, S. E. Jabari, and M. Menéndez. Incorporat-
ing kinematic wave theory into a deep learning method for high-resolution
traffic speed estimation. IEEE Transactions on Intelligent Transportation
Systems, 2022.

[44] F. van Wageningen-Kessels. Framework to assess multiclass continuum
traffic flow models. Transp. Res. Rec., 2553(1):150–160, 2016.

[45] F. van Wageningen-Kessels, H. Van Lint, K. Vuik, and S. Hoogendoorn.
Genealogy of traffic flow models. EURO Journal on Transportation and
Logistics, 4(4):445–473, 2015.

36

[46] H. Wang, D. Ni, Q.-Y. Chen, and J. Li. Stochastic modeling of the equi-
librium speed-density relationship. J. Adv. Transp., 47:126–150, 2013.

[47] K. Wang, C. Ma, Y. Qiao, X. Lu, W. Hao, and S. Dong. A hybrid deep
learning model with 1DCNN-LSTM-Attention networks for short-term traf-
fic flow prediction. Physica A: Statistical Mechanics and its Applications,
583:126293, 2021.

[48] S. Wang, J. Cao, and P. Yu. Deep learning for spatio-temporal data min-
ing: A survey. IEEE Transactions on Knowledge and Data Engineering,
34(8):3681–3700, 2022.

[49] Y. Wang, M. Zhao, X. Yu, Y. Hu, P. Zheng, W. Hua, L. Zhang, S. Hu,
and J. Guo. Real-time joint traffic state and model parameter estima-
tion on freeways with fixed sensors and connected vehicles: State-of-the-
art overview, methods, and case studies. Transportation Research Part C:
Emerging Technologies, 134:103444, 2022.

[50] J. G. Wardrop. Some theoretical aspects of road traffic research. Proceed-
ings of the Institution of Civil Engineers, 1(3):325–362, 1952.

[51] G. B. Whitham. Linear and nonlinear waves. John Wiley & Sons, 2011.

[52] W. Xiangxue, X. Lunhui, and C. Kaixun. Data-driven short-term forecast-
ing for urban road network traffic based on data processing and LSTM-
RNN. Arabian Journal for Science and Engineering, 44(4):3043–3060, 2019.

[53] J. Xing, W. Wu, Q. Cheng, and R. Liu. Traffic state estimation of ur-
ban road networks by multi-source data fusion: Review and new insights.
Physica A: Statistical Mechanics and its Applications, page 127079, 2022.

[54] H. Yan, L. Fu, Y. Qi, D.-J. Yu, and Q. Ye. Robust ensemble method for
short-term traffic flow prediction. Future Generation Computer Systems,
133:395–410, 2022.

[55] Y. Yuan, Z. Zhang, and X. T. Yang. Macroscopic traffic flow modeling with
physics regularized Gaussian process: Generalized formulations, preprint.
https://arxiv.org/abs/2007.07762, 2022.

[56] Y. Yuan, Z. Zhang, X. T. Yang, and S. Zhe. Macroscopic traffic flow
modeling with physics regularized Gaussian process: A new insight into
machine learning applications in transportation. Transportation Research
Part B: Methodological, 146:88–110, 2021.

[57] H. M. Zhang. A non-equilibrium traffic model devoid of gas-like behavior.
Transportation Research Part B: Methodological, 36(3):275–290, 2002.

[58] Z. Zhang, Y. Yuan, and X. Yang. A hybrid machine learning approach
for freeway traffic speed estimation. Transportation Research Record,
2674(10):68–78, 2020.

37

arXiv:2007.07762

[59] Z. Zhao, W. Chen, X. Wu, P. C. Chen, and J. Liu. LSTM network: A deep
learning approach for short-term traffic forecast. IET Intelligent Transport
Systems, 11(2):68–75, 2017.

[60] G. Zheng, W. K. Chai, and V. Katos. A dynamic spatial–temporal deep
learning framework for traffic speed prediction on large-scale road networks.
Expert Systems with Applications, 195:116585, 2022.

38

	1 Introduction
	2 Discussing the data
	3 Supervised machine learning approach for the dataset
	4 Detection and short-term forecast of congestion
	4.1 Building the dataset
	4.2 Training the model
	4.3 Performance evaluation of the real-time classifier
	4.4 Performance evaluation of the short-term prediction classifier

	5 Computation of expected traffic volume
	5.1 Building the datasets
	5.2 Training the model
	5.3 Performance evaluation

	6 Feeding traffic models with ML-enriched data
	6.1 Nowcast
	6.1.1 Simplified setting
	6.1.2 Real setting

	6.2 Forecast

	7 Conclusions

