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ABSTRACT As a severe hazard in coal mining and rock excavation, the rockburst is usually induced

by the high energy tremor. Microseismic (MS) monitoring is suggested to forecast the rockburst risk to

reduce its damage. The paper aims to investigate contribution of multi-MS data, including MS raw wave

data and MS energy data, to prediction of the high energy tremor, using support vector machine (SVM)

together with genetic algorithm (GA). MS monitoring data recorded for more than 400 days at Wudong coal

mine of Xinjiang, China, were used in the paper. 132 and 24 features are initially extracted from MS raw

wave and energy data in the frequency domain, entropy and time-frequency domain, respectively. GA is not

only used to select effective ones among initially extracted features, but also optimize hyperparameters for

SVM to classify high energy tremors from general MS events. The performances of the proposed approach

based on multi-MS data are evaluated by cross-validation. The results show that the classifier achieves 98%

sensitivity, 88% accuracy and 87% specificity using both MS raw wave and energy data, which is better

than solely utilizing MS raw wave (98% sensitivity, 84% accuracy and 83% specificity) or energy data

(98% sensitivity, 86% accuracy and 85% specificity). These findings suggest that MS raw wave data makes

important contribution to rockburst risk prediction as well as MS energy data, and the better performance

can be achieved when utilizing two kinds of data simultaneously.

INDEX TERMS Rockburst risk prediction, microseismic monitoring, microseismic raw wave data, support

vector machine, genetic algorithm.

I. INTRODUCTION

A rockburst refers to a violent fracture of rock occurring

in coal mining or rock excavation with a sudden release of

accumulated strain energy [1]. The pressure on adjacent rocks

is significantly reduced due to coalmining or rock excavation,

which potentially leads to rockburst. The risk of rockburst

rises, asmining depth and intensity of coal resources increase.

As a severe hazard, the rockburst leads to serious destruc-

tion to mine equipment and buildings in mining areas [2]–[6].

According to the statistics, 169 coalmine accidents occurred

with 211 deaths in China from January to August in 2018 [7].

Five workers lost their lives by mining accidents in Australia

on 20 December 2018 [8]. Twelve coal fatalities happened in

The associate editor coordinating the review of this manuscript and

approving it for publication was Hao Luo .

the USA in 2018 [9]. A serious rockburst accident occurred

in Hongyang No. 3 Coal Mine of Shenyang Coking Coal

Co., Ltd. on 11 November 2017, which caused ten workers

killed and one worker injured [10]. A rockburst occurred

in Longyun Coal Industry Co., Ltd. on 20 October 2018,

causing different degrees of damage to the roadway within

approximately 100 meters and 21 deaths [11].

In order to reduce rockburst damage, several methods were

proposed to predict the probability and potential areas of

the rockburst, including MS monitoring techniques, acoustic

emission, electromagnetic radiation, stress monitoring and

drilling cutting [12]–[20]. The engineering requirements for

stress monitoring and drilling cutting are very high, resulting

in high costs, discontinuous monitoring and limited range.

They are usually used as auxiliary monitoring methods for

early warning of rockburst risk. Electromagnetic radiation is
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FIGURE 1. Frequency characteristics of seismic motion wave (modified according to [21]).

mainly utilized for partial monitoring, since its monitoring

range is limited, and always influenced by the operation

of cables and equipments. The acoustic emissions tech-

nique monitors low-energy and high-frequency signals with

a small monitoring range and weak anti-interference ability,

while MS monitoring can monitor events with a wide mon-

itoring range and strong anti-interference ability, as shown

in Fig. 1 [21], [22].

MS monitoring analyses the precursor characteristics of

the rockburst by observing micro-fractures, resulted from

local damage inside the rock mass under the external force

disturbance [23], [24]. The MS monitoring technique has

several advantages, including without effect on production

activities, and monitoring MS events of the whole mining

area in real-time [25]. A group of studies were performed to

forecast the rockburst based on MS monitoring, and indeed

obtained many useful findings [26], [27]. MS waves before

the rockburst were investigated, suggesting that character-

istics of the wave’s velocity, amplitude, and frequency as

well as rock stress state can be used for the rockburst warn-

ing [28]–[36]. The relationship between MS waves and the

rockburst was analysed, indicating the features extracted from

MS waves together with rock stress can be utilized to predict

rockburst [25], [37]–[41].

Although great potentials of MS monitoring have been

demonstrated as discussed above, as far as we know, these

studies mainly used MS energy data to predict the rockburst,

but failing to utilize MS raw wave data. In this context, this

paper aims to investigate contribution of MS raw wave and

energy data to rockburst risk prediction. In this paper, a high

energy tremor is defined as a MS event with a sudden release

of energy greater than 1×106 J. High energy tremors usually

cause obvious vibration in a certain area of underground

mine, accompanied by the drop of small coal and rock blocks,

which seriously threatens workers’ safety. Furthermore the

high energy tremor can even induce severe rockburst disasters

under certain circumstances. Therefore, early warning of the

high energy tremor is of great significance to rockburst risk

prediction.

MS monitoring data continuously recorded for more than

400 days at the Wudong coal mine of Xinjiang, China,

were used in the paper. 132 and 24 features are initially

extracted fromMS rawwave and energy data in the frequency

domain, entropy and time-frequency domain, respectively.

Although MS data over 400 days were collected, the num-

ber of high energy tremors is limited. Therefore, this is a

typical high-dimensional small samples issue. Support vector

machine (SVM) is a machine learning method based on

statistical learning theory [42] and the structural risk min-

imization principle [43], having advantages to solve small

sample, nonlinear and high-dimensional pattern recognition

problems [44]. Meanwhile genetic algorithm (GA) is a group

intelligent optimization algorithm based on natural selec-

tion and evolution, and can seek global optimal solutions

without any initialization information [45]. Considering the

advantages of SVM and GA, a GA-SVM based approach

is proposed to analyse multi-MS data. Specifically, GA is

used to select effective ones from 156 features and optimize

hyperparameters of the SVM classifier. SVM classifies high

energy tremors from general MS events based on features

selected by GA. The performances of the approach are eval-

uated by cross-validation. It is should be noted that the key

point of this paper is to demonstrate advantages of extracting

a variety of features from both MS raw wave and energy data

in frequency domain, entropy and time-frequency domain,

and further investigate contribution of MS raw wave and

energy data in rockburst risk prediction.

II. MS DATA DESCRIPTION

External force is able to lead to micro-fractures inside the

rock mass. Such micro-fractures can be regarded as a MS

event, and detected by the MS monitoring system. Data

from the monitoring system records time, energy and coor-

dinates of the MS event. In this work, MS data are obtained

by ARAMIS M/E MS Monitoring System (the system is

developed by EMAG Industrial Technology Innovation Insti-

tute of Poland; detailed information regarding this system

is available at http://www.cttemag.pl/en) in Wudong coal
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FIGURE 2. Sketch of the layout of the MS system in Wudong coal mine (modified according to [56]).

FIGURE 3. The raw wave signal (including the interference signal) of a MS event detected by MS sensors.

mine, Xinjiang, China. The MS sensor distribution of the

MS monitoring system is shown in Fig. 2. When a MS event

occurs, the MS monitoring system can detect a significant

MS waveform in multiple channels (one channel corresponds

to a MS sensor). MS monitoring data from June 6, 2016 to

March 22, 2018 are collected.

MS data includes MS raw wave and energy data.

Fig. 3 shows a raw wave signal (including the interference

signal) of a MS event detected by MS sensors of the monitor-

ing system during a certain period, for example. Table 1 lists

MS energy data calculated by the monitoring system using

MS raw wave data of ten MS events. As shown in Table 1,

the data includes time, source coordinates, energy and other

information of MS events.

The high energy tremor is likely to induce severe rockburst

hazards, this paper aims to analyse the MS data before the
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FIGURE 4. MS daily maximum energy.

TABLE 1. Ten MS events and related information of time, source
coordinates and energy.

occurrence of high energy tremors, and predict the occurrence

of high energy tremors. TheMS energy data directly obtained

from the MS monitoring system (Table 1) are processed to

obtain the daily maximum energy and the daily total energy

of the MS event. The high energy tremor is marked according

to the daily maximum energy value. Fig. 4 presents a graph

of daily maximum energy as a function of date. The abscissa

and ordinate represent the date and daily maximum energy

value in logarithms respectively. The high energy tremor is

marked with a red vertical line.

III. METHODOLOGY

A approach combining SVM with GA is proposed to analyse

MS energy data or/andMS rawwave data in this paper, which

aims to predict the high energy tremor based on previous MS

data. As demonstrated in Fig. 5, the proposed approach con-

tains the following steps: feature extraction, feature selection

and hyperparameters optimization based on GA, and SVM

model construction.

FIGURE 5. Flow diagram of the proposed approach.

A. FEATURE EXTRACTION

MS raw wave and energy data are used to extract potential

features for predicting high energy tremors in this paper. To be

specific, the comprehensive statistical features are extracted

from MS raw wave data in the frequency domain, while

entropy and time-frequency domain features are extracted

from MS energy data (MS energy data contains daily max-

imum energy and daily total energy).
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FIGURE 6. An example of FFT of the raw wave data sequence of each channel of the MS event shown
in Fig. 3.

1) FREQUENCY DOMAIN-BASED COMPREHENSIVE

STATISTICAL FEATURES OF MS RAW WAVE DATA

(12 × 11.132 FEATURES)

The frequency spectrum [39] is estimated for the raw wave

data from all channels in eachMS event using discrete Fourier

transform. Fig. 6 illustrates the frequency spectrum of raw

wave data shown in Fig. 3. The proportions of the high-

frequency and low-frequency components in spectrums are

obtained according to thresholds from 50 to 150 Hz with

a 10 Hz interval. For each MS event, mean and maximum

values of high-low frequency ratios of all channels are then

calculated. For all MS events in one day, the sum, mean, vari-

ance, median, maximum, and minimum values of the above

mean and maximum values are calculated as features of MS

rawwave data, respectively. The features and descriptions are

listed in Table 2. Finally, envelopes are calculated for these

132 value sequences with a window length of thirteen days,

since the shortest time interval for the marked high energy

tremor is thirteen days.

2) ENTROPY FEATURES OF MS ENERGY DATA

(2 × 3 × 2 = 12 FEATURES)

The sample entropy (SampEn) reflects the complexity of sig-

nals by measuring the probability of generating a new pattern

in signals. It can be used to identify the same pattern in the

time series [46]. Envelope, sliding average and sliding vari-

ance are calculated for the daily maximum energy sequence

and daily total energy sequence. The sliding window width

is set to thirteen days (consistent with that of the features

extracted from MS raw wave data) with the sliding step of

one day, Then, the SampEn and quadratic SampEn (the def-

TABLE 2. Overview of frequency domain-based comprehensive statistical
features of MS raw wave data.
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inition of quadratic SampEn is included in Appendix A) are

calculated for the envelope, the sliding average and the sliding

variance as features, respectively. The details of calculating

SampEn can be found in the work of Zhao et al. [46].

TABLE 3. Overview of the entropy features of MS energy data.

The calculated 12 entropy features are shown in Table 3.

As an example, Fig. 7 provides a comparison of the daily

maximum energy sequence and the SampEn of its envelope.

The abscissa represents the date by serial number (300 days’

data given here as an example). The upper and lower half

of Fig. 7 represents the maximum energy sequence and the

SampEn of its envelope, respectively, while the red vertical

line marks the high energy tremor. As shown in Fig. 7,

the SampEn sequence basically presents the same platform on

the high energy tremor. Fig. 8 shows a comparison of the daily

maximum energy sequence and the quadratic SampEn of its

envelope. The abscissa represents the date by serial number

(300 days’ data are given as an example here). The upper part

of Fig. 8 presents the maximum energy sequence, and the

lower half is the quadratic SampEn of its envelope. The red

vertical line marks the high energy tremor. As demonstrated

in Fig. 8, the high energy tremor mostly occurs at the rising

vertex in the quadratic SampEn sequence. The results of

Fig. 7 and 8 show that the MS energy data have significant

characteristics in the entropy feature domain before high

energy tremors, suggesting these remarkable features can be

potentially used for the prediction of high energy tremors.

3) TIME-FREQUENCY DOMAIN FEATURES OF MS ENERGY

DATA (2 × 3 × 2 = 12 FEATURES)

Short-time Fourier transform (STFT) and its improved algo-

rithm S transform (ST) are two important methods used for

time-frequency domain analysis [47]–[49]. The STFT and ST

of the envelope, sliding average and sliding variance sequence

of the daily maximum energy sequence and daily total energy

sequence involved in Section 3.1.2, are calculated as features

in this section. Details of STFT and ST can be found in the

research of Livanos et al. [50].

TABLE 4. Overview of the time-frequency domain features of MS energy
data.

The calculated 12 time-frequency domain features are

listed in Table 4. As an example, Fig. 9 shows a comparison

of the daily maximum energy sequence and the STFT of its

envelope. The upper half of Fig. 9 presents the daily maxi-

mum energy sequence, while the lower half presents STFT

of its envelope. The red vertical line marks the high energy

tremor. As indicated in Fig. 9, the high energy tremor is at or

near the rising vertex in the STFT sequence. Fig. 10 illustrates

the daily maximum energy sequence and ST of its envelope.

The upper half of Fig. 10 presents the daily maximum energy

sequence, while the lower half shows the ST of its envelope.

The red vertical linemarks the high energy tremor. As demon-

strated in Fig. 10, the slope of the curve basically begins to

decrease from the occurrence of high energy tremor in ST

sequence. The results of Fig. 9 and 10 show that MS energy

data have significant characteristics in the time-frequency

domain before the high energy tremor occurs. These remark-

able features can be used for predicting high energy tremors

potentially.

4) SUMMARY

In this section, a total of 156 features are extracted in

three feature domains. As discussed above, these features

demonstrate obvious characteristics before the high energy
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FIGURE 7. Comparison of the daily maximum energy sequence and the SampEn of its envelope.

FIGURE 8. Comparison of the daily maximum energy sequence and the quadratic SampEn of its envelope.

tremor occurs, having potentials to be used for high energy

tremor prediction. A brief overview of these features is shown

in Table 5. According to author’s knowledge, existing studies

rarely extract so many multidimensional features from MS

raw wave and energy data. Therefore, extracting these poten-

tial features in three domains serves as an important novelty

of this study.

B. FEATURE SELECTION AND HYPERPARAMETERS

OPTIMIZATION BASED ON GA

Feature selection refers to picking up appropriate and effi-

cient ones from the potential features extracted above.

In addition, four unknown hyperparameters of SVM model,

including c, g, w1 and w0, need to be determined (details

of these hyperparameters included in Section 3.3). GA is
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FIGURE 9. Comparison of the daily maximum energy sequence and the STFT of its envelope.

FIGURE 10. Comparison of the daily maximum energy sequence and the ST of its envelope.

utilized in the paper to perform feature selection and

parameter optimization of SVM simultaneously. GA is

achieved following such steps: perform the recombina-

tion and mutation of the population at first, then merge

populations, and finally perform the selection operation

based on fitness function to maximize the possible optimal

individuals.

The chromosomal coding of the initial population includes

feature selection portion and parameter optimization portion,

and each gene of the chromosome uses a binary code. The

feature selection part includes 156 bits, corresponding to

156 features. If the value of the gene is ‘‘1’’, the correspond-

ing feature is selected. Otherwise, a value of ‘‘0’’ indicates

that the corresponding feature is not selected. The parameter
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TABLE 5. Overview of the features extracted in this paper.

optimization part includes 32 bits, including c, g, w1 and w0.

The initial 156-bit code is generated in a random manner as

the initial population. A multi-point crossover method was

used for recombination, considering long chromosomes [51],

[52]. The number of mutant chromosomes was determined

by the present mutation rate, and their values were changed

from ‘‘1’’ to ‘‘0’’ or ‘‘0’’ to ‘‘1’’. The fitness function is used

to evaluate the performance of individuals in a population,

and determine the individuals suitable for the best solution.

After the mutation operation, the parent population and the

sub-population were combined, and then the fitness of the

newly combined population was evaluated. Ten-fold cross

validation is performed in this work.

C. SVM MODEL CONSTRUCTION

Radial basis function (RBF) is one of the most popular kernel

functions for nonlinear problems [53], and is chosen for

SVM. There are four hyperparameters for SVM, c, g, w1 and

w0. c is a regularization parameter between complexity and

classification accuracy; g is a parameter of RBF; w1 and

w0 are the punish coefficients of high energy tremors and

general MS events, respectively. These four hyperparame-

ters are simultaneously optimized by GA as discussed in

Section 3.2. Multiple indicators are established to assess

prediction accuracy, including accuracy, sensitivity and speci-

ficity. These parameters are calculated following Eqs. (1)-(3).

Acci =
TPi + TNi

TPi + FPi + TNi + FNi
(1)

Sensi =
TPi

TPi + FNi
(2)

Speci =
TNi

FPi + TNi
(3)

where Acci, Sensi and Speci indicate the accuracy, sensitivity

and specificity in the ith evaluation, respectively. TPi, FPi,

TNi, and FNi represent the number of true positive, false

positive, true negative and false negative results in the ith

evaluation, respectively.

IV. RESULTS AND DISCUSSION

Based on the method discussed above, this paper analyses

the real MS data collected from Wudong Coal Mine in Xin-

jiang, China. The code implementation was performed via

the Python 3 language (Anaconda, Anaconda, Inc., Texas,

USA). The MS monitoring system used in this experiment

installed a total of 12 sensors underground, thereby avoiding

the interference of artificial noise as far as possible [54].

The system locates MS events and records signals only when

signals are detected by more than four sensors. The inter-

ference signals have equal amplitudes, and are automati-

cally filtered by the monitor system. The obtained MS data

from the monitor system has a high signal-noise ratio and

thereby no additional filter operation is performed in this

study. 132 and 24 features are initially extracted fromMS raw

wave and energy data in frequency domain, entropy and time-

frequency domain, respectively. The parameters of GA are

determined empirically and their values are listed in Table 6.

When MS raw wave and energy data are both used, 83%

(55 features) of 66 selected features are from MS raw wave

data, while remaining 17% (11 features) from MS energy

data. These results indicate that the MS raw wave serves an

essential part of MS data, contributing a lot to rockburst risk

forecasting [34]–[36]. 63 or 10 features are selected from

132 or 24 extracted features from MS raw wave or energy

data, under condition that one kind of data is solely used.

TABLE 6. Parameters of GA.

TABLE 7. Selection results of MS energy features when MS raw wave and
energy data were both used.

As demonstrated in Table 7, eight of eleven effective fea-

tures from MS energy data are extracted from the daily total

energy, indicating that the daily total energy is important for

rockburst risk prediction. These findings are consistent with

the conclusions of several existing studies [21], [26], [27],

and also help to explain why these studies use daily total

energy as an analysis factor in these studies. The remaining

three features of eleven selected features fromMS energy data

are extracted from the daily maximum energy. Three features

all represent the sliding variance correlation features of the

daily maximum energy, suggesting the fluctuation degree of
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the daily maximum energy being an effective indicator of

rockburst risk prediction as well. As for the extracted features

from theMS energy data, the ratio of entropy features to time-

frequency domain features is 6:5, which indicates that the

entropy features and the time-frequency domain features are

both important.

TABLE 8. Hyperparameters and their values in the SVM model.

TABLE 9. The best results obtained from the GA-SVM fusion algorithm.

The ratio of the training set to test set is 6:4 in SVM

model. 10-fold cross-validation is used to verify the predic-

tion results, considering the number of high energy tremors

is relatively small. The accuracy, sensitivity and specificity

refer to mean values calculated in 10-fold cross-validation

experiments. The general criterion to evaluate the prediction

efficiency is that whether a high energy tremor or rockburst

occurs within five-day period after prediction of danger [55].

Table 9 shows experimental results under three cases. The

sensitivity, accuracy and specificity was 98% or 98%, 84% or

86% and 83% or 85%, whenMS rawwave or energy data was

solely utilized. The performance is best when MS raw wave

and energy data were both used. That is: the sensitivity, accu-

racy and specificity was 98%, 88% and 87%, respectively.

This study not only increased the sensitivity of rockburst

risk prediction from 87% [41] to 98%, but also achieved

88% accuracy and 87% specificity, which was not achieved

in previous studies. Such improvements may attribute to

more features extracted frommulti-domains and utilizingMS

energy as well as raw wave data.

V. CONCLUSION

A rockburst is a severe hazard and can result in serious

destruction to equipments and buildings in mining areas.

Considering the high energy tremor is likely to induce severe

rockburst disasters, its early warning is of great significance

to rockburst risk prediction. MS monitoring has been demon-

strated to be a feasible way to forecast rockburst. In this con-

text, contribution of MS raw wave and energy data to rock-

burst risk prediction was investigated based on a GA-SVM

approach. GA is used to select the effective ones from initially

extracted features from MS raw wave and energy data, and

optimize the hyperparameters of the SVMmodel. As demon-

strated in research results, the predication performance is bet-

ter based on both MS raw wave and energy data, comparing

to solely utilizing MS raw wave or energy data. Additionally,

83% of all selected features are fromMS raw wave data, with

the remaining 17% from MS energy data, in case that MS

raw wave and energy data are both used. Hence it can be

concluded that MS raw wave data serves as an important part

of MS data, and should not be neglected in rockburst risk pre-

diction. Rockburst occurs very rarely and the limited amount

of high energy tremors was collected in the present study,

although over 400 days’ MS data were obtained in Wudong

Coal Mine. Therefore the performance of the proposed

method requires the further verification based on more real

data from the coal mine. This serves a limitation of this paper.

APPENDIX

Definition of quadratic SampEn

Suppose A, B and C are time series, respectively.

Suppose y = SampEn(x) represents a function to calculate

the SampEn of x.

Then,

B = SampEn(A)

C = SampEn(B)

C represents the quadratic SampEn of A.
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