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ABSTRACT 
 
Context: Technical Debt (TD) is a metaphor that refers to short-term solutions in software development 

that may affect the cost to the software development life cycle. Objective: To explore and understand 

TDrelated to the software industry as well as an overview on the current state of TD research. Forty-three 

TD empirical studies were collected for classification and analyzation. Goals: Classify TD types, find the 

indicators used to detect TD, find the estimators used to quantify the TD, evaluate how researchers 

investigate TD. Method:  By performing a systematic mapping study to identify and analyze the TD 

empirical studies which published between 2014 and 2017. Results: We present the most common 

indicators and evaluators to identify and evaluate the TD, and we gathered thirteen types of TD. We 

showed some ways to investigate the TD, and used tools in the selected studies. Conclusion: The outcome 

of our systematic mapping study can help researchers to identify interestand future in TD.  

 

KEYWORD 
 
Software Engineering, Technical Debt, Systematic Mapping Review, Technical Debt Indicator and 

Estimator. 

 

1. INTRODUCTION 
 

In 1992, Ward Cunningham was the first one who introduced the concept of TD. He said that 

“Shipping first-time code is like going into debt. A little debt speeds development so long as it is 

paid back promptly with a rewrite” [22]. Software developers often face the challenge of 

delivering software products under tight schedules while trying to keep the quality up to standard 

[19]. If the developers focus only on requirements and take shortcuts, TD can occur. The shortcut 

taken by a decision reflect the TD metaphor and this decision may affect the software in the long-

term. However, many types of TD can occur during the software lifecycle [1]. To identify a 

particular type of TD, it is necessary to know the causes of that typeof TD and the indicator[8]. 

Before we manage the TD, the first is to identify it in the software [7].   

 

In many empirical studies selected in this study, the source code was used to identify the TD. 

However, the code comments also help developers to understand the code source [11, 12]. That 

reason leads some researchers to use code comments to identify Self-Admitted Technical Debt 

(SATD) [8, 9, 10]. In these 43 empirical studies, approximately 48 tools were used. Although 
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many of these tools are open source, some researchers develop their own approaches, method, 

and tools to identify, evaluate and manage TD [13, 14, 15, 16, 17].  

 
 

To  calculate TD we need to estimate the cost of fixing the debt (principal) and the future cost if 

the debt is not fixed (interest). There is no exact way to estimate the TD. However, TD Principal 

is calculated as a function of three variables: the number of the problems needed to solve, the 

time and the cost required to fix each problem [18]. And according to Alves et al. [4], the 

principal of TD is related to the effort and accompanying cost to eliminate the debt from a given 

system or artifact. In S18, the writers built a model based on metrics that can predict the 

monetized assessments (monetized = Principle). In S6, the authors measured the Principal of 

Defect Debt and employed KNN regression for predicting the value of fixing time (principal). 

S16 introduced a method called Goal-Questions-Metrics (GQM) which helps in quantifying the 

TD coupled with a specific release in order to be able to give more accurate release dates. The 

interest is inherently difficult to estimate or measure [20].  In S31, the developer activity logs 

were used as a measure of program comprehension effort (an indicator of TD interest payments). 

In S8, the authors estimated the TD breaking point (Accumulated interest, at some point, becomes 

greater than the effort required to repay the initial amount of TD) to support decision making. 

 

Many tools, irrespective of their use of metrics, are available as open source to compute TD. An 

example is SonarQube, which uses the SQALE method for TD estimation. In the selected 

empirical studies around 48 tools were used.  However, some researchers preferred to develop 

their own tools. For instance, in S28 the authors develop a tool called Designite. According to the 

developers, “Designite is a software design quality assessment tool that detects a wide variety of 

design smells and computes various metrics at different granularities. It provides a simple and 

interactive implementation of DSM (Dependency Structure Matrix) to help analyze the 

dependencies among the source code entities” [14]. 

 

2. RELATED WORK 
 

Despite the fact that TD is a concerned research area, we found just five mapping studies or 

literature reviews related to TD.  Li et al. [5] published a systematic mapping study that collected 

75 TD studies which were published between 1992 and 2013. After they classified and analyzed 

these studies, they found ten TD types and eight TD management activities such as TD 

identification, repayment, prevention, communication, and monitoring. They also collected 

twenty-nine TD management tools.  

 

Tom et al. [3] gathered the TD studies that published before 2011 [5] and performed semi-

structured interviews in parallel with a multivocal literature review by focusing on the dimensions 

and causes of TD. Besides that, the authors concentrated on the benefits and drawbacks of 

allowing TD.  The paper was published in 2013. 

 

In 2015, a related systematic literature review was conducted by Ampatzoglou et al. [2]. The 

authors focused on the financial aspects of TD. They found that principal and interest are the 

most common financial terms used in TD research.  They also found that the real options, 

portfolio management, cost/benefit analysis and value-based analysis are the most frequently 

financial strategies applied. They also presented a glossary of terms and a classification scheme 

for financial approaches used for managing TD.  
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In 2016, systematic mapping study was conducted to investigate strategies proposed to identify 

and manage TD in the software lifecycle by Alves et. al [4]. They focused on detecting the TD by 

using different types and valuable indicators. The authors collected 100 studies which were  
 

published between 2010 and 2014 and provided a list of TD types, proposed TD manager, and 

software visualization techniques to identify and manage the TD. 

 

In 2017, by concentrating on the Architecture Technical Debt (ADT) regarding principal, interest 

and management, Besker el at [6] gathered the TD studies that published before December 2015. 

The authors developed a novel ATD model for managing and raising awareness about ATD. The 

model explores different aspects and relationships to illustrate ATD in a unified and 

comprehensive way. 

 

There are currently no systematic mappings focused on studying TD in the empirical 

studies between 2014 and 2017. Consequently, in our study, we collected 43 empirical 

studies from four databases to investigate and analyze them. The studies were published 

between 2014 and 2017 
 

3. GOALS AND RESEAREACH QUETIONS 
 

The purpose of our study is to explore and understand TD by identifying and analyzing the 

empirical studies published from January 2014 to December 2017 in TD. We plan to conduct a 

systematic mapping study of TD by systematically reviewing TD empirical studies published. 

Based on our research goal, we formulated four research questions  

 

RQ1: What are the types of TD in the selected studies? 

RQ2: How did researchers investigate the TD in the selected studies?  

RQ3: What are the methods used to detect and estimate the TD in the selected studies? 

RQ4: What are the tools used in the selected studies and which tools are the most   

commonly used by researchers? 

 

4.  SYSTEMATIC MAPPING EXECUTION 
 
In order to get an overview of the research on TD, a systematic mapping study is carried out. In 

this study, six steps are performed to search for publications. 

 

1. We determined the scope of this study. The four electronic Databases: IEEE Xplore, ACM 

Digital Library, Springer Link, Science Direct and the period: from January 2014 to December 

2017 is our study scope.  

 

2. We used “technical debt” as a search string in the abstract to find the publication that related to 

the TD. 

   

3. We applied the exclusion criteria which is shown in Table 1. 
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Table 1:The Exclusion Criteria 

 

 
 

4.We merged the results from the four databases and removed the duplicates. 

 

5.We filtered the publications by reading the abstract, and we excluded any unrelated paper or 

any study that dependet on just the developer or student such as surveys.  Included, however, 

were articles that generated debate regarding inclusion amongst the authors of this review.  

 

6.After we read the full text for all publications, the final result was 43 empirical studies. 

 

5. EMPIRICAL STUDIES METADATA 

 
Number of selected studies by digital library 

 
As shown in Figure 1, the majority of the chosen empirical studies came from IEEE Xplore DB. 

One reason is there are five publications duplicated between ACM and IEE Xplore, so we deleted 

them from ACM and kept them with IEEE Xplore. 

 

 

 

Fig. 1.  Distribution of the empirical studiesby digital library 
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Fig. 2.  Distribution of the empirical studies by year of publication 

 

 

Number of selected studies by publication year.  

 

As presented in Figure 2, the total number of selected empirical studies have nearly doubled from 

2014 to 2016 

 

Number of selected studies by number of citation  

 

As shown in Figure 3, study number 43 (S43) has around 55 citations in four years, but study 

number 17 (S17) has 44 citations in just three years. 
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Fig. 3.  Distribution of the empirical studies by number of citation (> 9 citations) 

 

 

6. CLASSIFICATION SCHEME  
  

We have five categories of classification that will allow for a better understanding of the TD and 

help us to answer four research questions: TD types, researchers’ investigation, TD indicator, TD 

evaluator, and used Tools. 

 

6.1.  Empirical studies Classification by type of TD 
 

A large number of TD types were selected for the selected empirical studies. We found 13 types. 

However, as shown in Figure 4 Code Debt, Design Debt and Architecture Debt were the most 

frequent types in these studies. 

 

 
   

Fig. 4.  Empirical studies Classification                                Fig. 5. Classification the studies  by 

                       by type of TD                                                                     researchers’ investigation 

 
6.2   Empirical studies Classification by researchers’ investigation 
 

Figure 5 shows what the researchers tried to investigate in these selected case studies. The authors 

explored how much SATD is removed and who removed it. They also investigated the 

relationship between SATD and software quality. They examine the relationship between the 

quality model (QMOOD) and the different TD tools. They also find the correlation between 

software architecture and maintenance cost. They also study the the software history.  

 

6.3.  Empirical studies Classification by TD Estimator 
 

As shown in Figure 6, the effort was the most-common estimator and was used by 6 empirical 

studies. The Violation and the Quality was the second most estimator used. 
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Fig. 6.  The most used TD Estimators         

 

        

                  
 

Fig. 7.  The most used TD Indicators 

 

6.4   Empirical studies Classification by TD Indicator 
 

Figure 7 presents the TD indicators. It shows that the most used TD indicator is Smells and the 

second most commonly used one are Code Comments and Defect/Bug.   
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6.5   Empirical studies Classification by amount of used tools 
 

Many tools were used in the selected studies, but some tools are not for TD. However, as shown 

in Figure 8, SonarQube was the most used TD tool from 48 observed tools which used in the 

selected empirical studies. Despite that many of these tools are open source, some researchers  

developed their own tools. Many empirical studies used one tool, but some studies used more 

than two tools. For instance, S15 used five tools which are FindBugs, Infusion, PMD, SonarQube 

and Understand. Table 2 presents details about empirical studies that used more than two TD 

tools presented on Table 2. 

 

 
Fig. 8.  The most used tools 

 

Table 2 : studies used more than 2 technical debt tools 

 

 
 

7. RESULTS AND COMPARISON  
  

In this section, we present our results and compare them with the other five related studies to 

determine if there is overlap between the results. 
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TD TYPES (RQ1) 
  

We discovered around 13 types of TD which are:  Architecture Debt, Build Debt, Code Debt, 

Design Debt, Defect Debt, Database Debt, Documentation Debt, Infrastructure Debt, 

Performance Debt, Requirement Debt, Test Debt, Usability Debt, and Versioning Debt. 

In comparison, Li et al. [5] found ten TD types, while Alves et al. [4] found 15 kinds of TD. 

Figure 9 illustrates the interference results for Li, Alves and our results. The key of terms of the 

TD shortcut is presented in Table 3. 

 

 
 

Fig. 9.  The interference results for Li, Alves and our results 

 

TD INVESTIGATORS (RQ2) 
 
In our study, we found that the researchers investigate the TD in various ways. They investigated 

the distribution of the TD among the developers then tried to find the types of violations caused 

by each developer. They also looked at the relationship between developers’ maturity and the 

tendency to accumulate TD. Others investigated the characteristics of the project, quality model, 

removed debt, code changes, smells, and project history. Li classified the Technical Dept Type 

first as a tree. Each type was categorized into sub-types based on the causes of the TD type. These 

sub-types are what were investigated in Li’s study. However, many investigators that were 

mentioned in Li were also similar to ours.  

 

TD INDICATORS AND ESTIMATORS (RQ3) 
 

Alves et. al [4] and we found that Smells was the most commonly used indicator. We found Code 

Comments and Defect/Bug was the second most commonly used while Alves found the 
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Automatic Static Analysis (ASA) and Software Architecture Issues was the second most 

commonly used. 
 

We found that some authors developed prediction tool to measure the principle. Others used 

linear regression or real data. S15 used three estimators which are Detected Violation, Quality 

and equation based on Gaudin[20].   

 

However, the most common estimator was Effort. Violation and Quality were the second most 

common estimator. Ampatzoglou et al. [2]  mentioned in “Appendix B.” also identified Effort as 

the first estimator. 

 

USED TOOLS (RQ4) 
 

In our study, we found around 48 tools used by these 43 empirical studies. SonarQube was the 

most used TD tool. Ampatzoglou et al. [2]  mentioned about seven tools while Li et al. [5] found 

29 tools for TD. 

 

8. THREATS TO VALIDITY  
 

In this section, we address possible threats to the validity that may be affected our Systematic 

Mapping Study. Our research questions do not cover all TD area. Our domain cover just four 

years (2014 - 2017) and four databases. This domain explicitly does not include all the TD 

empirical studies. Our search string, “Technical Debt”, in the title, abstract, or keywords 

obviously excluded studies that do not use the term of “technical debt” explicitly but use the 

name of a specific form of technical debt, such as, design debt, code smells debt [5].   

 

9. CONCLUSIONS  
 
In this mapping study, we examined relevant studies in four databases and selected 43 empirical 

studies. Our objective was to find the Technical Debt Types, discover the TD indicators and 

estimators, and recognize the methods and tools used to investigate, indicate, and quantify 

Technical Debt from the selected empirical studies. In this study, our research questions’ answers 

were collected. This data was summarized and analyzed to draw our main conclusions which are 

compressed in the following points: (1) The number of the published  TD empirical studies has 

been significantly increasing from 2014 to 2017; (2) Forty-eight tools were identified from the 

selected empirical studies, and SonarQube was the most used tool; (3) In some empirical studies, 

the authors used more than three tools to investigate the TD. Others develop new tools and 

compared their results to open tools; (4) Special attention was paid to study SATD throughout the 

code comments; (5) Smells was the most applied as indicators of Technical Debt.  
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