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Abstract. Previous research has shown that artificial immune systems can be 

used to produce robust schedules in a manufacturing environment. The main 

goal is to develop building blocks (antibodies) of partial schedules that can be 

used to construct backup solutions (antigens) when disturbances occur during 

production. The building blocks are created based upon underpinning ideas 
from artificial immune systems and evolved using a genetic algorithm (Phase I). 

Each partial schedule (antibody) is assigned a fitness value and the best partial 

schedules are selected to be converted into complete schedules (antigens). We 

further investigate whether simulated annealing and the great deluge algorithm 

can improve the results when hybridised with our artificial immune system 

(Phase II). We use ten fixed solutions as our target and measure how well we 
cover these specific scenarios.  

Keywords: Artificial immune systems, simulated annealing, great deluge 

algorithm, job shop scheduling 

1   Introduction 

Job shop scheduling problems are concerned with tackling the problem of assigning n 

jobs to m machines and are very well studied. The problem has been addressed using 

several local search techniques such as tabu search, genetic algorithms and simulated 

annealing as observed by Jain and Meeran in [20] who analysed some of the 

techniques used and made comparisons between them. In this paper, we are 

specifically trying to tackle the problem of changing job shop environments. Such 

changes include the unexpected arrival dates of jobs into the factory. If jobs arrive too 

early, it could lead to them being stored for long periods of time and if they arrive 

late, it could cause delays in processing other jobs [12,21]. An efficient method of 

rescheduling is needed to manage the problem. 



2   Problem Description 

Job shop schedules require constant revision as problems could happen during 

production and delays could cost money and time. For a detailed discussion of job 

shop problems, see [4] and [24]. Rescheduling is important to ensure the production 

can maintain its flow and minimize interruption. A quick solution to such a problem is 

usually very much preferred compared to starting from scratch. This observation 

represents the motivation for this paper. It addresses the goal of being able to generate 

a diverse range of partial schedules that could be used as a replacement in the event of 

changes in a job shop environment. These partial schedules should enable us to 

generate a new complete schedule in order to keep the manufacturing process flowing 

smoothly with a low level of interruption. In this paper, we will employ an artificial 

immune system algorithm to build these partial schedules. We use previous, complete 

schedules (later known as the antigen universe) to build a collection of partial 

schedules. This data stems from [18]: the number of jobs used is 15, assigned to five 

machines. We employ precedence constraints to the jobs when building the partial 

schedules. These partial schedules are then evolved using a genetic algorithm. These 

processes will be explained in Section 3.1. In Section 3.2, we hybridise the newly 

developed artificial immune system with local search to see whether there is 

improvement to the results. 

3   A Hybrid Metaheuristic Model 

Artificial immune systems (AIS) are motivated by immunology. The biological 

immune system defends the body from antigens. It generates antibodies that can 

attack specific antigen. An overview of artificial immune systems research can be 

seen in [2] and [7]. 

Previous research on AIS for scheduling has shown that an AIS model can be used 

in a job shop setting. Different scheduling problems have been addressed including 

the job shop scheduling problem [5,6,13], the hybrid flow shop scheduling problem 

[11] and the job shop rescheduling problem [16,17,18], which is the main concern of 

this paper. Hart and Ross [17], in their research, tackled this problem by building a 

block of partial schedules. There are many definitions given to the antibody and the 

antigen for the problem, which are used to build the partial schedules. We are 

employing the definition given by Hart and Ross in [17]. The key definitions used in 

this research are outlined below: 

• An antigen is defined as “the sequence of jobs on a particular machine given a 
particular scenario” [17], which represents a full schedule for the problem. The 

antigens are represented by a sequence of numbers of length 15 for the problem 

tested here. 

• An antibody is defined as “a short sequence of jobs that is common to more than 
one schedule” [17], which is also known as a partial schedule. The antibodies are 

represented by sequences of numbers of length 5, where the length of an antibody 

is less than the length of an antigen. 



• An antigen universe is considered to be a collection of antigens (sequence of 
jobs) to be matched with the antibodies (partial schedules). An antigen universe 

has to be prepared before we can build an antibody population. 

• An antibody population is a collection of partial schedules constructed from gene 
libraries. 

• Gene libraries consist of genotypes [19,23]. The gene libraries in this research are 

constructed from all the antigens in the antigen universe.  

• A final population consists of a collection of best antibodies. When we hybridise 
our AIS model with a local search method, the final population from our AIS 

model will be the initial solutions to the local search method. 

• Fitness represents the value assigned to each antibody in the antibody population 

to evaluate the coverage of an antibody over the antigens. The higher the fitness, 

the better an antibody will be. 

We have divided our work into two phases. In the first phase, an AIS model is used 

to generate the antibody population, with l = 5 where l is the length of an antibody. A 

genetic algorithm is then used to evolve the antibodies. The idea is that only the 

antibodies with the highest fitness (i.e. the best antibodies) that have most of the jobs 

matched with the antigens will be kept in the final population. It is important to note 

here that we used a genetic algorithm to evolve the antibody population as used in 

[17,18]. We modified the algorithm in [17,18] with the aim of improving the results. 

The simulated annealing and great deluge algorithms are then applied respectively in 

the second phase by using the best antibodies selected in the first phase (final 

population) as initial solutions. In this research, we are using the parameters adapted 

from [3]. The aim is to investigate if we can improve the fitness of the antibodies 

developed in the final population in Phase I as both local search methods have been 

known to produce good results for other scheduling problems such as examination 

timetabling (e.g. [3,8]).  

3.1   Phase I: The Artificial Immune System Model 

Before we generate the antibody populations, we need to have an antigen universe. 

The antigen universe for this research is the same as that used by Hart and Ross [18], 

which is based on a benchmark problem by Morton and Pentico [22]. The number of 

jobs used in this problem is 15 and the jobs have to be assigned to five machines. Hart 

and Ross created ten test scenarios by mutating the arrival dates of the jobs to a 

random date between 0 – 300 with a probability of 0.2. The arrival dates must not be 

less than pt days before the due date, where pt is the processing time of the job. A 

genetic algorithm developed by Fang et al [12] is used to generate five schedules for 

each of these test-scenarios. This resulted in five sets of ten schedules; one for each 

machine, and these schedules became the antigen universe for this research. This 

research uses the antigen universe generated from one of the machines with the 

assumption that all machines have a similar pattern of jobs.  



Generating the Antibody Population. The first step in this model is to generate an 

antibody population (a collection of antibodies) from gene libraries [6,17,18,26]. The 

gene libraries in this research are constructed from all the antigens in the antigen 

universe. The antigens are divided into five libraries, where each library consists of 

ten partial schedules of size 3 also known as components. An antibody for this 

research is constructed based on a modular design method [14,19,23,25] where the 

length of each antibody is 1/3 the length of each antigen. We are using a small size 

problem because we are interested in evolving the antibodies using the AIS algorithm 

and hybridising the model with a local search method to see if we can improve the 

results. In our future work, a larger size of problem will be used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Constructing an antibody from gene libraries  

In the example in Figure 1, the gene libraries consist of four libraries and each 

library contains three components. Three jobs are allocated in each component. 

Following the modular design method, there are several ways to combine the 

components from gene libraries to produce an antibody. In Figure 1, we select the 

first component from Library 1 and combine it with the second component from 

Library 2 to produce an antibody. Since the length of an antibody is 5 jobs, a possible 

combination between components in Library 1and Library 2  
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can be constructed from this example, where n1 and n2 represent the number of jobs in 

the components from the first and second library, respectively, and r1 and r2 represent 

the number of jobs to be selected from the components (r1 + r2 = 5). In Figure 1, we 

can see a combination of three jobs from the first component and two jobs from the 

second component. Therefore, jobs 1, 2 and 7 from the first component in Library 1 
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are combined with jobs 6 and 8 selected from the second component in Library 2. We 

can get other combinations from these two components using (1) above to generate an 

antibody population. This process is repeated until all the components in Library 1 

have been combined with all the components in Library 2 as well as all the other 

libraries. 

We also have to ensure that there will be no duplicate jobs in the antibody. We 

compare each antibody generated in the population and eliminate the antibodies with 

duplicated jobs. The process will go on until a population of antibodies is generated. 

By doing this, we develop a level of antibody diversity.  

We generate three types of antibody populations: 

1. A population with antibody duplication (we can have several similar antibodies in 

one population) – Type A (4514 antibodies) 

2. A population with no antibody duplication regardless of the source gene libraries 

(no similar antibodies in one population) – Type B (2416 antibodies) 

3. A population with antibody duplication (only when the antibodies are constructed 

from different source libraries) – Type C (2839 antibodies) 

We generated these versions to see whether having a large number of similar 

antibodies in one population would affect the coverage of the antigen universe by the 

antibody population. An initial antibody population of size 100 is selected randomly.  

The Matching Function. A matching function is used as the evaluation function 

within the genetic algorithm to calculate the fitness of each antibody in the antibody 

population. A sample of antigens is first selected from the antigen universe. Each 

antibody is then matched against each of the antigens selected by aligning an antigen 

string with an antibody string and calculating a matching score.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The process of matching an antibody with an antigen by aligning the antibody at every 

possible alignment position 

Based on the example in Figure 2, if there is an antigen string ‘1 2 7 4 3 9 6 8 14 5 

13 12 10 11 15’, and an antibody string ‘4 3 9 5 12’, we have to align the antibody at 

Antigen      1    2    7    4    3    9    6    8    14    5    13    12    10    11    15   Match 
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every possible alignment position with the antigen gene by gene in order to calculate 

a matching score. A matching score is calculated by summing up the scores from the 

matches where a match of each position contributes a score of five. Therefore, based 

on the number of matches between both the antibody and the antigen, the matching 

score for the example given above is 15, which is the best possible match found 

(highest matching score) by this process. Since an antibody is matched with each of 

the antigens in the sample, if the antibody is matched against more than one antigen, a 

total matching score for the antibody is arrived at by summing up the highest 

matching scores of matching the antibody with each of the antigens in the previous 

process. 

Hart and Ross [17] selected certain samples of antibodies from the antibody 

population to be matched with a sample of antigens and repeated the matching 

process for a certain number of iterations based on the number of antigens selected. In 

our algorithm, we matched all the antibodies in the population with the antigens and 

ran the matching process only once. We would also like to note that, for our 

preliminary experiments, we did not include any wildcard genes in any antibody in 

the antibody population as we wanted to see the exact fitness of the antibodies as we 

matched them with the antigens. In [17], the authors allow a wild card match between 

the antibody and the antigen. A wild card is used as a substitute to any job. 

Crossover and Mutation. A genetic algorithm was implemented based on GENESIS 

[15] and this was used to evolve the antibody population. We used an order-based 

crossover operator, as it can ensure no job duplication in an antibody for any 

relationship between two parent antibodies. During crossover, we applied tournament 

selection to select the best antibody to be included in the next generation. We 

evaluated the fitness of the children produced and compared their fitness with the 

fitness of the parents. If the children had lower fitness than the parents, they were 

discarded, and the parents were selected for inclusion in the next generation. Only the 

best antibodies, i.e. antibodies with the highest fitness, were considered for the next 

generation. A mutation operator, which randomly mutates each gene with a 

probability of 0.2, was also applied as used in [17]. 

3.2   Phase II: Simulated Annealing and the Great Deluge Algorithm 

In the second phase, we apply local search methods on the final population generated 

from the first phase to improve the fitness of the antibodies. 

Simulated Annealing. The simulated annealing algorithm is well studied and an 

overview and description is presented in [1].  

As mentioned above, the initial solution for this algorithm is provided by the final 

population developed using the model described in Section 3.1. We set the initial 

temperature T0 to 5000 and the final temperature Tf  to 0.05. The temperature will be 

decreased by α, where α is defined as 0.98 which has been found to be an effective 
value in the literature [8,9,27]. 



While the current temperature is greater than the final temperature, new antibodies, 

Abnew are generated. This is done by applying two different operators, respectively in 

two different experiments; changing one job in Ab or swapping two jobs in Ab, where 

Ab represents the antibodies in the antibody population. The fitness of each antibody 

is then calculated using the same matching function as applied in the artificial 

immune system model.  The new antibody will be kept if the fitness of the new 

antibody is better than the fitness of the current best antibody in the antibody 

population. Otherwise, it is accepted with a probability of e
-δ/T
. Here, δ is defined as 

the difference between the fitness of the new antibody and the old antibody. We also 

record the best antibody found overall. This is included in the antibody population 

(final solution) if it is better than the original antibody. 

The Great Deluge Algorithm. Dueck [10] introduced the Great Deluge algorithm in 

1993. This algorithm is similar to Simulated Annealing but it has a different 

acceptance process for worse solutions. The control parameter in this algorithm is 

called a level or boundary. A worse solution is still acceptable as long as it is within 

the boundary, which, at the beginning, is set to the fitness of the initial solution. The 

boundary is then decreased by a fixed decay rate, β, at every iteration of the search. 
The initial solution for this algorithm is also provided by the final population 

generated using the artificial immune system model in Phase I. Here we set the 

number of iterations, iter to 120, which is the possible number of new antibodies 

generated by an antibody. We also set the estimated quality of the final solution, 

f(EQ), which is the maximum fitness value for an antibody, depending on the number 

of antigens selected in the matching function. If the number of antigens selected is 

one, the maximum fitness value for f(EQ) is 25. This estimated quality represents the 

final estimated fitness value of an antibody. The boundary to the fitness of each 

antibody known as boundary is decreased by a decreasing rate, β [3] which is defined 
as follows: 

 

β = (f(Ab) – f(EQ)) / iter . (2) 

 

While the number of iterations does not exceed iter, new antibodies are generated 

by using the same two operators used in the simulated annealing algorithm. We then 

calculate the fitness of each new antibody generated, f(Ab), by using the same 

matching function as described in Phase I. A new antibody which is worse than the 

old one will only be accepted if its fitness is less than the boundary. This loop will 

also stop if there is no more improvement within a fixed number of iterations. 

4   Experiments and Results 

As described in Section 3.1, Hart and Ross created ten test scenarios from a base 

problem, jb11, taken from Morton and Pentico [18,22] and the schedules generated 

from the problem became the antigen universe for this research. We generate three 

types of antibody populations in order to determine whether having a large number of 



similar antibodies in one population would affect the coverage of the antigen universe 

by the antibody population. Our program was coded in C and the experiments were 

executed on a PC in Windows XP environment with a Pentium 4-2.4 GHz processor 

and 512 MB RAM. 

In the first phase, an initial population of size 100 was selected randomly for each 

type of antibody population and these populations were evolved using a genetic 

algorithm for 250 generations, with a crossover rate of 0.7 as used in [17]. We used 

two mutation rates in the experiments. A mutation rate of 0.2 is employed as it is the 

same parameter used in [17] and, therefore, it is easier for us to make a comparison 

with those results. We then used a mutation rate of 0.001 as this gave us a steady 

growth of the fitness of the antibodies in the antibody population. The antibodies 

evolved here were the antibodies with the highest fitness value in each generation. At 

the end of the generation, the antibody library should consist of a collection of general 

and specific antibodies, which could either match many antigens or only one specific 

antigen. 

Tables 1 and 2 show the average number of antigens that cannot be matched by 

any antibody for a matching threshold ranging from 2 to 5. A matching threshold, tm, 

is a guideline on when we can determine whether an antibody and antigen are 

matched. The number of genes to bind or match must be greater or equal to the 

threshold value of tm [17]. This experiment tests the coverage of the antigen universe 

by the antibody population. Table 1 shows the results of the experiment by Hart and 

Ross [17]. Table 2 shows the results of our experiments performed on final 

populations generated from the antibody population Type A, Type B and Type C, 

respectively (from Phase I) with a mutation rate of 0.2.  

Table 1. Average number of antigens (out of a possible 10) not matched by any antibody as 

generated by Hart and Ross [17] 

Ag = 1 Ag = 4 Ag = 8 

Ab Ab Ab 

Match 
Thres-

hold 
5 10 30 5 10 30 5 10 30 

2 0.9 0.0 0.0 2.2 0.9 0.0 3.5 2.5 0.9 

3 5.3 2.6 1.6 5.4 3.2 2.0 5.5 4.7 4.1 

4 8.7 7.1 5.2 7.8 7.3 6.3 8.6 8.1 8.2 

5 9.7 9.5 8.8 9.5 9.5 8.7 9.7 9.6 9.5 

 

In Table 1, the results from Hart and Ross managed to create a trend where the 

average number of antigens not matched by any antibody decreases as the size of the 

antibody samples, s increases from 5 to 30. The results in Table 2 are in line with the 

trend where the average number of unmatched antigens still decreases when the 

whole population is matched against the antigens. However, the main difference 

between the results compared to Hart and Ross’s was that as we increase the number 

of antigens, the average number of antigens that cannot be matched by any antibody 

decreases. While the result in [17] could be interpreted as evidence that more specific 

antibodies have been produced, we believe that, as we expose more antigens to the 

antibodies, the fitness of the antibodies would increase and therefore would result in 



more antigens getting matched or recognized. Therefore with our model, we can 

produce partial schedules that can be used as replacement to an actual schedule when 

disturbances occur. 

Table 2. Average number of antigens (out of a possible 10) not matched by any antibody 

(modified algorithm for AIS) 

Ab = 100 

Type A Type B Type C 

Ag Ag Ag 

Match 

Thres-

hold 

1 4 8 1 4 8 1 4 8 

2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

3 0.4 0.0 0.0 0.9 0.1 0.0 0.8 0.1 0.0 

4 6.5 3.6 1.3 6.2 3.4 1.4 6.6 3.2 1.3 

5 8.5 6.3 4.7 8.3 6.6 5.3 8.2 7.1 5.8 

 

We also ran experiments to see if our Phase II could improve the results. Two 

different sets of experiments have been carried out, where we use the final 

populations generated using our artificial immune system as initial solutions to the 

simulated annealing and the great deluge algorithms separately (Phase II). Ten 

different sets of antibody populations (initial solutions) were used for each sample of 

antigens. The final populations generated from this phase were then matched with all 

the existing ten antigens to illustrate the diversity of the antibodies/partial schedules 

created. Two different operators were tested. As the operator swapping two jobs 

generated similar results, we present only the results tested with the operator of 

changing one job in each antibody.  

The results depicted in Table 3 are the average number of antigens not matched by 

any antibody for both hybrid models compared to the artificial immune system alone 

with a mutation rate of 0.001 on antibody population Type A. We also show the 

percentage of the fitness improvement on antibodies generated using the hybrid 

search algorithm compared with the fitness of the antibodies generated using our new 

artificial immune system algorithm in the table. It is important to note that the time 

taken to generate initial antibody populations is less than one minute. The time taken 

to get a final population (antibody population) using our artificial immune system 

algorithm (from Phase I) is between one to two minutes while the time taken to get a 

final solution (antibody population) using a hybrid with the simulated annealing and 

great deluge algorithms, respectively (Phase II) is one minute or less. This applies to 

any parameter used to evolve the final populations. We believe this is due to the 

cooling schedule that is used in the simulated annealing algorithm and the number of 

iterations set in the great deluge algorithm. 



Table 3. Average number of antigens (out of a possible 10) not matched by any antibody in 

population Type A (for New AIS (our artificial immune system), AIS+SA (our artificial 

immune system hybridised with the simulated annealing algorithm) and AIS+GD (our artificial 

immune system hybridised with the great deluge algorithm)) 

Ab = 100 

New AIS AIS + SA AIS + GD 

Ag Ag Ag 

Match 

Thres-

hold 

1 4 8 1 4 8 1 4 8 

2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

3 0.6 0.1 0.0 1.5 0.3 0.0 1.4 0.4 0.0 

4 6.8 3.0 1.0 6.6 4.7 0.6 6.5 4.0 1.4 

5 7.9 6.0 4.4 8.3 5.3 3.5 8.2 5.1 4.8 

Fitness 
Diff. 

(%)    

28.5 11.7 4.8 28.8 10.7 4.7 

 

The results of the experiments show, not surprisingly, that the hybrid search 

algorithms do improve on the artificial immune system algorithm developed in [17] 

and in this research. However, the hybrid algorithm does not improve the coverage of 

the antigen universe compared to our artificial immune system algorithm alone except 

for certain combinations of the number of antigens and the matching threshold. This 

is probably due to the large number of general antibodies (partial schedules) produced 

using the artificial immune system that can be matched with most of the antigens. 

Both hybrid models produced more specific antibodies and, therefore, could not cover 

most of the antigens.  

The fitness of the antibodies in the population, however, does improve, as depicted 

in the last row in Table 3. Here we total up the fitness of all the antibodies in all ten 

different sets of antibody populations for each sample of antigens for both hybrid 

search algorithms and our artificial immune system algorithm. The fitness of the 

whole antibody populations generated using the hybrid simulated annealing and the 

hybrid great deluge algorithm, respectively increases by more than 28% over the 

antibodies using the artificial immune system alone. However, the percentage drops 

gradually as the number of antigens selected increases.   

5   Conclusion 

This paper has solved a simple job shop scheduling problem. We have developed 

an artificial immune system model by drawing upon the research in [17,18]. Our 

empirical results represent an improvement upon those in [17,18]. We also 

investigated the use of local search methods to further improve the partial schedules 

developed in the antibody population. The results obtained indicated that the 

hybridisation of our artificial immune system approach with simulated annealing and 

great deluge, respectively, did not yield improvement in terms of the coverage of the 

antigen universe. However, they did improve the fitness of the antibodies produced in 



the population. This is important, as we need to provide a range of good partial 

schedules that can be used to replace certain jobs in the actual schedule when we have 

changes in the arrival dates of the jobs. We will also use the results as a platform for 

our future work on hyper heuristic. For the problem, the antibodies will represent a 

sequence of low level heuristic.  
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