
Investigating a Hybrid Metaheuristic for Job Shop

Rescheduling

Salwani Abdullah
2
, Uwe Aickelin

1
, Edmund Burke

1
, Aniza Mohamed Din

1
 and

Rong Qu
1

1 School of Computer Science

University of Nottingham
Nottingham, UK

{uxa, ekb, amd, rxq}@cs.nott.ac.uk

2 Faculty of Information Science and Technology

Universiti Kebangsaan Malaysia

Bangi, Selangor, Malaysia
 salwani@ftsm.ukm.my

Abstract. Previous research has shown that artificial immune systems can be

used to produce robust schedules in a manufacturing environment. The main

goal is to develop building blocks (antibodies) of partial schedules that can be

used to construct backup solutions (antigens) when disturbances occur during

production. The building blocks are created based upon underpinning ideas
from artificial immune systems and evolved using a genetic algorithm (Phase I).

Each partial schedule (antibody) is assigned a fitness value and the best partial

schedules are selected to be converted into complete schedules (antigens). We

further investigate whether simulated annealing and the great deluge algorithm

can improve the results when hybridised with our artificial immune system

(Phase II). We use ten fixed solutions as our target and measure how well we
cover these specific scenarios.

Keywords: Artificial immune systems, simulated annealing, great deluge

algorithm, job shop scheduling

1 Introduction

Job shop scheduling problems are concerned with tackling the problem of assigning n

jobs to m machines and are very well studied. The problem has been addressed using

several local search techniques such as tabu search, genetic algorithms and simulated

annealing as observed by Jain and Meeran in [20] who analysed some of the

techniques used and made comparisons between them. In this paper, we are

specifically trying to tackle the problem of changing job shop environments. Such

changes include the unexpected arrival dates of jobs into the factory. If jobs arrive too

early, it could lead to them being stored for long periods of time and if they arrive

late, it could cause delays in processing other jobs [12,21]. An efficient method of

rescheduling is needed to manage the problem.

2 Problem Description

Job shop schedules require constant revision as problems could happen during

production and delays could cost money and time. For a detailed discussion of job

shop problems, see [4] and [24]. Rescheduling is important to ensure the production

can maintain its flow and minimize interruption. A quick solution to such a problem is

usually very much preferred compared to starting from scratch. This observation

represents the motivation for this paper. It addresses the goal of being able to generate

a diverse range of partial schedules that could be used as a replacement in the event of

changes in a job shop environment. These partial schedules should enable us to

generate a new complete schedule in order to keep the manufacturing process flowing

smoothly with a low level of interruption. In this paper, we will employ an artificial

immune system algorithm to build these partial schedules. We use previous, complete

schedules (later known as the antigen universe) to build a collection of partial

schedules. This data stems from [18]: the number of jobs used is 15, assigned to five

machines. We employ precedence constraints to the jobs when building the partial

schedules. These partial schedules are then evolved using a genetic algorithm. These

processes will be explained in Section 3.1. In Section 3.2, we hybridise the newly

developed artificial immune system with local search to see whether there is

improvement to the results.

3 A Hybrid Metaheuristic Model

Artificial immune systems (AIS) are motivated by immunology. The biological

immune system defends the body from antigens. It generates antibodies that can

attack specific antigen. An overview of artificial immune systems research can be

seen in [2] and [7].

Previous research on AIS for scheduling has shown that an AIS model can be used

in a job shop setting. Different scheduling problems have been addressed including

the job shop scheduling problem [5,6,13], the hybrid flow shop scheduling problem

[11] and the job shop rescheduling problem [16,17,18], which is the main concern of

this paper. Hart and Ross [17], in their research, tackled this problem by building a

block of partial schedules. There are many definitions given to the antibody and the

antigen for the problem, which are used to build the partial schedules. We are

employing the definition given by Hart and Ross in [17]. The key definitions used in

this research are outlined below:

• An antigen is defined as “the sequence of jobs on a particular machine given a
particular scenario” [17], which represents a full schedule for the problem. The

antigens are represented by a sequence of numbers of length 15 for the problem

tested here.

• An antibody is defined as “a short sequence of jobs that is common to more than
one schedule” [17], which is also known as a partial schedule. The antibodies are

represented by sequences of numbers of length 5, where the length of an antibody

is less than the length of an antigen.

• An antigen universe is considered to be a collection of antigens (sequence of
jobs) to be matched with the antibodies (partial schedules). An antigen universe

has to be prepared before we can build an antibody population.

• An antibody population is a collection of partial schedules constructed from gene
libraries.

• Gene libraries consist of genotypes [19,23]. The gene libraries in this research are

constructed from all the antigens in the antigen universe.

• A final population consists of a collection of best antibodies. When we hybridise
our AIS model with a local search method, the final population from our AIS

model will be the initial solutions to the local search method.

• Fitness represents the value assigned to each antibody in the antibody population

to evaluate the coverage of an antibody over the antigens. The higher the fitness,

the better an antibody will be.

We have divided our work into two phases. In the first phase, an AIS model is used

to generate the antibody population, with l = 5 where l is the length of an antibody. A

genetic algorithm is then used to evolve the antibodies. The idea is that only the

antibodies with the highest fitness (i.e. the best antibodies) that have most of the jobs

matched with the antigens will be kept in the final population. It is important to note

here that we used a genetic algorithm to evolve the antibody population as used in

[17,18]. We modified the algorithm in [17,18] with the aim of improving the results.

The simulated annealing and great deluge algorithms are then applied respectively in

the second phase by using the best antibodies selected in the first phase (final

population) as initial solutions. In this research, we are using the parameters adapted

from [3]. The aim is to investigate if we can improve the fitness of the antibodies

developed in the final population in Phase I as both local search methods have been

known to produce good results for other scheduling problems such as examination

timetabling (e.g. [3,8]).

3.1 Phase I: The Artificial Immune System Model

Before we generate the antibody populations, we need to have an antigen universe.

The antigen universe for this research is the same as that used by Hart and Ross [18],

which is based on a benchmark problem by Morton and Pentico [22]. The number of

jobs used in this problem is 15 and the jobs have to be assigned to five machines. Hart

and Ross created ten test scenarios by mutating the arrival dates of the jobs to a

random date between 0 – 300 with a probability of 0.2. The arrival dates must not be

less than pt days before the due date, where pt is the processing time of the job. A

genetic algorithm developed by Fang et al [12] is used to generate five schedules for

each of these test-scenarios. This resulted in five sets of ten schedules; one for each

machine, and these schedules became the antigen universe for this research. This

research uses the antigen universe generated from one of the machines with the

assumption that all machines have a similar pattern of jobs.

Generating the Antibody Population. The first step in this model is to generate an

antibody population (a collection of antibodies) from gene libraries [6,17,18,26]. The

gene libraries in this research are constructed from all the antigens in the antigen

universe. The antigens are divided into five libraries, where each library consists of

ten partial schedules of size 3 also known as components. An antibody for this

research is constructed based on a modular design method [14,19,23,25] where the

length of each antibody is 1/3 the length of each antigen. We are using a small size

problem because we are interested in evolving the antibodies using the AIS algorithm

and hybridising the model with a local search method to see if we can improve the

results. In our future work, a larger size of problem will be used.

Fig. 1. Constructing an antibody from gene libraries

In the example in Figure 1, the gene libraries consist of four libraries and each

library contains three components. Three jobs are allocated in each component.

Following the modular design method, there are several ways to combine the

components from gene libraries to produce an antibody. In Figure 1, we select the

first component from Library 1 and combine it with the second component from

Library 2 to produce an antibody. Since the length of an antibody is 5 jobs, a possible

combination between components in Library 1and Library 2

C 





 +

+

2

2

nn

rr

1

1

 =
)!()!(

)!(

222

2

rrrrnn

nn

111

1

+−−+

+
. (1)

can be constructed from this example, where n1 and n2 represent the number of jobs in

the components from the first and second library, respectively, and r1 and r2 represent

the number of jobs to be selected from the components (r1 + r2 = 5). In Figure 1, we

can see a combination of three jobs from the first component and two jobs from the

second component. Therefore, jobs 1, 2 and 7 from the first component in Library 1

1 2 7 6 8

 1 2 7

1 3 4

1 4 14

 4 3 9

7 6 8

2 8 6

 6 8 14

2 5 9

9 3 7

 5 13 12

12 10 11

5 10 12

Antibody

Library 1 Library 2 Library 3 Library 4

are combined with jobs 6 and 8 selected from the second component in Library 2. We

can get other combinations from these two components using (1) above to generate an

antibody population. This process is repeated until all the components in Library 1

have been combined with all the components in Library 2 as well as all the other

libraries.

We also have to ensure that there will be no duplicate jobs in the antibody. We

compare each antibody generated in the population and eliminate the antibodies with

duplicated jobs. The process will go on until a population of antibodies is generated.

By doing this, we develop a level of antibody diversity.

We generate three types of antibody populations:

1. A population with antibody duplication (we can have several similar antibodies in

one population) – Type A (4514 antibodies)

2. A population with no antibody duplication regardless of the source gene libraries

(no similar antibodies in one population) – Type B (2416 antibodies)

3. A population with antibody duplication (only when the antibodies are constructed

from different source libraries) – Type C (2839 antibodies)

We generated these versions to see whether having a large number of similar

antibodies in one population would affect the coverage of the antigen universe by the

antibody population. An initial antibody population of size 100 is selected randomly.

The Matching Function. A matching function is used as the evaluation function

within the genetic algorithm to calculate the fitness of each antibody in the antibody

population. A sample of antigens is first selected from the antigen universe. Each

antibody is then matched against each of the antigens selected by aligning an antigen

string with an antibody string and calculating a matching score.

Fig. 2. The process of matching an antibody with an antigen by aligning the antibody at every

possible alignment position

Based on the example in Figure 2, if there is an antigen string ‘1 2 7 4 3 9 6 8 14 5

13 12 10 11 15’, and an antibody string ‘4 3 9 5 12’, we have to align the antibody at

Antigen 1 2 7 4 3 9 6 8 14 5 13 12 10 11 15 Match

 Score

 4 3 9 5 12 0

 4 3 9 5 12 0

 4 3 9 5 12 0

 4 3 9 5 12 15

 4 3 9 5 12 0

 4 3 9 5 12 0

 4 3 9 5 12 5

 4 3 9 5 12 5

 4 3 9 5 12 0

 4 3 9 5 12 0

 4 3 9 5 12 0

Antibody

every possible alignment position with the antigen gene by gene in order to calculate

a matching score. A matching score is calculated by summing up the scores from the

matches where a match of each position contributes a score of five. Therefore, based

on the number of matches between both the antibody and the antigen, the matching

score for the example given above is 15, which is the best possible match found

(highest matching score) by this process. Since an antibody is matched with each of

the antigens in the sample, if the antibody is matched against more than one antigen, a

total matching score for the antibody is arrived at by summing up the highest

matching scores of matching the antibody with each of the antigens in the previous

process.

Hart and Ross [17] selected certain samples of antibodies from the antibody

population to be matched with a sample of antigens and repeated the matching

process for a certain number of iterations based on the number of antigens selected. In

our algorithm, we matched all the antibodies in the population with the antigens and

ran the matching process only once. We would also like to note that, for our

preliminary experiments, we did not include any wildcard genes in any antibody in

the antibody population as we wanted to see the exact fitness of the antibodies as we

matched them with the antigens. In [17], the authors allow a wild card match between

the antibody and the antigen. A wild card is used as a substitute to any job.

Crossover and Mutation. A genetic algorithm was implemented based on GENESIS

[15] and this was used to evolve the antibody population. We used an order-based

crossover operator, as it can ensure no job duplication in an antibody for any

relationship between two parent antibodies. During crossover, we applied tournament

selection to select the best antibody to be included in the next generation. We

evaluated the fitness of the children produced and compared their fitness with the

fitness of the parents. If the children had lower fitness than the parents, they were

discarded, and the parents were selected for inclusion in the next generation. Only the

best antibodies, i.e. antibodies with the highest fitness, were considered for the next

generation. A mutation operator, which randomly mutates each gene with a

probability of 0.2, was also applied as used in [17].

3.2 Phase II: Simulated Annealing and the Great Deluge Algorithm

In the second phase, we apply local search methods on the final population generated

from the first phase to improve the fitness of the antibodies.

Simulated Annealing. The simulated annealing algorithm is well studied and an

overview and description is presented in [1].

As mentioned above, the initial solution for this algorithm is provided by the final

population developed using the model described in Section 3.1. We set the initial

temperature T0 to 5000 and the final temperature Tf to 0.05. The temperature will be

decreased by α, where α is defined as 0.98 which has been found to be an effective
value in the literature [8,9,27].

While the current temperature is greater than the final temperature, new antibodies,

Abnew are generated. This is done by applying two different operators, respectively in

two different experiments; changing one job in Ab or swapping two jobs in Ab, where

Ab represents the antibodies in the antibody population. The fitness of each antibody

is then calculated using the same matching function as applied in the artificial

immune system model. The new antibody will be kept if the fitness of the new

antibody is better than the fitness of the current best antibody in the antibody

population. Otherwise, it is accepted with a probability of e
-δ/T
. Here, δ is defined as

the difference between the fitness of the new antibody and the old antibody. We also

record the best antibody found overall. This is included in the antibody population

(final solution) if it is better than the original antibody.

The Great Deluge Algorithm. Dueck [10] introduced the Great Deluge algorithm in

1993. This algorithm is similar to Simulated Annealing but it has a different

acceptance process for worse solutions. The control parameter in this algorithm is

called a level or boundary. A worse solution is still acceptable as long as it is within

the boundary, which, at the beginning, is set to the fitness of the initial solution. The

boundary is then decreased by a fixed decay rate, β, at every iteration of the search.
The initial solution for this algorithm is also provided by the final population

generated using the artificial immune system model in Phase I. Here we set the

number of iterations, iter to 120, which is the possible number of new antibodies

generated by an antibody. We also set the estimated quality of the final solution,

f(EQ), which is the maximum fitness value for an antibody, depending on the number

of antigens selected in the matching function. If the number of antigens selected is

one, the maximum fitness value for f(EQ) is 25. This estimated quality represents the

final estimated fitness value of an antibody. The boundary to the fitness of each

antibody known as boundary is decreased by a decreasing rate, β [3] which is defined
as follows:

β = (f(Ab) – f(EQ)) / iter . (2)

While the number of iterations does not exceed iter, new antibodies are generated

by using the same two operators used in the simulated annealing algorithm. We then

calculate the fitness of each new antibody generated, f(Ab), by using the same

matching function as described in Phase I. A new antibody which is worse than the

old one will only be accepted if its fitness is less than the boundary. This loop will

also stop if there is no more improvement within a fixed number of iterations.

4 Experiments and Results

As described in Section 3.1, Hart and Ross created ten test scenarios from a base

problem, jb11, taken from Morton and Pentico [18,22] and the schedules generated

from the problem became the antigen universe for this research. We generate three

types of antibody populations in order to determine whether having a large number of

similar antibodies in one population would affect the coverage of the antigen universe

by the antibody population. Our program was coded in C and the experiments were

executed on a PC in Windows XP environment with a Pentium 4-2.4 GHz processor

and 512 MB RAM.

In the first phase, an initial population of size 100 was selected randomly for each

type of antibody population and these populations were evolved using a genetic

algorithm for 250 generations, with a crossover rate of 0.7 as used in [17]. We used

two mutation rates in the experiments. A mutation rate of 0.2 is employed as it is the

same parameter used in [17] and, therefore, it is easier for us to make a comparison

with those results. We then used a mutation rate of 0.001 as this gave us a steady

growth of the fitness of the antibodies in the antibody population. The antibodies

evolved here were the antibodies with the highest fitness value in each generation. At

the end of the generation, the antibody library should consist of a collection of general

and specific antibodies, which could either match many antigens or only one specific

antigen.

Tables 1 and 2 show the average number of antigens that cannot be matched by

any antibody for a matching threshold ranging from 2 to 5. A matching threshold, tm,

is a guideline on when we can determine whether an antibody and antigen are

matched. The number of genes to bind or match must be greater or equal to the

threshold value of tm [17]. This experiment tests the coverage of the antigen universe

by the antibody population. Table 1 shows the results of the experiment by Hart and

Ross [17]. Table 2 shows the results of our experiments performed on final

populations generated from the antibody population Type A, Type B and Type C,

respectively (from Phase I) with a mutation rate of 0.2.

Table 1. Average number of antigens (out of a possible 10) not matched by any antibody as

generated by Hart and Ross [17]

Ag = 1 Ag = 4 Ag = 8

Ab Ab Ab

Match
Thres-

hold
5 10 30 5 10 30 5 10 30

2 0.9 0.0 0.0 2.2 0.9 0.0 3.5 2.5 0.9

3 5.3 2.6 1.6 5.4 3.2 2.0 5.5 4.7 4.1

4 8.7 7.1 5.2 7.8 7.3 6.3 8.6 8.1 8.2

5 9.7 9.5 8.8 9.5 9.5 8.7 9.7 9.6 9.5

In Table 1, the results from Hart and Ross managed to create a trend where the

average number of antigens not matched by any antibody decreases as the size of the

antibody samples, s increases from 5 to 30. The results in Table 2 are in line with the

trend where the average number of unmatched antigens still decreases when the

whole population is matched against the antigens. However, the main difference

between the results compared to Hart and Ross’s was that as we increase the number

of antigens, the average number of antigens that cannot be matched by any antibody

decreases. While the result in [17] could be interpreted as evidence that more specific

antibodies have been produced, we believe that, as we expose more antigens to the

antibodies, the fitness of the antibodies would increase and therefore would result in

more antigens getting matched or recognized. Therefore with our model, we can

produce partial schedules that can be used as replacement to an actual schedule when

disturbances occur.

Table 2. Average number of antigens (out of a possible 10) not matched by any antibody

(modified algorithm for AIS)

Ab = 100

Type A Type B Type C

Ag Ag Ag

Match

Thres-

hold

1 4 8 1 4 8 1 4 8

2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3 0.4 0.0 0.0 0.9 0.1 0.0 0.8 0.1 0.0

4 6.5 3.6 1.3 6.2 3.4 1.4 6.6 3.2 1.3

5 8.5 6.3 4.7 8.3 6.6 5.3 8.2 7.1 5.8

We also ran experiments to see if our Phase II could improve the results. Two

different sets of experiments have been carried out, where we use the final

populations generated using our artificial immune system as initial solutions to the

simulated annealing and the great deluge algorithms separately (Phase II). Ten

different sets of antibody populations (initial solutions) were used for each sample of

antigens. The final populations generated from this phase were then matched with all

the existing ten antigens to illustrate the diversity of the antibodies/partial schedules

created. Two different operators were tested. As the operator swapping two jobs

generated similar results, we present only the results tested with the operator of

changing one job in each antibody.

The results depicted in Table 3 are the average number of antigens not matched by

any antibody for both hybrid models compared to the artificial immune system alone

with a mutation rate of 0.001 on antibody population Type A. We also show the

percentage of the fitness improvement on antibodies generated using the hybrid

search algorithm compared with the fitness of the antibodies generated using our new

artificial immune system algorithm in the table. It is important to note that the time

taken to generate initial antibody populations is less than one minute. The time taken

to get a final population (antibody population) using our artificial immune system

algorithm (from Phase I) is between one to two minutes while the time taken to get a

final solution (antibody population) using a hybrid with the simulated annealing and

great deluge algorithms, respectively (Phase II) is one minute or less. This applies to

any parameter used to evolve the final populations. We believe this is due to the

cooling schedule that is used in the simulated annealing algorithm and the number of

iterations set in the great deluge algorithm.

Table 3. Average number of antigens (out of a possible 10) not matched by any antibody in

population Type A (for New AIS (our artificial immune system), AIS+SA (our artificial

immune system hybridised with the simulated annealing algorithm) and AIS+GD (our artificial

immune system hybridised with the great deluge algorithm))

Ab = 100

New AIS AIS + SA AIS + GD

Ag Ag Ag

Match

Thres-

hold

1 4 8 1 4 8 1 4 8

2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3 0.6 0.1 0.0 1.5 0.3 0.0 1.4 0.4 0.0

4 6.8 3.0 1.0 6.6 4.7 0.6 6.5 4.0 1.4

5 7.9 6.0 4.4 8.3 5.3 3.5 8.2 5.1 4.8

Fitness
Diff.

(%)

28.5 11.7 4.8 28.8 10.7 4.7

The results of the experiments show, not surprisingly, that the hybrid search

algorithms do improve on the artificial immune system algorithm developed in [17]

and in this research. However, the hybrid algorithm does not improve the coverage of

the antigen universe compared to our artificial immune system algorithm alone except

for certain combinations of the number of antigens and the matching threshold. This

is probably due to the large number of general antibodies (partial schedules) produced

using the artificial immune system that can be matched with most of the antigens.

Both hybrid models produced more specific antibodies and, therefore, could not cover

most of the antigens.

The fitness of the antibodies in the population, however, does improve, as depicted

in the last row in Table 3. Here we total up the fitness of all the antibodies in all ten

different sets of antibody populations for each sample of antigens for both hybrid

search algorithms and our artificial immune system algorithm. The fitness of the

whole antibody populations generated using the hybrid simulated annealing and the

hybrid great deluge algorithm, respectively increases by more than 28% over the

antibodies using the artificial immune system alone. However, the percentage drops

gradually as the number of antigens selected increases.

5 Conclusion

This paper has solved a simple job shop scheduling problem. We have developed

an artificial immune system model by drawing upon the research in [17,18]. Our

empirical results represent an improvement upon those in [17,18]. We also

investigated the use of local search methods to further improve the partial schedules

developed in the antibody population. The results obtained indicated that the

hybridisation of our artificial immune system approach with simulated annealing and

great deluge, respectively, did not yield improvement in terms of the coverage of the

antigen universe. However, they did improve the fitness of the antibodies produced in

the population. This is important, as we need to provide a range of good partial

schedules that can be used to replace certain jobs in the actual schedule when we have

changes in the arrival dates of the jobs. We will also use the results as a platform for

our future work on hyper heuristic. For the problem, the antibodies will represent a

sequence of low level heuristic.

References

1. Aarts, E., Korst, J., and Michiels, W., Chapter 7: Simulated Annealing, In: Burke, E.K.

and Kendall, G. (eds.) Search Methodologies: Introductory Tutorials in Optimisation and
Decision Support Techniques, Springer, (2005)

2. Aickelin, U. and Dasgupta, D., Chapter 13: Artificial Immune Systems, In: Burke, E.K.

and Kendall, G. (eds.) Search Methodologies: Introductory Tutorials in Optimisation and

Decision Support Techniques, Springer, (2005)

3. Burke, E. K., Bykov, Y., Newall, J. P., Petrovic, S., A Time-Predefined Local Search
Approach to Exam Timetabling Problem, IIE Transactions, 36(3), 509-528, (2004)

4. Brucker, P., Scheduling Algorithms, 5th Edition, Springer, (2007)

5. Chandrasekaran, M., Asokan, P., Kumanan, S., Balamurugan, T. and Nickolas, S., Solving

Job Shop Scheduling Problems Using Artificial Immune System, The International Journal

of Advanced Manufacturing Technology, vol. 31, no. 5-6, 580 – 593, Springer London,

(2006)

6. Coello, C.A., Rivera, D.C. and Cortes, N.C., Use of an Artificial Immune System for Job

Shop Scheduling, In: Timmis et al (ed.) ICARIS 2003, LNCS, vol. 2787, pp. 1 – 10,

Springer-Verlag, (2003)

7. de Castro. L. N., and Timmis, J, Artificial Immune Systems: A New Computational

Intelligence Approach, Springer-Verlag, (2002)

8. Dowsland, K.A., Off-the-Peg or Made-to-Measure? Timetabling and Scheduling with SA

and TS, In: Burke, E.K. and Carter, M. (eds.) Practice and Theory of Automated

Timetabling II 1997, LNCS, vol. 1408, pp. 37 – 52, Springer-Verlag, (1998)

9. Dowsland, K. A., Chapter 2: Simulated Annealing, In: Reeves, C.R. (ed.) Modern

Heuristic Techniques For Combinatorial Problems, McGraw Hill, (1995)

10. Dueck, G., New Optimization Heuristics: The Great Deluge Algorithm and the Record-to-

Record Travel, Journal of Computational Physics, 104, 86-92, (1993)

11. Engin, O. and Doyen, A., A New Approach to Solve Hybrid Flow Shop Scheduling

Problems by Artificial Immune System, Future Generation Computer Systems, Elsevier,

20, 1083 – 1095, (2004)

12. Fang, H.-L., Ross, P., and Corne, D., A Promising Genetic Algorithm Approach to Job-

Shop Scheduling, Rescheduling and Open-Shop Scheduling Problems, In: Forrest, S. (ed.)

The Fifth International Conference on Genetic Algorithms, pp. 375 – 382, Morgan

Kaufmann, (1993)

13. Ge, H.W., Sun, L. and Liang, Y.C., Solving Job-Shop Scheduling Problems by a Novel

Artificial Immune Systems, In: Zhang, S. and Jarvis, R. (eds.) AI2005, LNAI, vol. 3809,

pp. 839 – 842, Springer-Verlag, (2005)

14. Goldsby, R. A., Kindt, T.J. and Osbourne, B.A., Kuby Immunology, 4th Edition, New
York: W.H. Freeman, (2000)

15. Grefenstette, J., Genesis: A System For Using Genetic Search Procedures, In: Conference

on Intelligent Systems and Machines, pp. 161-165, (1984)

16. Hart, E., Ross, P., and Nelson, J., Producing Robust Schedules Via An Artificial Immune

System, In: ICEC '98, pp. 464 – 469, IEEE Press, (1998)

17. Hart, E., and Ross, P., An Immune System Approach to Scheduling in Changing
Environments, In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V.,

Jakiela, M. and Smith, R.E. (eds.) GECCO 1999, pp. 1559 – 1565. Morgan Kaufmann,

(1999)

18. Hart, E., and Ross, P., The Evolution and Analysis of a Potential Antibody Library for

Job-Shop Scheduling, In: Corne, D., Dorigo, M. and Glover, F. (eds.) New Ideas in

Optimisation, 185 – 202, McGraw-Hill, London, (1999)

19. Hightower, R. R., Forrest, S., and Perelson, A. S., The Evolution of Emergent

Organization in Immune System Gene Libraries, In: Eshelman, L. (ed.) The Sixth Annual

Conference on Genetic Algorithms, pp. 344 – 350, Morgan Kaufmann, (1995)

20. Jain, A.S., and Meeran, S., A State-of-the-Art Review of Job-Shop Scheduling

Techniques, Technical Report, Department of Applied Physics, Electronics and

Mechanical Engineering, University of Dundee, Scotland, (1998)

21. Jensen, M. T., and Hansen, T. K., Robust Solutions to Job Shop Problems, In: The 1999

Congress on Evolutionary Computing (CEC99), pp. 1138 – 1144, (1999)

22. Morton, T. E., and Pentico, D.W., Heuristic Scheduling Systems, John Wiley, (1993)

23. Oprea, M., and Forrest, F., Simulated Evolution of Antibody Gene Libraries Under

Pathogen Selection, In: The 1998 IEEE International Conference on Systems, Man and

Cybernetics, (1998)

24. Pinedo, M., Scheduling: theory, algorithms, and systems, 2nd Edition, Prentice Hall, (2002)

25. Sompayrac. L, How the Immune System Works, 2nd Edition, Blackwell Publishing, (2003)

26. Spellward, P. and Kovacs, T., On the Contribution of Gene Libraries to Artificial Immune

Systems, In: The 2005 Conference on Genetic and Evolutionary Computation (GECCO

’05), ACM Press, pp. 313 – 319, (2005)

27. Thompson, J., and Dowsland, K. A., General Cooling Schedules for a Simulated

Annealing Based Timetabling System, In: Burke, E.K. and Ross, P. (eds.) Practice and

Theory of Automated Timetabling, LNCS, vol. 1153, pp. 345 – 363, Springer-Verlag,

(1996)

