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Investigating an Invariant Item
Ordering for Polytomously
Scored Items

Rudy Ligtvoet1, L. Andries van der Ark1,
Janneke M. te Marvelde1,
and Klaas Sijtsma1

Abstract

This article discusses the concept of an invariant item ordering (IIO) for polytom-
ously scored items and proposes methods for investigating an IIO in real test data.
Method manifest IIO is proposed for assessing whether item response functions
intersect. Coefficient HT is defined for polytomously scored items. Given that an
IIO holds, coefficient HTexpresses the accuracy of the item ordering. Method manifest
IIO and coefficient HT are used together to analyze a real data set. Topics for future
research are discussed.

Keywords

coefficient HT, invariant item ordering, item response function for polytomous items,
item step response function, polytomous item response theory models

In several measurement applications, it is convenient that the items have the same

order with respect to difficulty or attractiveness for all respondents. Such an ordering

facilitates the interpretation and the comparability of respondents’ measurement

results. An item ordering that is the same for all respondents is called an invariant

item ordering (IIO; Sijtsma & Junker, 1996). Before we define an IIO, we first men-

tion several measurement applications in which an IIO proves useful.

First, many intelligence tests present the items to children in the order according to

ascending difficulty (Bleichrodt, Drenth, Zaal, & Resing, 1987; Wechsler, 1999). One

reason for this presentation order is to comfort children and prevent them from
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panicking, which might result from starting with difficult items and which might neg-

atively influence test performance. Another reason is that different age groups are

administered different subsets of the items, and subsets are more difficult as age

increases. For example, the youngest age group starts with the easiest items and a child

stops when he or she fails, say, three consecutive items. The next age group always

skips the five easiest items, because these items have been shown to be trivial to

them, and starts at Item 6, and again a child stops when he or she fails, say, three con-

secutive items. And so on for the next age groups. Several intelligence tests use this

administration mode, which assumes that the ordering of the items by difficulty is the

same across age groups and persons. This assumption usually is ignored in the phase

of test construction. In subsequent test use, test practitioners often are unaware that the

assumption was never ascertained by means of empirical research, but they use the test

as if it were.

Second, several developmental theories assume that abilities or skills go through

different phases before they reach maturity (Bouwmeester & Sijtsma, 2007; Raijmakers,

Jansen, & Van der Maas, 2004). A simple example is arithmetic ability, for which it

may be assumed that development goes through mastering the operation of addition

and then subtraction, multiplication, and, finally, division. An arithmetic test, which

aims at measuring the degree to which these operations have been mastered, may

be assembled and administered such that the hypothesized item ordering by difficulty

reflects the assumed ordering of the operations or combinations of the operations. The

hypothesized developmental ordering could be investigated using this test with either

cross-sectional or, even better, longitudinal data from the population of interest. When

the theory proves to be correct, this would lend credence to the diagnostic use of the

test and the possibility to pinpoint children’s problems with arithmetic as either nor-

mal developmental hurdles to be taken or signs of abnormal development.

Third, in attitude and personality testing, and also in the medical context research-

ers often assume their items to have a cumulative structure, reflecting a hierarchy of

psychological or physical symptoms hypothesized to hold at the individual level (Van

Schuur, 2003; Watson, Deary, & Shipley, 2008). For example, in measuring introver-

sion it seems reasonable to expect a higher mean score on a rating scale statement like

‘‘I do not talk a lot in the company of other people’’ than on ‘‘I prefer not to see people

and do things on my own,’’ because the latter statement seems to refer to a more

intense symptom of introversion. However, an ordering of these statements by group

mean scores does not imply that this ordering also holds at the individual level.

Indeed, several respondents may indicate a higher prevalence for doing things on their

own, but the mixture of the two item orderings may be such that the first still has the

highest mean score in the total group. Any set of items can be ordered by means of

item mean scores, but whether such an ordering also holds for individuals has to be

ascertained by means of empirical research. Only when the set of items has an IIO,

can their cumulative structure be assumed to be valid at the lower aggregation level

for individuals.

This study deals with the investigation of an IIO for a set of polytomously scored

items and extends the previous work of Sijtsma and Meijer (1992) and Sijtsma and
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Junker (1996) for dichotomously scored items. Very little work has been done in this

area. Therefore, this study presents some first steps and has an exploratory character.

An empirical data example shows that the results may be used for investigating

whether an IIO holds in sets of polytomously scored items. Finally, directions for

future research are discussed.

Definition of an Invariant Item Ordering

The context of this study is item response theory (IRT). Let a test contain k polyto-

mously scored items, each of which is characterized by m + 1 ordered integer scores.

These scores reflect the degree to which a person solved a complex problem (e.g.,

a physics problem or a text comprehension problem) or endorsed a statement (e.g.,

as in Likert-type items). For m + 1 ¼ 2, items are dichotomous. Technically, the num-

ber of ordered item scores may vary across items but this hampers the comparison of

expected item scores for different items. Hence, we follow Sijtsma and Hemker

(1998) in only considering equal numbers of ordered item scores; equal numbers

are common in many standard tests and questionnaires.

Let random variable Xi denote the score on item i, with realization xi ∈ f0; . . . ;mg.
Let y be the unidimensional latent variable from IRT on which the persons can be

ordered. A test that consists of k items has an IIO (Sijtsma & Hemker, 1998) if the

items can be ordered and numbered accordingly, such that for expected conditional

item scores

EðX1jyÞ≤EðX2jyÞ≤ � � � ≤EðXk jyÞ; for all y: ð1Þ

Equation (1) allows for the possibility of ties. The expected conditional item score

EðXijyÞ is called the item response function (IRF), and an IIO implies that the IRFs

do not intersect. For dichotomously scored items, EðXijyÞ ¼ PðXi ¼ 1jyÞ, which is

the conditional probability that the answer was correct or the statement endorsed.

An IIO is a strong requirement in measurement practice. Researchers sometimes

assume that a fitting IRT model implies that items have the same ordering by diffi-

culty or popularity for all individuals, but this assumption requires modification.

For dichotomous-item tests, Sijtsma and Junker (1996) showed that only IRT models

that employ IRFs that cannot intersect, imply an IIO. Examples are the Rasch (1960)

model and the Mokken (Mokken & Lewis, 1982) double monotonicity model, but the

much-used two- and three-parameter logistic models (Birnbaum, 1968), which allow

intersecting IRFs, do not imply the IIO property. For polytomous-item tests, Sijtsma

and Hemker (1998) proved the surprising result that popular IRT models such as the

partial credit model (Masters, 1982), the generalized partial credit model (Muraki,

1992), and the graded response model (Samejima, 1969) do not imply an IIO.

Thus, when any of these models gives an accurate description of the data, one cannot

conclude that the items follow the same ordering by difficulty or popularity for each

individual from the population of interest (Equation 1). Sijtsma and Hemker (1998)

proved that only restrictive polytomous IRT models, such as the rating scale model
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(Andrich, 1978), a rating scale version of Muraki’s (1990) restricted graded response

model, and the isotonic ordinal probabilistic model (Scheiblechner, 1995) imply an

IIO.

Thus, there appears to be a mismatch between popular polytomous IRT models and

the IIO property. This mismatch is due to an aggregation phenomenon, which we illus-

trate by means of the graded response model and a special case of this model. We

assume a unidimensional latent variable y, and item scores that are locally indepen-

dent. Response functions of polytomous items are defined for separate item scores

and given that an item has m + 1 different scores, for each item m such response func-

tions are needed (Mellenbergh, 1995). An example of these response functions are the

item step response functions (ISRFs) of the class of cumulative probability models,

which are defined by the conditional probabilities PðXi ≥ xjyÞ, for x ¼ 1; . . . ;m; by

definition, PðXi ≥ 0jyÞ ¼ 1 and PðXi ≥mþ 1jyÞ ¼ 0.

Given the definition of an IIO (Equation 1), one is interested in statistical informa-

tion at the higher aggregation level of the item rather than the level of item scores.

Hence, we consider the IRF, which is related to the m ISRFs by means of

EðXijyÞ ¼
Xm

x¼1

PðXi ≥ xjyÞ: ð2Þ

Sijtsma and Hemker (1998) used relationships like this one to prove that for many

polytomous IRT models, combining the m ISRFs of items, PðXi ≥ xjyÞ, into IRFs,

EðXijyÞ, does not result in an IIO as in Equation (1). These authors also showed

that one needs restrictions on the mutual relationships between the ISRFs of different

items in the test or the questionnaire to obtain an IIO. We give two examples of the

relationships between ISRFs and IRFs, one resulting in failure of IIO and the other

in an IIO; see Sijtsma and Hemker (1998) for mathematical proofs.

First, in Samejima’s (1969) graded response model, each item has m threshold pa-

rameters such that bi1 ≤ bi2 ≤ � � � ≤ bim (i.e., the m ISRFs have a fixed order), and one

discrimination parameter ai; then, the ISRF for score x on item i is defined as

PðXi ≥ xjyÞ ¼ exp½aiðy� bixÞ�
1þ exp½aiðy� bixÞ�

; x ¼ 1; . . . ;m: ð3Þ

Summing the m ISRFs in Equation (3) across the m item scores yields IRF EðXijyÞ
(Equation 2). Figure 1a shows the ISRFs for two items with three different scores

(solid ISRFs for one item, and dashed-dotted ISRFs for the other item) and Figure

1c shows their intersecting IRFs, which violate IIO.

Second, the restricted version of Muraki’s (1990) rating scale version of the graded

response model (Sijtsma & Hemker, 1998) places restrictions on the mutual relation-

ships of the ISRFs of different items, which result in an IIO. Let a denote a general

discrimination parameter, li an item-dependent location parameter, and ex the dis-

tance of the xth ISRF to location li, so that bix ¼ λi þ ex, and with the restriction

that
P

x ex ¼ 0 ; then, the xth ISRF of item i is
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PðXi ≥ xjyÞ ¼ exp½aðy� λi � exÞ�
1þ exp½aðy� λi � exÞ�

: ð4Þ

All items show the same dispersion of the ISRFs around the location parameters li.

For two items satisfying Equation (4), Figures 1B and 1D show that they have an IIO.

Two sources of confusion seem to exist with respect to IIO. The first is that if an

IRT model does not imply an IIO, the IIO property cannot be important. We empha-

size that it is the measurement application, which determines whether an IIO is

Figure 1. (a) Two items having two item step response functions (ISRFs) under the graded
response model, (c) failing an invariant item ordering (IIO), and (b) two items having two ISRFs
under the restricted rating scale version of the graded response model, (d) having an IIO
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important, not the psychometric model. If a particular IRT model does not give infor-

mation about an IIO, other methods have to be used in data analysis for ascertaining

whether an IIO is valid. The second source of confusion is that the IIO property ap-

plies to particular content areas but not to others and that it applies to rating scale items

but not to constructed-response items. The examples given in the beginning of this

article illustrated that an IIO may be important in different content areas. This is

also true for different item types. For example, in intelligence tests many items require

constructed responses, as in explaining to the test administrator the use of a particular

object (e.g., a hammer, a car). If such items are administered in an ascending difficulty

ordering, an IIO is assumed, which has to be supported by empirical research.

Investigating an Invariant Item Ordering

In IIO investigation for polytomous items, a distinction is made between sets of IRFs

that are close together and sets of IRFs that are further apart. If IRFs are close together,

respondents produce data that contain little information about the item ordering, re-

sulting in an inaccurate ordering, and if IRFs are far apart, respondents produce

data that contain much more information resulting in an accurate ordering. Thus,

given an IIO, an index for the distance between the IRFs can be interpreted as an index

of the accuracy of the ordering of the IRFs. In this study, we estimated the IRFs of k

polytomous items, defined by EðXijyÞ, then we ascertained whether the items had an

IIO and if they had, finally we used a generalization of coefficient HT, proposed by

Sijtsma and Meijer (1992) for dichotomous items, to polytomous items to express

the degree to which an accurate item ordering was possible.

Sijtsma and Meijer (1992) demonstrated by means of a simulation study that for k

invariantly ordered dichotomous items coefficient HT increased as the mean distance

between the item locations increased, or as the item discrimination increased (both

manipulations have the effect that IRFs are further apart), whereas other properties

of the IRFs and the distribution of y were kept constant. They did not find convincing

support for different values of HT to distinguish failure of IIO from consistency with

IIO (yet suggested tentative rules of thumb for making this distinction, to be discussed

later), and in a pilot study, we found that this was even more difficult for polytomous

items.

In what follows, we discuss a two-step procedure for investigating an IIO for poly-

tomous items. First, we discuss the estimation of IRFs and propose method manifest

IIO, which is based on the estimation of IRFs for dichotomous items (see Molenaar

& Sijtsma, 2000, pp. 74-78) and which evaluates for each pair of IRF estimates

whether or not they intersect. The sensitivity and specificity of this method was inves-

tigated by means of a simulation study. Second, we discuss coefficient HT for poly-

tomously scored items. We used a computational study to investigate how

coefficient HT reacts to different item and test properties, given an IIO. Finally,

method manifest IIO and coefficient HT were used to analyze a real data set.
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Method Manifest Invariant Item Ordering

Theory: Estimation of IRFs, and Pairwise Inspection of Invariant Item
Ordering

Method manifest IIO is available from the R package mokken (Van der Ark, 2007) as

method check.iio. Let Rði;jÞ ¼ Xþ � Xi � Xj be the rest score, defined as the total score

on k − 2 items without the items i and j, and which has realization r, with

r ¼ 0; . . . ; ðk � 2Þm. Let EðXijRði;jÞÞ be the estimated IRF of item i. If population

item means are ordered such that for pair (i, j), EðXiÞ≤EðXjÞ, then an IIO implies that

EðXijyÞ≤EðXjjyÞ; for all y: ð5Þ

Ligtvoet, Van der Ark, Bergsma, and Sijtsma (2009) showed that Equation (5) implies

that

EðXijRðijÞ ¼ rÞ≤EðXjjRðijÞ ¼ rÞ; for all r: ð6Þ

Equation (6) is investigated for each pair of items using conditional sample means �Xijr
and �Xjjr, for all r. If it is found that �Xijr > �Xjjr, we use a one-sided one-sample t test for

the null hypothesis that EðXijRðijÞ ¼ rÞ ¼ EðXjjRðijÞ ¼ rÞ against the alternative that

EðXijRðijÞ ¼ rÞ > EðXjjRðijÞ ¼ rÞ, for all r. Rejection of the null hypothesis for at least

one value of r leads to the conclusion that items i and j are not invariantly ordered. If

the number of persons having a rest score r is too small for accurate estimation, adja-

cent rest score groups are combined until the group size exceeds a preset minimum

(Molenaar & Sijtsma, 2000, p. 67; Van der Ark, 2007). A protection against taking

very small violations seriously is to test sample reversals only when they exceed a min-

imum value denoted minvi. Molenaar and Sijtsma (2000, pp. 67-70) recommend for

dichotomous items (m ¼ 1) the default value minvi ¼ 0.03. Polytomous items

have a greater score range and a logical choice for minvi is m × 0.03. Whether

this is a reasonable choice was investigated in a simulation study (next section).

We used the following sequential procedure for method manifest IIO. First, for

each of the k items the frequency is determined that the item is involved in significant

violations that exceed minvi. If none of the items is involved in such violations, we

conclude that an IIO holds for all k items; else, the item with the highest frequency

is removed from the test. Second, the procedure is repeated for the remaining

ðk � 1Þðk � 2Þ=2 item pairs, and if an item is removed, for the remaining

ðk � 2Þðk � 3Þ=2 item pairs, and so on. When q items have the same number of sig-

nificant violations, the q − 1 items having the smallest scalability coefficients

(Sijtsma & Molenaar, 2002, p. 57) may be removed, but researchers may also consider

other exclusion criteria, such as item content.

This procedure is suited for exploratory data analysis but for confirmatory pur-

poses, when one wants to know whether all k items have an IIO, manifest IIO is

checked for all item pairs but items are not removed. For the remaining item subset

(exploration) or the complete item subset (confirmation), we compute the HT value
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to evaluate the degree to which an accurate item ordering is possible. Coefficient HT is

discussed in the next section.

Monte Carlo Study: Sensitivity and Specificity
of Method Manifest Invariant Item Ordering

We used a Monte Carlo study to investigate the sensitivity (probability that IIO is cor-

rectly identified) and the specificity (probability that IIO is correctly rejected) of

method manifest IIO.

Method

The design factors were defined as follows:

Failure of IIO and IIO. Samejima’s (1969) graded response model (Equation 3),

which does not imply IIO, was used to generate data for the design half in

which an IIO did not hold. However, particular choices of item parameters

may produce an IIO by coincidence and sampling fluctuations may have

the same effect. A pilot study showed that IRFs almost always intersected

in dense regions of the latent variable y, so that it seemed safe to use the

graded response model. The restricted version of Muraki’s (1992) rating

scale version of the graded response model (Equation 4) was used to generate

data for the design half in which an IIO holds.

Minvi. We investigated 16 minvi values covering a wide range (0.00 to 0.45,

using increments of 0.03, and including the suggestion that minvi ¼ m ×
0.03). Value minvi ¼ 0.00 implies that all violations, however small, were

tested.

Item discrimination (a). Weak and normal levels were used. For weak discrim-

ination, parameters ai were sampled from log Nð�0:5 ln 20; ln 5Þ, corre-

sponding with mean ai equal to 0.5 and variance 1. For normal item

discrimination, parameters were sampled from log Nð�0:5 ln 2; ln 2Þ, corre-

sponding with mean ai equal to 1 and variance 1. For data sets violating IIO,

ais were sampled for each item separately. When an IIO held, one value

ai ¼ a was sampled for all items. Item locations bix and li were sampled

from N(0, 1).

Sample size (N). We used N ¼ 200, 433, 800 (N ¼ 433 is the sample size in the

real-data example discussed later); y was sampled from N(0, 1).

Number of items (k). We used k ¼ 5, 10 (based on real-data example), 15.

Number of answer categories (m + 1). We used m + 1 ¼ 3, 5 (based on real-data

example), 7.

The design had size 2 × 16 × 2 × 3 × 3 × 3, thus resulting in 1,728 cells. For

each of the 54 combinations of a, N, k, and m + 1, we generated 500 data sets violating

IIO (Equation 3) and 500 data sets consistent with IIO (Equation 4). Each data set was
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analyzed by means of method manifest IIO for each of the 16 minvi values, and the

sensitivity and the specificity were computed for each minvi value.

Results

The sensitivity of method manifest IIO ranged from .275 to 1.000 across all design

cells (M ¼ 0.849, SD ¼ 0.195), and the specificity ranged from .013 to 1.000 (M

¼ 0.686, SD ¼ 0.337). Only significant main effects on sensitivity and specificity

are discussed (Kruskal–Wallis test for several independent samples, nominal Type I

error of .05).

Table 1 shows the sensitivity and specificity for the two levels of item discrimina-

tion, 16 levels of minvi, N ¼ 433, k ¼ 10, and m + 1 ¼ 5 (choices corresponded to

real-data example; results for N, k, and m + 1 are compared with results in Table 1).

For N ¼ 433, k ¼ 10, and m + 1 ¼ 5, sensitivity was lower for a low item discrim-

ination and low levels of minvi and increased as minvi increased for both levels of item

discrimination. Specificity decreased as minvi increased. Based on sensitivity and

specificity, minvi ¼ m × 0.03 ¼ 0.12 seemed suitable for the real-data example.

Across the design cells, an increase in minvi resulted in higher sensitivity (.760 for

minvi ¼ 0.00 and .970 for minvi ¼ 0.45) and lower specificity (.790 for minvi ¼
0.00 and .490 for minvi ¼ 0.45). Both sensitivity and specificity were higher for

Table 1. Sensitivity and Specificity of Method Manifest Invariant Item Ordering for Different
minvi Values for the Cases Corresponding to the Real-Data Example

Item Discrimination

Weak Normal

minvi Sensitivity Specificity Sensitivity Specificity

0.00 .650 .924 .902 .998
0.03 .650 .924 .902 .998
0.06 .650 .924 .902 .998
0.09 .650 .924 .902 .998
0.12 .650 .924 .902 .998
0.15 .650 .924 .902 .998
0.18 .652 .924 .902 .998
0.21 .654 .918 .908 .998
0.24 .716 .892 .924 .998
0.27 .830 .850 .960 .996
0.30 .900 .776 .974 .986
0.33 .942 .718 .994 .980
0.36 .970 .654 .996 .962
0.39 .988 .596 1.000 .950
0.42 .998 .558 1.000 .924
0.45 1.000 .490 1.000 .902
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normal discrimination (.908 and .758, respectively) than for low discrimination (.789

and .614, respectively). Greater sample size resulted in higher sensitivity: .769 (N ¼
200) and .915 (N ¼ 800). Greater numbers of items resulted in lower sensitivity:

.979 (k ¼ 5) and .715 (k ¼ 15), but higher specificity: .350 (k ¼ 5) and .913

(k ¼ 15). Finally, the number of answer categories negatively influenced sensitivity:

.875 (m + 1 ¼ 3) and .838 (m + 1 ¼ 7), but positively influenced specificity: .486 (m +

1 ¼ 3) and .827 (m + 1 ¼ 7). Table 2 gives the significant positive (+) and negative

(−) main effects.

Discussion

Higher minvi values result in a greater probability that IIO is correctly identified (i.e.,

higher sensitivity) but also to a greater probability that a violation of IIO is ignored

(i.e., lower specificity). The choice of minvi thus depends on the specific application

for which IIO is investigated. A high cost of incorrectly accepting IIO requires a low-

er minvi value, but in other cases, including our real-data example, minvi ¼ m × 0.03

may be appropriate. Method manifest IIO also benefits from higher discrimination,

more item scores, and larger sample sizes. The sensitivity is worse for short tests,

but the specificity is better.

Coefficient HT for Polytomously Scored Items

Theory of Coefficient HT

Let X denote the data matrix of N respondents (rows) by k items (columns), with

scores x ¼ 0; . . . ;m in the cells. Coefficient H (Mokken & Lewis, 1982; Sijtsma &

Molenaar, 2002, chap. 4) is a measure for the accuracy by which k items constituting

a scale order respondents (Mokken, Lewis, & Sijtsma, 1986). Sijtsma and Meijer

(1992) showed for dichotomous items that when H is computed on the transposed

data matrix, the resulting coefficient HT is a measure for the accuracy by which N re-

spondents order k items. Here, we generalize coefficient HT to polytomously scored

items.

We index respondents by g and h, and let the vectors Xg and Xh (g; h∈ f1; . . . ;Ng )

contain the scores of respondents g and h on the k items in the test. We assume that the

Table 2. Summary of Main Effects on Sensitivity and Specificity

Sensitivity Specificity

minvi + −
Item discrimination + +
Sample size +
Number of items − +
Number of answer categories − +
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k item scores show at least some variation, so that VarðXgÞ > 0, for g ∈ f1; . . . ;Ng.
Let CovðXg;XhÞ be the covariance between the scores of respondents g and h, and

CovmaxðXg;XhÞ the maximum possible covariance given the marginal distributions

of the k item scores of respondents g and h. The total score on item i is denoted by

Ti ¼
PN

g¼1 Xg. Vector T contains the k item totals and vector TðgÞ ¼ T� Xg contains

the k item totals minus the contribution of respondent g. The person scalability coef-

ficient HT
g is defined as the weighted normalized covariance,

HT
g ¼

P
h6¼g CovðXg;XhÞP

h6¼g CovmaxðXg;XhÞ
¼ CovðXg;TðgÞÞ

CovmaxðXg;TðgÞÞ
: ð7Þ

Thus, coefficient HT
g expresses the association between the k item scores of respon-

dent g and the k item totals minus the scores of respondent g. Because even for small

samples, T≈TðgÞ, coefficient HT
g expresses the degree to which the scores of respon-

dent g have the same ordering as the item totals.

When an IIO holds for the k items, theoretically we expect a perfect association

between the ordering of the item scores in Xg and the total scores T(g). When IRFs

are close together, we expect the ordering of the item scores to be unstable and the

values of many coefficients HT
g to be low. When IRFs are further apart, we expect

the orderings of the item scores to be more stable and better in agreement with the

ordering of the item totals, thus resulting in many higher HT
g values. Coefficient HT

wraps up the N person coefficients as

HT ¼
P

g CovðXg;TðgÞÞP
g CovmaxðXg;TðgÞÞ

: ð8Þ

When k items have an IIO, the value of coefficient HT is higher the further the IRFs are

apart.

For k invariantly ordered items, assuming local independence it follows that

0≤HT
g ≤ 1 and 0≤HT ≤ 1 (proof available from first author). The value of 0 is

obtained if the k IRFs coincide and CovðXg;XhÞ ¼ 0 for all respondent pairs. Maxi-

mally, HT ¼ 1, and this value is obtained if the agreement between the respondents’

ordering of item scores and the ordering of the corrected item totals is maximal. We

used a computational study to investigate the influence of item and test properties on

coefficient HT for polytomously scored items.

Computational Study: Influence of Item Properties
and Test Length on HT

Figure 2 illustrates that for dichotomously scored items coefficient HT cannot distin-

guish well between data generated under a model inconsistent with IIO (Figure 2a)

and one consistent with IIO (Figure 2b); item locations and mean item discriminations

are identical, and for y∼Nð0; 1Þ one finds HT ≈ :5. Hence, Sijtsma and Meijer (1992)
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recommended using Mokken Scale Analysis (e.g., Sijtsma & Molenaar, 2002) to first

identify and remove items that have flat IRFs and tend to produce many intersections

with other, often steeper IRFs. For the remaining items, they suggested concluding

that an IIO held if HT ≥ :3, and the percentage of negative person scalability values

(not discussed here) did not exceed 10; else, IIO was rejected.

We use method manifest IIO to select items, which have an IIO, and then compute

coefficient HT for the selected items. Instead of method manifest IIO, Sijtsma and

Meijer (1992) suggested using Mokken Scale Analysis, but this method uses scalabil-

ity coefficient H to assess the slopes of the IRFs but not whether different IRFs inter-

sect. In their Monte Carlo study, these authors did not actually use Mokken Scale

Analysis but a person scalability coefficient to have more power distinguishing failure

of IIO from IIO. Because we used method manifest IIO to select an item set that is

consistent with IIO, the use of coefficient HT sufficed.

In their Monte Carlo study, for dichotomous items Sijtsma and Meijer (1992) found

that coefficient HT increases as distance between item locations increases or item dis-

crimination increases. Sample size and test length hardly affected HT values. We used

a computational study for polytomous items involving parameter values for HT

(hence, sample size did not play a role) to investigate IIO conditions so as to learn

how HT may be used once an IIO has been ascertained by means of method manifest

IIO. Based on Sijtsma and Meijer (1992), we included distance between item loca-

tions, item discrimination, and number of items, but with more variation in levels.

We expected similar trends in HT as for dichotomous items. The factors number of

answer categories and distance between adjacent ISRFs were unique for polytomous

items.

Figure 2. Failure of invariant item ordering (IIO; a) and IIO (b), both cases produce HT ¼ .50
and are consistent with the two-parameter logistic model: bI ¼ 0.5, 0, 1 (both cases); (a) ai ¼
1.5, 0.75, 2.25, and (b) ai ¼ 1.5, 1.5, 1.5
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Method

Coefficient HT was computed at the population level (y∼Nð0; 1Þ) for the restricted

version of Muraki’s (1990) rating scale version of the graded response model

(Equation [3]), which implies IIO. The dependent variable was the expected value

of coefficient HT (computational details for coefficient HT and its expectation under

Equation [6] can be obtained from the first author). The five independent variables

were

Number of items (k). Test length was: k ¼ 5, 10, 15. Tests consisting of larger

numbers of items were not investigated so as to facilitate interpretation of

results.

Number of answer categories (m + 1). This number equaled m +1 ¼ 2, 3, 5, 7.

Item discrimination (a). Discrimination values were: a ¼ 0.5, 1, 1.5, 2.

Distance between adjacent item locations (li). Item locations were symmetrical

relative to the mean of the y distribution (my ¼ 0), and adjacent item loca-

tions were at a constant distance. The distance between the location of the

most attractive item (l1) and the least attractive item (lk) is denoted as �;

� ¼ 0, 2, 4 (for � ¼ 0, all item locations coincide). The distance between

adjacent items depended on � and test length k.

Distance between adjacent ISRFs (3x). For dichotomously scored items, by def-

inition 31 ¼ 0 but for polytomously scored items, the parameters e1; . . . ; em

may vary. Two variations were considered. First, the extremes were fixed

(31 ¼ −1 and 3m ¼ 1, for m > 1), and the other m − 2 ISRFs were located

at equal distances between these extremes. Thus, for greater m, the ISRFs

were more densely located around the item location, li. Second, the distance

between the locations of adjacent ISRFs was fixed at 0.5, which resulted in

a greater dispersion of the ISRFs around the item location li as m was greater.

The design had size 3 × 4 × 4 × 3 × 2, thus resulting in 288 cells. Because

dichotomously scored items only have one item step, the two cells in the design cor-

responding to the distance between adjacent ISRFs collapsed.

Results

For the design factors typical of polytomous items, which are number of answer cat-

egories and distance between adjacent ISRFs, we found little effect on coefficient HT

(no more than a few hundredths between corresponding design cells). This justifies

discussing results for only the simplest case of m + 1 ¼ 2. For the cells concerning

coinciding IRFs (� ¼ 0), we found that HT ¼ 0 (consistent with mathematical proof

obtainable from first author). Table 3 shows HT values for all combinations of number

of items, distance between item location (for � ¼ 2, 4) and item discrimination. Sim-

ilar to results found by Sijtsma and Meijer (1992), distance between item location and

item discrimination had positive effects on HT. Unlike their results, however, where

the number of items had no significant negative effect for k ¼ 9 and 18, our results
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show a negative effect of the number of items. This discrepancy can be explained by

the levels we used for the number of items (k ¼ 5, 10, and 15), where we found the

largest decrease in HT between k ¼ 5 and 10. These results suggest that beyond

approximately 10 items there is little to no effect of the number of items on the value

of HT.

Discussion

The computational results supported the expectation that when items are further apart,

for a fixed y the items’ response probabilities show more variation and the ordering of

a respondent’s item scores better resembles the ordering of the items’ total scores.

Given IIO, coefficient HT expresses the degree to which the ordering of the item totals

is reflected by the individual vectors of item scores. The next section illustrates the

practical use of method manifest IIO and the HT coefficient.

A Real-Data Example

Method manifest IIO and coefficient HT were used for investigating whether an IIO

held in the two subscales for measuring deference (k ¼ 9) and achievement (k ¼
10) from the Dutch version of the Adjective Checklist (Gough & Heilbrun, 1980).

The subscales were not constructed with an IIO in mind, but are well suited for dem-

onstrating the exploratory use of method manifest IIO. Items consist of an adjective

and five ordered answer categories. Table 4 shows the item labels (negatively worded

items were recoded). The respondents were 433 students, who were instructed to con-

sider whether an adjective described their personality and rate the answer category

that fitted best to this description. Vorst (1992) collected the data, which are available

from the R package mokken (Van der Ark, 2007).

Prior to investigating IIO, following Sijtsma and Meijer (1992) a Mokken Scale

Analysis was done on both subscales. Inclusion of all items resulted in H ¼ .307

Table 3. HT Values for Varying Number of Items (k), Distance Between Item Locations (�),
and Item Discrimination

Item Discrimination

k � 0.5 1 1.5 2

5 2 0.038 0.145 0.279 0.413
4 0.135 0.405 0.610 0.742

10 2 0.031 0.121 0.239 0.362
4 0.112 0.355 0.557 0.698

15 2 0.029 0.114 0.227 0.346
4 0.106 0.340 0.540 0.683
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for subscale Deference, and H ¼ .308 for subscale Achievement. Following Mokken

and Lewis (1982), 3 ≤ H < .4 stands for a weak scale.

For using method manifest IIO, the IRFs were estimated after adjacent rest scores

were joined until each group contained at least N/5 ¼ 86 respondents (Molenaar &

Sijtsma, 2000, p. 67). Method manifest IIO was performed for minvi values ranging

from 0 to 0.45 using increments of 0.03 thus allowing how conclusions depended

on different minvi values. After method IIO had identified an item subset coefficient

HT was computed for this subset. The R package mokken (Van der Ark, 2007) was

used for the computations.

Table 4 shows for minvi ¼ 0.03 × m ¼ 0.12 that subscale Deference did not have

significant violations of IIO, and that HT ¼ 0.320. Subscale Achievement had two

significant violations, both involving item Alert. Removal of this item resulted in

a subscale containing nine items for which an IIO held. Coefficient HT cannot be com-

puted for respondents that have the same scores on all items; hence, six respondents

were excluded. For the remaining 427 respondents, we found HT ¼ .116. Support for

IIO is stronger for Deference than for Achievement. Interpretation of HT is discussed

in the next section.

For subscale Deference, method manifest IIO produced the same results for vary-

ing minvi values. For subscale Achievement, method manifest IIO produced the

same results until minvi ¼ 0.21 and resulted in 0 violations of IIO for higher minvi

values. Because minvi values exceeding 0.24 are large in most applications, based on

these results we concluded that method manifest IIO is robust for different minvi

values.

Table 4. Number of Violations for the Deference Scale and the Achievement Scale

Deference Achievement

Items

Step

Items

Step

1 1 2

Impulsive 0 Quittinga 0 0
Demanding 0 Unambitiousa 0 0
Forceful 0 Determined 0 0
Rebellious 0 Active 0 0
Uninhibited 0 Energetic 0 0
Bossy 0 Ambitious 1 0
Reckless 0 Alert 2 —
Boastful 0 Persevering 1 0
Conceited 0 Thorough 0 0

Industrious 0 0

Coefficient HT 0.320 0.116

a. Indicates negatively worded items.
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General Discussion

We used a top-down sequential procedure based on method manifest IIO for selecting

a subset of items having nonintersecting IRFs. Thus, not all item subsets were inves-

tigated, and once removed, an item was not reevaluated for possible reselection in

later steps of the procedure. Alternative selection procedures (e.g., genetic algorithms;

Michalewicz, 1996), which assess all possible item subsets, may be investigated in

future research so that possibly larger and different item subsets for which an IIO

holds may be identified.

IIO research is new, and experience on how to interpret results has to accumulate as

more applications become available. For the time being, we tentatively generalize the

heuristic rules proposed by Mokken and Lewis (1982) for interpreting values of scal-

ability coefficient H to the interpretation of HT values, provided an IIO holds for an

item set. Thus, we propose the following: HT < 0.3 means that the item ordering is

too inaccurate to be useful; 0.3 ≤ HT < 0.4 means low accuracy; 0.4 ≤ HT < 0.5

means medium accuracy; and HT ≥ 0.5 means high accuracy. Based on these rules,

the nine items from the Deference subscale may be ordered with low accuracy (HT ¼
0.320) and the remaining nine items from the Achievement scale do not have an IIO

(HT¼ 0.116).

The assumption of an IIO is both omnipresent and implicit in the application of

many tests, questionnaires, and inventories. Test constructors and test users alike often

assume that the same items are easy or attractive for each of the respondents to whom

the items are administered but rarely put this strong assumption to the test of empirical

evaluation. Yet an established IIO underpins and greatly facilitates the interpretation

of the test results, for example, when the test administration procedure is based on the

ordering of the items from easiest to most difficult, the items reflect a developmental

sequence of cognitive steps assumed to be the same for everyone or when the set of

items is assumed to reflect a hierarchical or cumulative structure. Invariant item order-

ing for polytomously scored items is an unexploited terrain. This study provides a first

start for this interesting topic and shows directions for future explorations.
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