
Investigating and Improving a COTS-Based Software
Development Process

M. Morisio1, C.B. Seaman3,4, A. T. Parra2, V.R. Basili1,4, S.E. Kraft5, S.E. Condon2

1 University of Maryland
College Park, MD 20742, USA, {morisio, basili}@ cs.umd.edu

2 Computer Sciences Corporation,
Greenbelt, MD 20771, USA, {aparra, scondon} @ csc.com

3 University of Maryland Baltimore County,
Baltimore, MD 21250, USA, cseaman@umbc.edu

4Fraunhofer Center Maryland,
College Park, MD 20742, USA, basili@ fc-md.umd.edu

5 NASA/Goddard Space Flight Center,
Greenbelt, MD 20771, USA, stkraft@ gsfc.nasa.gov

ABSTRACT
The work described in this paper is an investigation of
COTS-based software development within a particular
NASA environment, with an emphasis on the processes
used. Fifteen projects using a COTS-based approach were
studied and their actual process was documented. This
process is evaluated to identify essential differences in
comparison to traditional software development. The
main differences, and the activities for which projects
require more guidance, are requirements definition and
COTS selection, high level design, integration and testing.

Starting from these empirical observations, a new process
and guidelines for COTS-based development are
developed and briefly presented. The new process is
currently under experimentation.

Keywords
Commercial off-the-shelf, COTS, component-based,
empirical study, software development process.

1 INTRODUCTION
The world of software development has evolved rapidly
in the last decade. In particular, the use of commercial
off-the-shelf (COTS) products as elements of larger
systems is becoming increasingly commonplace, due to
shrinking budgets, accelerating rates of COTS
enhancement, and expanding system requirements,
according to the Software Engineering Institute (SEI)

[12]. The growing trend toward systems configured of
individual components has taken the original concept of
reuse into a completely different arena. It has also
presented many challenges to software developers
attempting to enter this new arena. The SEI describes
some of these:

[The marketplace is] characterized by a vast
array of products and product claims, extreme
quality and capability differences between
products, and many product incompatibilities,
even when they purport to adhere to the same
standards. [13]

As this change in practices is taking place, many
questions have arisen, such as: how do we modify
standard development practices to fit this new
development paradigm; what methods are now effective;
how do we quantify the cost savings expected of COTS
use; and what metrics are worth collecting from COTS
projects?

1.1 Definitions
The term commercial off-the-shelf (COTS) is very
generic; it can refer to many different types and levels of
software, e.g., software that provides a specific
functionality or a tool used to generate code. COTS may
be one of the most diversely defined terms in current
software development. For the purposes of this paper, the
term COTS means a software product, supplied by a
vendor, that has specific functionality as part of a
system—a piece of prebuilt software that is integrated
into the system and must be delivered with the system to
provide operational functionality or to sustain
maintenance efforts. For the purposes of this paper,
COTS-based is the term used to indicate component- or
package-based development—rapid configuration of
software systems based on COTS packages, Government

off-the-shelf (GOTS) packages, and some custom-built
reusable packages. The term COTS project refers to a
project that integrates COTS packages and other software
to develop a system. This is not to be confused with the
development of COTS packages that occurs at the
“vendor” corporation.

1.2 Structure of the paper
Section 2 describes the environment of the projects we
analyzed and the motivations for this study, section 3
describes the methodological approach we used in the
study, section 4 presents the results of interviews,
specifically the COTS used and the COTS-based process
in use, and section 5 presents a new suggested COTS
process.

2 BACKGROUND
The Software Engineering Laboratory (SEL), a joint
academic/industry/government institution known for
empirical study of software development practice,
provides local guidance to NASA/Goddard Space Flight
Center (GSFC) projects, based on empirical findings, as
well as serving as a model for process improvement for
the global software development community.

The Flight Dynamics Division (FDD) at NASA/GSFC,
which until recently has been responsible for the
development of large amounts of ground support software
for NASA satellites, has been studied by the SEL for
more than 2 decades. In the 1980s and 90s, the FDD
achieved effective software reuse levels as high as 90
percent. This trend has gradually evolved into COTS-
based software development. Realizing that COTS-based
development represents a significant shift in the way the
FDD does business, the SEL decided to update its
guidelines on recommended practice and processes [11].
According to the Quality Improvement Paradigm [1], the
study is an iteration of understanding, experimenting and
packaging phases.

During the last few months of 1995, the SEL designed an
initial COTS-based process. Because the FDD had
limited experience developing COTS-based systems at
that time, the SEL looked at experiences of outside
organizations in order to understand the challenges
associated with this type of development and to gather
best practices used on COTS projects. Using a solid
understanding of the FDD project domain, history and
environment, the SEL synthesized this information into a
strawman process to be used to produce COTS-based
systems in the FDD. This initial strawman process was
then reviewed for feasibility by key FDD software
engineers who have had some experience with COTS.
The resulting strawman process [10] is shown in Table 1.
The process is sequential. COTS-related activities appear
in the phases Requirements Analysis (where COTS are
identified) and Design (where COTS are finally selected).
In the latter requirements are possibly modified to take
into account constraints from the selected COTS.

In parallel with the strawman process definition, several
COTS projects started at FDD. The SEL tried to gain a
greater understanding of these projects by looking at their
effort data. It soon became clear, however, that this data
was inadequate to tell the entire story of what was
occurring on COTS projects. One shortcoming of the data
collection at that time was that the traditional activities
listed on the data collection form were too general to elicit
useful data specific to COTS-based development
activities. One indication of this was the
disproportionately large amount of effort listed as “Other”
on COTS projects. Further, these data were not sufficient
to identify and understand the new issues arising from the
use of COTS packages in FDD projects. As a
consequence, it was decided to study these projects at a
much deeper level, using new observational tools to
gather and interpret qualitative, and not only quantitative,
data.

The reader will not be surprised to know that the actual

Table 1. The strawman COTS process.

Phase Major Activities Products Management Check-points

Requirements Analysis
and COTS
Identification

• Requirements analysis
• COTS survey and

preliminary evaluation

• Requirements
• Strawman high-level

architecture
• Candidate COTS

• System requirements review

Design and COTS
Selection

• COTS evaluation
• Requirements modification

to use existing COTS
• Prototyping

• Modified requirements
• System architecture
• Final COTS

• System design review

System Integration and
test

• Use-case implementation
• Independent testing

• Delivered system • User demonstrations
• Operational readiness review

Technology Update and
System Maintenance

• Evaluation of new products
and technology

• Enhanced system • User demonstrations

COTS process used by the projects observed was
radically different from the strawman process. This paper
is dedicated to describing the actual COTS process used,
issues raised by project members, and a new process
defined to address and resolve these issues.

3 STUDY DESIGN
The goal of the observational study was to learn about
how COTS-based development is carried out in the FDD,
and to provide recommendations on how it could be
conducted better.

The main investigation tool used in this study was the
structured interview, because of the need to understand
the existing de facto and possibly unstructured process,
with its issues and problems.

From the high level goal of the study, a number of
questions and measures were derived, using the GQM
approach [2]. Questions were organized into structured
interviews to be held with project managers and staff of
COTS projects. The GQM decomposition and the
interview guides can be found in [8,10]. In short, the
interviews were aimed at characterizing the projects, the
COTS used, and the process used. Overall, interviews
were conducted with 25 representatives from 15 projects.

The interviews were conducted by teams composed of
two study team members. One team member served as the
interviewer and the second as the scribe. The
interviewer’s responsibilities included conducting the

interview using the interview guide as an outline, posing
open-ended questions to the interviewee, and following
up as appropriate to gather as much information as was
reasonable.

The scribe’s two main responsibilities were to (1) keep
notes on the information covered in the interview to

enable the interviewer to concentrate on facilitating the
interview process and (2) document the interview in a
structured textual manner following the basic outline of
the interview guide. The scribe usually spent some time
after the interview to write detailed notes on all of the
interviewee’s responses, based on notes taken during the
interview.

When collecting qualitative data, verification steps are
crucial. Two quality checks were built into this procedure.
First, at the end of the interview, the scribe asked the
interviewee to clarify parts of the interview as needed and
asked any questions from the interview guide that may
have been inadvertently omitted by the interviewer.
Second, prior to finalizing the interview notes, the
interviewer reviewed them for concurrence.

The interview data were analyzed in several ways to
extract a variety of different types of information.
Different study team members reviewed the interview
notes, each concentrating on gaining an understanding of
a different aspect of COTS-based development At the
same time, the interview notes were also analyzed using a
method loosely based on the constant comparison method
[3, 5], a rigorous qualitative analysis method used to
identify trends and consensus in textual data. This type of
analysis led to findings about the process steps followed
in COTS-based development and the main advantages
and disadvantages of using COTS.

4 RESULTS OF INTERVIEWS
4.1 Projects and COTS
More than 30 COTS packages were used by one or more
of the 15 projects contacted during this study. Several
COTS packages, such as the Satellite ToolKit, were used

Table 2. A sample of COTS used by projects.

COTS name Domain/ Functionalities

STK – Satellite Tool Kit Orbit determination and mission planning

Labview Data acquisition, analysis and visualization

Autocon Orbit determination

Altair Mission Control System Mission Control

Probe Data analysis

GensAa (GOTS) Spacecraft monitoring, commanding, fault detection and isolation

GTDS (GOTS) Orbit determination

Builder Xcessory, X-Software, Shared-X,
Visual Optimization package, X Runner

GUI, GUI builders

Matlab Computing environment, data visualization, application
development

by several projects. Some projects were using one or two
COTS products, while others used more. One project used
as many as 13 individual COTS. COTS were used to
build ground support systems, as well as assist in a
platform transition from mainframe to workstation that all
flight dynamics systems underwent. COTS used ran the
gamut from a COTS product that completes the entire
function of a telemetry processor, to fourth-generation
languages that must be delivered with the system to
maintain it.

Table 2 lists a sample of COTS used by projects
interviewed. The list is not exhaustive and is meant to
give a better idea of the types of products used. COTS can
be categorized as domain specific (orbit determination
and mission control) or generic. Among generic COTS,
the subcategories are data bases, data acquisition, analysis
and visualization, GUI builders, networking and
middleware.

All of the projects were from the traditional domain of
NASA Goddard’s FDD, that is to say ground software
dedicated to controlling satellite orbit, attitude and
communication with earth. The fifteen projects ranged
from 29 to 300 KSLOC, with the size figure including
only code developed and excluding COTS code.

Carney [4] identifies three types of COTS-based systems
based on the number of COTS used and their influence on
the final system. Turnkey systems are built around a
(suite of) commercial products, such as Microsoft Office
or Netscape Navigator. Only one COTS is used, and
customization does not change the nature of the initial

COTS. Intermediate systems are built around one COTS
(e.g. Oracle) but integrate other components, commercial
or developed in-house. Finally other systems are built by
integrating several COTS, all on the same level of
importance. In our case projects fell into the second and
third categories.

4.2 The actual COTS process
Although not every team followed all of the steps outlined
below, a composite process flow emerged from the
interview data. It should be noted that none of the project
teams interviewed had begun sustaining engineering, or
maintenance. Below we describe the steps and quality
checkpoints in the overall process, as shown in Figure 1.

• Requirements analysis

The earliest steps in COTS-based development are similar
to traditional development—requirements gathering. In
the requirements phase a strong emphasis is on gathering
external information. Much of this information comes
from separate organizations. Some project requirements
are predefined, with minimal requirements analysis
needed. Early reviews of the requirements are crucial,
even with a less formal process.

♦ System Requirement Review

This is the first verification step, aimed at checking the
completeness and feasibility of system requirements.

• COTS identification, evaluation, and selection.

COTS identification consists of Web searches, product
literature surveys and reviews, identification of other

information flow – bidirectional
sequence

hard requirements

processprocess check or review

traditional waterfall development separate entity

External
Information Vendor

Requirements
Analysis

System
Requirements

Review

Package
Identification
Evaluation/
Selection

Identify
Glueware and

Integration
Requirements

System
Design
Review

Write
Glueware

and
Interfaces

Integration
and
Test

Non-COTS
DevelopmentSystem

Architecture

Discrepancy

Resolution

Target
System

Installation and
Acceptance

Test

Sustaining
Engineering

Key:

Figure 1. The actual COTS process

reusable system components, and recommendations from
external sources. Product information is kept in a central
justification notebook, or an evaluation notebook. Not
only are product evaluation notes kept, but subjective
comments concerning vendor quality and responsiveness
are also kept.

As COTS are identified, the evaluation and selection
processes begin. COTS evaluation steps mentioned in the
interviews included prototyping, vendor demonstrations,
and in-depth review of literature such as manuals and user
guides. Vendor training sites and availability are
considered. Procurement issues surface such as
development fees for added requirements, licensing and
maintenance fees, and sustaining engineering support.

• Identify Glueware and Integration Requirements

Glueware and interfaces as dictated by the system
architecture, operating system and hardware are
identified.

♦ System Design Review

This second verification step deals with System Design.
Only some teams held it formally, but all teams
mentioned some mechanism to apprise the customer of
the design.

• Non COTS development. - Write Glueware and
Interfaces.

Most projects studied have an element of traditional
development that does not depend on COTS or other
packages. This development begins in parallel with the
early COTS-related steps, as in a traditional development
project. Non-COTS cost and schedule are monitored.
There is a bi-directional information flow between the
COTS-based process flow and the non-COTS
development that comes into play in the design review.

After the design review, whether it is formal or informal,
traditional non-COTS development continues in parallel
with the coding of the glueware and the interfaces. Close
contact with the vendor technical staff, or a competent
Help Desk is essential during this development.

• Integration and test

The integration step varies a great deal from project to
project, depending on which and how many COTS
products are being used. At system integration and testing
the COTS packages are treated as black boxes. The teams
commented that testing focused on the interface glueware
and the format and correctness of the input files. Again,
the importance of availability of the vendor technical staff
or Help Desk was emphasized. Testing is usually
conducted piece-by-piece, as each software component is
integrated.

• Target system installation and acceptance test

Unlike the traditional life cycle, no formal acceptance
testing or operational readiness reviews were mentioned
by the teams. The development team installs the software
on the target system.

• Discrepancy resolution

Once installed, navigational training to familiarize the
customer with the system is conducted. During this phase,
a member of the development team is the single point-of-
contact or intermediary between the customer and the
vendor. This person is responsible for reporting
discrepancies, and handling software “patches” or
corrections. Interviewees mentioned that software patches
were placed on vendor Web sites that were downloaded to
the target system.

• Sustaining engineering

The end of the configuration process is marked by the
sustaining engineering, or maintenance, effort. No team
that the study team interviewed had reached this stage.

The study team discovered more complexity in the current
practice than expected in theory. This is clear when
comparing Table 1 (representing the process the study
team expected to find) and Figure 1 (the process that
emerged from the interview data). For example, it had
been expected that vendor interaction would be simple,
and would end with the purchase of a product. In reality,
the interaction continues throughout the life cycle and the
flow of information is not merely one way (see the dashed
lines in Figure 1). We found a strong dependence on bi-
directional information flow.

Also shown is a more constant involvement with separate
organizations, such as other projects using COTS,
independent evaluation teams, and other customers of the
vendor. Another complication is that portions of the
COTS-based systems include traditionally developed
software.

In summary, COTS projects were obliged to follow a
process quite different from traditional projects, with
more effort put into requirements, test and integration,
and less in design and code. We can identify three types
of differences.

• New activities: product evaluations, product
familiarization, vendor interaction (of technical,
administrative and commercial kinds). The related
new roles are the COTS evaluation team, and a team
member responsible for interactions with the vendor.

• Reduced activities: coding, debugging, unit testing,
code inspections.

• Modified activities: design focused more on how to
fit pieces together rather than the internal workings of
different modules. Architecture issues (compatibility,
configurability and integrability) must be considered.

These differences have several implications.

• New activities require new professional skills and
guidance.

• Project estimation and tracking are less effective, as
during estimation new activities tend to be
overlooked or underestimated, and in tracking they
are not reported, or reported under the ‘other’
category. This is what happened in early FDD COTS
projects, all reporting an ‘other’ effort well above
average.

• Processes tend to be looser. Because much of the
standard SEL recommended process did not apply to
COTS-based development and schedules were very
tight, project personnel felt freer to loosen the process
requirements.

4.3 Major issues.
Several observations reported can be summarized in two
major issues: dependence on the vendor and flexibility in
requirements. These issues are seen as conditions that a
COTS project must accept, consciously or not, as a trade
off with expected gains in schedule, effort and cost.
Managing these tradeoffs is crucial to the success of a
COTS project.

COTS-based development introduces a dependence on
the vendor, who is the ultimate decision maker on the
functionalities available, the schedule for releases, the
architecture, the reliability level, the documentation, and
the service level. Consequently, the purchaser has little or
no influence on the above issues as they affect the
application.

Some of the related problems identified by project leaders
were:

• Slippage in schedule because of delays in releasing
the COTS by the vendor (typically the delay is
between the beta version and the official release).

• Documentation on the product is not available, or
incomplete, or not reliable.

• The learning curve with the product is hard to
estimate.

• “Vaporware,” i.e. some functions are promised but
never implemented.

• Modifications made by the vendor can alter the
compatibility of one COTS with other COTS, or the
rest of system, or introduce new bugs. However, for
several reasons the purchaser could be obliged to
upgrade to the new version.

• Communication with the vendor can be one way,
with many questions but no answers.

The most common risk mitigation strategies reported
were having a close relationship with the vendor; and

having a backup plan if the COTS fails (e.g. a second
choice COTS or internal development).

COTS projects must also accept flexibility in
requirements. At the moment a COTS is selected, some
requirements are immediately satisfied, some other
requirements become easy to implement, and others
become difficult if not impossible to obtain. Since the
typical goal of a COTS project is to reduce (cost, effort or
schedule) as compared with a traditional project, the
project must be ready to give up the latter category of
requirements. In other words, the COTS selected drives
the requirements to at least some extent. Some projects
interviewed reported they ended up writing (sometimes
rewriting) requirements after the COTS was selected.

Others reported integration problems later in the project
when requirements and COTS selection were not
coordinated upfront. Still others reported major conflicts
when they had little control over either system
requirements or COTS selection (i.e. both were mandated
from some other organizational unit).

On the other hand, sometimes functionality was
discovered in a COTS that was useful, even though the
project had not originally planned to use it. Effectively
managing the tradeoff between requirements and COTS
selection seems to be a key to avoiding problems
downstream, and to realizing the benefits of COTS.

5 A NEW PROPOSED COTS PROCESS
We present here (see Figure 2) the new proposed process
for COTS-based projects developed by the SEL as a result
of this study.

The process is targeted to COTS-based projects using
several peer COTS or one COTS integrated with a
considerable amount of new developed software. In other
words we exclude the case of adaptation of a single COTS
(a turnkey system). The process covers only development.
The SEL will extend it as soon as enough observations of
maintenance processes will be available.

We discuss phases, activities and roles/responsibilities.
We will concentrate on the differences and enhancements
as compared with the actual process (Figure 1). A
detailed version of the process is available in [9].

The main phases (dashed ovals) are: requirements, design,
coding and integration. Most phases encompass activities
specific to COTS-based development. These activities are
drawn above the horizontal line in Figure 2. This line
graphically separates the two tracks existing in COTS-
based projects, traditional activities and COTS-specific
activities.

5.1 Requirements
Previously, COTS selection was performed at the
beginning of the design phase. Now, based on findings
from the interviews and on actual processes, requirements
analysis and COTS selection are performed together.
Further, new activities are added and key decisions
stressed. We list them in a logical order, while in practice
many of them will be concurrent or iterated several times.

Make versus buy decision I. Using or not COTS in a
project is a key decision, that impacts all subsequent
phases, and the success of the product. The decision
should consider technical and non-technical issues.

COTS selection has thus far been treated more as a
managerial than a technical decision. Instead, technical
staff should be empowered to make decisions regarding
COTS, as opposed to management dictates that a specific
COTS shall be used. For many projects, COTS choices
were made outside the team, thus ignoring the team’s
expertise and experience. Requirements also often came
from outside the team, and conflicts between
requirements and COTS functionality often occurred later
in the project.

For these reasons the make vs. buy decision should be
recognized, formalized and justified. At this point, a first
make vs. buy decision can be taken, considering only

non-technical issues, the flexibility in requirements and
the willingness to depend on the vendor. If either of these
prerequisites is not satisfied, the project should not use
COTS.

Requirements definition . Requirements for the project
are sketched out in little detail. The goal is to guide the
identification of COTS. When the domain of an
application is stable and well known, this activity could
be skipped, as the requirements and the COTS available
are pretty familiar.

COTS identification and selection . COTS are identified
and evaluated using vendor documentation, reviews, peer
experiences and suggestions. The goal of this activity is to
reduce the number of candidates to two or three to be
deeply evaluated. Clearly, the number of deep evaluations
must be kept low for cost and schedule reasons.

COTS familiarization. The COTS selected above are
actually used. The projects interviewed considered this
activity essential to better understand the functionalities
available (not just the ones claimed), their quality, and
architectural assumptions.

Feasibility study. In this activity a product is described at
a level of detail sufficient to take the second make vs. buy
decision (see below). The description should consist of a

Vendor

Requirements
Analysis

Package
Identification
Evaluation/
Selection

Identify
Glueware and

Integration
Requirements

Write
Glueware

and
Interfaces

Integration
and
Test

Target
System

Installation and
Acceptance

Test

Process check or review

External role

Key:

Customer

Information flow - bidirectional

Process activity

Process phase

Design
Review

Requirements
Review

CO
TS
spe
cific
activ
ties

Non-COTS
Design

Requirements Design Coding Integration

Non-COTS
Coding

Figure 2. The new proposed COTS process.

complete requirement definition, a high level architecture,
an effort estimation, and a risk assessment model. The
high level architecture allows the team to sketch
dependencies among COTS, incompatibilities and
integration effort [14,15]. Integration effort is an input for
the effort estimation model, while incompatibilities,
vendor dependability, COTS dependability and other
factors are an input for the risk model.

The feasibility study should be repeated for a product
without COTS (the make solution), and one (or more)
products with a COTS. As an example, let’s assume that
three variants of the product are studied, without COTS,
with COTS A, and with COTS B. In real cases more or
fewer variants could be studied. Using different
combinations of COTS could be analyzed in the same
way.

Make vs. buy decision II. At this point the make vs. buy
decision can be reviewed at a much deeper level of detail.
The attributes considered for the decision are the
requirements satisfied by a product variant, the estimated
cost, and the estimated risks. The algorithms used to
guide the decision process come from [7, 6]. The result of
this decision is the product variant that will be developed,
including requirements and COTS selected. Each variant
represents a different trade-off among requirements
satisfied, risks accepted and cost. This make vs. buy
decision analyzes in detail these trade-offs.

The process sketched above has several variants, which
are currently undergoing experimental validation
dedicated to understanding under what conditions each
variant is more suitable. In general, though, the process
outlined above formalizes and stresses the importance of
key activities and decisions in a COTS project.

The phase ends with a requirements review. Reviewing
requirements with the customer is a fundamental step in
traditional software engineering. In COTS projects
several decisions (COTS selection, requirements satisfied)
are made early, with limited information available.
Therefore the requirements review becomes, if possible,
even more important. The review is guided by a checklist
covering the main decisions made in this phase, and the
assumptions they are based on (risk, cost and
requirements).

5.2 Design
Some parts of design (definition of high level
architecture, analysis of integration issues) were
anticipated in the requirements phase. However, these
activities are repeated here at a much lower level of detail,
as all effort is concentrated on fully designing the product
variant selected.

Design includes a high level design activity where one of
the main concerns is defining the integration of COTS
and newly developed software. This is particularly
demanding when several COTS are involved, each one

with, possibly, different architectural styles and
constraints.

The phase ends with the COTS design review. This is a
typical design review for the traditional part, but covers
other aspects too, essentially the decisions about
architecture, COTS integration and glueware. At this
point the make vs. buy decision is reviewed too. More
information is available now, essentially about the COTS
selected and about integration issues. Risks, the
integration effort and overall cost are re-estimated and the
decision re-assessed. It is possible that at this stage it
becomes clear that integrating the selected COTS is
impossible, requesting a loop back to the requirements
phase.

5.3 Project management
Project management is probably the most impacted of
horizontal activities (i.e. activities performed throughout
the process). Project estimation and tracking both have to
consider new activities. Estimating their duration is
currently a complex task, due to the limited experience
and estimation models existing. Project estimation is
performed using guidance from [14] to build and calibrate
local estimation models, using the estimated amount of
glueware to be produced as a predictor of integration
effort. Project tracking is easier to accomplish, as it only
requires modifications to the effort accounting
procedures.

5.4 Roles
We describe here new roles and responsibilities peculiar
to COTS projects. One role (the COTS team) is at the
organizational level, while the other is at the project level.

5.4.1 COTS team
A group or a person, depending on the size of the
organization, should concentrate on the following COTS-
related skills and activities. Single projects cannot afford
to build these skills individually. The team acts as a
repository of history, knowledge and skills about COTS,
and offers them to projects as a consulting activity.

• Evaluation and selection of COTS. Evaluations done
by individual projects tend to be narrow in scope,
concentrating only on those packages with which the
project team members are familiar. Furthermore,
unbiased evaluations require techniques and skills
that projects cannot have.

• History of COTS evaluations. These are organized in
an easily accessible catalogue of COTS known to the
organization, describing concisely the function
provided, vendor, cost, location, and projects using it.
The real difficulty of this task is the rapidity of
changes in the market place that makes the catalogue
rapidly obsolete.

• COTS usage. A project becomes more readily
proficient with a new COTS if it can access the
experience of other projects that used it in the past.

The COTS team normally does not have this
experience, but can act as a contact point between
projects.

• Procurement. Procurement of COTS requires
administrative, managerial and commercial support
that is missing in technical teams. The COTS team
defines a repeatable process for vendor interaction.
Part of the process is documentation of interactions
with the vendor, an important record for the project
manager.

5.4.2 Interface with vendor
A project should design a single point of contact with the
vendor. The role is supported by the COTS team as far as
non-technical, procurement skills are needed. The role
records all interactions with the vendor and follows a
defined and documented process. The role is also
essential to building a partnership with the vendor, a key
factor for success.

6 CONCLUSION
We have analyzed 15 COTS projects, performed at the
Flight Dynamics Division at the Goddard Space Flight
Center of NASA. These projects represent a variety of
software domains and use more than 30 different COTS
products. We think that the following observations can be
generic and could be useful to improve COTS-based
software production in any context.

COTS based processes differ considerably from
traditional software development. Not modifying the
traditional process can be a failure factor. The developers
have a good excuse to loosen their process. On the other
hand, new processes and activities have to be defined and
given guidance.

New activities identified in COTS-based processes are:
product evaluations, product familiarization, vendor
interaction (of technical, administrative and commercial
kinds). New roles are the COTS team and the manager of
interactions with the vendor. Requirements elicitation is
deeply impacted. Selecting a COTS means selecting a (set
of) requirement(s) and assuming it to be available cheaper
and faster. The decision to use COTS, as opposed to
making a product from scratch, is often made implicitly,
is not formalized nor rigorously defined and analyzed
under the points of view of cost and risks.

Coding, debugging, unit testing, and code inspections are
reduced, while design and testing are modified. Design
focuses more on how to fit pieces together rather than the
internal workings of different modules. Architectural
issues, especially the possibility of integrating
components, must be considered. Testing has to deal with
large modules where no source code or documentation are
available, and complex glueware.

Given a large number of new or modified activities,
project tracking has to be adapted, and project estimation
is especially difficult because of limited or missing
historical data, and limited or uncalibrated estimation
models. The projects interviewed felt that effort and cycle
time could be reduced in COTS projects, but compelling
evidence is still missing, especially because no data from
the maintenance phase of projects is available yet.

Starting from the experience gained through the study, the
SEL has defined a new proposed COTS process that tries
to tackle the points listed above and that is currently under
evaluation.

The new process defines in detail the phases where
COTS-based development is most challenging:
requirements, design and project management. In
particular, the make vs. buy decision is formalized and
guided, considering the overall tradeoff among cost, risks
and provided functionality. The high level research goal is
to define under which conditions COTS-based
development is superior to traditional development,
including the maintenance lifespan.

As far as the study itself is concerned, it should be noted
that quantitative data traditionally collected by the SEL
was not sufficient to understand changes in the process.
Using qualitative data was key, although this requires
specific, more difficult tools for analysis.

7 ACKNOWLEDGEMENTS
This work was funded in part by NASA grant NCC5170.
The authors wish to thank all of the developers and
managers in the FDD and at Computer Sciences
Corporation who generously allowed us to interview
them. This study would not have been possible without
them.

8 REFERENCES
1. Basili V.R., Caldiera C., Rombach H.D., Experience

Factory, Encyclopedia of Software Engineering,
Marciniak J.J. editor, Volume 1, John Wiley, 1994,
pp 469-476.

2. Basili, V.R., D. M. Weiss, A Methodology for
Collecting Valid Software Engineering Data, IEEE
Transactions on Software Engineering , vol. SE-10,
no.6, November 1984, pp. 728-738.

3. Miles, M. B., A. M. Huberman, Qualitative Data
Analysis: An Expanded Sourcebook , 2nd Edition, Sage
Publications, 1994.

4. Carney, D. Assembling Large Systems from COTS
Components: Opportunities, Cautions, and
Complexities. SEI Monographs on Use of
Commercial Software in Government Systems,
Software Engineering Institute, Pittsburgh, USA,
June 1997.

5. Glaser, B.G., A.L. Strauss. The Discovery of
Grounded Theory: Strategies for Qualitative

Research. Aldine Publishing Company, 1967.

6. Kontio, J., A Case Study in Applying a Systematic
Method for COTS Selection, Proc. of the 18th Int.
Conf. on Software Engineering, IEEE CS Press,
March 1996.

7. Morisio M., Tsoukiàs A., IusWare: A methodology
for the evaluation and selection of software products,
IEE Proceedings Software Engineering, June 1997,
pp. 162-174.

8. NASA/SEL, SEL COTS Study, Phase 1, Initial
Characterization Study report, SEL-98-001, August
1998.

9. NASA/SEL, SEL COTS Study, Phase 2, New
proposed COTS process, SEL-99-002, November
1999.

10. Parra, A., C. Seaman, V. Basili, S. Kraft, S. Condon,
S. Burke, and D. Yakimovich, The Package-Based
Development Process in the Flight Dynamics
Division. in Proc. of the Twenty-second Software
Engineering Workshop , NASA/Goddard Space Flight
Center, December 1997, pp. 21-56.

11. NASA/SEL, SEL Recommended Approach to
Software Development, Revision 3, SEL-81-305,
June 1992.

12. Software Engineering Institute, COTS-Based
Initiative Description, available at <http://
www.sei.cmu.edu/cbs/cbs_description.html>.

13. Software Engineering Institute, COTS-Based
Initiative Overview, available at <http://
www.sei.cmu.edu/cbs/cbs_description.html>.

14. Yakimovich D., J.M. Bieman, V. R. Basili, Software
Architecture Classification for Estimating the Cost of
COTS Integration, Proc. of the 21st International
Conference on Software Engineering , Los Angeles,
California, May 1999, pp. 296-302.

15. Yakimovich D., Travassos G.H., Basili V.R., A
classification of software components
incompatibilities for COTS integration, Proc. of the
24th Software Engineering Workshop ,
NASA/Goddard Space Flight Center, December
1999.

