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Investigating APOE, APP-Aβ 
metabolism genes and Alzheimer’s 
disease GWAS hits in brain small 
vessel ischemic disease
Sonja Blumenau1,3, Marco Foddis1,3, Susanne Müller1, Manuel Holtgrewe2, Kajetan Bentele2, 

Daniel Berchtold1, Dieter Beule2, Ulrich Dirnagl1 & Celeste Sassi1 ✉

Alzheimer’s disease and small vessel ischemic disease frequently co-exist in the aging brain. However, 

pathogenic links between these 2 disorders are yet to be identified. Therefore we used Taqman 
genotyping, exome and RNA sequencing to investigate Alzheimer’s disease known pathogenic variants 

and pathways: APOE ε4 allele, APP-Aβ metabolism and late-onset Alzheimer’s disease main genome-

wide association loci (APOE, BIN1, CD33, MS4A6A, CD2AP, PICALM, CLU, CR1, EPHA1, ABCA7) in 

96 early-onset small vessel ischemic disease Caucasian patients and 368 elderly neuropathologically 
proven controls (HEX database) and in a mouse model of cerebral hypoperfusion. Only a minority of 

patients (29%) carried APOE ε4 allele. We did not detect any pathogenic mutation in APP, PSEN1 and 

PSEN2 and report a burden of truncating mutations in APP-Aß degradation genes. The single-variant 

association test identified 3 common variants with a likely protective effect on small vessel ischemic 
disease (0.54>OR > 0.32, adj. p-value <0.05) (EPHA1 p.M900V and p.V160A and CD33 p.A14V). 
Moreover, 5/17 APP-Aß catabolism genes were significantly upregulated (LogFC > 1, adj. p-val<0.05) 
together with Apoe, Ms4a cluster and Cd33 during brain hypoperfusion and their overexpression 

correlated with the ischemic lesion size. Finally, the detection of Aβ oligomers in the hypoperfused 

hippocampus supported the link between brain ischemia and Alzheimer’s disease pathology.

Late-onset sporadic Alzheimer’s disease (LOAD) and small vessel ischemic disease (SVID) frequently in�uence 
each other and co-exist in the aging brain depicting a clinical, neuroradiological and neuropathological spectrum 
de�ned as ‘mixed dementia’. Although mixed dementia represents the second common form of dementia in 
the elderly, as over 45% of LOAD patients neuropathologically diagnosed displayed signi�cant cerebrovascular 
pathology1, the nature and the pathogenic ground at the basis of AD-SVID interaction is poorly understood2. 
APOE ε4 allele is the strongest risk factor for sporadic LOAD3–5, however its role in SVID has not been extensively 
investigated. Common hallmark in small vessel disease is cerebral amyloid angiopathy (CAA), which is caused by 
excessive deposition of Aβ 40 and 42 on the walls of small vessels6,7, responsible both for its ischemic and hemor-
ragic manifestations (SVID and intracerebral hemorrhage [ICH])8. Both rare familial and common sporadic 
small vessel disease cases pointed to the potential role of APP-Aß dysmetabolism as key pathogenic mechanism 
underlying CAA small vessel disease subtype. First, autosomal dominant fully penetrant mutations in the secre-
tase domain of APP, APP duplication, CST3 and TTR rare mutations cause familial CAA9–11. Second, common 
variants in IDE and LRP1 have been associated with increased risk of diabetes type 2 and migraine, respectively, 
that frequently are co-morbidities in SVID patients12,13. �ird, perivascular and parenchymal Aß deposits have 
been reported in genetically diagnosed CADASIL patients and vascular dementia cases14–17. Despite the growing 
body of evidence supporting an imbalance between Aß production and degradation, APP-Aß metabolism role 
in SVID remains unknown.

Finally, in the last 10 years 9 main LOAD genome-wide association study (GWAS) loci have been identi�ed 
and replicated by at least 2 independent GWASs and present the strongest e�ect sizes a�er APOE (BIN1, CLU, 
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CR1, PICALM, MS4A6A, ABCA7, EPHA1, CD33, CD2AP). �ey shed light on critical LOAD pathogenic path-
ways and these include: immune response (MSA4A cluster, CD33, CR1, EPHA1, CD2AP, ABCA7), Aβ40–42 clear-
ance (PICALM, BIN1, CD33 and ABCA7), lipid metabolism (CLU, ABCA7) and vesicles tra�cking (PICALM, 
BIN1) (http://www.alzgene.org/). Among the genetic mechanisms underlying an increased susceptibility for 
LOAD at these loci, coding variability is emerging as a critical factor18–21.

�erefore, in this study we investigated APOE ε2, ε3 and ε4 alleles, APP-Aβ metabolism genes and the most 
replicated AD GWAS loci through a genetic screening in 96 early-onset independent familial and apparently spo-
radic SVID Caucasian patients and 368 elderly neuropathological proven controls (HEX database) and through a 
di�erential gene expression study during acute and subacute brain ischemia in a mouse model of vascular demen-
tia and subcortical ischemic stroke. Moreover, we analysed whether brain hypoperfusion may have contributed to 
the generation of AD neuropathological hallmarks (Fig. 1).

We hypothesize that 1) coding variability together with signi�cant di�erential gene expression in APP-Aß 
metabolism genes and LOAD GWAS loci may play a role in SVID and brain ischemia and 2) acute severe 
hypoperfusion-ischemia may prime APP misfolding, toxic soluble oligomers formation that may in the long term 
accumulate in the stable form of amyloid plaques, as described in elderly patients with vascular dementia22,23.

Materials and Methods
Gene selection. We studied APOE ε2, ε3 and ε4 genotype and 2 clusters of genes: 1) APP-Aβ metabolism 
genes: 31 genes involved in Aβ production (APP, PSEN1, PSEN2, ADAM9, ADAM10, ADAM17, BACE1, BACE2, 
NCSTN, PSENEN, APH1B, MEP1B, GPR3), APP stabilization (APLP1, APBA1), APP recycling (SORL1), Aβ 
deposition (TTR), intracellular degradation (ECE1, ECE2, IDE, CST3, CTSB, CTSD, LYZ, MME), extracellular 
degradation and clearance (ACE, MMP3, A2M, PLAT, KLK6, LRP1) and 2) LOAD GWAS mainly replicated loci: 
APOE, BIN1, CLU, CR1, PICALM, MS4A6A, ABCA7, EPHA1, CD33, CD2AP. Selection criteria for these genes 
has already been reported19,24. �e pipeline followed in this study is described in Fig. 1.

Patient cohort. �e cohort was composed of 96 independent familial and early-onset apparently sporadic 
SVID Caucasian non-Hispanic cases from the US, NINDS (National Institute of Neurological Disorders and 
Stroke), whose DNA was extracted and collected at the NINDS Repository.

All NINDS Repository samples were collected only a�er an IRB-approved, signed informed consent was 
secured by the submitter. All methods were carried out in accordance with relevant guidelines and regulations.

Inclusion criteria included small vessel ischemic disease diagnosis based on TOAST classi�cation, early age 
at onset (<65 years [only 2 cases, whose age-at onset was 68 and 71 years old have been included in the study 
because familial]), absence of known pathogenic mutations in Mendelian small vessel disease genes (HTRA1, 
NOTCH3, ACTA2 and COL4A1) and no enrichment for vascular risk factors except for hypertension, which 
generally plays a critical role in elderly people12. �e mean age at disease onset was 51.5 years (range 34–71 years). 
82.3% of the cases were male and 44.8% of the cases were positive for a familial history of cerebrovascular dis-
orders. Among the comorbidities and possible risk factors for SVID, hypertension was reported in 60.4% of the 
patients, diabetes type 2 in 30.2%, myocardial infarction in 7.3%. �e majority of the patients (at least 88.54%) 
did not present atrial �brillation (AF), which is among the most important risk factors for embolic small vessel 
occlusion25. In 4.1% and 7.3% of the patients the presence of AF was reported and unknown, respectively. Given 
the prevalent role of hypertension and type 2 diabetes in SVID in the elderly people12 and the young age at onset 

Figure 1. Pipeline followed in the study. SVID, small vessel ischemic disease; VaD, vascular dementia; 
BCCAS, bilateral common carotid artery stenosis; LOAD, late-onset Alzheimer’s disease; GWAS, genome-wide 
association study.
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of the cohort, these patients were considered enriched for genetic risk factors (Table 1). Finally, 368 controls>70 
years of age were selected from ‘HEALTHY EXOMES’, HEX, a publicly available database, which collects exome 
sequencing data from elderly neuropathologically proven controls (https://www.alzforum.org/exomes/hex)26.

Exome sequencing in patients. We performed whole exome sequencing on a cohort of 96 independent 
familial and early-onset sporadic SVID cases. DNA was extracted from blood using standard protocols. Library 
preparation for next generation sequencing used 50 ng DNA. Exome libraries were prepared using Nextera® Rapid 
Capture Exome Kit (4 rxn × 12 plex, FC-140-1002). �e DNA library was then hybridized to an exome capture 
library (Nextera, Illumina Inc.) and precipitated using streptavidin-coated magnetic beads (Nextera, Illumina). 
Exome-enriched libraries were PCR-ampli�ed, and then DNA hybridized to paired-end �ow cells using a cBot 
(Illumina, Inc.) cluster generation system. Samples were sequenced on the Illumina HiSeq™ 3000/4000 using 
2×76 paired end reads cycles.We used exome sequencing data to identify common (minor allele frequency 
[MAF] > 3%), rare (MAF < 3%), and very rare (MAF < 1%) coding variants in 31 genes involved in APP-Aβ 
metabolism (A2M [NM_000014], ACE [NM_000789], ADAM9 [NM_003816], ADAM10 [NM_001110], 
ADAM17 [NM_003183], APBA1 [NM_001163], APH1B [NM_031301], APLP1 [NM_001024807], BACE1 
[NM_012104], BACE2 [NM_012105], CST3 [NM_000099], CTSB [NM_001908], CTSD [NM_001909], ECE1 
[NM_001397], ECE2 [NM_014693], GPR3 [NM_005281], IDE [NM_004969], LRP1 [NM_002332], KLK6 
[NM_001012964], LYZ [NM_000239], MEP1B [NM_005925], MME [NM_000902], MMP3 [NM_002422], 
NCSTN [NM_015331], PLAT [NM_000930], PSENEN [NM_172341], SORL1 [NM_003105], TTR [NM_000371], 
APP [NM_000484.2], PSEN1 [NM_000021.2] and PSEN2 [NM_000447.1]) and 9 main LOAD candidate 
genes (ABCA7 [NM_019112]; CD2AP [NM_012120]; MS4A6A [NM_152851]; CR1 [NM_000573]; BIN1 
[NM_139343]; PICALM [NM_001206946]; EPHA1 [NM_005232]; CLU [NM_001831]; CD33 [NM_001772]). 
�e coding variants detected in these genes have been collected and analyzed. (Tables S1 and S2).

Bioinformatics, exome sequencing. �e reads were aligned using BWA-MEM v0.7.1527 to the reference 
GRCh37 (hs37d5.fa), separate read groups were assigned for all reads from one lane, and duplicates were masked 
using Samblaster v0.1.2428. Standard QC was performed using FastQC (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc). �e variants were then called using GATK Uni�edGenotyper v3.729 and annotated using 
Jannovar v0.2430 using RefSeq v105 exons.

We used Gene Ontology (http://www.geneontology.org/) and the human lysosome gene database (http://lys-
osome.unipg.it/) to select lysosomal genes in our dataset.

APOE Genotyping. APOE genotypes comprising the APOE ɛ2, ɛ3 and ɛ4 alleles, were assayed using 
LightCycler 480 Instrument II (Roche). SNP-specific primers and probes were designed by Thermo Fisher 
(TaqMan genotyping assays). �e polymorphisms distinguish the ɛ2 allele from the ɛ3 and ɛ4 alleles at amino 
acid position 158 (rs7412) and the ɛ4 allele from the ɛ2 and ɛ3 alleles at amino acid position 112 (rs429358).

Statistical analysis. Power calculation was performed for Fisher´s exact test based on allelic association. 
We had 80% power for the detection of common variants (minor allele frequency [MAF] > 3%) with strong e�ect 
(OR < 0.6 or>2), with a signi�cance value of two-sided α = 0.05 (Fig. S1).

In the single-variant analysis, allele frequencies were calculated for each coding variant in cases and controls 
and Fisher’s exact test on allelic association was performed. Fisher’s exact test was also used for the statistical anal-
ysis of the truncating mutations in APP-Aß metabolism genes. Low frequency and rare variants were de�ned as 
having a 1%<MAF < 3% and MAF < 1%, respectively, either in cases or controls. MAF was based either on HEX 
database for elderly controls>70 years of age or EXac database version 0.3.1 database (http://exac.broadinstitute.
org/). A p-value of 0.05 was set as a nominal signi�cance threshold, a�er false discovery rate (FDR) correction. 
We report the complete list of coding variants detected in the APP-Aβ metabolism genes and LOAD GWAS loci 
in the supplementary tables (Table S1 and S2).

T-test performed was used to detect the statistical signi�cance of the number of neurons and glial cells positive 
for Aß oligomers in hippocampus during acute (2d) and subacute (7d) hypoperfusion in BCCAS and naive mice.

R version 3.3.2 (2016-10-31) (https://www.r-project.org/) was used for computations and graphs, particularly 
statmod-package v1.4.32 (power calculation) and Ggplot2 (graphs).

BCCAS mouse model, experimental design and exclusion criteria. All experiments and experi-
mental protocols were approved by the Landesamt für Gesundheit und Soziales and conducted according to the 
German Animal Welfare Act and institutional guidelines. 22 male C57BL/6 J mice, purchased at 8 weeks of age, 
Charles River, Germany, were housed in a temperature (22 ± 2 °C), humidity (55 ± 10%), and light (12/12-hour 
light/dark cycle) controlled environment. As previously described31, the animals underwent hypoperfusion 
between 9 and 13 weeks of age. Hypoperfusion was achieved by bilateral common carotid artery stenosis (BCCAS).

SVID
SEQUENCING 
STRATEGY ORIGIN

AGE at onset (YRS)
MALE 
(%) Familial(%)

APOE 
ε4* (%) Hypertension Diabetes MI

AF +/-/
NA HypercholesterolemiaMEAN ± SD(RANGE)

96 WES
Caucasian, non-
Hispanic (US)

51.5 (34–71) 82.3 44.8 29 60.4 30.2 7.3 4 2

Table 1. Discovery cohort. WES, whole exome sequencing; YRS, years; MI, myocardial infarction; AF, atrial 
�brillation; *at least one APOE ε4 allele; NA, not available.
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BCCAS mice were imaged before surgery, 24 hours and 1 week post-surgery. At 2 days and 7 days tissue was 
processed for immunohistochemistry and RNA sequencing.

�e BCCAS surgery is further described in the supplementary.

RNA sequencing data: acute (2d) and subacute (7d) hypoperfusion in BCCAS mouse model. To 
study APP-Aβ metabolism and LOAD GWAS genes during brain acute and subacute hypoperfusion, we used a 
mouse model of vascular dementia, where brain hypoperfusion is achieved through the placement of microcoils 
around both common carotid arteries leading to a ≈ 70% stenosis (bilateral common carotid stenosis [BCCAS] 
mouse model)32. �e main features of the model during severe acute and subacute hypoperfusion have been 
already described31.

In this study, 8 BCCAS mice, 8 sham and 4 naive mice were sacri�ced with cervical dislocation 2 days and 7 
days post coil insertion surgery, followed immediately by post-mortem dissection of the prefrontal cortex, stria-
tum and hippocampus from one hemisphere. �e other hemisphere was preserved for immunohistochemistry. 
�e dissected tissues were immersed in RNA later and stored at −80 °C for later use for mRNA-Sequencing. Total 
RNA was extracted using miRNeasy Kit (Qiagen, Cat # 217004). Total RNA quality was assessed with the use of 
Bioanalyzer. Average RIN (RNA Integrity Number) of our samples was 9. Next Generation Sequencing mRNA 
libraries were prepared with Illumina TruSeq RNA Library Preparation Kit (Illumina, Cat # RS-122-2001).

Bioinformatics, RNA sequencing. Processing, quality assessment and analysis of RNAseq data was car-
ried out using a custom pipeline. We aligned paired end reads with STAR33 against the GRCm38.p4 genome 
using gencode.vM12 annotation34 (http://www.gencodegenes.org/mouse_releases/12.html), excluding alternative 
sca�olds and patches. Gene counts were determined using HTSeq.35. Testing for di�erential gene expression and 
cerebral blood �ow and gene-expression correlation was done using DESeq. 236. Genes were counted as di�er-
entially expressed where they had a moderated fold change of 2 or more, contrasting coil to shame samples and 
where their false discovery rate (FDR) adjusted p-value was below 0.05.

BCCAS mouse model, histology. �e staining protocol for the mouse brain histological sections has 
been already described31. Brie�y, for the 20 mice subjected to gene-expression study (8 BCCAS mice, 8 Sham 
mice and 4 naive mice) one hemisphere was used for RNA sequencing and the contralateral for histology. Fresh 
frozen hemispheres were cut into 20-µm-thick sections on a cryostat. Moreover, to histologically study both 
hemispheres, 2 mice were deeply anaesthetized with ketamine and xylazine and perfused through the heart 
with physiological saline followed by 4% paraformaldehyde, Alexa Fluor® 680 conjugate of WGA (Termo�sher, 
W32465), 3% Gelatin (Sigma-Aldrich, G1890), 1% low melting agarose (Sigma Aldrich A4018) and 0.1% Evans 
Blue (Sigma Aldrich E2129). Subsequently, the brains were post-�xed for 24 hours in 4% PFA, and cryopro-
tected in 30% sucrose solution. PFA perfused brains were cut into 50-µm-thick on a cryostat. A�er washing 
with phosphate-bu�ered saline (PBS), free-�oating sections were incubated with 10% normal goat serum (NGS, 
GeneTech, GTX27481) and 0.1% Triton-X-100 (Sigma-Aldrich, X100) in PBS for 1 h at room temperature to 
block unspeci�c binding. Primary and secondary antibodies were diluted in 1% NGS and 0.1% Triton-X-100 
in PBS. Sections were incubated with rabbit anti-Aß oligomers primary antibody (abcam, Ab126892) and rat 
anti-GFAP primary antibody (Millipore, 345860) for astrocytes at 4 °C overnight. A�er thorough washing, sec-
tions were incubated at room temperature with AlexaFluor-594- conjugated goat anti-rat (Invitrogen, catalog 
#A11081) and AlexaFluor- 488-conjugated goat anti-rabbit (Invitrogen, catalog #A11034) secondary antibodies 
for 2 h at room temperature. Nuclei were counterstained with DAPI (Fluka, 32670). Sections were mounted with 
anti-fading mounting medium Shandon Immuno Mount (�ermo Scienti�c, 9990402) on Super Frost Plus glass 
slides (R.Langenbrinck, 03-0060). Microphotographs were taken with a confocal microscope (Leica TCS SPE; 
RRID: SciRes_000154).

Oligomers detection and counts. ImageJ version 1.52 A was used to count neuronal and glial cells posi-
tive for Aβ oligomers.

Methods to prevent bias, statistics. Mice were randomized to receive hypoperfusion. RNA library 
preparation and pooling were randomized and blinded, respectively. All methods were carried out in accordance 
with relevant guidelines and regulations.

Results
Genetic screening. APOE ε4 allele is not associated to increased risk for SVID. �e majority of SVID cases 
were homozygous for ε3 allele (58.3%), around one third of the patients carried in heterozygosity the ε4 allele 
(27% and 1%, genotype frequencies for ε4/ε3 and ε4/ε2, respectively), whereas a minority of cases (1%) were 
homozygous either for APOE ε2 or ε4 allele (Table 2). Average age at onset for carriers was 51 years, which did 
not di�er signi�cantly compared to patients homozygous for ε3 allele (52 years). Finally, familial cases displayed a 
moderately higher APOE ε4 carrier frequency compared to sporadic ones (32.5% and 26.4%, respectively). APOE 
ε2 alelle was detected in 13/96 (13.5%) patients, 10/13 (77%) with a very young age at onset (≤55 years).

APP-Aβ metabolism genes. To study a possible role of APP-Aβ metabolism genes in SVID, we focused on 1) 
possible enrichment for pathogenic mutations in Mendelian genes (APP, PSEN1 and PSEN2), underpinning 
autosomal dominant AD (http://www.molgen.ua.ac.be/ADMutations/) and 2) burden of damaging mutations in 
APP-Aβ catabolism genes upon APP-Aβ production genes, underlying sporadic LOAD37.

We screened protein coding variability in 31 genes involved in APP-Aß metabolism and we identi�ed 130 
coding variants: 21 common and 88 rare. ADAM10 and PSENEN did not harbour any coding variant. Among the 
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rare variants we report 21 novel variants, and 10 truncating mutations. �e majority of the variants detected were 
singletons (86/130 [66.15%]). BACE1, BACE2, CST3, CTSB and CTSD did not harbour any rare damaging variant. 
�e majority of patients, 75/96 (78.12%), carried at least one rare likely damaging variant and almost half of them, 
43/96 (44.8%), harboured multiple likely pathogenic alleles in the studied genes.

AD Mendelian genes: APP, PSEN1, PSEN2. We report a total of 5 rare coding variants in APP, PSEN1 and 
PSEN2. None of these are likely to be deleterious: APP p.V576I and p.T280del do not cluster in the conserved 
secretase domain; PSEN1 p.E318G and PSEN2 p.L2F and p.R62H map outside the alpha helix surface of the trans-
membrane domains (TMs), where all the pathogenic mutations have been reported (alpha-helix rule)38 (Table 3).

Other genes playing a key role in APP-Aß metabolism. CST3 p.A25T in homozygosity and SORL1 variants cluster-
ing in VPS domain are known risk factors for LOAD and may in�uence SVID susceptibility. Among the variants 
detected in the other genes involved in APP-Aß metabolism, 3 missense mutations in genes playing a role in 
APP-Aß degradation were of particular interest: one polymorphism reported as pathogenic in the ClinVar data-
base (https://www.ncbi.nlm.nih.gov/clinvar/), CST3 p.A25T, and SORL1 p.E270K and p.A528T (Table 1).

Importantly, homozygosity for CST3 p.A25T has been signi�cantly associated with AD39 and other neurode-
generative conditions such as macular degeneration40. In our cohort, we report 4/96 [4.16%] patients homozy-
gous for the minor allele A, a carrier frequency which was 2.55 times higher when compared with HEX controls 
(6/368 [1.63%]). Notably, the homozygous carriers, 3 sporadic and 1 familial cases, displayed an average age at 
onset of 49.75 years (range: 39–60 y), 3/4 (75%) were homozygous for APOE ε3 allele and presented a MMSE 
score moderately lower (26 < MMSE < 28). By contrast, only one case carried in heterozygosity the APOE ε4 
allele. Finally, among CST3 p.A25T homozygous carriers only 1/4 (25%) patients presented 3 moderate risk fac-
tors for SVID: hypertension, myocardial infarction and type 2 diabetes, 3/4 (75%) displayed hypertension and 1/4 
(25%) did not present any risk factor for SVID (Table S3).

Interestingly, SORL1 p.E270K and p.A528T clustering in the vacuolar protein sorting (VPS10) domain (Aa 
124–757) have been found in 2/96 SVID patients homozygous for APOE ε3 allele and have been reported patho-
genic and to segregate within AD families41.

APP-Aβ genes, pooled variants. Analogously to LOAD, SVID patients are enriched for LoF mutations in genes 
involved in APP-Aß degradation rather than production. We then compared coding genetic variability between 
14 genes mainly involved in APP-Aβ production (ADAM10, ADAM17, ADAM9, APBA1, APH1B, APLP1, APP, 
BACE1, BACE2, GPR3, NCSTN, PSEN1, PSEN2, PSENEN) and 17 genes taking part in APP-Aß degradation 
(A2M, ACE, CST3, CTSB, CTSD, ECE1, ECE2, IDE, KLK6, LRP1, LYZ, MEP1B, MME, MMP3, PLAT, SORL1, 
TTR).

We report a signi�cant enrichment for loss of function (LoF) mutations (stop gain/loss, inframe insertions/
deletions, splice-site mutations) in genes regulating Aß degradation in SVID patients (9/96 [9.4%]), both when 
compared to APP-Aß production genes (1/96 [1%]) (Fisher p-value = 0.01837), and Aß degradation genes in the 
HEX cohort (6/368 [1.6%])(Fisher p-value= 3.496e-14) (Fig. 2, Table 4).

LOAD GWAS loci (BIN1, CD33, MS4A6A, PICALM, CLU, CR1, EPHA1, ABCA7). Single coding vari-
ant association test. EPHA1 p.V160A, CD33 p.A14V, ABCA7 p.G1527A are LOAD GWAS hits or in LD with LOAD 
GWAS hits and may play a modest protective e�ect in SVID.

To investigate the role of the LOAD GWAS loci with the strongest e�ect sizes a�er APOE (BIN1, CD33, 
MS4A6A, PICALM, CLU, CR1, EPHA1, ABCA7), we focus on a possible signi�cant association between coding 
variants detected in these loci and SVID.

We screened protein coding variability in 9 highly replicated LOAD GWAS loci in 96 SVID patients and we 
identi�ed 69 coding variants: 26 common, 4 rare and 39 very rare. Among these, 24 were singletons, 6 were novel 
and 6 were truncating mutations. PICALM and CD2AP did harbour the lowest number of variants (0,0005 variants 
per Kb of coding sequence). By contrast, MS4A6A harboured the highest number of coding variants (7,43 variants 
per Kb of coding sequence). �e majority of patients, 81/96 (84.3%), carried at least one rare likely damaging 
variant and almost half of them, 45/96 (46.8%), harboured multiple likely pathogenic alleles in the studied genes.

Among these variants, 36/69 (52.2%) have been also detected in the 368 controls>70 years of age in the HEX 
database and were selected for the single-variant-based analysis (Table 4).

�e single variant association test identi�ed 3 coding variants whose allelic frequency signi�cantly di�ered 
between SVID cases and controls (EPHA1 p.M900V and p.V160A and CD33 p.A14V) (adj. p-value <0.05). 
Importantly, all of these are common variants, with a modest to no damaging e�ect (15.46 > CADD score> 
5.284) with moderate to strong likely protective e�ect size (0.3 < OR < 0.6) and only a minority of carriers are at 
least heterozygous for the APOE ε4 or ε2 alleles (up to 28.2% and 21.2%, respectively) (Table 5).

COHORTS N ε4/ε4

APOE GENOTYPE (%)

ε4/ε3 ε3/ε3 ε3/ε2 ε2/ ε4 ε2/ ε2

Caucasian SVID 96 1 27 58.3 11.45 1 1

Caucasian controls* 6262 1.8 21.3 60.9 12.7 2.6 0.8

Caucasian LOAD* 5107 14.8 41.1 36.4 4.8 2.6 0.2

Table 2. APOE genotype. N, number; SVID, small vessel ischemic disease; LOAD, late-onset Alzheimer's 
disease. *Data for Caucasian controls and LOAD are taken from a previous publication (Farrer et al., 1997)
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Interestingly, EPHA1 p.V160A, CD33 p.A14V and 2 missense mutations nominally associated with SVID 
(ABCA7 p.G1527A and CR1 p.Q1022H) have been already reported either as functional, as LOAD GWAS hit, 
in linkage disequlibrium (LD) with LOAD GWAS hits or signi�cantly linked to di�erent complex traits (blood 
protein levels and haematological traits)42,43, further supporting the critical e�ect of the amino acid substitution 
in these positions. EPHA1 p.V160A (rs4725617-G), was signi�cantly associated with a moderate reduced risk for 
SVID (adj. p-value=0.046, OR = 0.488) and was located 12.04 kb proximal to rs11767557-T, signi�cantly linked 
to LOAD and cognitive impairment44 and reported to be strongly associated to protein abundance levels42,43. In 
addition, CD33 p.A14V, associated to CD33 isoform lacking exon 2 and with a reduced inhibitory e�ect on micro-
glia, has been reported to be in strong LD with the LOAD GWAS signi�cant protective allele rs3865444-A45,46. 
CR1 p.Q1022H has been shown to lower CR1 expression and increase C4b binding, therefore protecting against 
immunocomplex deposition47. Moreover, ABCA7 p.1527 G (rs3752246-C) is likely to reduce SVID susceptibility 
and, analogously, represents a LOAD GWAS hit and a modest protective allele for LOAD48,49.

Gene Position rsID Ref/Alt
Genomic 
change

Aa 
change PROVEAN SIFT Polyphen2

Carrier 
freq (%) MAF(%)

Carrier 
APOE ε4

Hex70 
(%)

APP 21: 27284236 rs200769792 C/T c.1726G > A p.V576I Neutral Tolerated probably damaging 1/96 (1) 0.5 e3/e2 —

APP 21: 27394181 rs764406483 TGTG/T c.837_839del p.T280del NA NA NA 2/96 (2) 1 e3/e3 e3/e3 —

PSEN1 14: 73673178 rs17125721 A/G c.953 A > G p.E318G Deleterious Damaging benign 5/90 (5.5) 2.7

e4/e3
e3/e3
e3/e3
e4/e3
e3/e3

2

PSEN2 1: 227069612 NOVEL C/T c.4 C > T p.L2F Neutral Damaging probably damaging 1/93 (1) 0.5 e3/e3 —

PSEN2 1: 227071449 rs58973334 G/A c.185 G > A p.R62H Neutral Tolerated benign 1/93 (1) 0.5 e3/e3 —

Table 3. Coding variants detected in APP, PSEN1 and PSEN2 in the SVID cohort. Aa, amino acid; freq, 
frequency,  NA, not available.

Figure 2. Number of loss of function (LoF) mutations in APP-Aβ degradation and production genes detected 
in the HEX and SVID cohorts and number of individuals per each cohort. �e SVID cohort presents a burden 
of truncating mutations, compared to the HEX cohort. SVID, small vessel ischemic disease.
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Gene expression screening during acute and subacute hypoperfusion in the BCCAS 
mouse model

APP-Aβmetabolism. We have used RNA sequencing data from prefrontal cortex, hippocampus and stri-
atum of a mouse model of ischemia characterized by watershed and mainly subcortical infarcts (Fig. 3A–G), 
therefore a reliable model to study vascular dementia.

We detected a selective signi�cant overexpression (up to 8-fold change and adj. p-value<0.05) of 5/17 genes 
(29.4%) involved in APP-Aß degradation (A2m, Plat, Ctsd, Ctsb and Klk6) and none of the genes controlling 
APP-Aß production during brain acute or subacute hypoperfusion (2d and 7d post-surgery, respectively). 
A2m was ubiquitously overexpressed both in prefrontal cortex, hippocampus and striatum, both 2 and 7 days 
post-surgery. By contrast, Plat, Ctsd and Klk6, displayed a speci�c time and region pattern of overexpression: Plat 
was overexpressed in prefrontal cortex and striatum 2 days post-ischemia and Ctsd and Klk6 in striatum and hip-
pocampus 7 days post-surgery, both tissues characterized by the highest degree of tissue remodelling and overall 
di�erential expression (Table 6).

LOAD GWAS loci. We report a signi�cant upregulation (up to 7-fold change, and adj. p-value<0.05) of Apoe, 
Cd33, Ms4a cluster (Ms4a4a, Ms4a4c, Ms4a6c, Ms4a6d, Ms4a14, Ms4a4b, Ms4a6b, Ms4a7), particularly in the most 
a�ected brain areas during subacute hypoperfusion (hippocampus and striatum, d7) (Fig. 3). Together with APP-Aβ 
degradation genes (A2m, Plat, Ctsd, Ctsb and Klk6), the overexpression of Apoe, Cd33, Ms4a likely relied on micro-
glia in�ltration in the infarct and peri-infarct area at day 7 as these genes shared the same expression pattern of other 
microglia markers such as Aif1 and Cd86 (up to 6-fold upregulation in hippocampus and striatum), was proportional 
to the hippocampal lesion volume detected at day 7 on T2-weighted MRI and caused by a severe drop of brain cere-
bral blood �ow (CBF) (≈60–70% brain CBF reduction compared to naive mice) (Fig. 4). �us strongly arguing for 
consequential rather than causal upregulation of these genes and a possible role in ischemic lesion resolution. �is 
was further supported by the concomitant signi�cant co-expression of 7 di�erent matrix metallo proteases (Mmp2, 
Mmp8, Mmp11, Mmp12, Mmp13, Mmp19, Mmp25) and 51 lysosomal genes at day 7 (Tables S5 and S6, Fig. S2C,D).

Aβ oligomers detection during brain acute-subacute hypoperfusion in BCCAS mice. We inves-
tigated the hypothesis that acute-subacute ischemia may have triggered the de novo misfolding of APP with a 
consequent generation of toxic Aβ oligomers. We indeed identi�ed Aß oligomers mostly in CA1 region in the 
hippocampus of BCCAS mice 7 days post-surgery (Fig. 5A,B’). �ese were found both in pyramidal neurons 
(mainly axonal processes) (Fig. 5B-B’) and particularly in reactive astrocytes (Fig. 5C,D), analogously to those 
detected in APPPS1 mice at the age of 2 months (Fig. 3). �ese were present to a signi�cant lower degree in 
the hippocampus of BCCAS mice 2 days post-surgery (t-test p-val=0.0321), characterized by a very moderate 
microglia/macrophage in�ltration as suggested by Cd68 and Aif1 expression (Table 6), a modest overall tissue 
remodelling and gene di�erential expression (Fig S2) and almost absent in the hippocampus of naive mice (t-test 
p-val=0.0006) (Fig. 5E). �us supporting the hypothesis that severe subacute brain hypoperfusion (60–70% CBF 
reduction), which however may not cause ischemic lesions detectable on T2-weighted MRI was necessary and 
su�cient to prime APP misfolding (Fig. 3A,B).

Cohort Gene Position rsID Ref/Alt Genomic change Aa change
Carrier freq 
(%) MAF(%)

Hex70 
(%)

SVID MME 3: 154834478 rs749320057 AC/A c.467del p.P156Lfs*14 1/96 (1) 0.5 0

SVID PLAT 8: 42033519 rs1804182 G/A c.1681C > T p.R561* 1/96 (1) 0.5 —

SVID IDE 10: 94238404 rs763710639 G/GGT c.1881_1882insAC p.L628Tfs*5 1/96 (1) 0.5 —

SVID IDE 10: 94333763 rs533083105 AG/A c.13del p.L5fs 1/96 (1) 0.5 0.35

SVID MMP3 11: 102713159 rs781898035 TACC/T c.499_499 + 2del p.E167del 1/96 (1) 0.5 —

SVID LRP1 12: 57602503 NOVEL C/A c.12048 C > A p.Y4016* 1/96 (1) 0.5 —

SVID LRP1 12: 57603939 rs757410385 G/GC c.12575dup p.D4193Rfs*9 1/96 (1) 0.5 0.14

SVID MEP1B 18: 29784212 rs200539508 C/T c.436 C > T p.R146* 1/96 (1) 0.5 0

SVID APP 21: 27394181 rs764406483 TGTG/T c.837_839del p.T280del 2/96 (2) 1 —

SVID LRP1 12:57605739 rs759104743 TTGC/T c.13300_13302del p.L4434del 1/96 (1)

HEX ADAM17 2:9630398 GATC/G p.Asp794del 1/368 (0.3) 0.0014 0.0014

HEX BACE1 11:117160453 rs758335005 G/T p.Tyr445* 1/324 (0.3) 0.0015 0.0015

HEX APP 21:27394181 rs768084853 TGTGGTGGTG/TGTGGTG p.�r280del 1/101 (1) 0.005 0.005

HEX APBA1 9:72131320 rs768254638 GTCC/G p.Glu268del 1/360 (0.2) 0.0014 0.0014

HEX ACE 17:61562376 C/T p.Gln50* 1/367 (0.2) 0.0014 0.0014

HEX CST3 20:23615971 C/A p.Glu93* 1/367 (0.2) 0.0014 0.0014

HEX CST3 20:23615984 rs760409425 G/T p.Tyr88* 1/366 (0.2) 0.0027 0.0027

HEX LRP1 12:57605739 rs759104743 TTGC/T p.Leu4432del 1/368 (0.2) 0.0014 0.0014

HEX MEP1B 18:29796983 C/T p.Gln597* 1/366 (0.2) 0.0014 0.0014

HEX ECE2 3:184002778 rs769984677 G/T p.Glu463Ter 1/368 (0.2) 0.0014 0.0014

Table 4. Loss of function mutations detected in the SVID and HEX cohort. Aa, amino-acid change. Freq, 
frequencies; MAF, minor allele frequency; SVID, small vessel ischemic disease.
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Discussion
In this study we aimed at investigating the role of AD known pathogenic alleles and pathways: APOE ε4 allele, 
APP-Aβ metabolism genes and LOAD most replicated GWAS hits both in terms of genetic variability in a cohort 
of 96 familial and early-onset SVID patients and di�erential gene expression during acute and subacute hypoper-
fusion in the BCCAS mouse model resembling vascular dementia (Fig. 1).

In our cohort, around one third of the patients (29%) carried APOE ε4 allele. E3/ε4 and ε4/ε4 genotype 
frequency (27% and 1%, respectively) approximated the one reported in Caucasian controls (21.3% and 1.8%, 
respectively) and was signi�cantly lower compared to the frequency reported in Caucasian LOAD patients 
(41.1% and 14.8%, respectively) (p-value = 0.05192 and 0.0003155 for ε3/ε4 and ε4/ε4 genotypes, respectively) 
(Table 2)50. �erefore suggesting, in concert with previous studies, that APOE ε4 allele may not critically in�uence 
the susceptibility to SVID51,52.

Moreover we report the prevalent role of APP-Aβ degradation genes upon genes involved in APP-Aβ pro-
duction as well as Mendelian genes causative for Alzheimer’s disease (APP, PSEN1 and PSEN2). We detected an 
enrichment for truncating mutations in genes playing a key role in APP-Aß catabolism, both when compared 
to genes controlling APP-Aß production in SVID patients or APP-Aß degradation genes in 368 neuropatho-
logically con�rmed elderly controls (9.4% and 1.6%, respectively) (Fisher p-value= 3.496e-14) (Fig. 2, Table 4). 
In addition, we report a common polymorphism in CST3 (p.A25T), whose homozygous carrier frequency was 
signi�cantly higher compared to HEX controls (4.16% and 1.63%, respectively). Interestingly, this polymorphism 
has been already associated to macular degeneration and LOAD40. �e presence of one or two minor alleles 
increases LOAD risk and lowered the age at onset, in a fashion described both independent and dependent from 
APOE ε4 allele39,53. Although the SVID patients carrying in homozygosity p.CST3 p.A25T displayed at the age 
at onset and diagnosis only a moderately lower MMSE score (MMSE 28 and 26), given the young age at onset 
(average 49.75years), we do not exclude that they may manifest a dementing phenotype later in life (average 
age at onset for the LOAD patients homozygous for CST3 p.A25T was> 75 years39,54) (Table S3). �e polymor-
phism is supposed to in�uence CST3 intracellular processing with a reduced extracellular secretion55,56, leading 
to increased amyloid �bril formation and Aß deposition57. A similar e�ect to what has been described for the 
pathogenic mutation CST3 p.L68Q, causative for hereditary cerebral haemorrhage with amyloidosis, Icelandic 
type (HCHWA-I), resulting in increased intracellular localization of the mutant Cystatin C58.

Furthermore, we detected 2 rare coding variants (p.E270K and p.A528T) in the SORL1 VPS10 domain, 
reported to interact with Aβ and harbouring SORL1 pathogenic mutations59 (Table S1). �e carrier frequency 

Gene Position rs ID Alleles
cDNA 
change

Aa 
change

MAF 
HEX_70

MAF 
SVD

CADD 
score

SVD_allele 
count/ 
allele 
number

HEX_allele 
count/ 
allele 
number p-val

p-val 
adj OR CI

APOE ε4/
ε2 (%) Comment

EPHA1 7:143088867 rs6967117 T/C c.2698 A > G
p.
M900V

0.919 0.786 15.46 151/192 658/716
1.414e-
06

5.0e-05 0.325
0.205–
0.517

27.5/15

CD33 19:51728477 rs12459419 C/T c.41 C > T p.A14V 0.3251 0.208 13.71 40/192 238/732 1.4e-03 0.025 0.546
0.363–
0.808

27.2/21.2

LD with LOAD GWAS hit 
rs3865444 (Raj et al., 2014, 
p. 33)
Blood Protein Level GWAS 
hit (Suhre et al., 2017)
Hematological trait GWAS 
hit (Astle et al., 2016)

EPHA1 7:143097100 rs4725617 A/G c.479 T > C p.V160A 0.917 0.843 11.84 162/192 675/736 3.9e-03 0.04680 0.488
0.299–
0.810

28.2/12.9
Blood Protein Level GWAS 
hit (MacArthur et al., 2017)

ABCA7 19:1056492 rs3752246 G/C c.4580 G > C
p.
G1527A

0.8388 0.755 5.284 145/192 609/726
1.06e-
02

0.086 0.593
0.398–
0.891

31.4/12.7
LOAD GWAS hit (Cuyvers 
et al., 2015)

CR1 1:207726161 rs200082366 G/T c.3066 G > T
p.
Q1022H

0.0936 0.036 15.51 7/192 38/406 0.012 0.086 0.366
0.135–
0.852

16.6/50

protecting against 
immunocomplex 
deposition (Birmingham  
et al., 2003)

CD33 19:51728641 rs2455069 A/G c.205 A > G p.R69G 0.407 0.442 0.209 85/192 299/734 0.4108 1 1.155
0.826–
1.611

32.3/15.38

Blood Protein Level GWAS 
hit (Suhre et al., 2017)
Hematological trait GWAS 
hit (Astle et al., 2016)

CR1 1:207782916 rs4844609 A/T c.4828 A > T
p.
T1610S

0.974 0.994 6.589 191/192 717/736 0.095 0.570 5.056
0.793–
211.22

29.1/13.5

CR1 1:207795320 rs2296160 A/G c.5905 A > G
p.
T1969A

0.834 0.880 0.001 169/192 599/718 0.145 0.745 1.459
0.893–
2.468

29.78/13.8

CR1 1:207782931 rs6691117 A/G c.4843 A > G
p.
I1615V

0.1943 0.239 8.406 46/192 143/736 0.190 0.820 1.306
0.873–
1.931

25/10

ABCA7 19:1055191 rs3745842 G/A c.4046 G > A
p.
R1349Q

0.354 0.357 0.367 68/192 217/536 0.228 0.820 0.806
0.562–
1.149

31.5/15.78

Table 5. Alzheimer’s disease GWAS hit single-variant association test in the SVID cohort. ID, identi�cation 
number; Aa, amino acid; MAF, minor allele frequency; SVID, small vessel ischemic disease; CADD, combined 
annotation dependent depletion; HEX, Healthy Exomes; p-val, p-value; adj, adjusted; OR, Odds Ratio; CI, 
Con�dence Interval. LD, linkage disequilibrium, LOAD, late-onset alzheimer´s disease. GWAS, genome-wide 
association study.
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of SORL1 variants in the VPS10 domain detected in our SVID cohort was similar to the frequency detected in 
a Caucasian British and American LOAD cohort, where 8 variants in 323 patients have been identi�ed (2% and 
2.4%, carrier frequency in SVID and LOAD, respectively) whereas only 5 SORL1 variants in the VPS10 domain 
have been reported in 676 elderly controls in the same cohort (0.7%)24. �is suggests that SORL1 mutations may 
in�uence the susceptibility also for SVID and may support the previously reported role of SORL1 in vascular 
dementia60.

By contrast, none of the 5 rare coding variants detected in APP, PSEN1 and PSEN2 are likely to be risk factors 
for SVID (Table 3). First, they have already been described as benign polymorphisms (PSEN1 [p.E318G] and 
PSEN2 [p.R62H]) (www.molgendatabase). Second, they all cluster outside the reported pathogenic domains (APP 
[p.V576I and p.T280del], PSEN1 [p.E318G] and PSEN2 [p.L2F and p.R62H]). �is further shows that rare vari-
ants in APP, PSEN1 and PSEN2 are not common pathogenic factors in familial and early-onset apparently spo-
radic SVID cases. In line with this observation, 11/50 (22%) pathogenic mutations in APP have been reported as 
causative for AD and CAA, and only 2/50 (4%) lead exclusively to CAA. A smaller fraction of PSEN1 pathogenic 
mutations (4/219 [1.8%]) has been described as causative for both AD and CAA and none exclusively for CAA. 
On the other hand, PSEN2 harbours no causative mutation for CAA (www.molgendatabase).

�e predominant role of APP-Aβ degradation genes was further con�rmed by RNA sequencing data in a 
mouse model of mainly subcortical ischemia, mimicking small vessel ischemic disease, where only genes belong-
ing to the APP-Aβ degradation path (A2m, Plat, Ctsd, Ctsb and Klk6) were signi�cantly overexpressed in hip-
pocampus and striatum during acute and subacute hypoperfusion (Table 6). Among these, KLK6 expression has 
been already reported restricted to endothelial cells and increased of approximately 2-fold in the frontal cortex of 
patients with vascular dementia61.

Importantly, we showed that genetic and gene expression variability in LOAD GWAS genes are also likely to 
in�uence the susceptibility to SVID and acute-subacute ischemia.

We reported 3 common coding polymorphisms signi�cantly associated to SVID and likely to play a mild pro-
tective role (adj. p-value <0.05 and 0.325<OR < 0.54): EPHA1 p.M900V and p.V160A, CD33 p.A14V (Table 5). 
Among these, CD33 rs12459419-T has been reported to be in high LD with LOAD GWAS hit rs3865444-A and 
was suggested to explain its e�ect, such as the alternative splicing of CD33 with increased production of isoforms 
lacking exon 2, which encodes the IgV domain that typically mediates binding of sialic acid in SIGLEC family 
members. �is CD33 isoform counteracts the inhibitory e�ect of CD33 on TREM2 in microglia and would ulti-
mately reduce amyloid deposition and thus exert a moderate protective e�ect on Alzheimer’s disease and likely 
SVID susceptibility46. In addition, the critical role of this polymorphism (CD33 rs12459419) was further rein-
forced by its signi�cant association, together with EPHA1 p.V160A, with blood protein levels, and haematological 
traits in two di�erent GWASs42,43.

Moreover, Apoe, Cd33 and the Ms4a cluster were signi�cantly upregulated in hippocampus and striatum 
particularly during subacute hypoperfusion (up to 7-fold change at day 7)(Table 6). Together with APP-Aβ deg-
radation genes, overexpression of Apoe, Cd33 and Ms4a cluster correlated with hippocampal lesion size at day 7  

Figure 3. A-G.Bilateral common carotid artery stenosis (BCCAS) mouse model, displaying monolateral 
right small subcortical lesions, mainly a�ecting striatum (A) and hippocampus (B) (blue arrows), during 
acute (2d) and subacute (7d) hypoperfusion. �e most severly hypoperfused hemisphere, with ischemic 
lesions detected on T2 weighted MRI (right hemisphere) was used for RNA sequencing. �e contralateral 
hypoperfused hemisphere, with no ischemic lesions detectable on T2-MRI (le� hemisphere) was used for 
immunohistochemistry. C, hypoperfused brain stained with GFAP, presenting peri-infarct astrocytosis in 
hippocampus and striatum during subcute hypoperfusion (7d) (white arrows). �e infarct area is delimited by 
white dashed lines. �e le� hemisphere is hypoperfused and although ischemic lesions in the le� side are not 
detectable on T2-MRI, we report a signi�cant gliosis (yellow arrow). D, hypoperfused brain stained with IBA1, 
presenting microglia in�ltration of the infarct areas and to a lesser extent peri-infarct areas and in the most 
severe hypoperfused areas during subcute hypoperfusion (7d) (pink arrows). E. Hypoperfused hippocampus 
stained with GFAP, displaying astrocytosis. F. Hypoperfused hippocampus stained with IBA1, displaying gliosis. 
G. T2-MRI slides showing the extension of the ischemic lesion (red).
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(Fig. 4B,C) and likely microglia in�ltration of the infarct and peri-infarct areas (co-expression of microglia 
markers Cd68 and Aif1), suggesting that upregulation of these genes was tightly driven by and consequential 
to the severity of hypoperfusion, moreover, arguing for an active role of these genes in tissue remodelling and 
ischemic lesion resolution. �is is further supported by the fact that signi�cant overexpression of Cd33, Ms4a6d 
and Apoe (> 1.5 fold change and adj p-value <0.05) markedly correlated with AD pathology in 2 mouse models 
of Alzheimer’s disease characterized by severe Aβ plaques and tau tangle deposition (HOTASTPM and TAU mice, 
18 months of age)62. �erefore implying that Cd33, Ms4a cluster and Apoe are not Aβ or tau speci�c.

Finally, the shared pathogenic pathway between LOAD-SVID-ischemic stroke was supported by histological 
�ndings of neurons and reactive astrocytes positive for Aβ oligomers in the main hypoperfused areas such as 
hippocampus at day 7 in the BCCAS mouse model (Fig. 5).

Previous studies in stroke experimental models (middle cerebral artery occlusion [MCAO]) reported Aβ 
in reactive astrocytes and neurons and Aβ plaque-like deposits in peri-infarct areas: particularly corpus callo-
sum, CA1 hippocampal areas and mainly subcortical areas 7 days post-surgery63,64. �e authors hypothesized 
that Aβ may have been the result of APP overexpression during ischemic stress65. Importantly, we show that 

Gene AD path Region_Time Log2FC P-value FDR

A2m Aß catabolism

Hippocampus_2d 3.48 2.28E-14

Prefrontal cortex_2d 3.07 2.10E-11

Striatum_2d 2.57 3.56E-08

Hippocampus_7d 2.9 3.98E-11

Prefrontal cortex_7d 2.52 2.43E-07

Striatum_7d 2.94

Plat Aß catabolism
Prefrontal cortex_2d 1.2 1.46E-09

Striatum_2d 1.07 8.95E-08

Klk6 Aß catabolism
Hippocampus_7d

2.37 5.52E-08
Striatum_7d

Ctsb Aß catabolism
Hippocampus_7d 1.4 2.50E-10

Striatum_7d 1.3 8.37E-09

Ctsd Aß catabolism
Hippocampus_7d 2.52 3.03E-14

Striatum_7d 2.16 1.69E-10

Apoe GWAS hit Hippocampus_7d 1.35 4.20E-10

Ms4a4a GWAS hit

Hippocampus_2d 1.8 2.93E-04

Hippocampus_7d 1.85 6.08E-05

Striatum_7d 1.61 6.80E-04

Ms4a4c GWAS hit

Hippocampus_2d 2.56 3.65E-07

Hippocampus_7d 2.08 1.48E-05

Striatum_7d 2.27 1.89E-06

Ms4a6c GWAS hit

Hippocampus_2d 1.76 2.86E-04

Hippocampus_7d 2.8 4.64E-11

Striatum_7d 2.32 8.45E-08

Ms4a6d GWAS hit

Hippocampus_2d 2.53 1.43E-09

Hippocampus_7d 2.33 3.98E-09

Striatum_7d 1.98 9.37E-07

Ms4a14 GWAS hit
Hippocampus_7d 2.75 3.36E-09

Striatum_7d 1.66 8.88E-04

Ms4a4b GWAS hit
Hippocampus_7d 2.11 8.51E-06

Striatum_7d 1.72 4.70E-04

Ms4a6b GWAS hit
Hippocampus_7d 1.8 3.57E-07

Striatum_7d 1.48 4.41E-05

Ms4a7 GWAS hit
Hippocampus_7d 2.65 1.50E-09

Striatum_7d 1.89 3.89E-05

CD33 GWAS hit Hippocampus_7d 2.18 1.52E-22

Cd68 Microglia marker

Hippocampus_2d 1.46 6.68E-04

Hippocampus_7d 2.68 3.16E-13

Striatum_7d 2.33 5.05E-10

Aif1 Microglia marker
Hippocampus_7d 2.25 5.64E-17

Striatum_7d 1.57 1.16E-08

Table 6. Di�erential gene expression during acute and subacute hypoperfusion in BCCAS mouse model. AD, 
Alzheimer’s disease; FDR, false discovery rate; GWAS, genome-wide association study.
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acutely-subacutely hypoerfused brain areas and particularly reactive astrocytes and hippocampal neurons are 
positive for Aβ oligomers rather than β amyloid, that it is likely to represent a late and chronic event in the APP 
misfolding cascade. Moreover, we detected Aβ oligomers in the hypoperfused brain regions, displaying gliosis but 

Figure 4. (A) Cerebral blood �ow (CBF) reduction detected on MRI in hippocampus during acute (2d) 
and subacute (7d) hypoperfusion in BCCAS mice. �e CBF drop at day 1 reaches 60–70% of the CBF values 
detected before the surgery (d0) or in naive mice and progressively recovers.CBF, cerebral blood �ow; d, day; 
BCCAS, bilateral common carotid artery stenosis. (B) Di�erential gene expression, expressed in transcript per 
million (TPM) in APP-Aß metabolism genes and LOAD GWAS loci detected in BCCAS mice in hippocampus 
during subacute hypoperfusion (7d). C Percentage of ischemic lesion volume detected on T2-MRI in 
hippocampus of BCCAS mice during subacute hypoperfusion. H,hippocampus; L, le�; R, right; d, day.

Figure 5. Toxic Aβ oligomers are detected in hypoperfused hippocampus mostly in the CA1 region during 
subacute hypoperfusion (7d) (B,B’) and absent in naive hippocampus (A,A’). �e Aβ oligomers co-localize with 
reactive astrocytes (C-D). �e number of glial and neuronal cells positive for Aβ oligomers are signi�cantly 
higher in hippocampus during subacute hypoperfusion (7d) compared to acute hypoperfusion (2d) and naive 
mice (E). BCCAS, bilateral common carotid artery stenosis; d, day; +, positive.
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not necessarily gray or white matter hyperintensities detectable on T2-weighted MRI (Fig. 5, Fig. 3A,B). �us sug-
gesting that a marked degree of hypoperfusion-ischemia that may remain however below the T2-weighted MRI 
detectability and does not lead to strokes, may trigger APP misfolding and may explain the link between brain 
microstructural changes detected on di�usion tensor imaging (DTI) and likely hypoxic-ischemic hyperintensities 
in white matter, detected decades before the onset of symptomps and autosomal dominant AD cases66,67 as well as 
common late-onset sporadic cases and elderly people68.

�erefore, our data may unveil at least some of the pathogenic mechanisms by which ischemic stroke may 
precipitate the progression of AD in experimental models and patients and why cerebrovascular accidents may 
accelerate AD onset particularly in asymptomatic elderly patients with AD pathology69. Indeed, the enrichment 
for genetic variability in APP-Aβ degradation genes has been reported playing a key role in sporadic late-onset 
AD whereas increases in Aβ production currently explain a minority of AD cases37,70.

In summary, we provide genetic, gene-expression and histological data supporting a shared pathogenic 
ground between LOAD and SVID-acute ischemia. Our genetic data in SVID patients, together with expression 
data in a vascular dementia mouse model show that 1) APOE transcriptional regulation but not ε4 allele may play 
a role in brain hypoperfusion and small vessel ischemic disease; 2) APP-Aβ degradation plays a prevalent role 
upon APP-Aβ production; 3) APP, PSEN1 and PSEN2 are not common pathogenic factors in SVID; 4) CD33, 
CR1, EPHA1 and the MS4A cluster may be involved in SVID and brain subacute hypoperfusion-ischemia and 4) 
acute and mainly subacute ischemia may trigger Aβ toxic oligomer formation. �us suggesting that the vascular 
hypothesis71 and the amyloid cascade hypothesis72 in AD may complement each other, rather than being mutually 
exclusive. Our �ndings warrant further genetic screening in a larger cohort and functional studies.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information �les).
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