
 Open access Proceedings Article DOI:10.1109/CEC.2013.6557892

Investigating app store ranking algorithms using a simulation of mobile app
ecosystems — Source link

Soo Ling Lim, Peter J. Bentley

Institutions: Bournemouth University, University College London

Published on: 20 Jun 2013 - Congress on Evolutionary Computation

Topics: App store and Mobile deep linking

Related papers:

 App store mining and analysis: MSR for app stores

 Retrieving and analyzing mobile apps feature requests from online reviews

 User feedback in the appstore: An empirical study

 Why people hate your app: making sense of user feedback in a mobile app store

 Fresh apps: an empirical study of frequently-updated mobile apps in the Google play store

Share this paper:

View more about this paper here: https://typeset.io/papers/investigating-app-store-ranking-algorithms-using-a-
4t5f140qvp

https://typeset.io/
https://www.doi.org/10.1109/CEC.2013.6557892
https://typeset.io/papers/investigating-app-store-ranking-algorithms-using-a-4t5f140qvp
https://typeset.io/authors/soo-ling-lim-2tk4orn9bt
https://typeset.io/authors/peter-j-bentley-4mjtkfh1rh
https://typeset.io/institutions/bournemouth-university-39joy2fl
https://typeset.io/institutions/university-college-london-269wra00
https://typeset.io/conferences/congress-on-evolutionary-computation-189ojnjk
https://typeset.io/topics/app-store-1ywfhqqk
https://typeset.io/topics/mobile-deep-linking-1i68u90o
https://typeset.io/papers/app-store-mining-and-analysis-msr-for-app-stores-ljsa9pl7vy
https://typeset.io/papers/retrieving-and-analyzing-mobile-apps-feature-requests-from-1my6bimeov
https://typeset.io/papers/user-feedback-in-the-appstore-an-empirical-study-3xywnjplum
https://typeset.io/papers/why-people-hate-your-app-making-sense-of-user-feedback-in-a-4jldkubvm5
https://typeset.io/papers/fresh-apps-an-empirical-study-of-frequently-updated-mobile-3n8h9w3air
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/investigating-app-store-ranking-algorithms-using-a-4t5f140qvp
https://twitter.com/intent/tweet?text=Investigating%20app%20store%20ranking%20algorithms%20using%20a%20simulation%20of%20mobile%20app%20ecosystems&url=https://typeset.io/papers/investigating-app-store-ranking-algorithms-using-a-4t5f140qvp
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/investigating-app-store-ranking-algorithms-using-a-4t5f140qvp
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/investigating-app-store-ranking-algorithms-using-a-4t5f140qvp
https://typeset.io/papers/investigating-app-store-ranking-algorithms-using-a-4t5f140qvp

Investigating App Store Ranking Algorithms using a
Simulation of Mobile App Ecosystems

Soo Ling Lim

Software Systems Research Centre

Bournemouth University

United Kingdom
slim@bournemouth.ac.uk

Peter J. Bentley

Department of Computer Science

University College London

United Kingdom

p.bentley@cs.ucl.ac.uk

Abstract—App stores are one of the most popular ways of

providing content to mobile device users today. But with

thousands of competing apps and thousands new each day, the

problem of presenting the developers’ apps to users becomes non-

trivial. There may be an app for everything, but if the user

cannot find the app they desire, then the app store has failed.

This paper investigates app store content organisation using

AppEco, an Artificial Life model of mobile app ecosystems. In

AppEco, developer agents build and upload apps to the app

store; user agents browse the store and download the apps. This

paper uses AppEco to investigate how best to organise the Top

Apps Chart and New Apps Chart in Apple’s iOS App Store. We

study the effects of different app ranking algorithms for the Top

Apps Chart and the frequency of updates of the New Apps Chart

on the download-to-browse ratio. Results show that the

effectiveness of the shop front is highly dependent on the speed at

which content is updated. A slowly updated New Apps Chart will

impact the effectiveness of the Top Apps Chart. A Top Apps

Chart that measures success by including too much historical

data will also detrimentally affect app downloads.

Keywords-mobile app ecosystems; Artificial Life; agent-based

simulation; app store; top apps chart; new apps chart; evolving

developer strategies

I. INTRODUCTION

Mobile applications are big business. From the pioneering
iOS App Store created by Apple, to the App World of
BlackBerry and the Android Market, today hundreds of apps
are downloaded every second. The revenue generated from app
sales surpassed $15 billion in 2011 and is estimated to reach
$58 billion by 2014 [1].

Mobile app ecosystems, comprising developers, users, and
apps, face challenges that are brand new to the software
industry. App store owners face the challenges of presenting
the rapidly increasing app store content to the users and
encouraging users to download apps. Developers find it
increasingly difficult to make their apps stand out among
hundreds of thousands of other apps in the app store, achieve
downloads, and make profit. App users have difficulty in
finding good apps amongst the vast number of alternatives.

It is difficult if not impossible to create different app stores,
or modify existing app stores, and experiment with millions of
real users. Consequently for this work we use AppEco, an
Artificial Life (Alife) agent-based model, as an experimental
tool to address such challenges [2, 3]. Alife methods have

proven their worth with many previous simulations of
ecosystems. AppEco is a model of app ecosystems. It models
developers (agents that build apps) and users (agents that
download apps). It simulates the app store environment, which
hosts and organises content created by the developers, and
enables users to browse and download apps. Significantly,
AppEco also models apps – artefacts produced by the
developers and downloaded by users – and their features.
AppEco allows us to conduct experiments, test hypothesis
about various processes in the ecosystem, and ask “what if”
questions, all of which are otherwise difficult if not impossible
to conduct in a real-world setting.

In this paper we focus on the app store and how it should
best provide content to users in order to encourage app
downloads, which we quantify in terms of a download-to-
browse ratio. We use AppEco to simulate Apple’s iOS app
ecosystem and investigate content organisation in the iOS App
Store, specifically, how the Top Apps Chart and New Apps
Chart should best be organised. We study the effects of
different app ranking algorithms for the Top Apps Chart and
the frequency of updates of the New Apps Chart on the
download-to-browse ratio over time.

The rest of the paper is organised as follows. Section II
describes existing work. Section III describes AppEco. Section
IV describes the application of AppEco to simulate the iOS app
ecosystem, the experiments and results. Section V provides our
conclusions and discusses future work.

II. BACKGROUND

While the study of mobile app ecosystems is a current and
significant topic for researchers, to date there has been little
work focussing on the topic [4]. However there is much related
work that contextualises and informs the current study.

One area related to app ecosystems is the study and
prediction of app downloads and usage. For example, Garg and
Telang developed strategies to infer the number of downloads
for an app based on its ranking on Apple’s iOS App Store Top
Apps Chart [5]. Such work may enable investors to estimate
likely profits should an app reach a specific rank, however
there is no certainty that a new app will appear on the chart.
Bohmer et al. developed a mobile app to collect mobile app
usage information from over 4,100 users of Android devices
[6]. Their research revealed interesting app usage behaviours
among the users. For example, although users spend almost an

hour a day using their phones, an average session with an app
lasts less than a minute. They also found that news applications
are most popular in the morning and games are at night, but
communication applications dominate through most of the day
[6]. These studies are informative, but they are limited to
studying what is already out there, and “what-if” questions
cannot be answered.

In the fields of Alife, Evolutionary Computing and Agent-
Based Simulation, there are a growing number of studies on the
emergent effects of human interaction at the population level.
For example, Kohler et al. used models to understand the
environmental and social factors that led to the disappearance
of the Puebloan peoples of the North American Southwest [7].
Wilkinson et al. used models to understand the urbanisation
process in ancient Mesopotamia [8]. Huang et al. used models
to study the spread of epidemic diseases over complex social
networks [9]. Bosse and Gerritsen studied the interplay
between the emergence and displacement of criminal hot spots
and the reputation of the involved locations [10]. Lux and
Marchesi showed that the scaling of financial prices arises from
interactions between a large number of market participants
[11]. App stores have large populations of apps, developers,
and users, and can benefit from similar studies.

Alife researchers have also modelled various aspects of
ecosystems such as evolutionary dynamics within interacting
populations. For example, Holland created Echo, a generic
ecosystem model in which evolving agents are situated in a
resource-limited environment [12]. Olson and Sequeira
developed an environment for producing and running artificial
ecosystems [13]. Pachepsky et al. investigated the effect of
ecological interactions between organisms on the evolutionary
dynamics of a community [14]. Agent-based models are also
widely used to study natural and man-made ecosystems. For
example, Antona et al. modelled the economic exchanges
between consumers and harvesters of renewable resources [15].
Alexandrova-Kabadjova et al. developed an agent-based model
to study an artificial payment card market [16].

Indirect interaction through mechanisms such as stigmergy
is commonly studied by Alife researchers. But in human
society we use more complex ways to interact. Different kinds
of objects and tools are often built, adopted, shared, and used to
support people in their work. These entities, also known as
artefacts, have a key role in determining the success or failure
of human activities [17]. It is common for such artefacts to
become media for communication (e.g., books, music, and
software). One study relating to this topic is the use of robots to
create music. In this work, Miranda developed a group of
interactive autonomous singing robots that interact and imitate
each other to create music [18]. Despite such studies, which
often focus on the evolution of human culture with reference to
artefacts [19], there is a lack of models that study the
development and consumption of artefacts by agents, and how
the success of those artefacts depends on the preferences of the
agents.

III. APPECO

AppEco is an Artificial Life simulation of mobile app
ecosystems developed in previous work [2, 20]. In the previous
work, AppEco was used to study the effects of different

developer strategies [20], and different publicity strategies [2].
This paper focuses on the app store itself and investigates for
the first time different store ranking algorithms and their effects
on app downloads. In this section, we describe elements of
AppEco to set the context and provide the background for our
study. Earlier versions of AppEco are described in [2, 20].

In a mobile app ecosystem, coevolving systems of apps,
developers, and users form complex relationships, filling
niches, competing and cooperating, similar to species in a
biological ecosystem [4]. The health of the app ecosystem is
largely determined by the communities of developers that
create innovative solutions that users want to buy [21].

The AppEco model consists of agents that are abstractions
of app users and developers, as well as artefacts that are
abstractions of apps. Developer agents build and upload apps to
the app store; user agents browse the store and download the
apps, see Figure 1. A distinguishing feature of the AppEco
model compared to more traditional agent-based models is the
explicit modelling of artefacts as well as the agents that
produce and use the artefacts. Different from agents, artefacts
are not autonomous, they represent passive entities of the
system that are intentionally created and used by agents. App
artefacts are important in a model of an app ecosystem because
the agents interact with one another via the apps.

App Store

UserAppDeveloper
builds and
uploads

downloaded by

Figure 1. The interaction between developers, apps, and users in AppEco.

A. AppEco Components

AppEco consists of app developers, apps, users, and the app
store. Each component is described as follows.

Developers. In AppEco, a developer agent represents a solo
developer or a team of developers working together to produce
an app. Each developer agent has a development duration
(devDuration, a random value between [devmin, devmax]), which
specifies the number of days it needs to build an app. Each
developer also records the number of days it has already spent
building the app (daysTaken). Each developer is initially active
(it continuously builds and upload apps to the app store) but
may become inactive (it stops building apps) with probability
PInactive. This models part-time developers, hobbyists, and the
tendency of developers to stop building apps1. Every developer
records the number of apps it has developed and the number of
downloads it has received.

In this work every developer uses an evolutionary app
creation strategy of making a variation of its own best app (app
with highest number of downloads) each time [20]. This

1
 http://t-machine.org/index.php/2009/06/11/may-2009-survey-of-iphone-

developers/

models the ability of developers to learn from downloads and
improve on their best app. This strategy is commonly used by
developers who learn from their experience. An example is
Rovio, who developed many game apps before hitting the
jackpot with Angry Birds. They then built on their success,
releasing new apps such as Angry Birds Seasons, and Angry
Birds Rio2.

Apps. Each app artefact is built and uploaded by a
developer agent. The features of the app are abstracted as a
10x10 feature grid (F) for each app. If a cell in F is filled, then
the app offers that particular feature. A grid is used so that
feature similarity can be represented in the future, e.g., features
that are similar can be represented as cells that are near to one
another on the grid. The cells in F are filled probabilistically if
this is the developer’s first app. Otherwise, the developer fills F
with copies of the features from his own best app (as
determined by the highest daily average downloads) with
random mutation. The choice of which app to copy occurs
when the developer is starting to build the app. If no apps by
this developer have downloads, the developer fills F with a
copy of his most recent app. There is a 0.5 probability that
mutation occurs during a copy. Mutation is implemented by
randomly selecting a filled cell in F and randomly “moving” it
to an empty cell in F.

For ranking purposes, each app keeps a record of the total
number of downloads it has received to date and the number of
downloads it has received on each of the previous seven days.
Each app has a probability of PInfectious to be infectious. If the
app is infectious, users who download the app recommend it to
their friends. Apps can be infectious because they have exciting
features (e.g., Angry Birds). Apps can also have infectious
features. For example, WhatsApp Messenger3 (No. 1 in 99
countries) is a mobile messaging app that allows users to
exchange messages without having to pay for SMS. The user
needs his friends to download the app to receive his messages.
His friends will, in turn, ask their friends to download the app.
For simplicity, the AppEco model currently assumes that all
apps are sold at the same price; the model of variations in app
pricing and categories of apps is left for future work. Each app
also records the time when it was uploaded.

Users. Inspired by the recommender systems literature [22],
each user agent has preferences (or taste information) that
determine the app features that it prefers. Developers are
unaware of the users’ preferences. The preferences of a user
agent are abstracted as a 10x10 preference grid (P). The top
right quadrant in P is always empty, to model features that are
undesirable to all users. For example, no users want an app to
have the features of a difficult-to-use or malicious program.
The top left and bottom right quadrant in P are filled
probabilistically, such that each cell in the grid has a
probability PPref of being filled, to model features that are
desirable to some users. The bottom left quadrant in P is filled
probabilistically, such that each cell in the grid has a
probability 2xPPref of being filled, to model popular features

2
http://www.wired.co.uk/magazine/archive/2011/04/features/how-rovio-made-

angry-birds-a-winner
3
 http://www.whatsapp.com/

desirable to many users. An example preference grid is
illustrated in Figure 2 (right).

If a cell in P is filled, then the user agent desires the feature
represented by that cell. If the feature grid F of an app has a
cell in the same location filled, then it means the app offers a
feature desired by the user agent (i.e. the user is susceptible to
infection by that app). For example, in Figure 2, all four of the
features offered by App 1 match the user agent’s preferences,
but only two of the features offered by App 2 match the user
agent’s preferences. Using the AppEco model, an app such as
Angry Birds (to which many users are susceptible) can be
abstracted as an app with F that matches P of many users,
while an app to which few users are susceptible has F that
matches few or no users’ P. For simplicity, preference
matching is binary: filled cells either match or do not match.

App 1

User

App 2

4 out of 4
matches

2 out o
f 4

matches

The top right quadrant (in white)
is always empty to model

features offered by apps that are
undesirable to all users.

The bottom left quadrant (in
green) is twice as likely to be

filled to model features that are
desirable to many users.

Figure 2. Matching app features with user preferences [2].

Each user agent keeps a record of the apps it has
downloaded, the number of days between each browse of the
app store (daysBtwBrowse, a random value between [bromin,
bromax]), and the number of days that have elapsed since it last
browsed the app store (daysElapsed). daysElapsed is recorded
so that the user agent knows when to browse the app store next.
When users are initialised at the start of the simulation,
daysElapsed is set to be a random number between [0,
daysBtwBrowse] so that users do not browse at the same time
when they start. Users also record the number of friends they
can influence and thus potentially “infect” (numFriends). The
value of numFriends is a random number with a power law
distribution in the range [0, 150]. (Many people will be able
influence very few friends, but a few people can influence
many friends.) The upper limit of this range is derived from the
Dunbar number of 150 [23]. Dunbar [23] showed that the
human brain is only capable of managing relationships with
about 150 people (staying in contact at least once per year and
knowing how friends relate to others). Dunbar suggests that
this number remains the same despite new social networking
technologies such as Facebook and Twitter4.

App store. The app store is the environment used by the
agents to store and access apps. Its primary function is to
provide a shop front for users and enable them to locate and

4
http://www.nytimes.com/2010/12/26/opinion/26dunbar.html?_r=2&ref=face

bookinc

download apps that match their preferences. To achieve this, it
provides three browsing methods: the Top Apps Chart, the
New Apps Chart, and Keyword Search. These browsing
methods provide changing subsets of apps to users; they are the
“watering holes” of the ecosystem at which all users drink. As
such, they provide a vital mode of transmission of apps to
users. These three methods are modelled because they are
common to many app stores, such as iOS, Android, and
BlackBerry. The Top Apps Chart ranks apps based on the
number of downloads the apps have received. The New Apps
Chart displays apps that have recently been uploaded by
developer agents; only a small subset of new apps is chosen for
the chart. Keyword Search returns a list of apps that match the
keyword entered by the user agent. In AppEco, Keyword
Search is abstracted as a random search for a random number
of apps. It is implemented in this way because keywords may
not correspond to features, so a matching keyword does not
mean the app has desirable features for the user.

B. AppEco Algorithm

The AppEco algorithm models the daily interactions
between the AppEco components described in the previous
section. Each timestep in the algorithm represents a day in the
real ecosystem.

Inspired by the ecology literature [24], the population
growth of user and developer agents is modelled using a
sigmoid growth function commonly used to model the
population growth in natural systems. The equation models the
growth rate of user and developer agents in an app ecosystem
declining as their population density increases, with the size of
the ecosystem limited by the market share of the mobile
platform. The population size at timestep t, popt, is defined by
Equation 1 as follows.

pop
t
=MinPop+

(MaxPop-MinPop)

1+ eS∗t−D (1)

where MinPop is the minimum population, MaxPop is the
maximum population, S determines the slope of the growth
curve (S is negative for a growth curve), and D shifts the curve
from left to right. Different growth formulas [24] can be used
to model different ecosystems.

The AppEco algorithm is summarised in Figure 3 and
detailed as follows.

Initialise
ecosystem

Increase agent
population

Developer
agents build and

upload apps
Update app store

User agents
browse and

download apps

loop for N timesteps

Exit

Figure 3. The AppEco algorithm.

Initialise ecosystem. This step launches AppEco with the
population of developer and user agents as defined in Equation
1, with timestep t = 0. It is common for app stores to have apps
before it is opened. For example, the iOS App Store had 500

apps the day it was launched5. As such, this step also creates an
initial number of app artefacts (NInitApp). The developers of
these initial apps are randomly selected from the pool of initial
developers. The attributes of initial developers, apps, and users
are set as described in the previous section.

Developer agents build and upload apps. For each active
developer, daysTaken is incremented by 1. If daysTaken
exceeds this developer’s devDuration, the app is completed.
The developer then uploads the app to the store, resets
daysTaken to 0. The feature attribute of the app is set such that
each cell in the 10x10 feature grid has a probability PFeat of
being filled.

Update app store. The New Apps Chart is updated. When
timestep t = 0, the New Apps Chart consists of a random
selection of initial apps. In each following timestep, each new
app has a probability POnNewChart of appearing on the New Apps
Chart. Apps are randomly selected here because the selection
criteria are not the focus of this work and real app stores do not
reveal how they select apps for the New Apps Chart. The
maximum number of apps in the chart is defined by
NMaxNewChart. As newly selected apps are added to the chart,
older apps appear lower in the chart and are no longer listed
when their position exceeds the chart size. The Top Apps Chart
is also updated. When timestep t = 0, the Top Apps Chart is
empty because no apps have been downloaded yet. In each
following timestep, each app is ranked based on the number of
downloads it has received. The app ranking algorithm is
configurable, and it is the purpose of this work to study
different ranking algorithms. For example, if apps are ranked
based on cumulative downloads, then apps with a higher
number of cumulative downloads are ranked higher. If apps are
ranked based on current downloads, then apps with a higher
number of current downloads are ranked higher. The maximum
number of apps in the chart is defined by NMaxTopChart.

User agents browse and download apps. For each user,
daysElapsed is incremented by 1. If daysElapsed exceeds
daysBtwBrowse, then the user browses the app store and resets
daysElapsed to 0. The user browses the New Apps Chart and
the Top Apps Chart, and conducts Keyword Search (which
returns a random number of apps between [keymin, keymax]).
The user browses each app that it has not previously
downloaded: the feature grid of the app is compared with the
preference grid of the user. If all the features offered by the app
match the user’s preferences, then the user downloads the app.
For example, in Figure 2, the user downloads App 1 but not
App 2. If the user has downloaded an infectious app in the
current timestep, the user will recommend the app to his friends
who will then browse the app in the next timestep and
download the app if it matches their preferences.

Increase agent population. This step increases the number
of user and developer agents in the ecosystem for the next
timestep, using Equation 1.

AppEco is implemented in C++ and the code can be
requested from the authors via email. It is developed to be

5
 http://www.apple.com/pr/library/2008/07/10iPhone-3G-on-Sale-

Tomorrow.html

highly configurable so that it can simulate various app
ecosystems, such as iOS, Android, and BlackBerry.

IV. EXPERIMENTS

In order to investigate content organisation in the app store,
we calibrate the simulation to match, as much as is feasible, the
behaviour of a real app store. We use Apple’s iOS App Store
because it is one of the oldest and most established app stores.
The calibration of AppEco to the iOS App Store is described in
Section IV.A. We then investigate the effect of content
organisation in the iOS App Store on app downloads. Two
experiments are conducted.

Experiment 1 (Section IV.B) investigates the effect of using
different app ranking algorithms to construct the Top Apps
Chart. The Top Apps Chart is considered the most important
chart, for it lists the most “successful” apps in order of their
“success.” Apps listed in this chart will be seen by many more
users and will in turn receive more downloads – a positive
feedback loop. Consequently this experiment examines how
“success” should be calculated in order to maximise
effectiveness of the app store.

Experiment 2 (Section IV.C) investigates the effect of the
other major chart in the app store: the New Apps Chart (also
known as the “New and Noteworthy” Chart in the iOS App
Store). Only a selected few of the new apps are featured on this
chart. While it is unclear how apps may be chosen, we are able
to modify the rate at which apps appear on the chart and assess
the result. Should the app store highlight apps on the New
Apps Chart for several days at a time and maximise their
visibility, perhaps pushing them into the Top Apps Chart? Or
should the app store update the New Apps Chart frequently and
give more apps an opportunity to appear? This experiment aims
to answer these questions.

In both experiments, users browse the New Apps Chart and
the Top Apps Chart, and conduct Keyword Search, in order to
find apps that meet their preferences, as described in Section
III.B. We introduce the download-to-browse (D-B) ratio as our
performance metric. The D-B ratio is calculated as the total
number of apps downloaded divided by the total number of
apps browsed. A larger D-B ratio means a more effective shop
front, for example, a D-B ratio of 0.2 means that for every five
apps the user browses, one app matches the user’s preferences
and is downloaded. A D-B ratio of 1.0 means that the user
finds the perfect app immediately. Since users only have a
finite amount of time, a higher D-B ratio corresponds to a
higher number of downloads from the app store, more profits
for both the app store and the developers, and happier users.

A. Calibrating AppEco for iOS

We collected the following iOS data over a period of three
years, from the start of the iOS ecosystem in July 2008 (Q4
2008) until the end of June 2011 (Q3 2011):

• Number of iOS developers. The number of iOS
developers is based on the number of worldwide iOS
developers month over month compiled by Gigaom6.

6
 http://gigaom.com/apple/infographic-apple-app-stores-march-to-500000-

apps/

• Number of iOS apps and downloads. The number of
apps and downloads is based on statistics provided in
Apple press releases and Apple Events7. For example, in
the Apple Special Event on 9th September 2009, Apple
CEO Steve Jobs announced the App Store to reach
75,000 apps and 1.8 billion downloads, and Apple’s
press release on 28th September 2009 announced that the
App Store has achieved more than 85,000 apps and 2
billion downloads8.

• Number of iOS users. The number of iOS users is
based on the number of iOS devices (iPod Touch,
iPhone, and iPad) sold by Apple over time. The sales
figures are available from Apple’s quarterly financial
data9, and for simplicity the calculation assumes that
each user has one iOS device.

Using this and other publicly available data we calibrated
AppEco to simulate the iOS app ecosystem. Table I
summarises the calibrated values for the system constants. In
order to match (curve-fit) the iOS user and developer growth
rates, values such as D and S for users and developers were
determined through tuning experiments.

TABLE I. CONSTANT VALUES RESULTING FROM IOS CALIBRATION

[PopminUser, PopmaxUser] [1500, 40000] [devmin, devmax] [1, 180]

DUser -4.0 PPref 0.4

SUser -0.0038 PFeat 0.04

 POnNewChart 0.001

[PopminDev, PopmaxDev] [1000, 120000] PInfectious 0.0001

DDev -4.0 NMaxNewChart 40

SDev -0.005 NMaxTopChart 50

NInitApp 500 PInactive 0.0027

[bromin, bromax] [1, 360] [keymin, keymax] [0, 50]

It is computationally infeasible in terms of memory to
simulate hundreds of millions of users. To ensure that the
system is computationally feasible, one app represents one real
app, and one developer agent represents one real developer, but
one user agent represents 10,000 real users. As such, the value
of numFriends for one user agent is the average numFriends
for 10,000 real users. This coarse-grained simulation is
necessary to enable the modelling of the entire app ecosystem
using the available computing resources. Mobile app
ecosystems are international ecosystems. App
recommendations are not bounded by the users’ physical
location. For this reason, modelling just one country or a subset
of app users would not provide an accurate simulation of the
true app store ecosystem.

After calibration the behaviour of AppEco closely
resembles the behaviour of the iOS ecosystem, including
emergent rates such as the number of apps and downloads [2,
20]. A run of the simulation takes approximately 22 seconds
CPU time on a MacBook Air with a 1.8GHz Intel Core i7
Processor and 4GB of 1333 MHz DDR3 memory. After three

7
 http://www.apple.com/apple-events/

8
 http://www.apple.com/pr/library/2009/09/28Apples-App-Store-Downloads-

Top-Two-Billion.html
9
 http://www.apple.com/pr/library/

years (1080 timesteps assuming 30 days a month), the model
typically contains more than 100,000 developer agents,
500,000 apps, 20,000 user agents (corresponding to 200m real
users), and 1.5 million downloads (corresponding to 15bn real
downloads).

B. Experiment 1: App Ranking Algorithm

1) Objective and Setup
The Top Apps Chart is perhaps the most significant chart

for an app to be listed on. Appearing on this chart will trigger
many more downloads from users. But how should apps be
ranked on this chart? Developers are interested in knowing
about the top app ranking algorithms because appearing on this
chart increases the number of daily downloads by 23 times or
even more [25]. Some developers even try to “game the
system” to make their apps appear on the Top Apps Chart10.
This work does not aim to help developers “cheat” – we focus
on a larger question of interest to all: which ranking method
would be most effective to improve the D-B ratio, and thus
improving downloads and user satisfaction?

In some stores, such as iOS and Android, the top app
ranking algorithms are not publicly available, and developers
have hypothesised various algorithms. To study the effect of
these different top app ranking algorithms on app downloads,
we investigated the following:

• Weighted 4-day Downloads [26]. Apps are ranked in
the order of decreasing score. The score of each app is:

score = 8D
1
+ 5D

2
+ 5D

3
+ 3D

4

where Dn is the number of downloads received by the
app on the nth day before the current day.

• Weighted 7-day Downloads
11. Apps are ranked in the

order of decreasing score. The score of each app is:

score = 4D
1
+ 3D

2
+ 2D

3
+D

4
+D

5
+D

6
+D

7

where Dn is the number of downloads received by the
app on the nth day before the current day.

• Current Downloads [25]. Apps are ranked in order of
decreasing total number of downloads they have
received in the previous day.

• Cumulative Downloads
12. Apps are ranked in order of

decreasing total number of downloads they have
received since they were uploaded.

AppEco was run for 1080 timesteps (corresponding to
three years in the real world, assuming 30 days a month) using
each of the four ranking algorithms. The experiment was
repeated 100 times.

2) Results and Analysis
Table II shows the average download-to-browse (D-B) ratio

and corresponding standard deviation for each ranking
algorithm. The Current Downloads algorithm produced the
highest average D-B ratio, followed by Weighted 4-day

10

http://www.pcworld.com/article/189973/apple_app_stores_dirty_little_secre

t.html
11

 http://tii.libsyn.com/index.php?post_id=522655
12

 http://www.iphonedevsdk.com/forum/promotion-techniques/89162-how-

apple-rank-app-search-result.html

Downloads, Weighted 7-day Downloads, and Cumulative
Downloads. Although the differences in the D-B ratio may
appear subtle, with 15 billion downloads by the period ending
Q3 2011, a small difference in the D-B ratio results in a large
difference in downloads. For example, a difference of 0.0001 in
the D-B ratio corresponds to a difference of more than 10
million downloads.

TABLE II. EXPERIMENT 1: D-B RATIO AT TIMESTEP T = 1080

App Ranking Algorithm Average D-B Ratio Standard Deviation

Weighted 4-day Downloads 0.0948 0.0034

Weighted 7-day Downloads 0.0918 0.0037

Current Downloads 0.1020 0.0036

Cumulative Downloads 0.0803 0.0046

Figure 4 illustrates the average D-B ratio for 100 runs for

each algorithm over three years. The Cumulative Downloads
algorithm performed poorly throughout. When this algorithm
was used, older apps with a longer history in the app store
tended to have higher cumulative downloads, which meant that
they had a higher chance of appearing and staying on the Top
Apps Chart. The Top Apps Chart changed very slowly as older
apps kept dominating the chart. As a result, existing users were
presented with the same apps repeatedly, which resulted in a
low D-B ratio. At the other end of the spectrum, the Current
Downloads algorithm produced a highly variable Top Apps
Chart. This algorithm considered only the number of
downloads on the previous day and so apps that appeared on
the chart were likely to be replaced quickly.

Figure 4. Experiment 1: Average D-B ratio over 100 runs.

The overall result from the first experiment seems clear:
algorithms that produced a faster-changing Top Apps Chart
tended to have a consistently higher D-B ratio. To assess the
effect of the evolutionary developer strategy, the same
experiments were performed with developers producing apps
with random features. Fascinatingly, identical trends were seen,
and the relative performances of the algorithms remained
unaffected.

C. Experiment 2: New Apps Chart

1) Objective and Setup
As we have seen, a higher D-B ratio is achieved when the

Top Apps Chart changes faster. In contrast, the New and
Noteworthy Chart in Apple’s iOS App Store changes slowly.

(a)

(b)

(c)

(d)

Figure 5. Experiment 2: Average D-B ratio for each ranking algorithm for POnNewChart value of (a) 0.0001, (b) 0.001, (c) 0.01, and (d) 0.1. A higher POnNewChart value

means a more frequently updated New Apps Chart.

On average, only one to two new apps enter the chart each day,
as evidenced by the data we gathered over several weeks on the
frequency of changes to the New and Noteworthy Chart. The
second experiment investigates the effect of the rate of change
of the New Apps Chart to the D-B ratio. Four probabilities of
new apps being selected for the New Apps Chart were
investigated using AppEco:

• POnNewChart = 0.0001 (On average over three years,
approximately 2 new apps enter the New Apps Chart
every month.)

• POnNewChart = 0.001 (On average over three years, about
15 new apps enter the chart every month. This
configuration most resembles the iOS App Store rate
and is used in Experiment 1.)

• POnNewChart = 0.01 (On average over three years, about
150 new apps enter the chart every month.)

• POnNewChart = 0.1 (On average over three years, about 40
new apps enter the chart every day, i.e., the entire New
Apps Chart is updated almost every day.)

Experiment 2 was run using the four ranking algorithms
from Experiment 1. Similar to the previous experiment,
Experiment 2 was also run for 1080 timesteps using different
POnNewChart values. Each experiment was repeated 100 times.

2) Results and Analysis
Table III shows the average download-to-browse (D-B)

ratio and corresponding standard deviation for each ranking
algorithm and POnNewChart values. Regardless of the ranking
algorithm, a faster-changing New Apps Chart (higher
POnNewChart value) produced a higher average D-B ratio. The
results confirm that app stores will have higher downloads and
customer satisfaction if they have a faster changing shop front.

Figure 5 illustrates the average D-B ratios for each
algorithm with different POnNewChart values for 100 runs over
time. When the New Apps Chart changed very slowly, see
Figure 5(a), the average D-B ratio for all four algorithms
consistently dropped as the ecosystem matures. When the New
Apps Chart was updated frequently, see Figure 5(c), three
ranking algorithms (Weighted 4-day, Weighted 7-day, and
Current Downloads) produced the same improving D-B ratios
towards the end of the three years. Finally, when the New Apps
Chart changed the most frequently, see Figure 5(d),

Cumulative Downloads showed no improvement in the average
D-B ratio, while the performance of the other algorithms rose
to an impressive average D-B ratio of about 0.25. Again, to
assess the effect of the evolutionary developer strategy, the
same experiments were performed with developers producing
apps with random features. Similar to the first experiment,
identical trends were observed, and the relative performances
of the algorithms remained unaffected.

TABLE III. EXPERIMENT 2: D-B RATIO AT TIMESTEP T = 1080

App Ranking Algorithm POnNewChart Avg. D-B Ratio Std. Deviation

Weighted 4-day Downloads 0.0001 0.0824 0.0034

 0.001 0.0948 0.0034

 0.01 0.1570 0.0053

 0.1 0.2490 0.0055

Weighted 7-day Downloads 0.0001 0.0756 0.0037

 0.001 0.0918 0.0037

 0.01 0.1588 0.0052

 0.1 0.2396 0.0045

Current Downloads 0.0001 0.0953 0.0032

 0.001 0.1020 0.0036

 0.01 0.1579 0.0040

 0.1 0.2458 0.0053

Cumulative Downloads 0.0001 0.0566 0.0032

 0.001 0.0803 0.0046

 0.01 0.0920 0.0037

 0.1 0.0980 0.0043

These surprising findings suggest that a frequently updated
New Apps Chart minimises the effect of different ranking
algorithms on the Top Apps Chart – all algorithms, except
Cumulative Downloads, eventually became equally effective.
The findings also confirm that a faster changing shop front can
improve downloads.

V. CONCLUSION

There may be an app for everything, but if the app store
does not present its content effectively to the users, then users
will never find the app they need. Juggling the Top Apps Chart
and New Apps Chart is not an easy task. If apps are listed for
too long on the New Apps Chart then few new apps can be
featured. If “success” is measured poorly, then undesirable
apps will linger, and download-to-browse ratios will fall.

In this work, we used AppEco, an Artificial Life
evolutionary agent-based model that simulates app ecosystems
to investigate these issues. AppEco demonstrated the
complexity of the app store ecosystems that are now
commonplace. Positive feedback within and across charts
means that the effectiveness of the shop front is highly
dependent on the speed at which content is updated. A slowly
updated New Apps Chart will result in significant
repercussions to the effectiveness of the Top Apps Chart. A
Top Apps Chart that measures success by including too much
historical data will lose downloads. These findings are valid
regardless of developer strategy; the overwhelming effects of
chart organisation on downloads mean that there is no
advantage for “intelligent” evolutionary developer strategies
compared to random development.

The findings have implications for app developers. The
success of apps is highly dependent on how the app store
chooses to present the apps. Even if the app has every feature
that every user desires, if it never appears on an app store chart
then it may be doomed to obscurity.

This paper studies mobile app ecosystems from the app
store’s perspective. There are many avenues for future work.
Studies can be made from the user’s perspective to understand
how a user might best locate desirable apps and communicate
their requirements and opinions about the apps back to
developers. We have recently surveyed more than 10,000
people from 15 countries in order to collect data about their app
usage behaviour to incorporate into our simulation. Through
models such as AppEco, we anticipate that we can gain a
deeper understanding of app ecosystems.

ACKNOWLEDGMENT

This work was supported in part by the European
Commission Trans-Atlantic Research and Education Agenda in
System of Systems Support Action INFSO-ICT-287593.

REFERENCES

[1] S. Baghdassarian and C. Milanesi, "Forecast: Mobile Application Stores,

Worldwide, 2008-2014," Gartner, 2010.

[2] S. L. Lim and P. J. Bentley, "App Epidemics: Modelling the Effects of

Publicity in a Mobile App Ecosystem," in 13th Int. Conf. on the

Synthesis and Simulation of Living Systems (ALIFE), 2012, pp. 202-209.

[3] S. L. Lim and P. Bentley, "From natural to artificial ecosystems," in

Frontiers of Natural Computing, 2012, p. 15.

[4] F. Lin and W. Ye, "Operating System Battle in the Ecosystem of

Smartphone Industry," in Int. Symp. on Information Engineering and E-

Commerce, 2009, pp. 617-621.

[5] R. Garg and R. Telang, "Estimating App Demand from Publicly

Available Data," School of Information Systems and Management,

Heinz College, Carnegie Mellon University, 2011.

[6] M. Bohmer, B. Hecht, J. Schoning, A. Kruger, and G. Bauer, "Falling

asleep with Angry Birds, Facebook and Kindle: a large scale study on

mobile application usage," in MobileHCI 2011, 2011, pp. 47-56.

[7] T. A. Kohler, G. J. Gumerman, and R. G. Reynolds, "Simulating ancient

societies," Scientific American, vol. 293, pp. 76-84, 2005.

[8] T. Wilkinson, J. Christiansen, J. Ur, M. Widell, and M. Altaweel,

"Urbanization within a dynamic environment: modeling Bronze Age

communities in Upper Mesopotamia," American Anthropologist, vol.

109, pp. 52-68, 2007.

[9] C. Y. Huang, C. T. Sun, C. Y. Cheng, and Y. S. Tsai, "Resource

limitations, transmission costs and critical thresholds in scale-free

networks," in Proc. of 7th Int. Conf. on Autonomous Agents and

Multiagent Systems, 2008, pp. 1121-1128.

[10] T. Bosse and C. Gerritsen, "Agent-based simulation of the spatial

dynamics of crime: on the interplay between criminal hot spots and

reputation," in Proc. of the 7th Int. Conf. on Autonomous Agents and

Multiagent Systems, 2008, pp. 1129-1136.

[11] T. Lux and M. Marchesi, "Scaling and criticality in a stochastic multi-

agent model of a financial market," Nature, vol. 397, pp. 498-500, 1999.

[12] J. H. Holland, Adaptation in Natural and Artificial Systems. 2nd ed.

Cambridge, MA: MIT Press, 1992.

[13] R. L. Olson and R. A. Sequeira, "An emergent computational approach

to the study of ecosystem dynamics," Ecological Modelling, vol. 79, pp.

95-120, 1995.

[14] E. Pachepsky, T. Taylor, and S. Jones, "Mutualism promotes diversity

and stability in a simple artificial ecosystem," Artificial Life, vol. 8, pp.

5-24, 2002.

[15] M. Antona, F. Bousquet, C. LePage, J. Weber, A. Karsenty, and P.

Guizol, "Economic theory of renewable resource management: A multi-

agent system approach," Multi-Agent Systems and Agent-Based

Simulation, vol. 1534, pp. 61-78, 1998.

[16] B. Alexandrova-Kabadjova, E. Tsang, and A. Krause, "Competition is

bad for consumers: Analysis of an artificial payment card market,"

Journal of Advanced Computational Intelligence and Intelligent

Informatics, vol. 15, pp. 188-196, 2011.

[17] A. Omicini, A. Ricci, and M. Viroli, "Artifacts in the A&A meta-model

for multi-agent systems," Autonomous Agents and Multi-Agent Systems,

vol. 17, pp. 432-456, 2008.

[18] E. R. Miranda, "Emergent songs by social robots," Journal of

Experimental and Theoretical Artificial Intelligence, vol. 20, pp. 319-

334, 2008.

[19] M. Wheeler, J. Ziman, and M. A. Boden, Eds., The Evolution of Cultural

Entities. OUP/British Academy, 2002.

[20] S. L. Lim and P. J. Bentley, "How to become a successful app

developer? Lessons from the simulation of an app ecosystem," in

Genetic and Evolutionary Computation Conf. (GECCO), 2012, pp. 129-

136.

[21] M. A. Cusumano, "Platforms and services: Understanding the

resurgence of Apple," Comms. of the ACM, vol. 53, pp. 22-24, 2010.

[22] G. Adomavicius and A. Tuzhilin, "Toward the next generation of

recommender systems: A survey of the state-of-the-art and possible

extensions," IEEE Trans. on Knowledge and Data Engineering, vol. 17,

pp. 734-749, 2005.

[23] R. I. M. Dunbar, "Neocortex size as a constraint on group size in

primates," Journal of Human Evolution, vol. 22, pp. 469-493, 1992.

[24] S. E. Kingsland, Modeling Nature: Episodes in the History of

Population Ecology. University of Chicago Press, 1995.

[25] A. Ansar, "AppStore Secrets (What We've Learned from 30,000,000

Downloads)," Pinch Media, 2009.

[26] M.-C. Lanfranchi, B. Benezet, and R. Perrier, "How to Successfully

Market your iPhone Application," faberNovel, 2010.

