
 Open access  Proceedings Article  DOI:10.1109/CEC.2013.6557892

Investigating app store ranking algorithms using a simulation of mobile app
ecosystems — Source link 

Soo Ling Lim, Peter J. Bentley

Institutions: Bournemouth University, University College London

Published on: 20 Jun 2013 - Congress on Evolutionary Computation

Topics: App store and Mobile deep linking

Related papers:

 App store mining and analysis: MSR for app stores

 Retrieving and analyzing mobile apps feature requests from online reviews

 User feedback in the appstore: An empirical study

 Why people hate your app: making sense of user feedback in a mobile app store

 Fresh apps: an empirical study of frequently-updated mobile apps in the Google play store

Share this paper:    

View more about this paper here: https://typeset.io/papers/investigating-app-store-ranking-algorithms-using-a-
4t5f140qvp

https://typeset.io/
https://www.doi.org/10.1109/CEC.2013.6557892
https://typeset.io/papers/investigating-app-store-ranking-algorithms-using-a-4t5f140qvp
https://typeset.io/authors/soo-ling-lim-2tk4orn9bt
https://typeset.io/authors/peter-j-bentley-4mjtkfh1rh
https://typeset.io/institutions/bournemouth-university-39joy2fl
https://typeset.io/institutions/university-college-london-269wra00
https://typeset.io/conferences/congress-on-evolutionary-computation-189ojnjk
https://typeset.io/topics/app-store-1ywfhqqk
https://typeset.io/topics/mobile-deep-linking-1i68u90o
https://typeset.io/papers/app-store-mining-and-analysis-msr-for-app-stores-ljsa9pl7vy
https://typeset.io/papers/retrieving-and-analyzing-mobile-apps-feature-requests-from-1my6bimeov
https://typeset.io/papers/user-feedback-in-the-appstore-an-empirical-study-3xywnjplum
https://typeset.io/papers/why-people-hate-your-app-making-sense-of-user-feedback-in-a-4jldkubvm5
https://typeset.io/papers/fresh-apps-an-empirical-study-of-frequently-updated-mobile-3n8h9w3air
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/investigating-app-store-ranking-algorithms-using-a-4t5f140qvp
https://twitter.com/intent/tweet?text=Investigating%20app%20store%20ranking%20algorithms%20using%20a%20simulation%20of%20mobile%20app%20ecosystems&url=https://typeset.io/papers/investigating-app-store-ranking-algorithms-using-a-4t5f140qvp
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/investigating-app-store-ranking-algorithms-using-a-4t5f140qvp
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/investigating-app-store-ranking-algorithms-using-a-4t5f140qvp
https://typeset.io/papers/investigating-app-store-ranking-algorithms-using-a-4t5f140qvp


Investigating App Store Ranking Algorithms using a 
Simulation of Mobile App Ecosystems  

Soo Ling Lim 

Software Systems Research Centre 

Bournemouth University 

United Kingdom 
slim@bournemouth.ac.uk 

Peter J. Bentley 

Department of Computer Science 

University College London 

United Kingdom 

p.bentley@cs.ucl.ac.uk

 

 
Abstract—App stores are one of the most popular ways of 

providing content to mobile device users today. But with 

thousands of competing apps and thousands new each day, the 

problem of presenting the developers’ apps to users becomes non-

trivial. There may be an app for everything, but if the user 

cannot find the app they desire, then the app store has failed. 

This paper investigates app store content organisation using 

AppEco, an Artificial Life model of mobile app ecosystems. In 

AppEco, developer agents build and upload apps to the app 

store; user agents browse the store and download the apps. This 

paper uses AppEco to investigate how best to organise the Top 

Apps Chart and New Apps Chart in Apple’s iOS App Store. We 

study the effects of different app ranking algorithms for the Top 

Apps Chart and the frequency of updates of the New Apps Chart 

on the download-to-browse ratio. Results show that the 

effectiveness of the shop front is highly dependent on the speed at 

which content is updated. A slowly updated New Apps Chart will 

impact the effectiveness of the Top Apps Chart. A Top Apps 

Chart that measures success by including too much historical 

data will also detrimentally affect app downloads.  

Keywords-mobile app ecosystems; Artificial Life; agent-based 

simulation; app store; top apps chart; new apps chart; evolving 

developer strategies 

I.  INTRODUCTION 

Mobile applications are big business. From the pioneering 
iOS App Store created by Apple, to the App World of 
BlackBerry and the Android Market, today hundreds of apps 
are downloaded every second. The revenue generated from app 
sales surpassed $15 billion in 2011 and is estimated to reach 
$58 billion by 2014 [1]. 

Mobile app ecosystems, comprising developers, users, and 
apps, face challenges that are brand new to the software 
industry. App store owners face the challenges of presenting 
the rapidly increasing app store content to the users and 
encouraging users to download apps. Developers find it 
increasingly difficult to make their apps stand out among 
hundreds of thousands of other apps in the app store, achieve 
downloads, and make profit. App users have difficulty in 
finding good apps amongst the vast number of alternatives.  

It is difficult if not impossible to create different app stores, 
or modify existing app stores, and experiment with millions of 
real users. Consequently for this work we use AppEco, an 
Artificial Life (Alife) agent-based model, as an experimental 
tool to address such challenges [2, 3]. Alife methods have 

proven their worth with many previous simulations of 
ecosystems. AppEco is a model of app ecosystems. It models 
developers (agents that build apps) and users (agents that 
download apps). It simulates the app store environment, which 
hosts and organises content created by the developers, and 
enables users to browse and download apps. Significantly, 
AppEco also models apps – artefacts produced by the 
developers and downloaded by users – and their features. 
AppEco allows us to conduct experiments, test hypothesis 
about various processes in the ecosystem, and ask “what if” 
questions, all of which are otherwise difficult if not impossible 
to conduct in a real-world setting.  

In this paper we focus on the app store and how it should 
best provide content to users in order to encourage app 
downloads, which we quantify in terms of a download-to-
browse ratio. We use AppEco to simulate Apple’s iOS app 
ecosystem and investigate content organisation in the iOS App 
Store, specifically, how the Top Apps Chart and New Apps 
Chart should best be organised. We study the effects of 
different app ranking algorithms for the Top Apps Chart and 
the frequency of updates of the New Apps Chart on the 
download-to-browse ratio over time. 

The rest of the paper is organised as follows. Section II 
describes existing work. Section III describes AppEco. Section 
IV describes the application of AppEco to simulate the iOS app 
ecosystem, the experiments and results. Section V provides our 
conclusions and discusses future work. 

II. BACKGROUND 

While the study of mobile app ecosystems is a current and 
significant topic for researchers, to date there has been little 
work focussing on the topic [4]. However there is much related 
work that contextualises and informs the current study. 

One area related to app ecosystems is the study and 
prediction of app downloads and usage. For example, Garg and 
Telang developed strategies to infer the number of downloads 
for an app based on its ranking on Apple’s iOS App Store Top 
Apps Chart [5]. Such work may enable investors to estimate 
likely profits should an app reach a specific rank, however 
there is no certainty that a new app will appear on the chart. 
Bohmer et al. developed a mobile app to collect mobile app 
usage information from over 4,100 users of Android devices 
[6]. Their research revealed interesting app usage behaviours 
among the users. For example, although users spend almost an 



hour a day using their phones, an average session with an app 
lasts less than a minute. They also found that news applications 
are most popular in the morning and games are at night, but 
communication applications dominate through most of the day 
[6]. These studies are informative, but they are limited to 
studying what is already out there, and “what-if” questions 
cannot be answered.  

In the fields of Alife, Evolutionary Computing and Agent-
Based Simulation, there are a growing number of studies on the 
emergent effects of human interaction at the population level. 
For example, Kohler et al. used models to understand the 
environmental and social factors that led to the disappearance 
of the Puebloan peoples of the North American Southwest [7]. 
Wilkinson et al. used models to understand the urbanisation 
process in ancient Mesopotamia [8]. Huang et al. used models 
to study the spread of epidemic diseases over complex social 
networks [9]. Bosse and Gerritsen studied the interplay 
between the emergence and displacement of criminal hot spots 
and the reputation of the involved locations [10]. Lux and 
Marchesi showed that the scaling of financial prices arises from 
interactions between a large number of market participants 
[11]. App stores have large populations of apps, developers, 
and users, and can benefit from similar studies. 

Alife researchers have also modelled various aspects of 
ecosystems such as evolutionary dynamics within interacting 
populations. For example, Holland created Echo, a generic 
ecosystem model in which evolving agents are situated in a 
resource-limited environment [12]. Olson and Sequeira 
developed an environment for producing and running artificial 
ecosystems [13]. Pachepsky et al. investigated the effect of 
ecological interactions between organisms on the evolutionary 
dynamics of a community [14]. Agent-based models are also 
widely used to study natural and man-made ecosystems. For 
example, Antona et al. modelled the economic exchanges 
between consumers and harvesters of renewable resources [15]. 
Alexandrova-Kabadjova et al. developed an agent-based model 
to study an artificial payment card market [16].  

Indirect interaction through mechanisms such as stigmergy 
is commonly studied by Alife researchers. But in human 
society we use more complex ways to interact. Different kinds 
of objects and tools are often built, adopted, shared, and used to 
support people in their work. These entities, also known as 
artefacts, have a key role in determining the success or failure 
of human activities [17]. It is common for such artefacts to 
become media for communication (e.g., books, music, and 
software). One study relating to this topic is the use of robots to 
create music. In this work, Miranda developed a group of 
interactive autonomous singing robots that interact and imitate 
each other to create music [18]. Despite such studies, which 
often focus on the evolution of human culture with reference to 
artefacts [19], there is a lack of models that study the 
development and consumption of artefacts by agents, and how 
the success of those artefacts depends on the preferences of the 
agents. 

III. APPECO 

AppEco is an Artificial Life simulation of mobile app 
ecosystems developed in previous work [2, 20]. In the previous 
work, AppEco was used to study the effects of different 

developer strategies [20], and different publicity strategies [2]. 
This paper focuses on the app store itself and investigates for 
the first time different store ranking algorithms and their effects 
on app downloads. In this section, we describe elements of 
AppEco to set the context and provide the background for our 
study. Earlier versions of AppEco are described in [2, 20]. 

In a mobile app ecosystem, coevolving systems of apps, 
developers, and users form complex relationships, filling 
niches, competing and cooperating, similar to species in a 
biological ecosystem [4]. The health of the app ecosystem is 
largely determined by the communities of developers that 
create innovative solutions that users want to buy [21].  

The AppEco model consists of agents that are abstractions 
of app users and developers, as well as artefacts that are 
abstractions of apps. Developer agents build and upload apps to 
the app store; user agents browse the store and download the 
apps, see Figure 1. A distinguishing feature of the AppEco 
model compared to more traditional agent-based models is the 
explicit modelling of artefacts as well as the agents that 
produce and use the artefacts. Different from agents, artefacts 
are not autonomous, they represent passive entities of the 
system that are intentionally created and used by agents. App 
artefacts are important in a model of an app ecosystem because 
the agents interact with one another via the apps.  

App Store

UserAppDeveloper
builds and 
uploads

downloaded by

 
Figure 1. The interaction between developers, apps, and users in AppEco. 

A. AppEco Components 

AppEco consists of app developers, apps, users, and the app 
store. Each component is described as follows. 

Developers. In AppEco, a developer agent represents a solo 
developer or a team of developers working together to produce 
an app. Each developer agent has a development duration 
(devDuration, a random value between [devmin, devmax]), which 
specifies the number of days it needs to build an app. Each 
developer also records the number of days it has already spent 
building the app (daysTaken). Each developer is initially active 
(it continuously builds and upload apps to the app store) but 
may become inactive (it stops building apps) with probability 
PInactive. This models part-time developers, hobbyists, and the 
tendency of developers to stop building apps1. Every developer 
records the number of apps it has developed and the number of 
downloads it has received. 

In this work every developer uses an evolutionary app 
creation strategy of making a variation of its own best app (app 
with highest number of downloads) each time [20]. This 
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models the ability of developers to learn from downloads and 
improve on their best app. This strategy is commonly used by 
developers who learn from their experience. An example is 
Rovio, who developed many game apps before hitting the 
jackpot with Angry Birds. They then built on their success, 
releasing new apps such as Angry Birds Seasons, and Angry 
Birds Rio2.  

Apps. Each app artefact is built and uploaded by a 
developer agent. The features of the app are abstracted as a 
10x10 feature grid (F) for each app. If a cell in F is filled, then 
the app offers that particular feature. A grid is used so that 
feature similarity can be represented in the future, e.g., features 
that are similar can be represented as cells that are near to one 
another on the grid. The cells in F are filled probabilistically if 
this is the developer’s first app. Otherwise, the developer fills F 
with copies of the features from his own best app (as 
determined by the highest daily average downloads) with 
random mutation. The choice of which app to copy occurs 
when the developer is starting to build the app. If no apps by 
this developer have downloads, the developer fills F with a 
copy of his most recent app. There is a 0.5 probability that 
mutation occurs during a copy. Mutation is implemented by 
randomly selecting a filled cell in F and randomly “moving” it 
to an empty cell in F. 

For ranking purposes, each app keeps a record of the total 
number of downloads it has received to date and the number of 
downloads it has received on each of the previous seven days. 
Each app has a probability of PInfectious to be infectious. If the 
app is infectious, users who download the app recommend it to 
their friends. Apps can be infectious because they have exciting 
features (e.g., Angry Birds). Apps can also have infectious 
features. For example, WhatsApp Messenger3 (No. 1 in 99 
countries) is a mobile messaging app that allows users to 
exchange messages without having to pay for SMS. The user 
needs his friends to download the app to receive his messages. 
His friends will, in turn, ask their friends to download the app. 
For simplicity, the AppEco model currently assumes that all 
apps are sold at the same price; the model of variations in app 
pricing and categories of apps is left for future work. Each app 
also records the time when it was uploaded. 

Users. Inspired by the recommender systems literature [22], 
each user agent has preferences (or taste information) that 
determine the app features that it prefers. Developers are 
unaware of the users’ preferences. The preferences of a user 
agent are abstracted as a 10x10 preference grid (P). The top 
right quadrant in P is always empty, to model features that are 
undesirable to all users. For example, no users want an app to 
have the features of a difficult-to-use or malicious program. 
The top left and bottom right quadrant in P are filled 
probabilistically, such that each cell in the grid has a 
probability PPref of being filled, to model features that are 
desirable to some users. The bottom left quadrant in P is filled 
probabilistically, such that each cell in the grid has a 
probability 2xPPref of being filled, to model popular features 
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desirable to many users. An example preference grid is 
illustrated in Figure 2 (right). 

If a cell in P is filled, then the user agent desires the feature 
represented by that cell. If the feature grid F of an app has a 
cell in the same location filled, then it means the app offers a 
feature desired by the user agent (i.e. the user is susceptible to 
infection by that app). For example, in Figure 2, all four of the 
features offered by App 1 match the user agent’s preferences, 
but only two of the features offered by App 2 match the user 
agent’s preferences. Using the AppEco model, an app such as 
Angry Birds (to which many users are susceptible) can be 
abstracted as an app with F that matches P of many users, 
while an app to which few users are susceptible has F that 
matches few or no users’ P. For simplicity, preference 
matching is binary: filled cells either match or do not match. 

App 1

User

App 2

4 out of 4 
matches

2 out o
f 4

 

matches

The top right quadrant (in white) 
is always empty to model 

features offered by apps that are 
undesirable to all users.

The bottom left quadrant (in 
green) is twice as likely to be 

filled to model features that are 
desirable to many users.

 
Figure 2. Matching app features with user preferences [2]. 

Each user agent keeps a record of the apps it has 
downloaded, the number of days between each browse of the 
app store (daysBtwBrowse, a random value between  [bromin, 
bromax]), and the number of days that have elapsed since it last 
browsed the app store (daysElapsed). daysElapsed is recorded 
so that the user agent knows when to browse the app store next. 
When users are initialised at the start of the simulation, 
daysElapsed is set to be a random number between [0, 
daysBtwBrowse] so that users do not browse at the same time 
when they start. Users also record the number of friends they 
can influence and thus potentially “infect” (numFriends). The 
value of numFriends is a random number with a power law 
distribution in the range [0, 150]. (Many people will be able 
influence very few friends, but a few people can influence 
many friends.) The upper limit of this range is derived from the 
Dunbar number of 150 [23]. Dunbar [23] showed that the 
human brain is only capable of managing relationships with 
about 150 people (staying in contact at least once per year and 
knowing how friends relate to others). Dunbar suggests that 
this number remains the same despite new social networking 
technologies such as Facebook and Twitter4.  

App store. The app store is the environment used by the 
agents to store and access apps. Its primary function is to 
provide a shop front for users and enable them to locate and 
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download apps that match their preferences. To achieve this, it 
provides three browsing methods: the Top Apps Chart, the 
New Apps Chart, and Keyword Search. These browsing 
methods provide changing subsets of apps to users; they are the 
“watering holes” of the ecosystem at which all users drink. As 
such, they provide a vital mode of transmission of apps to 
users. These three methods are modelled because they are 
common to many app stores, such as iOS, Android, and 
BlackBerry. The Top Apps Chart ranks apps based on the 
number of downloads the apps have received. The New Apps 
Chart displays apps that have recently been uploaded by 
developer agents; only a small subset of new apps is chosen for 
the chart. Keyword Search returns a list of apps that match the 
keyword entered by the user agent. In AppEco, Keyword 
Search is abstracted as a random search for a random number 
of apps. It is implemented in this way because keywords may 
not correspond to features, so a matching keyword does not 
mean the app has desirable features for the user. 

B. AppEco Algorithm 

The AppEco algorithm models the daily interactions 
between the AppEco components described in the previous 
section. Each timestep in the algorithm represents a day in the 
real ecosystem.  

Inspired by the ecology literature [24], the population 
growth of user and developer agents is modelled using a 
sigmoid growth function commonly used to model the 
population growth in natural systems. The equation models the 
growth rate of user and developer agents in an app ecosystem 
declining as their population density increases, with the size of 
the ecosystem limited by the market share of the mobile 
platform. The population size at timestep t, popt, is defined by 
Equation 1 as follows.  

pop
t
=MinPop+

(MaxPop-MinPop)

1+ eS∗t−D    (1) 

where MinPop is the minimum population, MaxPop is the 
maximum population, S determines the slope of the growth 
curve (S is negative for a growth curve), and D shifts the curve 
from left to right. Different growth formulas [24] can be used 
to model different ecosystems. 

The AppEco algorithm is summarised in Figure 3 and 
detailed as follows. 

Initialise 
ecosystem

Increase agent 
population

Developer 
agents build and 

upload apps
Update app store

User agents 
browse and 

download apps

loop for N timesteps

Exit

 
Figure 3. The AppEco algorithm. 

Initialise ecosystem. This step launches AppEco with the 
population of developer and user agents as defined in Equation 
1, with timestep t = 0. It is common for app stores to have apps 
before it is opened. For example, the iOS App Store had 500 

apps the day it was launched5. As such, this step also creates an 
initial number of app artefacts (NInitApp). The developers of 
these initial apps are randomly selected from the pool of initial 
developers. The attributes of initial developers, apps, and users 
are set as described in the previous section. 

Developer agents build and upload apps. For each active 
developer, daysTaken is incremented by 1. If daysTaken 
exceeds this developer’s devDuration, the app is completed. 
The developer then uploads the app to the store, resets 
daysTaken to 0. The feature attribute of the app is set such that 
each cell in the 10x10 feature grid has a probability PFeat of 
being filled. 

Update app store. The New Apps Chart is updated. When 
timestep t = 0, the New Apps Chart consists of a random 
selection of initial apps. In each following timestep, each new 
app has a probability POnNewChart of appearing on the New Apps 
Chart. Apps are randomly selected here because the selection 
criteria are not the focus of this work and real app stores do not 
reveal how they select apps for the New Apps Chart. The 
maximum number of apps in the chart is defined by 
NMaxNewChart. As newly selected apps are added to the chart, 
older apps appear lower in the chart and are no longer listed 
when their position exceeds the chart size. The Top Apps Chart 
is also updated. When timestep t = 0, the Top Apps Chart is 
empty because no apps have been downloaded yet. In each 
following timestep, each app is ranked based on the number of 
downloads it has received. The app ranking algorithm is 
configurable, and it is the purpose of this work to study 
different ranking algorithms. For example, if apps are ranked 
based on cumulative downloads, then apps with a higher 
number of cumulative downloads are ranked higher. If apps are 
ranked based on current downloads, then apps with a higher 
number of current downloads are ranked higher. The maximum 
number of apps in the chart is defined by NMaxTopChart. 

User agents browse and download apps. For each user, 
daysElapsed is incremented by 1. If daysElapsed exceeds 
daysBtwBrowse, then the user browses the app store and resets 
daysElapsed to 0. The user browses the New Apps Chart and 
the Top Apps Chart, and conducts Keyword Search (which 
returns a random number of apps between [keymin, keymax]). 
The user browses each app that it has not previously 
downloaded: the feature grid of the app is compared with the 
preference grid of the user. If all the features offered by the app 
match the user’s preferences, then the user downloads the app. 
For example, in Figure 2, the user downloads App 1 but not 
App 2. If the user has downloaded an infectious app in the 
current timestep, the user will recommend the app to his friends 
who will then browse the app in the next timestep and 
download the app if it matches their preferences. 

Increase agent population. This step increases the number 
of user and developer agents in the ecosystem for the next 
timestep, using Equation 1.  

AppEco is implemented in C++ and the code can be 
requested from the authors via email. It is developed to be 
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highly configurable so that it can simulate various app 
ecosystems, such as iOS, Android, and BlackBerry. 

IV. EXPERIMENTS 

In order to investigate content organisation in the app store, 
we calibrate the simulation to match, as much as is feasible, the 
behaviour of a real app store. We use Apple’s iOS App Store 
because it is one of the oldest and most established app stores. 
The calibration of AppEco to the iOS App Store is described in 
Section IV.A. We then investigate the effect of content 
organisation in the iOS App Store on app downloads. Two 
experiments are conducted.  

Experiment 1 (Section IV.B) investigates the effect of using 
different app ranking algorithms to construct the Top Apps 
Chart. The Top Apps Chart is considered the most important 
chart, for it lists the most “successful” apps in order of their 
“success.” Apps listed in this chart will be seen by many more 
users and will in turn receive more downloads – a positive 
feedback loop. Consequently this experiment examines how 
“success” should be calculated in order to maximise 
effectiveness of the app store. 

Experiment 2 (Section IV.C) investigates the effect of the 
other major chart in the app store: the New Apps Chart (also 
known as the “New and Noteworthy” Chart in the iOS App 
Store). Only a selected few of the new apps are featured on this 
chart. While it is unclear how apps may be chosen, we are able 
to modify the rate at which apps appear on the chart and assess 
the result. Should the app store highlight apps on the New 
Apps Chart for several days at a time and maximise their 
visibility, perhaps pushing them into the Top Apps Chart? Or 
should the app store update the New Apps Chart frequently and 
give more apps an opportunity to appear? This experiment aims 
to answer these questions. 

In both experiments, users browse the New Apps Chart and 
the Top Apps Chart, and conduct Keyword Search, in order to 
find apps that meet their preferences, as described in Section 
III.B. We introduce the download-to-browse (D-B) ratio as our 
performance metric. The D-B ratio is calculated as the total 
number of apps downloaded divided by the total number of 
apps browsed. A larger D-B ratio means a more effective shop 
front, for example, a D-B ratio of 0.2 means that for every five 
apps the user browses, one app matches the user’s preferences 
and is downloaded. A D-B ratio of 1.0 means that the user 
finds the perfect app immediately. Since users only have a 
finite amount of time, a higher D-B ratio corresponds to a 
higher number of downloads from the app store, more profits 
for both the app store and the developers, and happier users.  

A. Calibrating AppEco for iOS 

We collected the following iOS data over a period of three 
years, from the start of the iOS ecosystem in July 2008 (Q4 
2008) until the end of June 2011 (Q3 2011): 

• Number of iOS developers. The number of iOS 
developers is based on the number of worldwide iOS 
developers month over month compiled by Gigaom6. 
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• Number of iOS apps and downloads. The number of 
apps and downloads is based on statistics provided in 
Apple press releases and Apple Events7. For example, in 
the Apple Special Event on 9th September 2009, Apple 
CEO Steve Jobs announced the App Store to reach 
75,000 apps and 1.8 billion downloads, and Apple’s 
press release on 28th September 2009 announced that the 
App Store has achieved more than 85,000 apps and 2 
billion downloads8.  

• Number of iOS users. The number of iOS users is 
based on the number of iOS devices (iPod Touch, 
iPhone, and iPad) sold by Apple over time. The sales 
figures are available from Apple’s quarterly financial 
data9, and for simplicity the calculation assumes that 
each user has one iOS device. 

Using this and other publicly available data we calibrated 
AppEco to simulate the iOS app ecosystem. Table I 
summarises the calibrated values for the system constants. In 
order to match (curve-fit) the iOS user and developer growth 
rates, values such as D and S for users and developers were 
determined through tuning experiments. 

TABLE I. CONSTANT VALUES RESULTING FROM IOS CALIBRATION 

[PopminUser, PopmaxUser] [1500, 40000] [devmin, devmax] [1, 180] 

DUser -4.0 PPref 0.4 

SUser -0.0038 PFeat 0.04 

  POnNewChart 0.001 

[PopminDev, PopmaxDev] [1000, 120000] PInfectious 0.0001 

DDev -4.0 NMaxNewChart 40 

SDev -0.005 NMaxTopChart 50 

NInitApp 500 PInactive 0.0027 

[bromin, bromax] [1, 360] [keymin, keymax] [0, 50] 

 

It is computationally infeasible in terms of memory to 
simulate hundreds of millions of users. To ensure that the 
system is computationally feasible, one app represents one real 
app, and one developer agent represents one real developer, but 
one user agent represents 10,000 real users. As such, the value 
of numFriends for one user agent is the average numFriends 
for 10,000 real users. This coarse-grained simulation is 
necessary to enable the modelling of the entire app ecosystem 
using the available computing resources. Mobile app 
ecosystems are international ecosystems. App 
recommendations are not bounded by the users’ physical 
location. For this reason, modelling just one country or a subset 
of app users would not provide an accurate simulation of the 
true app store ecosystem. 

After calibration the behaviour of AppEco closely 
resembles the behaviour of the iOS ecosystem, including 
emergent rates such as the number of apps and downloads [2, 
20]. A run of the simulation takes approximately 22 seconds 
CPU time on a MacBook Air with a 1.8GHz Intel Core i7 
Processor and 4GB of 1333 MHz DDR3 memory. After three 
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years (1080 timesteps assuming 30 days a month), the model 
typically contains more than 100,000 developer agents, 
500,000 apps, 20,000 user agents (corresponding to 200m real 
users), and 1.5 million downloads (corresponding to 15bn real 
downloads). 

B. Experiment 1: App Ranking Algorithm 

1) Objective and Setup 
The Top Apps Chart is perhaps the most significant chart 

for an app to be listed on. Appearing on this chart will trigger 
many more downloads from users. But how should apps be 
ranked on this chart? Developers are interested in knowing 
about the top app ranking algorithms because appearing on this 
chart increases the number of daily downloads by 23 times or 
even more [25]. Some developers even try to “game the 
system” to make their apps appear on the Top Apps Chart10. 
This work does not aim to help developers “cheat” – we focus 
on a larger question of interest to all: which ranking method 
would be most effective to improve the D-B ratio, and thus 
improving downloads and user satisfaction? 

In some stores, such as iOS and Android, the top app 
ranking algorithms are not publicly available, and developers 
have hypothesised various algorithms. To study the effect of 
these different top app ranking algorithms on app downloads, 
we investigated the following: 

• Weighted 4-day Downloads [26]. Apps are ranked in 
the order of decreasing score. The score of each app is: 

score = 8D
1
+ 5D

2
+ 5D

3
+ 3D

4 

where Dn is the number of downloads received by the 
app on the nth day before the current day.  

• Weighted 7-day Downloads
11. Apps are ranked in the 

order of decreasing score. The score of each app is: 

score = 4D
1
+ 3D

2
+ 2D

3
+D

4
+D

5
+D

6
+D

7  

where Dn is the number of downloads received by the 
app on the nth day before the current day.  

• Current Downloads [25]. Apps are ranked in order of 
decreasing total number of downloads they have 
received in the previous day. 

• Cumulative Downloads
12. Apps are ranked in order of 

decreasing total number of downloads they have 
received since they were uploaded. 

AppEco was run for 1080 timesteps  (corresponding to 
three years in the real world, assuming 30 days a month) using 
each of the four ranking algorithms. The experiment was 
repeated 100 times.  

2) Results and Analysis 
Table II shows the average download-to-browse (D-B) ratio 

and corresponding standard deviation for each ranking 
algorithm. The Current Downloads algorithm produced the 
highest average D-B ratio, followed by Weighted 4-day 
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Downloads, Weighted 7-day Downloads, and Cumulative 
Downloads. Although the differences in the D-B ratio may 
appear subtle, with 15 billion downloads by the period ending 
Q3 2011, a small difference in the D-B ratio results in a large 
difference in downloads. For example, a difference of 0.0001 in 
the D-B ratio corresponds to a difference of more than 10 
million downloads. 

TABLE II. EXPERIMENT 1: D-B RATIO AT TIMESTEP T = 1080 

App Ranking Algorithm Average D-B Ratio Standard Deviation 

Weighted 4-day Downloads 0.0948 0.0034 

Weighted 7-day Downloads 0.0918 0.0037 

Current Downloads 0.1020 0.0036 

Cumulative Downloads 0.0803 0.0046 

 
Figure 4 illustrates the average D-B ratio for 100 runs for 

each algorithm over three years. The Cumulative Downloads 
algorithm performed poorly throughout. When this algorithm 
was used, older apps with a longer history in the app store 
tended to have higher cumulative downloads, which meant that 
they had a higher chance of appearing and staying on the Top 
Apps Chart. The Top Apps Chart changed very slowly as older 
apps kept dominating the chart. As a result, existing users were 
presented with the same apps repeatedly, which resulted in a 
low D-B ratio. At the other end of the spectrum, the Current 
Downloads algorithm produced a highly variable Top Apps 
Chart. This algorithm considered only the number of 
downloads on the previous day and so apps that appeared on 
the chart were likely to be replaced quickly. 

 
Figure 4. Experiment 1: Average D-B ratio over 100 runs. 

The overall result from the first experiment seems clear: 
algorithms that produced a faster-changing Top Apps Chart 
tended to have a consistently higher D-B ratio. To assess the 
effect of the evolutionary developer strategy, the same 
experiments were performed with developers producing apps 
with random features. Fascinatingly, identical trends were seen, 
and the relative performances of the algorithms remained 
unaffected. 

C. Experiment 2: New Apps Chart 

1) Objective and Setup 
As we have seen, a higher D-B ratio is achieved when the 

Top Apps Chart changes faster. In contrast, the New and 
Noteworthy Chart in Apple’s iOS App Store changes slowly.



(a) 

 

(b) 

 

(c) 

 

(d) 

 

 
Figure 5. Experiment 2: Average D-B ratio for each ranking algorithm for POnNewChart value of (a) 0.0001, (b) 0.001, (c) 0.01, and (d) 0.1. A higher POnNewChart value 

means a more frequently updated New Apps Chart.  

 

On average, only one to two new apps enter the chart each day, 
as evidenced by the data we gathered over several weeks on the 
frequency of changes to the New and Noteworthy Chart. The 
second experiment investigates the effect of the rate of change 
of the New Apps Chart to the D-B ratio. Four probabilities of 
new apps being selected for the New Apps Chart were 
investigated using AppEco:  

• POnNewChart = 0.0001 (On average over three years, 
approximately 2 new apps enter the New Apps Chart 
every month.) 

• POnNewChart = 0.001 (On average over three years, about 
15 new apps enter the chart every month. This 
configuration most resembles the iOS App Store rate 
and is used in Experiment 1.) 

• POnNewChart = 0.01 (On average over three years, about 
150 new apps enter the chart every month.) 

• POnNewChart = 0.1 (On average over three years, about 40 
new apps enter the chart every day, i.e., the entire New 
Apps Chart is updated almost every day.) 

Experiment 2 was run using the four ranking algorithms 
from Experiment 1. Similar to the previous experiment, 
Experiment 2 was also run for 1080 timesteps using different 
POnNewChart values. Each experiment was repeated 100 times. 

2) Results and Analysis 
Table III shows the average download-to-browse (D-B) 

ratio and corresponding standard deviation for each ranking 
algorithm and POnNewChart values. Regardless of the ranking 
algorithm, a faster-changing New Apps Chart (higher 
POnNewChart value) produced a higher average D-B ratio. The 
results confirm that app stores will have higher downloads and 
customer satisfaction if they have a faster changing shop front.  

Figure 5 illustrates the average D-B ratios for each 
algorithm with different POnNewChart values for 100 runs over 
time. When the New Apps Chart changed very slowly, see 
Figure 5(a), the average D-B ratio for all four algorithms 
consistently dropped as the ecosystem matures. When the New 
Apps Chart was updated frequently, see Figure 5(c), three 
ranking algorithms (Weighted 4-day, Weighted 7-day, and 
Current Downloads) produced the same improving D-B ratios 
towards the end of the three years. Finally, when the New Apps 
Chart changed the most frequently, see Figure 5(d), 

Cumulative Downloads showed no improvement in the average 
D-B ratio, while the performance of the other algorithms rose 
to an impressive average D-B ratio of about 0.25. Again, to 
assess the effect of the evolutionary developer strategy, the 
same experiments were performed with developers producing 
apps with random features. Similar to the first experiment, 
identical trends were observed, and the relative performances 
of the algorithms remained unaffected. 

TABLE III. EXPERIMENT 2: D-B RATIO AT TIMESTEP T = 1080 

App Ranking Algorithm POnNewChart Avg. D-B Ratio Std. Deviation 

Weighted 4-day Downloads 0.0001 0.0824 0.0034 

 0.001 0.0948 0.0034 

 0.01 0.1570 0.0053 

 0.1 0.2490 0.0055 

Weighted 7-day Downloads 0.0001 0.0756 0.0037 

 0.001 0.0918 0.0037 

 0.01 0.1588 0.0052 

 0.1 0.2396 0.0045 

Current Downloads 0.0001 0.0953 0.0032 

 0.001 0.1020 0.0036 

 0.01 0.1579 0.0040 

 0.1 0.2458 0.0053 

Cumulative Downloads 0.0001 0.0566 0.0032 

 0.001 0.0803 0.0046 

 0.01 0.0920 0.0037 

 0.1 0.0980 0.0043 
 

These surprising findings suggest that a frequently updated 
New Apps Chart minimises the effect of different ranking 
algorithms on the Top Apps Chart – all algorithms, except 
Cumulative Downloads, eventually became equally effective. 
The findings also confirm that a faster changing shop front can 
improve downloads. 

V. CONCLUSION 

There may be an app for everything, but if the app store 
does not present its content effectively to the users, then users 
will never find the app they need. Juggling the Top Apps Chart 
and New Apps Chart is not an easy task. If apps are listed for 
too long on the New Apps Chart then few new apps can be 
featured. If “success” is measured poorly, then undesirable 
apps will linger, and download-to-browse ratios will fall.  



In this work, we used AppEco, an Artificial Life 
evolutionary agent-based model that simulates app ecosystems 
to investigate these issues. AppEco demonstrated the 
complexity of the app store ecosystems that are now 
commonplace. Positive feedback within and across charts 
means that the effectiveness of the shop front is highly 
dependent on the speed at which content is updated. A slowly 
updated New Apps Chart will result in significant 
repercussions to the effectiveness of the Top Apps Chart. A 
Top Apps Chart that measures success by including too much 
historical data will lose downloads. These findings are valid 
regardless of developer strategy; the overwhelming effects of 
chart organisation on downloads mean that there is no 
advantage for “intelligent” evolutionary developer strategies 
compared to random development.  

The findings have implications for app developers. The 
success of apps is highly dependent on how the app store 
chooses to present the apps. Even if the app has every feature 
that every user desires, if it never appears on an app store chart 
then it may be doomed to obscurity.  

This paper studies mobile app ecosystems from the app 
store’s perspective. There are many avenues for future work. 
Studies can be made from the user’s perspective to understand 
how a user might best locate desirable apps and communicate 
their requirements and opinions about the apps back to 
developers. We have recently surveyed more than 10,000 
people from 15 countries in order to collect data about their app 
usage behaviour to incorporate into our simulation. Through 
models such as AppEco, we anticipate that we can gain a 
deeper understanding of app ecosystems.  
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