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Abstract

In this study, we explore capsule networks

with dynamic routing for text classifica-

tion. We propose three strategies to sta-

bilize the dynamic routing process to al-

leviate the disturbance of some noise cap-

sules which may contain “background” in-

formation or have not been successfully

trained. A series of experiments are con-

ducted with capsule networks on six text

classification benchmarks. Capsule net-

works achieve competitive results over the

compared baseline methods on 4 out of

6 datasets, which shows the effectiveness

of capsule networks for text classifica-

tion. We additionally show that capsule

networks exhibit significant improvement

when transfer single-label to multi-label

text classification over the competitors. To

the best of our knowledge, this is the first

work that capsule networks have been em-

pirically investigated for text modeling1.

1 Introduction

Modeling articles or sentences computationally is

a fundamental topic in natural language process-

ing. It could be as simple as a keyword/phrase

matching problem, but it could also be a nontrivial

problem if compositions, hierarchies, and struc-

tures of texts are considered. For example, a news

article which mentions a single phrase “US elec-

tion” may be categorized into the political news

with high probability. But it could be very diffi-

cult for a computer to predict which presidential

candidate is favored by its author, or whether the

∗ Corresponding author (min.yang@siat.ac.cn)
1Codes are publicly available at: https:

//github.com/andyweizhao/capsule_text_

classification.

author’s view in the article is more liberal or more

conservative.

Earlier efforts in modeling texts have achieved

limited success on text categorization using a sim-

ple bag-of-words classifier (Joachims, 1998; Mc-

Callum et al., 1998), implying understanding the

meaning of the individual word or n-gram is a

necessary step towards more sophisticated mod-

els. It is therefore not a surprise that distributed

representations of words, a.k.a. word embeddings,

have received great attention from NLP commu-

nity addressing the question “what” to be modeled

at the basic level (Mikolov et al., 2013; Penning-

ton et al., 2014). In order to model higher level

concepts and facts in texts, an NLP researcher has

to think cautiously the so-called “what” question:

what is actually modeled beyond word meanings.

A common approach to the question is to treat

the texts as sequences and focus on their spatial

patterns, whose representatives include convolu-

tional neural networks (CNNs) (Kim, 2014; Zhang

et al., 2015; Conneau et al., 2017) and long short-

term memory networks (LSTMs) (Tai et al., 2015;

Mousa and Schuller, 2017). Another common ap-

proach is to completely ignore the order of words

but focus on their compositions as a collection,

whose representatives include probabilistic topic

modeling (Blei et al., 2003; Mcauliffe and Blei,

2008) and Earth Mover’s Distance based model-

ing (Kusner et al., 2015; Ye et al., 2017).

Those two approaches, albeit quite different

from the computational perspective, actually fol-

low a common measure to be diagnosed regarding

their answers to the “what” question. In neural

network approaches, spatial patterns aggregated at

lower levels contribute to representing higher level

concepts. Here, they form a recursive process to

articulate what to be modeled. For example, CNN

builds convolutional feature detectors to extract lo-

cal patterns from a window of vector sequences

https://github.com/andyweizhao/capsule_text_classification
https://github.com/andyweizhao/capsule_text_classification
https://github.com/andyweizhao/capsule_text_classification
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and uses max-pooling to select the most promi-

nent ones. It then hierarchically builds such pat-

tern extraction pipelines at multiple levels. Being

a spatially sensitive model, CNN pays a price for

the inefficiency of replicating feature detectors on

a grid. As argued in (Sabour et al., 2017), one

has to choose between replicating detectors whose

size grows exponentially with the number of di-

mensions, or increasing the volume of the labeled

training set in a similar exponential way. On the

other hand, methods that are spatially insensitive

are perfectly efficient at the inference time regard-

less of any order of words or local patterns. How-

ever, they are unavoidably more restricted to en-

code rich structures presented in a sequence. Im-

proving the efficiency to encode spatial patterns

while keeping the flexibility of their representation

capability is thus a central issue.

A recent method called capsule network intro-

duced by Sabour et al. (2017) possesses this at-

tractive potential to address the aforementioned is-

sue. They introduce an iterative routing process to

decide the credit attribution between nodes from

lower and higher layers. A metaphor (also as an

argument) they made is that human visual system

intelligently assigns parts to wholes at the infer-

ence time without hard-coding patterns to be per-

spective relevant. As an outcome, their model

could encode the intrinsic spatial relationship be-

tween a part and a whole constituting viewpoint

invariant knowledge that automatically general-

izes to novel viewpoints. In our work, we follow

a similar spirit to use this technique in modeling

texts. Three strategies are proposed to stabilize

the dynamic routing process to alleviate the distur-

bance of some noise capsules which may contain

“background” information such as stop words and

the words that are unrelated to specific categories.

We conduct a series of experiments with capsule

networks on top of the pre-trained word vectors

for six text classification benchmarks. More im-

portantly, we show that capsule networks achieves

significant improvement when transferring single-

label to multi-label text classifications over the

compared baseline methods.

2 Our Methodology

Our capsule network, depicted in Figure 1, is

a variant of the capsule networks proposed in

Sabour et al. (2017). It consists of four layers: n-

gram convolutional layer, primary capsule layer,

convolutional capsule layer, and fully connected

capsule layer. In addition, we explore two capsule

frameworks to integrate these four components in

different ways. In the rest of this section, we elab-

orate the key components in detail.

2.1 N -gram Convolutional Layer

This layer is a standard convolutional layer which

extracts n-gram features at different positions of a

sentence through various convolutional filters.

Suppose x ∈ R
L×V denotes the input sentence

representation where L is the length of the sen-

tence and V is the embedding size of words. Let

xi ∈ R
V be the V -dimensional word vector cor-

responding to the i-th word in the sentence. Let

W a ∈ R
K1×V be the filter for the convolution op-

eration, where K1 is the N -gram size while sliding

over a sentence for the purpose of detecting fea-

tures at different positions. A filter W a convolves

with the word-window xi:i+K1−1 at each possible

position (with stride of 1) to produce a column fea-

ture map ma ∈ R
L−K1+1, each element ma

i ∈ R

of the feature map is produced by

ma
i = f(xi:i+K1−1 ◦W

a + b0) (1)

where ◦ is element-wise multiplication, b0 is a

bias term, and f is a nonlinear activate function

(i.e., ReLU). We have described the process by

which one feature is extracted from one filter.

Hence, for a = 1, . . . , B, totally B filters with

the same N -gram size, one can generate B feature

maps which can be rearranged as

M = [m1,m2, ...,mB] ∈ R
(L−K1+1)×B (2)

2.2 Primary Capsule Layer

This is the first capsule layer in which the cap-

sules replace the scalar-output feature detectors of

CNNs with vector-output capsules to preserve the

instantiated parameters such as the local order of

words and semantic representations of words.

Suppose pi ∈ R
d denotes the instantiated pa-

rameters of a capsule, where d is the dimension of

the capsule. Let W b ∈ R
B×d be the filter shared in

different sliding windows. For each matrix multi-

plication, we have a window sliding over each N -

gram vector denoted as Mi ∈ R
B , then the corre-

sponding N -gram phrases in the form of capsule

are produced with pi = (W b)TMi.

The filter W b multiplies each N -gram vector

in {Mi}
L−K1+1
i=1 with stride of 1 to produce a
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Figure 1: The Architecture of Capsule network for text classification. The processes of dynamic routing

between consecutive layers are shown in the bottom.

column-list of capsules p ∈ R
(L−K1+1)×d, each

capsule pi ∈ R
d in the column-list is computed as

pi = g(W bMi + b1) (3)

where g is nonlinear squash function through the

entire vector, b1 is the capsule bias term. For all

C filters, the generated capsule feature maps can

be rearranged as

P = [p1,p2, ...,pC] ∈ R
(L−K1+1)×C×d, (4)

where totally (L − K1 + 1) × C d-dimensional

vectors are collected as capsules in P.

2.2.1 Child-Parent Relationships

As argued in (Sabour et al., 2017), capsule net-

work tries to address the representational limita-

tion and exponential inefficiencies of convolutions

with transformation matrices. It allows the net-

works to automatically learn child-parent (or part-

whole) relationships constituting viewpoint invari-

ant knowledge that automatically generalizes to

novel viewpoints.

In this paper, we explore two different types

of transformation matrices to generate prediction

vector (vote) ûj|i ∈ R
d from its child capsule i to

the parent capsule j. The first one shares weights

W t1 ∈ R
N×d×d across child capsules in the layer

below, where N is the number of parent capsules

in the layer above. Formally, each corresponding

vote can be computed by:

ûj|i = W t1
j ui + b̂j|i ∈ R

d (5)

where ui is a child-capsule in the layer below and

b̂j|i is the capsule bias term.

In the second design, we replace the shared

weight matrix W t1
j with non-shared weight ma-

trix W t2
i,j , where the weight matrices W t2 ∈

R
H×N×d×d and H is the number of child capsules

in the layer below.

2.3 Dynamic Routing

The basic idea of dynamic routing is to construct

a non-linear map in an iterative manner ensuring

that the output of each capsule gets sent to an ap-

propriate parent in the subsequent layer:

{

ûj|i ∈ R
d
}

i=1,...,H,j=1...,N
7→

{

vj ∈ R
d
}N

j=1
.

For each potential parent, the capsule network can

increase or decrease the connection strength by

dynamic routing, which is more effective than the

primitive routing strategies such as max-pooling in

CNN that essentially detects whether a feature is

present in any position of the text, but loses spatial

information about the feature. We explore three

strategies to boost the accuracy of routing process

by alleviating the disturbance of some noisy cap-

sules:

Orphan Category Inspired by Sabour et al.

(2017), an additional “orphan” category is added

to the network, which can capture the “back-

ground” information of the text such as stop words

and the words that are unrelated to specific cat-

egories, helping the capsule network model the

child-parent relationship more efficiently. Adding

“orphan” category in the text is more effective than

in image since there is no single consistent “back-

ground” object in images, while the stop words are
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consistent in texts such as predicate “s”, “am” and

pronouns “his”, “she”.

Leaky-Softmax We explore Leaky-Softmax

Sabour et al. (2017) in the place of standard soft-

max while updating connection strength between

the children capsules and their parents. Despite

the orphan category in the last capsule layer, we

also need a light-weight method between two

consecutive layers to route the noise child cap-

sules to extra dimension without any additional

parameters and computation consuming.

Coefficients Amendment We also attempt to

use the probability of existence of child capsules

in the layer below to iteratively amend the con-

nection strength as Eq.6.

Algorithm 1: Dynamic Routing Algorithm

1 procedure ROUTING(ûj|i, âj|i, r, l)

2 Initialize the logits of coupling coefficients

bj|i = 0

3 for r iterations do

4 for all capsule i in layer l and capsule j in

layer l + 1:

cj|i = âj|i · leaky-softmax(bj|i)

5 for all capsule j in layer l + 1:

vj = g(
∑

i cj|iûj|i), aj = |vj |

6 for all capsule i in layer l and capsule j in

layer l + 1: bj|i = bj|i + ûj|i · vj

7 return vj ,aj

Given each prediction vector ûj|i and its prob-

ability of existence âj|i, where âj|i = âi, each it-

erative coupling coefficient of connection strength

cj|i is updated by

cj|i = âj|i · leaky-softmax(bj|i) (6)

where bj|i is the logits of coupling coefficients.

Each parent capsule vj in the layer above is a

weighted sum over all prediction vectors ûj|i:

vj = g(
∑

i

cj|iûj|i), aj = |vj | (7)

where aj is the probabilities of parent capsules, g

is nonlinear squash function Sabour et al. (2017)

through the entire vector. Once all of the parent

capsules are produced, each coupling coefficient

bj|i is updated by:

bj|i = bj|i + ûj|i · vj (8)

For simplicity of notation, the parent capsules and

their probabilities in the layer above are denoted

as

v, a = Routing(û) (9)

where û denotes all of the child capsules in the

layer below, v denotes all of the parent-capsules

and their probabilities a.

Our dynamic routing algorithm is summarized

in Algorithm 1.

2.4 Convolutional Capsule Layer

In this layer, each capsule is connected only to

a local region K2 × C spatially in the layer be-

low. Those capsules in the region multiply trans-

formation matrices to learn child-parent relation-

ships followed by routing by agreement to produce

parent capsules in the layer above.

Suppose W c1 ∈ R
D×d×d and W c2 ∈

R
K2×C×D×d×d denote shared and non-shared

weights, respectively, where K2 · C is the number

of child capsules in a local region in the layer be-

low, D is the number of parent capsules which the

child capsules are sent to. When the transforma-

tion matrices are shared across the child capsules,

each potential parent-capsule ûj|i is produced by

ûj|i = W c1
j ui + b̂j|i (10)

where b̂j|i is the capsule bias term, ui is a child

capsule in a local region K2 × C and W c1
j is the

jth matrix in tensor W c1 . Then, we use routing-

by-agreement to produce parent capsules feature

maps totally (L−K1−K2+2)×D d-dimensional

capsules in this layer. When using the non-shared

weights across the child capsules, we replace the

transformation matrix W c1
j in Eq. (10) with W c2

j .

2.5 Fully Connected Capsule Layer

The capsules in the layer below are flattened into

a list of capsules and fed into fully connected

capsule layer in which capsules are multiplied by

transformation matrix W d1 ∈ R
E×d×d or W d2 ∈

R
H×E×d×d followed by routing-by-agreement to

produce final capsule vj ∈ R
d and its probability

aj ∈ R for each category. Here, H is the number

of child capsules in the layer below, E is the num-

ber of categories plus an extra orphan category.

2.6 The Architectures of Capsule Network

We explore two capsule architectures (denoted as

Capsule-A and Capsule-B) to integrate these four
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Figure 2: Two architectures of capsule networks.

components in different ways, as depicted in Fig-

ure 2.

Capsule-A starts with an embedding layer

which transforms each word in the corpus to a

300-dimensional (V = 300) word vector, fol-

lowed by a 3-gram (K1 = 3) convolutional layer

with 32 filters (B = 32) and a stride of 1 with

ReLU non-linearity. All the other layers are cap-

sule layers starting with a B × d primary cap-

sule layer with 32 filters (C = 32), followed by

a 3 × C × d × d (K2 = 3) convolutional capsule

layer with 16 filters (D = 16) and a fully con-

nected capsule layer in sequence.

Each capsule has 16-dimensional (d = 16) in-

stantiated parameters and their length (norm) can

describe the probability of the existence of cap-

sules. The capsule layers are connected by the

transformation matrices, and each connection is

also multiplied by a routing coefficient that is

dynamically computed by routing by agreement

mechanism.

The basic structure of Capsule-B is similar to

Capsule-A except that we adopt three parallel net-

works with filter windows (N ) of 3, 4, 5 in the

N -gram convolutional layer (see Figure 2). The

final output of the fully connected capsule layer is

fed into the average pooling to produce the final re-

sults. In this way, Capsule-B can learn more mean-

ingful and comprehensive text representation.

3 Experimental Setup

3.1 Experimental Datasets

In order to evaluate the effectiveness of our model,

we conduct a series of experiments on six bench-

marks including: movie reviews (MR) (Pang and

Lee, 2005), Stanford Sentiment Treebankan exten-

sion of MR (SST-2) (Socher et al., 2013), Subjec-

tivity dataset (Subj) (Pang and Lee, 2004), TREC

question dataset (TREC) (Li and Roth, 2002), cus-

tomer review (CR) (Hu and Liu, 2004), and AG’s

news corpus (Conneau et al., 2017). These bench-

marks cover several text classification tasks such

as sentiment classification, question categoriza-

tion, news categorization. The detailed statistics

are presented in Table 1.

Dataset Train Dev Test Classes Classification Task

MR 8.6k 0.9k 1.1k 2 review classification
SST-2 8.6k 0.9k 1.8k 2 sentiment analysis
Subj 8.1k 0.9k 1.0k 2 opinion classification
TREC 5.4k 0.5k 0.5k 6 question categorization
CR 3.1k 0.3k 0.4k 2 review classification
AG’s news 108k 12.0k 7.6k 4 news categorization

Table 1: Characteristics of the datasets.

3.2 Implementation Details

In the experiments, we use 300-dimensional

word2vec (Mikolov et al., 2013) vectors to ini-

tialize embedding vectors. We conduct mini-batch

with size 50 for AG’s news and size 25 for other

datasets. We use Adam optimization algorithm

with 1e-3 learning rate to train the model. We use

3 iteration of routing for all datasets since it opti-

mizes the loss faster and converges to a lower loss

at the end.

3.3 Baseline methods

In the experiments, we evaluate and compare our

model with several widely used baseline methods

including: LSTM/Bi-LSTM (Cho et al., 2014),

tree-structured LSTM (Tree-LSTM) (Tai et al.,

2015), LSTM regularized by linguistic knowl-

edge (LR-LSTM) (Qian et al., 2016), CNN-

rand/CNN-static/CNN-non-static (Kim, 2014),

very deep convolutional network (VD-CNN)

(Conneau et al., 2017), and character-level convo-

lutional network (CL-CNN) (Zhang et al., 2015).

4 Experimental Results

4.1 Quantitative Evaluation

In our experiments, the evaluation metric is classi-

fication accuracy. We summarize the experimental

results in Table 2. From the results, we observe

that the capsule networks achieve best results on

4 out of 6 benchmarks, which verifies the effec-

tiveness of the capsule networks. In particular, our

model substantially and consistently outperforms
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MR SST2 Subj TREC CR AG’s

LSTM 75.9 80.6 89.3 86.8 78.4 86.1

BiLSTM 79.3 83.2 90.5 89.6 82.1 88.2

Tree-LSTM 80.7 85.7 91.3 91.8 83.2 90.1

LR-LSTM 81.5 87.5 89.9 - 82.5 -

CNN-rand 76.1 82.7 89.6 91.2 79.8 92.2

CNN-static 81.0 86.8 93.0 92.8 84.7 91.4

CNN-non-static 81.5 87.2 93.4 93.6 84.3 92.3

CL-CNN - - 88.4 85.7 - 92.3

VD-CNN - - 88.2 85.4 - 91.3

Capsule-A 81.3 86.4 93.3 91.8 83.8 92.1

Capsule-B 82.3 86.8 93.8 92.8 85.1 92.6

Table 2: Comparisons of our capsule networks and

baselines on six text classification benchmarks.
Dataset Train Dev Test Description

Reuters-Multi-label 5.8k 0.6k 0.3k only multi-label data in test
Reuters-Full 5.8k 0.6k 3.4k full data in test

Table 3: Characteristics of Reuters-21578 corpus.

the simple deep neural networks such as LSTM,

Bi-LSTM and CNN-rand by a noticeable margin

on all the experimental datasets. Capsule net-

work also achieves competitive results against the

more sophisticated deep learning models such as

LR-LSTM, Tree-LSTM, VC-CNN and CL-CNN.

Note that Capsule-B consistently performs better

than Capsule-A since Capsule-B allows to learn

more meaningful and comprehensive text repre-

sentation. For example, a combination of N-gram

convolutional layer with filter windows of {3,4,5}
can capture the 3/4/5-gram features of the text

which play a crucial role in text modeling.

4.2 Ablation Study

To analyze the effect of varying different compo-

nents of our capsule architecture for text classifica-

tion, we also report the ablation test of the capsule-

B model in terms of using different setups of the

capsule network. The experimental results are

summarized in Table 5. Generally, all three pro-

posed dynamic routing strategies contribute to the

effectiveness of Capsule-B by alleviating the dis-

turbance of some noise capsules which may con-

tain “background” information such as stop words

and the words that are unrelated to specific cate-

gories.

5 Single-Label to Multi-Label Text

Classification

Capsule network demonstrates promising perfor-

mance in single-label text classification which as-

signs a label from a predefined set to a text (see Ta-

ble 2). Multi-label text classification is, however, a

more challenging practical problem. From single-

label to multi-label (with n category labels) text

classification, the label space is expanded from n

to 2n, thus more training is required to cover the

whole label space. For single-label texts, it is prac-

tically easy to collect and annotate the samples.

However, the burden of collection and annotation

for a large scale multi-label text dataset is gener-

ally extremely high. How deep neural networks

(e.g., CNN and LSTM) best cope with multi-label

text classification still remains a problem since ob-

taining large scale of multi-label dataset is a time-

consuming and expensive process. In this section,

we investigate the capability of capsule network

on multi-label text classification by using only the

single-label samples as training data. With fea-

ture property as part of the information extracted

by capsules, we may generalize the model better

to multi-label text classification without an over

extensive amount of labeled data.

The evaluation is carried on the Reuters-21578

dataset (Lewis, 1992). This dataset consists

of 10,788 documents from the Reuters financial

newswire service, where each document contains

either multiple labels or a single label. We re-

process the corpus to evaluate the capability of

capsule networks of transferring from single-label

to multi-label text classification. For dev and train-

ing, we only use the single-label documents in the

Reuters dev and training sets. For testing, Reuters-

Multi-label only uses the multi-label documents

in testing dataset, while Reuters-Full includes all

documents in test set. The characteristics of these

two datasets are described in Table 3.

Following (Sorower, 2010), we adopt Micro

Averaged Precision (Precision), Micro Averaged

Recall (Recall) and Micro Averaged F1 scores

(F1) as the evaluation metrics for multi-label text

classification. Any of these scores are firstly com-

puted on individual class labels and then averaged

over all classes, called label-based measures. In

addition, we also measure the Exact Match Ratio

(ER) which considers partially correct prediction

as incorrect and only counts fully correct samples.

The experimental results are summarized in Ta-

ble 4. From the results, we can observe that the

capsule networks have substantial and significant

improvement in terms of all four evaluation met-

rics over the compared baseline methods on the

test sets in both Reuters-Multi-label and Reuters-

Full datasets. In particular, larger improvement
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Reuters-Multi-label Reuters-Full

ER Precision Recall F1 ER Precision Recall F1

LSTM 23.3 86.7 54.7 63.5 62.5 78.6 72.6 74.0

BiLSTM 26.4 82.3 55.9 64.6 65.8 83.7 75.4 77.8

CNN-rand 22.5 88.6 56.4 67.1 63.4 78.7 71.5 73.6

CNN-static 27.1 91.1 59.1 69.7 63.3 78.5 71.2 73.3

CNN-non-static 27.4 92.0 59.7 70.4 64.1 80.6 72.7 75.0

Capsule-A 57.2 88.2 80.1 82.0 66.0 83.9 80.5 80.2

Capsule-B 60.3 95.4 82.0 85.8 67.7 86.4 80.1 81.4

Table 4: Comparisons of the capability for transferring from single-label to multi-label text classification

on Reuters-Multi-label and Reuters-Full datasets. For fair comparison, we use margin-loss for our model

and other baselines.

Iteration Accuracy

Capsule-B + Sabour’s routing 3 81.4

Capsule-B + our routing 1 81.4

Capsule-B + our routing 3 82.3

Capsule-B + our routing 5 81.6

w/o Leaky-softmax 3 81.7

w/o Orphan Category 3 81.9

w/o Amendent Coeffient 3 82.1

Table 5: Ablation study of Capsule-B on MR

dataset. The standard routing is routing-by-

agreement algorithm without leaky-softmax and

orphan category in the last capsule layer. More

ablations are discussed in Appendix.

is achieved on Reuters-Multi-label dataset which

only contains the multi-label documents in the test

set. This is within our expectation since the cap-

sule network is capable of preserving the instanti-

ated parameters of the categories trained by single-

label documents. The capsule network has much

stronger transferring capability than the conven-

tional deep neural networks. In addition, the good

results on Reuters-Full also indicate that the cap-

sule network has robust superiority over competi-

tors on single-label documents.

5.1 Connection Strength Visualization

To visualize the connection strength between cap-

sule layers clearly, we remove the convolutional

capsule layer and make the primary capsule layer

followed by the fully connected capsule layer di-

rectly, where the primary capsules denote N-gram

phrases in the form of capsules. The connection

strength shows the importance of each primary

capsule for text categories, acting like a parallel

attention mechanism. This should allow the cap-

sule networks to recognize multiple categories in

the text even though the model is trained on single-

label documents.

Due to space reasons, we choose a multi-

label document from Reuters-Multi-label test set

whose category labels (i.e., Interest Rates and

Money/Foreign Exchange) are correctly predicted

(fully correct) by our model with high confidence

(p > 0.8) to report in Table 6. The category-

specific phrases such as “interest rates” and “for-

eign exchange” are highlighted with red color. We

use the tag cloud to visualize the 3-gram phrases

for Interest Rates and Money/Foreign Exchange

categories. The stronger the connection strength,

the bigger the font size. From the results, we ob-

serve that capsule networks can correctly recog-

nize and cluster the important phrases with respect

to the text categories. The histograms are used

to show the intensity of connection strengths be-

tween primary capsules and the fully connected

capsules, as shown in Table 6 (bottom line).

Due to space reasons, five histograms are demon-

strated. The routing procedure correctly routes the

votes into the Interest Rates and Money/Foreign

Exchange categories.

To experimentally verify the convergence of the

routing algorithm, we also plot learning curve to

show the training loss over time with different it-

erations of routing. From Figure 3, we observe

that the Capsule-B with 3 or 5 iterations of routing

optimizes the loss faster and converges to a lower

loss at the end than the capsule network with 1 it-

eration.

6 Related Work

Early methods for text classification adopted the

typical features such as bag-of-words, n-grams,

and their TF-IDF features (Zhang et al., 2008) as
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U.K. MONEY RATES FIRM ON LAWSON STERLING TARGETS Interest Rates Money/Foreign Exchange

Interest rates on the London money market were slightly firmer on news U.K.

Chancellor of the Exchequer Nigel Lawson had stated target rates for sterling

against the dollar and mark, dealers said. They said this had come as a surprise

and expected the targets, 2.90 marks and 1.60 dlrs, to be promptly tested in the

foreign exchange markets. Sterling opened 0.3 points lower in trade weighted

terms at 71.3. Dealers noted the chancellor said he would achieve his goals

on sterling by a combination of intervention in currency markets and interest

rates. Operators feel the foreign exchanges are likely to test sterling on the

downside and that this seems to make a fall in U.K. Base lending rates even

less likely in the near term, dealers said. The feeling remains in the market,

however, that fundamental factors have not really changed and that a rise in

U.K. Interest rates is not very likely. The market is expected to continue at

around these levels, reflecting the current 10 pct base rate level, for some time.

The key three months interbank rate was 1/16 point firmer at 10 9-7/8 pct.

Orphan Mergers/AcquisitionsMoney/Foreign Exchange Trade Interest Rates

Table 6: Visualization of connection strength between primary capsules and the FC capsules by 3-gram

phrases cloud and histogram of the their intensities. x axis denotes primary capsules (3-gram phrases)

selected for demonstration, y axis denotes intensity of connection strength. The results are retrieved from

Capsule-B trained with 3 routing iterations. The category-specific key-phrases in red color in raw text

(first column) are annotated manually for reference.
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Figure 3: Training loss of Capsule-B on Reuters-

Multi-label dataset.

input of machine learning algorithms such as sup-

port vector machine (SVM) (Joachims, 1998), lo-

gistic regression (Genkin et al., 2007), naive Bayes

(NB) (McCallum et al., 1998) for classification.

However, these models usually heavily relied on

laborious feature engineering or massive extra lin-

guistic resources.

Recent advances in deep neural networks and

representation learning have substantially im-

proved the performance of text classification tasks.

The dominant approaches are recurrent neural net-

works, in particular LSTMs and CNNs. (Kim,

2014) reported on a series of experiments with

CNNs trained on top of pre-trained word vectors

for sentence-level classification tasks. The CNN

models improved upon the state of the art on 4

out of 7 tasks. (Zhang et al., 2015) offered an

empirical exploration on the use of character-level

convolutional networks (Convnets) for text classi-

fication and the experiments showed that Convnets

outperformed the traditional models. (Joulin et al.,

2016) proposed a simple and efficient text classi-

fication method fastText, which could be trained

on a billion words within ten minutes. (Conneau

et al., 2017) proposed a very deep convolutional

networks (with 29 convolutional layers) for text

classification. (Tai et al., 2015) generalized the

LSTM to the tree-structured network topologies

(Tree-LSTM) that achieved best results on two text

classification tasks.

Recently, a novel type of neural network is pro-

posed using the concept of capsules to improve

the representational limitations of CNN and RNN.

Hinton et al. (2011) firstly introduced the con-

cept of “capsules” to address the representational

limitations of CNNs and RNNs. Capsules with

transformation matrices allowed networks to au-

tomatically learn part-whole relationships. Conse-

quently, Sabour et al. (2017) proposed capsule net-

works that replaced the scalar-output feature de-

tectors of CNNs with vector-output capsules and

max-pooling with routing-by-agreement. The cap-

sule network has shown its potential by achiev-

ing a state-of-the-art result on MNIST data. Un-

like max-pooling in CNN, however, Capsule net-
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work do not throw away information about the

precise position of the entity within the region. For

lowlevel capsules, location information is place-

coded by which capsule is active. (Xi et al., 2017)

further tested out the application of capsule net-

works on CIFAR data with higher dimensionality.

(Hinton et al., 2018) proposed a new iterative rout-

ing procedure between capsule layers based on the

EM algorithm, which achieves significantly bet-

ter accuracy on the smallNORB data set. (Zhang

et al., 2018) generalized existing routing methods

within the framework of weighted kernel density

estimation. To date, no work investigates the per-

formance of capsule networks in NLP tasks. This

study herein takes the lead in this topic.

7 Conclusion

In this paper, we investigated capsule networks

with dynamic routing for text classification. Three

strategies were proposed to boost the performance

of the dynamic routing process to alleviate the dis-

turbance of noisy capsules. Extensive experiments

on six text classification benchmarks show the ef-

fectiveness of capsule networks in text classifi-

cation. More importantly, capsule networks also

show significant improvement when transferring

single-label to multi-label text classifications over

the co baseline methods.
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