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ABSTRACT 

 
 

Investigating Characteristics of Lightning-Induced Transient Luminous Events 
 

over South America 
 
 

by 
 
 

Matthew A. Bailey, Doctor of Philosophy 
 

Utah State University, 2010 
 

 
Major Professor:  Dr. Michael J. Taylor 
Department:  Physics 
 
 

Sprites, halos, and elves are members of a family of short-lived, luminous 

phenomena known as Transient Luminous Events (TLEs), which occur in the middle 

atmosphere.  Sprites are vertical glows occurring at altitudes typically ranging from ~40 

to 90 km.  In video imagery they exhibit a red color at their top, with blue tendril-like 

structure at low altitudes.  Elves are disk-like glows that occur at the base of the 

ionosphere, with diameters of ~100-300 km, and have very short lifetimes (~2-3 ms).  

Halos are diffuse glows that occur at low altitudes, have diameters <100 km, and have a 

duration that may last up to 10s of ms.   

 A majority of the studies of TLEs have taken place over the Midwestern U.S. 

where they were first discovered.  This area produces large thunderstorms, which in turn 

generate large lightning discharges that have been associated with the formation of TLEs.  

Studies have used the low frequency radiation that initiates with these strokes to study 
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characteristics of these events.  This low frequency radiation has been used to determine 

where large numbers of TLEs may occur.  Extreme southern Brazil is a region of the 

globe believed to have many TLEs, but few studies on these phenomena. 

 Two collaborative campaigns involving Utah State University proceeded in 2002-

2003, and in 2006.  Multiple TLE images were made, proving this is, indeed, a region of 

the globe where these types of events are prominent.  In particular, one storm in February 

2003 produced over 440 TLEs imaged by USU video cameras.  Of these events, over 100 

of them had associated halos.  Statistical studies for halos previously had been performed 

in the U.S., but never abroad.  Also, several events from the February storm have been 

associated with negative cloud to ground lightning, a surprising occurrence, as to date, 

less than a handful of such events have ever been witnessed or published. 

 In analyzing the TLEs from this campaign, we have shown the halos are similar to 

those seen in the U.S., even though the storms may be somewhat different.  Also, detailed 

analyses of the negative events show both temporal and spatial morphology heretofore 

never reported on.  

  

(245 pages) 

 
 
 
 
 
 
 
 
 
 
 



   

v

ACKNOWLEDGMENTS 
 
 

In the game of baseball perfect games by a pitcher are extremely rare.  In fact, 

only 18 pitchers have completed this remarkable feat in the history of Major League 

Baseball (as of 2009).  Their names are immortalized in the history books.  However, 

those pitchers were not alone on the baseball fields when they pitched their memorable 

games.  There were shortstops, catchers, center fielders, etc., not to mention the coaches 

sitting in the dugout.  There were also the little league, Pop-Warner, and high school 

coaches who helped that pitcher throughout the years.  These people are not remembered 

by the masses, but they definitely had an influence on the outcome of those games. 

When writing a dissertation, it is a similar process.  Although it is my name on the 

cover, I could not have done it alone.  I would like to thank a few of those who helped me 

along the way.   

      First and foremost, I must thank my advisor, Michael Taylor.  He took me on as 

a graduate research student, and immediately started me with data analysis, traveling to 

different parts of the world on field campaigns, presenting at scientific conferences, and 

generally letting me feel my way into the scientific community. He has been extremely 

patient, gracious, and kind toward me, helping me to find my own path.  He has done 

everything in his power to help me.  I will be forever grateful. 

      Secondly, I am grateful to Dominique Pautet.  “The Boss” is a master at 

resolving computer and software issues, has a keen understanding of data analysis, and is 

not bad company on a field campaign.   



   

vi

 I also thank YuCheng Zhao, and Visjna Taylor.  They were always behind the 

scenes fixing software issues, helping me with data analysis, and facilitating the research 

that I needed to finish this dissertation.  I will always count them as great friends. 

I need to thank my collaborators throughout the globe.  In particular, I wish to 

thank Dr. Steven Cummer at Duke University, Jeremy Thomas, formerly of the 

University of Washington, and Walt Lyons, of FMA research in Fort Collins, CO.  My 

research would not have been as successful without the coordination of data and 

collaboration with these colleagues.  They have always been gracious in answering my 

questions, and still help me to learn more about this area of research.  I would also like to 

acknowledge my Brazilian colleagues, both at INPE and at the University of Santa Maria, 

for providing logistical support for this study.  This research was supported under NSF 

grants ATM 0355190 and ATM 0221968.  

      I also send my thanks to the physics department at Utah State University.  I am 

grateful for the classes, the discussions, the knowledge, and the friendship.  I was given 

many opportunities to teach and learn there for which I will always be grateful.  I wish to 

particularly mention the “physics ladies”: Deborah, Karalee, Shelley, Sharon, Shawna, 

and Melanie.  You were always so willing in helping me with whatever I needed. 

      Lastly, I wish to thank my family.  My wife and parents have always been so 

supportive of my studies, even when it seemed as if I would be in school forever.  My 

wife, Heather, has sacrificed so much allowing me the opportunity to continue my 

education, and I just want to say that I am thankful, and I love you.   

Matthew Bailey 

 



   

vii

CONTENTS 
 
 

          Page  
ABSTRACT………………………………………………………………………...….   iii  
 
ACKNOWLEDGMENTS………..……………………………….…………………….. v 
 
LIST OF TABLES…………………...…………………………………………………  ix 
 
LIST OF FIGURES……………….……………………………………………………..  x 
 
CHAPTER 
 

I. INTRODUCTION………………………………………………………………   1 
 
1.1.  Preface  ………………………………………………………………....   2 
1.2. The Earth’s Atmosphere…………………………………………………  5 
1.3.    Thunderstorms and Lightning….………………………………………   10 
1.4.   Early TLE Observations……………………………………………......  18 
1.5.  Summary………………………………………………………………... 33 
1.6.  Objectives of This Study……………………………………………...... 34   
1.7.   Content of This Dissertation……………………………………………. 36 
1.8. Epigraphs……………………………………………………………….  37 

 
II. TLE THEORY……………………………………………………………….…  38 

 
2.1.    Introduction………………………………………………….................   39 
2.2.   Lightning-Driven Electric Fields……………………………………….. 39 
2.3.  Sprite Models…………………………………………………………...  44 
2.4.   Elve Theories…………………………………………………………...  49 
2.5.    Halo Theories…………………………………………………………..  51 
2.6.   Blue Jet Theories………………………………………………………. 54 
2.7.   VLF/ELF Monitoring and Charge Moments………………….…..……  55 
2.8.   Summary………………………………………………………………..  57 

 
III. BRAZIL 1 CAMPAIGN………………………………………...……………..  61 

 
3.1.    Introduction…………………………………………………...............   62 
3.2.   Instrumentation………………………………………………………..  67 
3.3.  First Sprite Observations…..…………………………………………..  73 
3.4.   Phase 2 Sprite Measurements ………………………………………....  77 
3.5.    Results……………………………………………………………….....  78 
3.6.   Brazil 1 Campaign Summary..………………………………………....  83 
 



   

viii 

IV. BRAZIL 2 CAMPAIGN…………………………...………………………….   85 
 

4.1.   Introduction…………………………………………………………….   86 
4.2.   Instrumentation………………………………………………………....  88 
4.3.   Storm 1…………………………………………………………………   94 
4.4.  Storm 2…………………………………………………………..…….. 101 
4.5.   Summary………………………………………..…………………….. 103 

 
V. HALO STUDY…………………………...……..……………………….…...   106 

  
5.1.    Introduction……………………..…………………………................    107 
5.2.   South American Halo Data………..…….……………………………   111 
5.3.  Halo Analysis Method..……………………………………………….  112 
5.4.   Halo and Storm Comparison. ………………………………………...  115 
5.5.    Halo Statistical Results……………..………………………………...   120 
5.6.   Summary……..…………….……………………..…………………...  124 

 
VI. INVESTIGATING NEGATIVE CG EVENTS……………...……………….  126 

 
6.1.   Introduction…………………………………………………………...   127 
6.2.   The First Negative Event..…………………………………………....   130 
6.3.   Other Negative Events……………………………………………….. 139 
6.4.  Summary..……………………………………………………………..  154 

 
VII. SUMMARY AND FUTURE WORK………………………………………...  156 

 
7.1. Summary…………………………………………………………….… 157 
7.2.  Future Research…………………………………………………….....  161 

 
VIII. REFERENCES…………………………………………………………….....   163 
 
IX. APPENDICES……………….……………………………………………….   177 
 

APPENDIX A:  LIGHTNING DETECTION NETWORKS………………...   178 
APPENDIX B:  CHARGE MOMENT CALCULATION……………………  186 
APPENDIX C:  PERMISSION FOR PUBLICATION FORMS……………..  197 

 
CURRICULUM VITAE………………………..………………………..…..………… 225 
 

 

 

 

 



   

ix

LIST OF TABLES 
 
 
Table               Page 
              
3.1.   Summary of all Brazil 1 TLE events, including peak current 

(from the Brazilian Lightning Detection Network), and  
impulsive charge moment changes (from ELF/VLF measurements,  
Tohoku University, Japan)…………………………………………………….   81 

 
6.1.   Table showing a summary of case studies of sprite parent  

lightning polarity………………………………...……………………………   128  
 
6.2.   Summary of TLE events associated with negative CGs 

 observed on February 23, 2006………………………………………………   154 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

x

LIST OF FIGURES 
 
 
Figure               Page 

 
1.1.     Remarkable image of the first sprite captured on video………………………... 3 

 
1.2.     The main layers of the atmosphere, including approximate  

altitudes and temperatures of these regions.…………………………………….. 7 
 

1.3.      A simple illustration showing Wilson’s thunderstorm hypothesis 
 for the global electric circuit…………………………………………………..  10 
 

1.4.      An isolated thundercloud over central New Mexico, with superposed 
electric charge distribution, inside and around the cloud……………………...  13 
 

1.5.      Illustration showing stepped leader propagation, attachment to  
ground leader, and first return stroke…………………………………………..   15  
 

1.6.   Examples of cloud-to-ground lightning……………………………………..…   16 
 
1.7. Image of a sprite above an illuminated thunder cloud taken from  

the space shuttle on April 28, 1990 over the Gulf of Guinea………………….  20 
 

1.8.   First color image of a sprite, showing a red emission from the upper  
part of the sprite, while the lower tendrils have a blue signature……………...  21 
 

1.9. (A) Sprite observed on June 19, 1995, 07:24:20 UT, showing the  
orientation of the spectrograph slit (dotted line), and (B) observed  
sprite spectrum …………………………………………………………………  22 
 

1.10.   Two examples of sprites captured by Utah State University cameras……….…  24 
 
1.11. High resolution image showing complex tendril structures constituting 

 a sprite body, with scale-sizes of 10s of meters……………………………….   25  
 
1.12. High speed sprite sequence from August 13, 2005 at 03:12:32.0 UT,  

  each labeled from the lightning return stroke initiation.……………………….    26 
 
1.13.   (a) Photometric data of an elve followed ~10 ms by a sprite event.  

(b) Image of a diffuse elve emission, and sketch showing relative  
locations of the elve and sprite…………………………………………………   27 

 
1.14. Elve imaged over Europe in 1999……………………………………………...   28  
 



   

xi

Figure               Page 
 
1.15.   ISUAL image showing an elve as observed above the Earth from orbit ……..   29 

 
1.16. Video image (17 ms resolution) of a halo with a sprite (sprite-halo) 

recorded over the Midwestern U.S ……………………………………............ 30 
 

1.17. High speed (1 ms resolution) images of the development of a halo  
with a following sprite, showing streamer initiation and branching,  
as the halo fades  ………………………………………………………………  31 
 

1.18. Photo taken from the ground over Reunion Island, showing a blue  
jet emanating from a cloud top……………………...........................................  32 
 

1.19. False-color images showing development of a gigantic jet captured  
over Puerto Rico……………………………………………………………….    34 
 

1.20.   Sketch showing approximate altitudes and scale-sizes of different TLEs……...   35 
 
2.1. Mechanism showing QSF model, showing sprite formation after 

 +CG stroke…………………………………………………………………….   47 
 

2.2. A sketch showing the electrical field, and subsequent sprite  
formation formed above a thundercloud after, in this case, a  
+CG lightning discharge, due to the runaway breakdown model…………..…..  48  
 

2.3. Electron ionization for a vertical discharge centered over a source…………….  50 
 
2.4.   Simulation results for emissions from the 1st (left panel) and 2nd  

(right panel) positive bands of N2 at 0.501 ms after lightning  
discharge……………………………………………………………………….  52 

 
2.5. Comparison of observations (false colored), along with modeled  

QE and EMP fields…………………………………………………………….   53 
 
2.6.   The ELF/VLF azimuthal magnetic field Bphi associated with a  

positive lightning stroke.……………………………………………………….   58 
 
2.7.   Mechanism of ELVEs, sprites, halos, and blue jets……………………...…….   58 
 
2.8.     (a) High-speed image of a sprite-halo, captured from a ground  

station in Wyoming on August 18, 1999;  (b)  associated array 
 photometer data plot and VLF sferics waveform……………………………...   59 

 
 



   

xii

Figure               Page 
 
2.9.   Global map of TLE occurrence in fall and winter of the northern  

hemisphere……………………………………………………………………..  60 
 
3.1.   Map showing the locations of several TLEs detected by nadir  

pointing cameras on the International Space Station (ISS) ……........................  63 
 

3.2.    University of Washington balloon payload, under testing in INPE 
 hangar at Cachoeira Paulista…………………………………….......................   68 
 

3.3.    (a)  View of the hangar and the dirt runway used for the balloon 
 launch at Cachoeria Paulista, and conveys well the nature of these  
field measurements;  (b) a photograph of a test payload shortly  
after launch from Oregon……………………………………………….……...    68 
 

3.4.  Xybion ISG – 780 Intensified CCD camera………............................................   69 
 

3.5.   Research aircraft provided by INPE for Brazil 1 campaign…..…………….….   70  
 

3.6.     M. Bailey (foreground) taking a well earned rest during camera  
integration, while Dr. Michael Taylor and Fernanda São Sabbas 
 finalize adjustments to instrumentation...……………………………………..    71 

 
3.7.    A map showing the state of Sao Paulo, Brazil, indicating the two 

ground sites of the Brazil 1 campaign, Cachoeira Paulista and  
Santa Rita do Passo Quatro.…………………………………………………....   72 
 

3.8.       First ground-based observation of a sprite from Cahcoeira Paulista, Brazil.….   74 
 

3.9.   Satellite image showing locations of the two sprite events captured  
from ground-based cameras on November 25, 2002, as well as the 
observation site at Cachoeira Paulista.…………………………………………  74 

 
3.10.   Carrot sprites imaged from the INPE provided aircraft on  

November 26th at 03:09:50.630 UT.……………………..…………………….    75 
 
3.11.  Map showing location of the three events captured on the night  

of November 26, 2002, along with the corresponding satellite image  
showing the cold front at 2:40 UT…………………………………………… 76 

 
3.12.   Map showing location of eleven TLE events  

(events 7-10, 12-18, Table 3.1), imaged on March 21, 2003, and  
correlated with positive lightning discharges recorded from the  
Brazilian lightning network…………………………………………………….   78 



   

xiii 

Figure               Page 
 
3.13.   Images of 16 sprite events seen during the Brazil 1 campaign  

(excluding events 12 and 13) ……...…………...…………………..………….    79 
 

3.14.    Probability of sprite initiation vs. charge moment change for positive 
 CG discharges………………………………………….………………….…...  81 

 
3.15.   Plot showing all lightning flashes >26 kA peak current within  

ground cameras fields of view, for March 21, 2003….………………………..    82 
 
4.1.   Map showing the location of Santa Maria, in Rio Grande do Sul, 

which was the center for the Brazil 2 campaign …………...…..........................   87 
 

4.2.    Wide field image from the ground site (29.4˚S, 53.8˚W) at the  
Southern Space Observatory (SSO) showing excellent viewing  
conditions at low elevations over a broad westward azimuth range....................  87 
 

4.3.    (a)  WATEC 120N Camera, fitted with a Fujinon all-sky (180˚)  
lens. (b) Close-up showing WATEC camera mounted on top of 
 the balloon payload.…………………………………………………………... 89 
 

4.4.  UW and USU researchers moving the balloon payload from the  
integration facility at the University of Santa Maria to the launch  
site in an adjacent field.……………………………..........................................   91 
 

4.5.   Preparations for a test balloon and payload launched from Santa  
Maria on Feb. 15, 2006…..………..…………………………………….….….   92 
 

4.6.     (a) Photo showing balloon launch configuration. (b) Video  
image taken from USU WATEC camera mounted on top of  
the balloon payload…………………………………………………………….   93 

 
4.7.    (a) Duke University electromagnetic sensors, used to measure 

 lightning sferics, and (b) system deployment at SSO…………………………   95 
 

4.8.       GOES 12 infrared image of a TLE producing thunderstorm to  
 the west and southwest of SSO……………………………………............….  96 
 

4.9.   Distribution of sprite top altitudes, as determined using  
WWLLN lightning locations, which resulted in a mean sprite 
 top altitude of 85 km…………………………………………………………... 99 

 
4.10.   Three snapshot images depicting a complex sequence of TLEs  

 imaged over Northern Argentina during the night of February 23…………...   100 



   

xiv

Figure               Page 
 
4.11.  An array of GOES 12 infrared images of a TLE producing  

thunderstorm to the north-northwest of SSO…………………….……...……   103 
 
4.12.   Map showing relationship between observing site at SSO and  

all of the TLEs observed during storm 2 on the night of  
March 3–4, 2006………………………………………………………..…….   104 
 

5.1.   Video image of a well-defined sprite halo recorded from  
Bear Mountain, South Dakota on August 18, 1999 …………...…...................   109 
 

5.2.    Map showing triangulation of three sprites (solid circles) and 
 estimated size and location of coincident halo together with  
positions of their parent +CGs...........................................................................   109 
 

5.3.    Coordinated high-speed photometer and video data taken  
from Yucca Ridge, CO, on July 21, 1996, showing both elve 

  and halo optical signatures, as well as VLF data by a  
Stanford University sensor.……………….……………………………...…...    110 
 

5.4.  (Left) Two sequenced images showing a sprite-halo, with  
the halo and a faint streamer seen in the top panel, followed  
17 ms later by multiple vertical structures, as the halo fades;  
(Right) Two halos imaged almost four hours apart on  
February 23, 2006..……………………………...............................................    112 
 

5.5.   Halo imaged over Northern Argentina at 06:57:02.682 UT on  
Feb. 23.…..……...…………………………………………………….…...….   114 
 

5.6.     Geographic projections of the halo event of Figure 5.5, for  
different assume altitudes of 77, 82, 87, and 91 km. ………………….…..….   115 

 
5.7.    Plot showing the location of all halo events imaged between  

02:30 UT and 04:00 UT…………………………………………………….…   117 
 

5.8.      Plot showing the location of all halo events imaged between 
 04:00 UT and 06:30 UT……...……………………………………………..…  118 

 
5.9.   Plot showing the location of all halo events imaged between 
 06:30 UT and 08:30 UT………………………………………………...…….   119 
 
5.10.   Altitude distribution (mean of 82.7 ± 1 km) of halos and  

sprite-halos, determined from 85 WWLLN lightning detections…………..…  121 
 



   

xv

Figure               Page 
 
5.11.   Distribution of diameters (mean of 58 ± 5 km) for halos and 

sprite-halos that were correlated with WWLLN lightning data…….……....…  122 
 

5.12.   Impulsive (2 ms) charge moment distribution (mean 255C.km)  
for all 185 halo and sprite-halo events observed on Feb. 22-23………………. 124   

 
6.1.   Sprite captured over the Gulf of California by low light level  

cameras operating at 60 Hz …………...…………………………....................   129 
 

6.2.    Map showing locations of 81 TLEs observed from 05-06:00 UT…….….…....  131 
 

6.3.    GOES 12 infrared satellite image showing the storm at 06:30 UT…….….….   132 
 

6.4.  (a) Enlarged (6° x 4°) video image of the negative event 
 imaged at 05:29:33.522 UT  (azimuth ~257.9° N, range ~944 km)  
showing a well developed sprite-halo with streamers; (b) Same  
event with same camera 17 ms later, showing further streamer  
development as the halo slowly fades; (c) Same negative event 
 imaged by the second camera with larger field of view and higher 
 electronic gain...……………………………...................................................    133 
 

6.5.   (a) The ELF/VLF azimuthal magnetic field (Bφ) waveform  
corresponding to Figure 6.3. The large positive pulse unambiguously  
identifies this TLE with a negative CG stroke.  (b) The Bφ waveform  
of a sprite-halo (Figure 6.5c) produced by a positive CG of similar  
�MQv ……………….…………………………………………………..…….    134 
 

6.6.     Images (a, b) showing the downward development of the negative 
event over two video fields (duration 33 ms). ……………….……………....   138 

 
6.7.      A sprite-halo associated with a negative event at 06:32:06:085 UT...…..…...   141 

 
6.8.      Map showing the locations of all TLEs associated with –CGs  

imaged on February 22-23.……...……..………………………………….......  141 
 

6.9.   A sprite halo associated with a –CG at 07:17:17.131 UT….……...………......  142 
 
6.10.   A sprite halo associated with a +CG occurring at 07:17:16.264,  

867 ms just before the halo shown in Figure 6.9………...…………….……..   143 
 
6.11.   Map showing the locations of the positive and negative sprite-halos 

 imaged at ~07:17:17 (within 1 second of each other)……….……..…….......  144 
 



   

xvi

Figure               Page 
 
6.12.   Composite image showing a positive sprite-halo (upper panel)  

and a nearby negative (bottom panel) event that occurred  
within 1 s of each other…………………………………………………….. 146 
   

6.13.   Horizontal scans across the TLE images shown in Figure 6.12  
centered on the peak of the halo signatures…………..…….…….…………..   147 

 
6.14.   Two simultaneous images of a negative halo (event 4) imaged 

 at 05:59:43 UT by separate cameras, each with different  
electronic gain settings. …………………………………….…….………… 148 

 
6.15.   A negative halo captured at 07:00:10 UT on Feb. 22-23...…..………….…....   149 
 
6.16.   The ELF/VLF azimuthal magnetic field Bphi associated with  

a negative halo (event 5)………………………………………….…………   150 
 
6.17.   Contrast stretched difference image of a faint halo (event 6) 

 that occurred at 04:35:43.955 UT on February 23, 2006……………….…… 151 
 
A.1.   Illustration showing the Earth-Ionosphere wave guide, which  

allows VLF (3-30 kHz) sferics to propagate over large distances  
(100s – 1000s km) through reflection off the ionosphere………....................   181 
 

A.2.    Map of South America, with overlaying WWLLN lightning 
stroke locations.……………………………………………………...….…....  185 
 

B.1.    Calculated ELF sferic spectra for propagation distances of  
1000, 2000, and 3000 km under nighttime and daytime 
ionospheres ……….………………………………………………………......   192 

 
B.2.      Calculated ELF By waveforms for the ELF sferic spectra of Figure 1.….…...   194 
 
 



CHAPTER 1 

 

INTRODUCTION 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
A beautiful false-color image of a sprite cluster observed from Yucca Ridge, CO looking 
out over the Great Plains during the Sprites’95 campaign.  This image shows a mixture of 

carrot and column-type sprites captured by a USU CCD camera filtered to observe the 
nitrogen first positive band emission.  

“Many years ago, while a lowly student assistant supporting the National Hail 

Research Experiment on the Pawnee National Grassland of NE Colorado – A 

research associate from Texas A&M, John Marrs and I were out late at night 

watching thunderstorms in the distance 15 to 20 miles, with the purpose of 

catching rattlesnakes, we both observed a very active storm and on one occasion 

saw a red spike go out of the top of that storm.  We questioned each other and 

made sure we were not seeing things.  We definitely saw the red spike.  WOW!!  

The next day, we told the research scientists from the National Center for 

Atmospheric Research about the sighting.  They laughed it off and joked about us 

smoking too much dope. 

I am sure we saw what is now classified as a red sprite, based on the 

images I have seen.” 

 
—Hans Jensen, amateur observer 
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1.1.  Preface 

As long ago as 1925, Scottish scientist, and Nobel Prize winner C. T. R. Wilson 

postulated the existence of brief flashes of light high above large thunderstorms.  Over 

thirty years later in a paper entitled “A theory of thundercloud electricity,” Wilson again 

stated that “…it is quite possible that a discharge between the top of the cloud and the 

ionosphere is a normal accompaniment of a lightning discharge to Earth…and many 

years ago I observed what appeared to be discharges of this kind from a thundercloud 

below the horizon….” [Wilson, 1956].   The wide use of commercial and military aircraft 

during the 20th and 21st centuries has subsequently led to many eye witness accounts by 

pilots of transient optical events, similar to those described by Wilson.  A summary of 

these interesting, but often anecdotal accounts was compiled by Vaughan and Vonnegut 

[1989] in an article focusing on recent observations of lightning discharges from 

thundercloud tops into the clear air above.     

         The first confirmed evidence of such optical phenomena was obtained 

serendipitously on July 6, 1989, by John Winkler who was testing an intensified low-

light-level TV camera at O’Brien Observatory (45.18° N, -92.77° E), operated by the 

University of Minnesota.  The camera was being calibrated for coordinated observations 

for a sounding rocket campaign, and was aimed out of a low elevation window looking at 

the night sky.  Remarkably, the camera captured a transient flash of light, which on 

inspection, revealed two bright vertically structured emissions, which we now term 

sprites.  Figure 1.1 is an image showing this first event, which established the existence 

of sprites.  In their initial report of this remarkable event, it is described as a “discharge 

[that] began at the cloud tops at 14 km and extended into the clear air 20 km or higher” 
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[Franz et al., 1990].  These altitude estimations would eventually be shown to be far too 

low, due to an underestimation of the horizontal range.  This extraordinary observation 

stimulated a number of researchers to look for evidence of such phenomena, with 

immediate success using video archive data obtained by TV cameras on the Space Shuttle 

[Vaughan et al., 1992; Boeck et al., 1995]. 

 

   

Figure 1.1.  Remarkable image of the first sprite captured on video [Franz et al., 1990, 
Fig. 1].  Reprinted with permission from the American Association for the Advancement 
of Science (AAAS). 
 

These early findings have sparked many observation campaigns during the past 

15 years, initially focusing on the Midwestern U.S., and later, as more was learned about 

their origins, from various sites around the world.  In 1993, Dr. Walter Lyons of FMA 

Research, Colorado, as well as Dr. Davis Sentman of the University of Alaska Fairbanks 

(UAF), set up two independent searches for these optical events.  Within a day of each 

other, the two research teams had witnessed and documented a multitude of sprites, 

which have subsequently turned out to be a common occurrence at mesospheric heights 
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[Sentman and Wescott, 1993; Lyons, 1994].  These early sprite observations were 

followed by detections of other distinct luminous events, which now comprise a family of 

Transient Luminous Events (TLEs).  Included in the TLE family are sprites (or red 

sprites), elves, blue jets, and halos.  Sprites appear as vertically structured columns of 

luminosity that extend from the mesosphere down to the lower stratosphere (see section 

1.2), and are now known to be associated with positive lightning strikes.  In contrast, 

elves appear as horizontal, cylindrical or doughnut-shaped discs of luminosity, which 

occur at the base of the ionosphere in association with the lightning induced 

electromagnetic pulse.  Blue jets are enigmatic lightning-like discharges that originate at 

the top of thunderclouds, and extend upwards toward the ionosphere. The most recently 

discovered member of the TLE family, termed halos, is similar in morphology to elves, in 

that they appear as horizontal discs of light, but they have longer temporal lifetimes, and 

often occur in close association with sprites. At this point it is important to note that 

many researchers in the scientific community use the generic term sprites when referring 

to any type of TLE.  As such, the terms TLEs and sprites are often used interchangeably 

in this dissertation.  

TLEs are studied for many reasons.  It has been postulated that sprites and other 

TLEs may be significant driving mechanisms for the global electric circuit (see section 

1.2.1), or they may be viable producers of NOx in the middle atmosphere [e.g., Hiraki et 

al., 2002; Enell et al., 2008].  High-altitude discharges (such as TLEs) may also 

adversely affect radio communications systems and aircraft, while some suggest that the 

gap between the inner and outer radiation belts of the Earth may result from lightning-

driven electron precipitation [Voss et al., 1998; Cliverd et al., 2004], including TLEs.  
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Although discharges in the middle atmosphere have yet to be directly correlated with 

aircraft or spacecraft failure, the Atlas-Centaur 67 rocket failure in 1997 was attributed to 

a lighting discharge which damaged the rocket-guidance circuitry, causing it to destruct.  

Importantly, NASA now has criteria in place at Cape Canaveral that restricts launches 

when tropospheric lightning and/or high altitude (sprite-type) electrical discharges are 

possible [Thomas, 2005].  In fact, one of the first campaigns to study TLEs was funded 

by NASA, which was concerned about the potential of lightning-induced sprites as a 

launch hazard. 

Scientifically, TLEs are fascinating new phenomena, and those who observe them 

are often captivated by their intricate structure and beauty.  This introductory chapter 

reviews some of the basic meteorological knowledge of thunderstorms and lightning 

responsible for sprite phenomena, as well summarizing the known properties of TLEs.   

 

1.2.  The Earth’s Atmosphere 

The Earth’s atmosphere consists of a thin ocean of well-mixed gases which 

sustain a habitable environment for living organisms, and provides a protective shield 

from harmful extraterrestrial radiation.  Up to the turbopause (~100 km altitude) these 

gases occur in almost constant proportions:  78.1% nitrogen (N2), 20.1% Oxygen (O2) 

and 0.9% argon (Ar).  In addition, other minor constituent gases are present that can have 

variable concentrations over time, but are geographically well mixed.  These variable 

gases include carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), ozone (O3), 

water vapor (H20), as well as aerosols and other chlorofluorocarbons [Mayes and Hughes, 
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2004].  The Earth’s atmospheric density decreases exponentially with altitude, with over 

half of all atmospheric mass residing below an altitude of 6 km. 

  Figure 1.2 is an illustration of a vertical cross section of the Earth’s atmosphere, 

including the main layers of the atmosphere.  Each of these layers is defined by its 

environmental lapse rate, which is determined by how it absorbs solar radiation.  The 

atmospheric region closest to the Earth’s surface is the troposphere (from the Greek word 

tropos, which means mixing), the depth of which extends in altitude from ~ 8 – 18 km, 

depending upon the latitude.  This region is characterized by large concentrations of 

water vapor, which absorb solar radiation, the cause of our weather, which is driven by 

the development and decomposition of clouds and associated weather systems.   Weather 

prediction depends upon understanding what is happening in this moisture-rich zone, 

particularly the formation of clouds and rainfall due to condensation.  In the troposphere, 

air is heated by solar absorption at low elevations (near the Earth’s surface), the 

temperature decreases with altitude, and buoyancy causes warm air to rise generating 

convective activity.  This process is important for thunderstorm formation and is 

discussed in more detail in section 1.3.   

The tropopause is the boundary between the troposphere and the stratosphere and 

is characterized by a change in the environmental lapse rate.  The stratosphere (from the 

Greek word strato meaning layered) is a region that is thermodynamically stable 

(temperature increasing with altitude), and has little cloud cover or water vapor that is so 

prevalent in the troposphere.  The stratosphere’s environmental lapse rate is due to the 

strong absorption of ultra-violet solar radiation by molecular oxygen (O2), leading to the 

disassociation of this molecules and subsequent recombining of atomic oxygen with  
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Figure 1.2.  The main layers of the atmosphere, including approximate altitudes and 
temperatures of these regions [Mayes and Hughes, 2004, Fig.1.1].  Reproduced with 
permission of Oxford University Press. 
      

 molecular oxygen to form stratospheric ozone (O3).  Kinetic energy released in the 

formation of the ozone layer leads to warming of the stratosphere.  The stratosphere 

extends to nearly 50 km in altitude. 

      The mesosphere (from the Greek word mesos meaning middle) is the 

atmospheric layer directly above the stratopause (upper boundary of the stratosphere), 

and extends upwards to ~ 80-90 km in altitude (depending on latitude and season).   In 

this region, the disassociation of molecular oxygen decreases, and cooling by CO2  

radiative emission increases.  The main dynamic features in this region are atmospheric 

tides, internal atmospheric gravity waves, and planetary waves.  Most of these waves and 
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tides are excited in the troposphere and lower stratosphere, and propagate upwards into 

the mesosphere, where wave amplitudes can become so large that the waves may become 

unstable and dissipate, depositing momentum and energy into the mesosphere. 

Noctilucent clouds (consisting of microscopic ice particles) are sometimes observed near 

the upper boundary of the mesosphere, known as the mesopause.   The mesosphere and 

stratosphere are sometimes referred to as the middle atmosphere, and are the regions 

where many types of TLEs occur.  It should be noted that the electron density in the 

mesosphere varies from 104 to 107 electrons/cm3, increasing with altitude.  These existing 

(or ambient) electrons are instrumental in the formation of TLEs (see Chapter 2). 

Above the mesopause, the atmosphere’s temperature increases with height, with 

temperatures varying between 600 – 2000 K at an altitude of 500 km [Fleagle and 

Businger, 1980].  This area is known as the thermosphere, the name being derived from 

the Greek word for heat (thermos).  In this region, temperatures increase due to 

absorption of highly energetic (solar extreme ultra-violet) radiation by the small amount 

of residual molecular oxygen still present, creating atomic oxygen.  The character of the 

thermosphere is different from atmospheric layers below it due to: (1) ionization of air 

molecules and atoms, (2) disassociation of molecular oxygen and other constituents, and 

(3) the fact that diffusion is more important than mixing in this region, resulting in 

relatively high concentrations of light gases in exosphere (altitude ~ 1000 km).   Within 

the thermosphere the ionization of air molecules and atoms creates the ionosphere.  This 

area is of practical importance, as it influences radio wave propagation and GPS 

navigation systems, and is also the home of the auroras which occur primarily at high 

latitudes during solar magnetic storms. 
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There is no definite boundary between the atmosphere and outer space, and the 

region above the thermosphere is known as the exosphere.  The exosphere extends 

outwards to 10,000 km above the Earth’s surface, and is characterized by very low 

density, which decreases at high altitudes, and by free particles which move in and out of 

the magnetosphere, a region where the Earth’s magnetic field interacts with the solar 

wind. 

 
1.2.1.   The Global Electric Circuit 

The idea of a global electric circuit was suggested by C.T.R. Wilson in the 1920s, 

and is the name given to describe the flow of charged particles within the Earth’s 

atmosphere.  Scientific measurements near the Earth’s surface have shown that a 

downward electric field of ~ 100 V/m exists in this region during good (or fair) weather.  

In a way, the Earth’s atmosphere can be modeled as a spherical capacitor, with one 

surface being the conducting shell of the ionosphere (with an electric potential of ~ 250 

kV).  The ionosphere discharges by sending charged particles downward to land or 

oceans, which form the other surface of this capacitor.  Mathematically, it can be shown 

that to maintain the measured electric field near the Earth’s surface, the ionospheric 

charge reservoir would be drained in ~ 1 hr if there were no mechanism to replenish 

electric charges to the ionosphere.  Wilson predicted that thunderstorms provided this 

mechanism, as shown in Figure 1.3.  

 A simple charge separation model for a thunderstorm (see section 1.3.2) where a 

positive charge reservoir remains at a higher altitude than its negative counterpart would 

theoretically provide this driving mechanism.  Experimental studies have shown that 
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Figure 1.3.  A simple illustration showing Wilson’s thunderstorm hypothesis for the 
global electric circuit. 
 

thunderstorms do indeed provide this type of charge movement within the atmosphere, 

although it is unclear whether these storms provide enough of a driving force to maintain 

the ionosphere’s electric potential [Thomas, 2005]. 

 

1.3.   Thunderstorms and Lightning 

 

1.3.1. Thunderstorm Development 

When one thinks of thunderstorms, a picture of large, dark cumulonimbus clouds 

rolling in on a summer day comes to mind. These large storms usually form from small, 

highly convective regions that typically develop from fair-weather clouds known as 

cumuli.   To understand how these clouds form and grow, consider a warm parcel of air, 

which expands and cools adiabatically.  When the humidity within the parcel of air 

reaches saturation (at the dew point temperature), water droplets begin to develop, and a 

cloud becomes visible.  In this process, latent heat is released inside the rising air parcel, 
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which partially offsets the cooling due to expansion. If the rate at which the air 

temperature decreases with height, termed the lapse rate of the surrounding atmosphere, 

is greater than the moist-adiabatic lapse rate of the expanding air parcel (0.6° C /100 m), 

the air parcel will remain warmer than the surrounding air, and it will continue to rise.  

Under these conditions, the atmosphere is said to be unstable and this process will 

efficiently form cumuli clouds, which, under very unstable humid conditions, can then 

develop into thunderstorms [Ahrens, 2003].    

 Thunderstorms develop within the troposphere, where temperature decreases with 

height until reaching the tropopause, where it encounters the stable stratospheric air 

above, and vertical motion decays (see section 1.2).  The height of the tropopause can 

vary from ~8 km at high latitudes in the wintertime to ~18 km at tropical latitudes, due to 

differential solar heating.  Thunderstorms typically occur where surface air is warm and 

humid (and thus buoyant in an unstable atmosphere).  However, they may also form at 

high latitudes during the summer, as well as during winter where the temperature may be 

no more than 10°C due to strong frontal activity (such as occurs off the west coast of 

North America).   

 Typical thunderstorms are inclined to develop in regions where there is limited 

wind shear, and to grow primarily due to the abundance of warm, moist air near the 

Earth’s surface, which starts the convection process. There are many other factors which 

can contribute to their development, such as differential heating (e.g., water and land, 

mountains and valleys), or by orographic effects, where horizontal winds are directed 

upward after colliding with a mountain [Rakov and Uman, 2003].  A cluster of medium 

to large-scale thunderstorms that develop due to widespread instability is known as a 
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Mesoscale Convective System (MCS), which can further develop into a singular large-

scale storm known as a Mesoscale Convective Complex (MCC).  These complexes can 

be 1000 times larger than typical thunderstorms.  MCSs and MCCs are defined as having 

a large horizontal extent (~250 -2500 km) and lifetimes in excess of a few to several 

hours.  They are typically associated with strong frontal activity, and often develop when 

a large mass of cool air travels southward over the United States, and moves beneath a 

region of warmer, moist air, causing a massive instability. Importantly, MCSs and MCCs 

have been shown as prolific producers of TLEs. 

 
1.3.2.  Cloud Electrification 

When a rising air parcel’s temperature falls below 0°C, some of the water droplets 

freeze, while other (typically smaller) particles remain in their liquid state, and are known 

as super-cooled water.  If an air parcel reaches - 40° C, all moisture will turn to ice.  

Between these two temperatures, a mixed-phase region exists, which then permits 

electrification to occur within the cloud [Rakov and Uman, 2003].  A very common 

model of cloud charge distribution is a tri-pole, with positive charge reservoirs near the 

top and bottom of the cloud, and a negative charge reservoir in the central region of the 

cloud, as inferred by many in-situ balloon observations.  This situation is depicted in 

Figure 1.4.  Other balloon measurements have found that the charge distribution may be 

significantly more complex [e.g., Stolzenburg et al., 1998]. 

 How charge layers are formed is still not well understood.  The most well 

accepted theory at this time is the graupel-ice mechanism [e.g., Jayaratne, 1998].  In this 

mechanism, the electrification of individual particles is caused by collisions between  
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Figure 1.4.   An isolated thundercloud over central New Mexico, with superposed 
electric charge distribution, inside and around the cloud [Rakov and Uman, 2003, Figure 
3.1].  Reprinted with the permission of Cambridge University Press. 
 
 
particles of icy matter (graupel or snow pellets) and cloud particles (small ice crystals) in 

the presence of water droplets.   The heavy graupel particles fall colliding with cloud 

particles and super cooled water droplets.  Laboratory experiments have shown that when 

the temperature is below a critical value (known as the reversal temperature, TR), the 

graupel particles acquire a negative charge by colliding with the ice crystals. Above this  

temperature, they gain a positive charge due to the collisions.  TR has been measured in 

laboratory experiments, and is estimated to be between -10° C and -20° C [e.g., 

Jayaratne et al., 1983].  The amount of charge separated within a cloud, as well as the 

polarity, therefore, depends on several factors such as cloud water content, ice crystal 

size, relative velocity of collisions, and contaminants in the water [Rakov and Uman, 

2003].   The lighter, positively charged cloud particles (which gave their electrons to the 
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graupel), are then carried to the upper regions of the clouds by strong updrafts.  The 

larger, negatively charged graupel particles, fall toward the mid-to-bottom of the cloud.  

A region of positive charge tends to form at the very bottom of the cloud, located in the 

falling precipitation near the melting level [Ahrens, 2003].  This is believed to be due to 

graupel particles, at lower levels in the clouds (and at temperatures higher than TR) 

acquiring positive charge.  Thus, the graupel-ice mechanism has been used to explain the 

tri-pole charge distribution in a thundercloud.   

 
1.3.3.   Lightning Characteristics  

 
1.3.3.1.   Negative Lightning 

Each lightning flash consists of two main parts, a leader, and a return stroke.  In a 

typical negative cloud-to-ground (-CG) lightning flash, a stepped leader (a plasma 

channel) initiates within the cloud, and moves downward at about 2 x 105 m/s [Rakov and 

Uman, 2003], forming a conducting path between the cloud and the ground. Several 

coulombs (C) of negative charge are distributed along its path during this process, which 

includes significant downward branching. The average stepped-leader current is between 

100 and 1000 amperes (A).  The electric field caused by the leader as it nears the Earth 

initiates an upward moving leader from the ground.  The leaders tend to connect tens of 

meters above the ground (called the attachment process), and a strong return stroke then 

follows, which serves to neutralize the stepped leader charge.  Figure 1.5 illustrates this 

process.  The first return stroke current measured at the ground rises rapidly to an initial 

peak of about 30 kA ( the median value) in several microseconds (�s), and subsequently 

decays to half-peak value over tens of �s [Rakov and Uman, 2003].  
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Figure 1.5.  Illustration showing stepped leader propagation, attachment to ground 
leader, and first return stroke [Adapted from Rakov and Uman, 2003, Figure 4.2].  
Reprinted with the permission of Cambridge University Press. 
 

A few tens of milliseconds (ms) later, a second leader, often termed a dart leader, 

may travel along the same path as the stepped leader (typically without branching) with a 

much larger speed of ~107 m/s.  As it travels, it deposits approximately 1 C of charge 

along the channel.  Following attachment process near the ground, a second upward 

stroke follows, which may have peak currents of up to 10 – 15 kA.  This process may be 

repeated many times, and accounts for the repeated flashing that one sometimes observes 

when witnessing a lightning strike. Approximately 90% of all cloud-to-ground lightning 

flashes are -CG.   

 
1.3.3.2.   Positive Lightning 

Positive cloud-to-ground (+CG) lightning discharges are similar in morphology to 

– CG flashes, but differ from their negative counterparts with typically larger peak 

currents, and initially developing from the positive charge reservoir near the top of the 
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cloud.  They also differ from their negative counterparts in that +CG flashes are usually 

composed of only one return lightning stroke, followed by long continuing currents 

(lasting for tens to hundreds of ms).  Furthermore, the return stroke appears to be 

preceded by significant intra-cloud discharge activity connecting large horizontal 

channels within the cloud, and enabling much larger charge removal to the ground.  This 

is a key factor for sprite production, and is discussed further in Chapter 2.  In fact, the 

highest directly measured lightning currents (near 300 kA), and the largest charge 

transfers (hundreds of coulombs or more), are thought to be associated with positive 

lightning [Rakov and Uman, 2003]. Figure 1.6 compares positive and negative CGs.  

Positive events are much less frequent, contributing 10% or less of the total cloud-to-

ground discharges. 

  
Figure 1.6. Examples of cloud-to-ground lightning. (a)  negative cloud-to-ground 
discharge (-CG) and (b) positive cloud-to-ground discharge (+CG) [Rodger, 1999, Fig. 
7].  Reproduced by Permission of the American Geophysical Union (AGU). 

 

Positive CG leaders can either travel as stepped leaders, as with – CG discharges, 

but also are able to propagate with no branching in virgin air, similar to a dart leader.   

Special meteorological conditions are conducive to +CG flashes, such as the dissipating 
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state of an individual thunderstorm [Orville et al., 1983], winter thunderstorms [e.g., 

Mikaye et al., 1992], shallow clouds such as the trailing stratiform regions of MCSs [e.g., 

Engholm et al., 1990], severe storms [e.g., MacGorman and Burgess, 1994], and  

thunderclouds formed over forest fires or contaminated by smoke [e.g., Lyons et al., 

1998].  Positive CG discharges are of special interest in this study because of the 

correlation between + CG strokes and many TLEs. 

  
1.3.3.3.   Spider Lightning 

Discharges within clouds, termed intra-cloud lightning or spider lightning, are the 

most common type of lightning on Earth.  These discharges are most likely to begin near 

the upper and lower boundaries of the main negative charge region and often bridge the 

main negative and positive regions within the cloud. It is thought that a cloud discharge 

begins as a bidirectional leader, the positive section of this leader infiltrating the negative 

charge region, and providing substantial negative charge along the path between the 

negative and positive charge reservoirs.  This initial leader is similar to the stepped leader 

of typical CG lightning, and travels at ~105 m/s with currents on the order of 10s – 100s 

of Amperes.  These leaders are associated with the largest changes in the electric field 

recorded to date using balloon-borne measurements over Brazil [Ez ~ 43 V/m, Ex ~ 15 

V/m, Thomas et al., 2005], as discussed in Chapter 3. 

 How initial breakdown occurs for all types of lightning is still poorly understood.  

Balloon-borne measurements have measured electric fields up to a few hundreds of 

kV/m, but never surpassing the conventional breakdown for air [e.g., Stolzenburg et al., 

1998].  This suggests that there may be other processes involved in initial breakdown, 



   

18

such as microscale fields or relativistic breakdown [Marshall et al., 1995].  It also has 

been theorized that ionization by micro-meteors may be an important initiation 

mechanism [Gurevich et al., 1999]. 

 
 1.3.3.4.   Ball Lightning 

There are many eyewitness reports of a phenomenon known as ball lightning, yet 

there is little, if any, scientific documentation of these enigmatic events.  A common 

description of the event is an orange to grapefruit size sphere (reports vary both larger 

and smaller), and is usually red, orange, or yellow in color, and is about as bright as a 60 

watt light bulb [Rakov and Uman, 2003].  Reports claim that the sphere tends to move 

horizontally, and decays either silently and slowly, or results in an abrupt explosion.  It is 

most often seen close to and after a cloud to ground flash. 

   There have been many theories devised to explain ball lightning, but none are 

completely satisfactory, as some violate the accepted laws of physics [Finkelstein and 

Rubinstein, 1964].  Ball lightning has apparently not been generated in the lab to date.  At 

minimum, it is fair to say that any generation in the lab has not been well documented in 

the literature, nor reproduced by other scientists. 

 

 1.4.  Early TLE Observations 

This section reviews early optical observations and studies of TLEs, and 

summarizes their known properties. 
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1.4.1. Sprites 

A century has now elapsed since the first published sightings of TLEs.  Since 

1886, dozens of eyewitness accounts of TLEs have been reported, many as minor 

publications, accompanied by articles describing meteorological anomalies, such as toads 

falling from the sky [Lyons et al., 2000].  Since science advances at a guarded pace, such 

reports were largely ignored by the atmospheric electricity community [Williams, 2001].  

This all changed with Winkler’s chance observation of a sprite, which was originally 

dubbed a large upward electrical discharge, as shown in Figure 1.1. 

 Following Winkler’s first observation, Bernard Vonnegut of SUNY Albany 

realized that these types of events may be present in video imagery of Earth’s upper 

atmosphere recorded by Space Shuttle astronauts.  He encouraged lightning researchers at 

NASA’s Marshal Space Flight Center lightning researchers to look for such luminous 

events using a camera on the Space Shuttle.   During an observational campaign in 

October 1989, their imagers captured several strange upward lightning-like events.  

These observations established that sprites, which did not look anything like normal 

lightning, originated above the anvils of large, very active thunderstorm complexes.  An 

example image of a sprite recorded from the Space Shuttle is shown in Figure 1.7. 

 Most descriptions of sprites in early reports attempted to include physical 

characteristics in their names which were assumed, and later would prove to be at least 

partially misleading.  Examples of such names include large upward electrical discharge 

[Franz et al., 1990], cloud to space lightning [Vaughan et al., 1992], cloud-to-

stratosphere electrical discharges [e.g., Lyons and Williams, 1993], luminous structures in 

the stratosphere [Lyons, 1994], stratospheric flash or lightning in the stratosphere [Boeck  
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Figure 1.7.  Image of a sprite above an illuminated thunder cloud taken from the space 
shuttle on April 28, 1990 over the Gulf of Guinea [Adapted from Boeck et al., 1995, 
Figure 1.g].  Reproduced by permission of the AGU. 
 
 
et al., 1995], and cloud–ionosphere electrical discharges [Winckler, 1995]. Following 

altitude measurements by Sentman and Wescott [1993], sprites were determined to occur 

at much higher altitudes, extending well into the mesosphere.  Due to the lack of 

knowledge concerning the physical mechanisms that cause these strange events, the term 

sprite was used by D. Sentman, University of Alaska, Fairbanks (UAF), to capture the 

elusive, transient nature of these optical emissions (some reports say the name was also 

inspired by Shakespeare’s The Tempest).  Sprites or red sprites is the term typically now 

accepted in the scientific community, although terms such as High Altitude Lightning 

[Valdivia, 1997], glow phenomena [Gomes and Cooray, 1998], ionospheric lightning 

[Boeck et al., 1998], and upward lightning discharges, as well as mesospheric electrical 

discharges [Winckler, 1998], are still occasionally used in the literature. 

 In 1994, a University of Alaska Fairbanks airborne program conducted over the 

Midwestern U.S. captured the first color images of sprites. The campaign, consisting of 

two airplanes equipped with color video cameras, allowed for triangulation of the 

Sprite 

Storm Flash 

Airglow 
Layer 
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captured video images, and thus enabled analysis of the size and vertical extent of these 

events.   Figure 1.8 shows an example of the first color image data.  This image shows 

that sprites have a red main body, extending over the altitude range of ~50-90 km, and 

lateral dimensions of 5-30 km.  Faint bluish tendrils are seen to extend downward from 

the main body of the sprite toward the cloud tops [Sentman et al., 1995]. 

 

 

Figure 1.8.   First color image of a sprite, showing a red emission from the upper part of 
the sprite, while the lower tendrils have a blue signature.  Triangulation shows the 
altitude extends from typically 40 – 90 km [Adapted, Sentman et al., 1995, Fig. 1b].  
Reproduced by permission of the AGU. 
 

In order to determine the origin, or cause of the red emissions recorded by these 

color cameras, new ground-based measurements were made from Mt. Evans, Colorado, 

during the summer of 1995, using coordinated imager and spectrograph instrumentation  

[Heavner, 2000].  The Mt. Evans observatory was selected because of its high altitude, 

which provided reduced Rayleigh scattering and atmospheric absorption, as well as its 
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prime location for observing TLEs over the U.S. Great Plains.  Using a spectrograph, 

which measured in the wavelength range from 540 to 840 nm, the first optical spectra 

were obtained on June 19, 1995, and revealed the primary emission of sprites to originate 

from the first positive bands of N2 [N2(1PG)].   A surprising result was that there was no 

evidence of the Meinel bands of N2
+, indicating that the mechanism responsible for 

sprites produces little, or no ionization at 70 km altitude [Hampton et al., 1996].  Figure  

1.9 shows a sprite captured at the same time as corresponding data from the spectrograph.  

Independent confirmation of these findings came three weeks later from Yucca Ridge, 

CO (on July 16, 1995), using a slit grating spectrograph system with an intensified CCD 

camera, initially developed to study space shuttle glow [Mende et al., 1995]. 

 

Figure 1.9. (A) Sprite observed on June 19, 1995, 07:24:20 UT,  showing the orientation 
of the spectrograph slit (dotted line), and (B) observed sprite spectrum. The spectrum has 
many fine scale structures within the sprites, including so called “fireworks” [Sentman et 

al., 1996], downward branching [Taylor and Clark, 1996], and upward branching shapes 
[e.g., Stanley et al., 1999]. 
 
 
 Subsequently, Armstrong et al. [1998] obtained the first blue photometric 

measurements of the N2 second positive band (399.8 nm) and the N2
+ first negative 
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(427.8 nm) emissions using a high-speed photometer with narrow band filters, 

establishing that ionization is present, at least in some of the large sprite events. 

Two types of sprites were readily identified in video data.  The first is known as a carrot 

sprite, which exhibits the classic sprite structure of a broad main body topped by diffuse 

hair and multiple downward root-like tendrils.  An example of a carrot sprite is shown in 

Figure 1.10A, which was obtained using a USU CCD camera operated at Yucca Ridge, 

CO, during the summer of 1996. This type of sprite exhibits significant spreading away  

from the vertical axis at both high and low altitudes [Sentman et al., 1995].  The other 

type of sprite was identified later, and is now known as column sprite, often abbreviated 

to c-sprite [Wescott et al., 1998b]. A cluster of c-sprites is shown in Figure 1.10B.  They  

are characterized by thin vertical structures, with a bright main upper body sometimes 

accompanied by long streamers at lower altitudes.  Meteorology may play a major role in 

what type of sprite is produced.  Typically, storms in the United States produce a  

majority of classic sprites, and a lower percentage of c-sprites.  However, this is not 

always the case, as on June 21, 1995, a storm over New Mexico produced almost 

exclusively c-sprites [Wescott et al., 1998b].  It has also been suggested that c-sprites 

tend to be produced over open water (H. Fukunishi, Tohoku University, private 

communication), while some high speed video observations indicate that all sprites may 

begin as c-sprites, and then develop more structured forms [e.g., Stanley et al., 1999]. 

    High resolution telescopic image measurements have revealed very fine structures 

within a sprite with lateral extents ranging from tens to a few hundred meters.  An 

example high resolution image is shown in Figure 1.11, revealing thousands of fine  
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Figure 1.10.  Two examples of sprites captured by Utah State University cameras: (a) a 
false color image of a cluster of carrot sprites obtained from Yucca Ridge, CO, in July 
1996, using a N2 first positive band filter at 865 nm; (b) unfiltered, black and white image 
of a c-sprite cluster imaged over Argentina in February 2006, using an intensified CCD 
camera.  
 
 
streamer structures (transverse extents of 20-50 m) within the main sprite body observed 

in the altitude range of 76-80 km [Gerken et al., 2000].  

 In contrast, high speed video observations have provided details of the 

development of these fine-scale structures, such as upward and downward branching with 

moving beads [e.g., Stanley et al., 1999; Stenbaek-Nielsen et al., 2000; Cummer et al., 

2006; McHarg et al., 2007].   Figure 1.12 shows a high-speed time series of sprite 

development.  In this time sequence, the sprite initially appears as a diffuse emission near 

80 km (known as a halo) and develops vertically upwards and downwards with streamer 

ends resembling luminous beads traveling in both directions. These streamers branch as 
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Figure 1.11.  High resolution image showing complex tendril structures constituting a 
sprite body, with scale-sizes of 10s of meters [Gerken et al., 2000, Fig. 1].  Reproduced 
by permission of the AGU. 
 

they propagate, with the lower part of the upward streamers being very bright (and 

forming the main body of the sprite), while at higher altitudes, the upward traveling 

streamers terminate in diffuse emissions. Downward streamers penetrate deep into the 

stratosphere, and appear to be attracted to other downward propagating streamer 

channels, even colliding with them, forming long lasting bright sprite beads [Cummer et 

al., 2006].  Most recently, very high speed cameras (10,000 frames per second) have 

shown that downward streamers initiate first, with the upward streamers starting a few ms 

afterwards.  At this high temporal resolution, these streamers appear simply as small 

beads of light [McHarg et al., 2007].  Although not always detected with sprites, 

electrical currents within extremely bright sprite bodies have been experimentally 

measured [e.g., Cummer et al., 1998 ], with typical currents ranging from 1.6 – 3.3 kA. 

 In 2004, the Imager of Sprites and Upper Atmospheric Lightning (ISUAL) 

instrument was launched into orbit, on board the Formosat-2 satellite (formerly known as  
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Figure 1.12.  High speed sprite sequence from August 13, 2005 at 03:12:32.0 UT, each 
labeled from the lightning return stroke initiation.  These images were taken from Yucca 
Ridge, CO, using a camera operating at 5000 frames/sec [Cummer et al., 2006, Fig. 2]. 
Reproduced by permission of the AGU.   
 

Roscat-2).  This imager is the first instrument dedicated to observe TLEs from space.  As 

of March 2007, it has recorded nearly 5000 TLEs, including many sprites.  ISUAL views 

sprites in the earth’s limb, and provides data on the TLE together with the in-cloud 

scattered luminosity due to the parent lightning.  It is therefore possible to investigate 

both the temporal evolution of the TLE and the spatial properties of its parent lightning, if 

both signals are able to be separated.  This instrument has also been used to study the 

electric field in sprites [Kuo et al., 2005, Adachi et al., 2006].   

 
1.4.2.  Elves 

 During the summer of 1995, Japanese researchers at Yucca Ridge Field Station 

(40.7°  N, 105° W) near Fort Collins, CO, recorded several very brief red emissions that 

appeared to originate near the base of the nighttime ionosphere at altitudes of ~95 km 

[Fukunishi et al., 1995].  These diffuse optical flashes were subsequently named ELVEs 
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(Emission of Light and VLF perturbations due to EMP sources [Lyons and Nelson, 1995; 

Fukunishi et al., 1996].  Elves have characteristics similar to horizontal airglow 

enhancements  associated with lightning, previously observed by space shuttle imagers 

[Boeck et al., 1992] and also possibly from sounding rockets [Li et al., 1991].    The 

Yucca Ridge observations were made with video cameras co-aligned with high-speed 

photometers, and often preceded structured sprites.   Figure 1.13 shows both photometric 

and video data of an elve and a sprite recorded from Yucca Ridge, together with an 

illustration depicting the relative locations of the elve and sprite [Fukunishi et al., 1996]. 

 

Figure 1.13.   (a) Photometric data of an elve followed ~10 ms by a sprite event.  (b) 
Image of diffuse elve emission, and sketch showing relative locations of the elve and 
sprite [Fukunishi et al., 1996, Figs. 1a, 2a, 2d].  Reproduced by permission of the AGU. 

 

In 1997, Stanford University studied this new type of TLE with a recently 

developed photometer array, known as a Fly’s Eye that was bore-sighted with a low-
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light-level video camera providing the first measurements of the rapid expansion of elves 

[Inan et al., 1997].  They conclude that elves typically have a duration of less than 1 ms, 

and appear to propagate outwards at 3 times the speed of light, achieving horizontal 

scale-sizes of ~100 to 300 km.  Since elves are so transient in nature, they are difficult,  

but not impossible, to capture with cameras operating at typical video rates.  For 

example, Figure 1.14 shows an image of an elve recorded by a USU CCD video camera 

onboard a NASA airplane flying over the southern Mediterranean during the Leonids  

Meteor Storm campaign during November 1999. The camera was aimed at low 

elevations observing thunderstorm activity over Bosnia, and captured multiple images of 

elves as well as sprites.  This figure clearly shows the diffuse doughnut shaped disk with 

a characteristic central hole (the mechanism is discussed further in Chapter 2).  Modeling 

studies have shown that elves are quite distinct from sprites, as they are caused by the 

absorption of the electro-magnetic pulse (EMP) at the base of the ionosphere.  This EMP 

is due to terrestrial lightning strokes. 

 

 

Figure 1.14.  Elve imaged over Europe in 1999 (Courtesy M.J. Taylor, Utah State 
University). 
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Fly’s-eye measurements of elves indicate that they are associated with both 

positive and negative CGs [Barrington-Leigh and Inan, 1999].  Most recently, elves have 

been observed by the ISUAL instrument on the Formosat-2 satellite.  Since its launch 

in 2004, a large number of elves have been imaged, and their potential effects on the 

ionosphere have been studied [Mende et al., 2005].  Figure 1.15 shows an elve imaged by  

the ISUAL instrument.  Due to the satellite viewing geometry, the elve appears as a very 

thin disk above the Earth’s limb with a dark central region. 

 

                      

Figure 1.15.  ISUAL image showing an elve as observed above the Earth from orbit 
[Mende et al., 2005, Fig. 4].  Reproduced by permission of the AGU. 
 

1.4.3.   Halos 

Astute image analysis by Barrington-Leigh et al. [2001] led to the discovery of a 

new type of TLE commonly termed a halo.  For several years, video imagery of halos 

was misinterpreted as signatures of elves.  However, using fast (3000 frames per second) 

video cameras together with the Fly’s Eye high-speed photometer array, Barrington-

Leigh showed that a diffuse flash, similar in shape to elves, but originating at lower 

altitudes, sometimes preceded sprite formation.  These halo events also exhibited longer 

durations (10-20 ms) and significantly smaller diameters (typically < 100 km) than elves.  

Barrington-Leigh et al. [2001] dubbed these flashes sprite halos, but the scientific 
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community has since simplified this to halos.  An image of a diffuse halo disk, along with 

a structured sprite is shown in Figure 1.16. 

 

 

Figure 1.16.  Video image (17 ms resolution) of a halo with a sprite (sprite-halo) 
recorded over the Midwestern U.S. [Adapted from Barrington-Leigh et al., 2001].  
Reproduced by permission of the AGU. 
 
 
 There are relatively few studies that have focused on halos.  Using high-speed 

video cameras with a 1 ms temporal resolution, Stenbaek-Nielsen et al. [2000], showed 

that sprite structures tend to develop from the lower boundary of halos.  Figure 1.17 

shows an example of this phenomena illustrated by their data.  Wescott et al. [2001] 

performed triangulation of several elves, halos, and sprite streamers using cameras at two 

sites, one in Wyoming and the other in South Dakota.  Of the four halo events studied, 

they were found to originate at a mean altitude of ~78 km, exhibit an apparent thickness 

of ~4 km, and a mean diameter of ~66 km.  Barrington-Leigh et al. [2001] also showed 

that halos occurred over the altitude range of ~70-85 km, and with horizontal extents 

from ~40-70 km.   Their modeling studies and high speed image data also showed that 

halos exhibit a concave shape, with the middle of the halo moving downward following 

initiation at speeds of typically ~ 4.3 x 107 m/s [Barrington-Leigh et al., 2001].   
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Miyasato et al. [2002] also investigated the characteristics of halos using high-speed 

multi-anode array photometers.  In conjunction with the photometers, USU video 

cameras operated from Colorado and a University of Alaska high speed camera operated 

from Wyoming.   They were able to clearly show the temporal development from elves, 

to halos, to structured sprites.  They also determined halos exhibited a mean altitude of 

~80 km, and a mean diameter of ~86 km.  These results together with new measurements 

of halos over Brazil will be discussed further in Chapter 5. 

 

  

Figure 1.17.  High speed (1 ms resolution) images of the development of a halo with a 
following sprite, showing streamer initiation and branching, as the halo fades [Stenbaek-

Nielsen et al., 2000, Fig. 1].  Reproduced by permission of the AGU. 
 
 
1.4.4.  Blue Jets and Blue Starters 

These enigmatic events were first captured on video during an airborne campaign 

over an extremely active thunderstorm in Arkansas on July 1, 1994.  Only a few sprites 

were measured during this night, but a large number of upward propagating jets of light 
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were observed.  Remarkably, a total of 56 jet-like events occurred in a 22-minute 

interval.  These new events were clearly different from sprites in two aspects:  (1) color 

video cameras showed that the emissions were blue and, (2) movement of these events 

was upward from the cloud tops at relatively low speeds of ~100 km/s.  Due to their 

signature, these new events were dubbed blue jets [Wescott et al., 1995].  Triangulation 

of a subset of events observed from both aircraft revealed an upper altitude of ~37 km, 

and a maximum upward velocity of ~112 km/s [Wescott et al., 1998a].  Airborne 

measurements of the base of the jets were obscured by cloud. Figure 1.18 shows an 

example of a blue jet captured on photographic film from Reunion Island in the Indian 

Ocean.  The jet appears as an upward bolt of lightning originating close to the cloud tops, 

which fans out and appears blue in color with increasing altitude.   

 

Figure 1.18.  Photo taken from the ground over Reunion Island, showing a blue jet 
emanating from a cloud top (Adapted from an image taken by Patrice Huet). 
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During the same airborne campaign where blue jets were first observed, video 

imagery was also obtained of a related phenomena coined blue starters.  These events are 

similar to blue jets, propagating up from the top of the thunderstorm, but only reaching  

heights of ~26 km, with an average speed of ~120 km/s [Wescott et al., 1998a].  

Intensified color video cameras show that blue starters have the same apparent color as 

blue jets.  They have since been observed in blue filtered images [Wescott et al., 1998b].   

More recently, several gigantic jets have been captured on video.  These events 

are similar in morphology to blue jets, but are able to penetrate to much higher altitudes  

in the atmosphere, extending from the cloud tops to ionospheric heights (between 70 -100 

km), and they exhibit more branching than blue jets [Pasko et al., 2002]. Figure 1.19 

shows a sequence of images taken of a gigantic jet recorded from Puerto Rico.   Similar 

events have been captured over the South China Seas from a ground station in Taiwan 

[Su et al., 2003].  The Taiwanese gigantic jet events extended up to 90 km in altitude, and 

occurred over the open ocean, near the Philippines.  Studies of the meteorological 

conditions of this event show that the gigantic jet originated from the convective core of a 

thunderstorm.  However, Wescott et al. [1998a] has shown that blue jets are not 

coincident with positive or negative ground flashes, but that they occurred in the same 

general area as -CG and large hail.  This result was later confirmed by Su et al. [2003]. 

 

1.5.  Summary 

Figure 1.20 illustrates the relative sizes and locations of TLEs (notable exception 

are jets and starters), in association with a parent thunderstorm.  Sprites, elves, and halos 

have all been shown to be associated with terrestrial CG lightning, with elves occurring 
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Figure 1.19.  False-color images showing development of a gigantic jet captured over 
Puerto Rico [Pasko et al., 2002, Fig. 2].  Reproduced by permission of the Nature 
Publishing Group.  Each field has a 33 ms resolution. 
 
 
first, followed by halos and/or then sprites.  Elves originate at the base of the ionosphere 

(90-100 km altitude), and have a characteristic doughnut shape and horizontal diameters 

of up to 300 km.  They are the most fleeting of the TLE family, and occur in association 

with positive and negative lightning.  Halos are similar disk shape emissions that occur at 

lower altitudes (~80 km) and exhibit smaller horizontal extents, typically 50-100 km. 

They occur several ms after an elve, and may be associated with sprite formation, or may 

occur independently.   Sprites are vertical structured emissions that extend in altitude 

from 40-90 km.  They are the brightest of the TLE emissions, and have lifetimes of up to 

several tens of milliseconds. Although there have been many studies of TLEs in several 

different parts of the world, new campaigns, new instrumentation, and new techniques 

are continuing to build our knowledge of these magnificent events. 

 

1.6.   Objectives of This Study 

Our knowledge about TLEs is rapidly changing, but is still somewhat restricted due to 

number of experimental studies performed since their discovery two decades ago.   
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Figure 1.20.  Sketch showing approximate altitudes and scale-sizes of different TLEs. 
(Courtesy R. Miyasato). 
 
 
Importantly, the concentration of measurements over the Midwestern United States, with 

only a small number of studies in other parts of the world, have provided quantitative 

information about the temporal and spatial morphology of TLEs (mainly of sprites) to 

compare with current models.  In addition, new, high-speed cameras and high-resolution 

cameras are giving us deeper insight into what is actually occurring within the TLE 

during its formation, including the individual streamer dynamics of these events.  

Coordinated measurements using new techniques which analyze the electromagnetic 

signatures of both causative lightning and the following TLE, and these techniques are 

being used to quantify the occurrence of TLEs in different parts of the world, giving new 

information on the dynamics of these events (see section 2.7). 
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The objectives of this study include: 

• Analysis of TLEs observed in South America over two separate campaigns.  This 

area of the world was expected to be a prolific producer of TLEs but had not 

previously been studied. 

• Statistical analysis of a large number of halo and sprite-halo events, which were 

recorded during a large storm complex over Argentina in February, 2006.  Halo 

studies are few, and this investigation is the most comprehensive one to date.   

• Detection and measurement of several halo and sprite-halo events caused by 

negative lightning, and detailed comparison with similar type events caused by 

positive lightning.  To date, only two (possibly three) negative events have been 

confirmed out of the several thousand positive events reported in the literature.  

These novel measurements clearly establish their optical and ELF/VLF 

characteristics. 

 

1.7.   Content of This Dissertation 

Chapter 2 presents a theoretical discussion of electric field changes above 

thunderclouds due to cloud to ground lightning, as well as reviewing models that explain 

TLE characteristics.  Chapter 3 outlines our first TLE observation campaign (Brazil 1) 

conducted in South America, in coordination with the Brazilian National Institute for 

Space Research (INPE), and the University of Washington. This campaign established 

the prevalence of sprites over Brazil.  Chapter 4 describes a second TLE observation 

campaign (Brazil 2) that took place in Southern Brazil, where we witnessed one of the 

largest TLE producing storms was ever recorded.  Chapter 5 contains a detailed study on 
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halo statistics using data from two large storms observed during the Brazil 2 campaign.  

This is followed by Chapter 6, which presents observations and analysis of extremely rare 

sprite and halo events associated with –CG lightning.  Chapter 7 summarizes the 

dissertation results, and presents ideas for future research. 

 

 1.8.   Epigraphs  

At the beginning of each chapter, an epigraph of a TLE observation is presented.  

These were taken from a public outreach program based at the Geophysical Institute at 

the University of Alaska Fairbanks (http://elf.gi.alaska.edu/) that describes observations 

and ongoing experiments in the sprite community.  A link on this website solicits reports 

of similar observations from the public.  The epigraphs at the beginning of each chapter 

are selected reports from these amateur observers.  The epigraphs are accompanied by 

images of TLEs were captured by USU cameras during campaigns in the USA and in 

Brazil. 
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CHAPTER 2 

 

TLE THEORY 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A cluster of c-sprites, imaged over Northern Argentina at 08:20:46 UT by a USU imager 
on February 23, 2006. 

“Over the course of the past few nights, I have observed four sprites over eastern 

Arizona and southwestern New Mexico from two different observing locations.  I 

was on Mt. Lemmon (about 9000’ elevation) in the Catalinas (just north of Tucson) 

and looking almost due north at a line of storms about 80 to 100 miles away.  

Lightning activity was moderately active to sometimes very active.  The sprites 

were difficult to see because of an intervening cloud layer and I suspect that there 

were more than two I saw that night.  I saw two more under more favorable 

conditions the following night from Chiracahua Mountains in the southeastern 

corner of Arizona………I tune my AM radio to a band with no station (typically 

1710 kHz) to ‘listen’ to the lightning (and sprites?).  I initially did this because it 

was a bit odd to watch lightning and not hear any thunder.  My girlfriend and I 

even thought that there may be a difference in the static sound created by cloud-to-

ground and cloud-to-cloud lightning.   I should also like to note that distant station 

reception was enhanced compared with other recent nights when it was clear and I 

was stargazing…” 
 

— Jason Fields, amateur observer  
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2.1.   Introduction 

Within a few years of the first video capture of sprites, several campaigns were 

conducted [e.g., Sentman and Wescott, 1993: Lyons, 1994], and many new types of 

luminous events were discovered, named, and characterized.  It soon became apparent 

that most of the new phenomena were closely associated with lightning, most probably 

driven from below by individual lightning strokes [Winckler, 1995].   

 Coordinated studies over the Midwestern U.S. (where a majority of early 

observations were carried out) showed that, in particular, sprites, elves, and halos were 

almost always associated with fairly large lightning strokes [average 81 kilo-Amperes 

(kA),  Lyons, 1996].  One emerging anomaly was the fact that although elves were 

produced by both positive and negative CGs [Barrington-Leigh and Inan, 1999], sprites 

were almost exclusively correlated only with +CGs.  Recent studies have shown that 

halos may be associated with either positive or negative CGs [e.g., Frey et al., 2007].   

 Several different models have been proposed to explain each of these luminous 

events, and throughout the past decade, advancements in observation techniques have 

stimulated refinements in these theories.  This chapter discusses the electric field above a 

thunderstorm immediately following a lightning stroke, and summarizes the currently 

accepted theories of TLEs. 

 

2.2.  Lightning-Driven Electric Fields 

Electric fields form above lightning storms during the slow buildup of charge 

before a lightning flash and through currents associated with the lightning return stroke 
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and redistribution of charge by the currents.  The return stroke drives the radiation fields 

while the continuing flow of the current forms quasi-static, near field radiation [Rowland, 

1998]. 

 Prior to initiation of lightning discharges, a thunderstorm usually develops a 

complicated, multilayered charge distribution within the clouds (see Chapter 1).  The 

initial charges in the clouds build up over timescales of several seconds or longer.  

Because the atmosphere surrounding the cloud is conducting, even down to 10 km in 

altitude, any electric field above the thundercloud due to intra-cloud charges will be 

small, due to shielding of these charges by atmospheric conductivity.   Lightning caused 

electromagnetic pulses (EMPs) have a much shorter time scale (microseconds), but 

atmospheric conductivity is small enough that EMPs do not affect electric fields until 

they reach the ionosphere.  However, quasi-static electric (QE) fields can change on the 

orders of ms, so they are also weakly shielded by the atmosphere. 

 For simplicity, we assume that the positive charge reservoir at the bottom of a 

typical thundercloud is small, and deal with the large positive charge reservoirs (positive 

at the top of the cloud, and negative towards the middle) to form an electric dipole within 

the cloud. In the following discussion we closely follow derivations by Rowland [1998].   

 A lightning return stroke can be modeled as a uniform line charge and current 

flowing along a vertical axis z at a constant speed v (using cylindrical coordinates ρ, z φ,): 

 

  )/()()(),,(),,( 0 vztHzHItzvQtzI z −== ρδρρ ,  (1) 

 
where I is the current of the return stroke, Qz is the distributed charge, δ is the Dirac delta 

function (included to localize the current to an infinitely thin channel at zero radius), and 



   

41

H is the Heaviside function (to only include z > 0), and t is time. To conserve charge, an 

additional charge is placed at the origin:  

 

         )()()(),,( 0 ztHItzQ δρδρ −= .   (2) 

 
If the lightning return stroke propagates at a normalized speed of ½ the speed of light, or 

v = c/2, it would take 70�s to travel a lightning channel 10 km long.  This time would 

determine the duration of the electromagnetic pulse that is emitted by the return stroke.   

  
2.2.1.   Electromagnetic pulse (EMP) 

One can solve equations 1 and 2 for the vector and scalar potentials.  In the far 

field (using spherical coordinates) the electric field E is transverse [Le Vine and Willet, 

1992]: 
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Here we assume a constant tI ∂∂ / so E has constant amplitude during the pulse.  The field 

is no longer equivalent to that of a standard dipole.  We must also include image currents 

and charges.  Assuming the Earth as a perfect conductor, for a –CG stroke, the return 

stroke is upward.  The image ground field then has 00 II −→  and πθθ −→  in equation 

(3).  If we sum the source and image fields, it gives the total radiation field [Krider, 

1992]: 
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Substituting θcosrz = , and using a trigonometric identity: 
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For a fixed r (assuming v/c < 0.7) the maximum field is at the horizon. Now, taking some 

fixed altitude h, the field peaks at: 
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If v = 0, which would be a typical dipole, θ = 45°.  As v increases, the angle θ will 

decrease.  For example, if v/c = 0.7, θ ~ 36°.  Thus, given a vertical lightning discharge, 

the EMP will be maximum in a ring found around the lightning channel.  The radius of 

the ring will be roughly equal to h, though relativistic effects will tend to reduce the 

radius [Rowland, 1998].  The maximum electric field will be: 
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where the units of the electric field E is in V/m, I0 is in kA, and h is in km.  The electric 

field has a null directly above the discharge.   
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2.2.2. Quasi-Static Fields  

 The current associated with the lightning return stroke will enhance existing 

charge differences inside the parent thunderstorm, or between the cloud and the ground.  

If a current continues long enough, and is large enough, the quasi-static field becomes 

stronger than the field due to the EMP.  In the absence of shielding, the quasi-static 

electric (QE) field from a vertical current is: 

 

    Φ−∇=E ,     (8) 

 
where the potential Φ is given by 
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Assuming )( 22
zrzd +=<< ρ where zd is the discharge length, and substituting Q(t) = 

I0t, equation (9) may be reduced to 
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The far fields solutions are: 
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and 

 

    θθ sin
)(2

3r

ztQ
E d= .    (12) 

 
 For a vertical discharge, the EMP is weakest above a discharge where the QE 

field is strongest.  The ground image doubles this field strength.  Thus for the EMP, the 

field strength is determined by vI0/c while for the QE field, it is determined by Qzd, which 

is known as the charge moment (MQv).  This latter term is very important in the study of 

TLEs. 

 With a –CG, the lightning effectively removes negative charge from the cloud to 

the ground, and the positive charge reservoir will have a greater influence on the electric 

field above the cloud temporarily, producing an upward electric field.  This field causes 

ambient electrons in the atmosphere to move toward the cloud.  In the case of a +CG 

flash, the negative charge reservoir becomes, in a sense, unshielded, and creates a 

temporary electric field above the charge reservoir, which points vertically upwards.  In 

this case, the atmospheric electrons would be accelerated upwards. 

 Both the EMP and QE fields due to lightning discharge are important in TLE 

formation, with EMP being primarily responsible for elve production, and QE fields 

being the main factor for sprite and halo production.  Detailed models of these events 

follow in the next sections. 

 

2.3.  Sprite Models 

Since the first confirmed observations in 1998, numerous sprite theories have 

been developed and subsequently published.  For example, sprite models are given by 
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Pasko et al. [1995, 1996a,b, 1997a,b, 1998], Milikh et al. [1995, 1998a,b], Fernsler and 

Rowland [1996], Taranenko and Roussel-Dupre [1996], Lehtinen et al. [1997], Roussel-

Dupre and Gurevich [1996], Valdivia et al. [1997, 1998], Cho and Rycroft [1998], 

Rycroft and Cho [1998], Raizer et al. [1998], Yukhimuk et al. [1998, 1999], Veronis et al. 

[1999] and Barrington-Leigh et al. [2001] among others.  Theories of sprite generation 

begin with the production of electric fields, typically by one of two mechanisms: (1) the 

quasi-static electric field produced when a CG lightning stoke occurs (typically a +CG 

stroke) [e.g., Pasko et al., 1995, Roussell-Doupre and Gurevich 1996], or (2) a radiation 

field generated by a horizontal cloud discharge [e.g., Milikh et al., 1995; Valdivia et al., 

1997, 1998].  Since almost all sprites have been positively associated with +CG strokes, I 

will not discuss the second mechanism further here, and will focus on the quasi-static 

field theory. 

 These sudden electric fields accelerate electrons high in the atmosphere.  If the 

electrons reach a high enough velocity, collisions with neutral air molecules can cause 

heating, and molecular excitation leading to optical emissions.  Two processes have been 

proposed to explain the optical emission from sprites.  One method assumes acceleration 

of low energy electrons to energies where they can collide with neutral atmospheric 

molecules, causing excitation, or even ionization, of these molecules.  The other method 

involves high energy electrons which accelerate to the MeV energies.  During collision 

with neutral molecules, if more of these runaway electrons are formed, a chain reaction 

may occur, possibly leading to breakdown [Roussell-Dupre and Gurevich, 1996]. 
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2.3.1.  Quasi-Static Heating and Ionization 

Pasko et al. [1995] studied the effects of the QE field using a two-dimensional, 

cylindrical, Poisson solver to calculate the electric field.  The model considered thermal 

breakdown based upon ionization rates calculated by Papadopoulos et al. [1996].  This 

ionization then modified the conductivity.  Excitation rates from Taranenko et al. [1993a] 

were used to calculate the resulting optical emissions.  Changes in electron mobility due 

to the electric field were specified from experimental data [Rowland, 1998].   

 With a typical (large) charge of Q = 300 C, they showed ionization down to 65 

km in altitude.  The first positive band of nitrogen (N21P), which emits in the red part of 

the visible spectrum, dominates the second positive band (blue emissions) by an order of 

magnitude.  The authors pointed out that the emissions are a strongly non-linear function 

of charge Q.  The Pasko et al. [1996a] study of quasi-static fields showed breakdown 

occurring below 50 km.  After the CG discharge, a current must continue to build up to 

obtain a large enough charge Q; this could delay the appearance of the optical emissions 

for 1 to 20 ms.   The model also predicted that the glow would be greater on the outside 

of the sprite, and that above 50 km, the N21P radiation is dominant, whereas below this 

altitude, the N22P emission may become stronger. This model is not dependant on the 

direction of the electric field, but predicts that optical emissions would start high in the 

atmosphere, where the mean free path of the electrons between collisions would be 

sufficient to accelerate electrons to sufficient velocities.  The high-speed observations of 

Stanley et al. [1999] of upward and downward corona-like streamers from a starting point 

near 75 km would appear to support this model prediction.  Figure 2.1 sketches the 

sequence of events which would cause this heating and ionization. 
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Figure 2.1.  Mechanism showing QSF model, showing sprite formation after +CG stroke 
[Pasko et al. 1997a, Fig.2].  Reproduced by permission of the AGU. 
 
 

It has also been proposed that intra-cloud lightning may play an important role in 

TLE production. Although not producing the QE fields necessary for sprites, this spider 

lightning may be important in transferring charge from one part of a cloud to another, 

thus enabling large charge and electric field buildup resulting in powerful CG discharges 

associated with sprites [for more details, see São Sabbas and Sentman, 2003].   

 
2.3.2.  Runaway Ionization 

Gurevich et al. [1992] were the first to model air breakdown in lightning storms, 

and Roussel-Dupre and Gurevich [1996] extended this work to model sprite events.  

Their theoretical runaway model uses naturally occurring high-energy (MeV) seed 

electrons to initiate sprites and blue jets, producing gamma rays and RF bursts in the 

process. These high energy starter electrons cause ionization of the neutral atmosphere, 

producing and accelerating more electrons that continue the ionization process.  This 

breakdown occurs when an electron reaches a kinetic energy in the range of 20 keV to 20 
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MeV.  These seed electrons are given high velocities due to collisions with cosmic rays 

[Rousell-Dupre et al., 1994].  Figure 2.2 shows a sketch of the electric fields involved.  

Bell et al. [1995] showed that increased conductivity reduces the E field and stops the 

runaway process after ~1ms.  Above 80 km, the neutral density is so low that the 

runaways escape, and there is no additional ionization.   

 

 

Figure 2.2.  A sketch showing the electrical field, and subsequent sprite formation 
formed above a thundercloud after, in this case, a +CG lightning discharge, due to the 
runaway breakdown model [Roussel-Dupre and Gurevich, 1996, Fig. 7].  Reproduced by 
permission of the AGU. 
  

This model requires a downward electric field, and thus a +CG lightning stroke 

for initiation.  This model does show a breakdown process that starts with relativistic 

runaway electrons can produce a diffuse blue light from dissipation of the relativistic 

electron beam in the air, resulting in a trail of secondary, low energy electrons in the 

atmosphere that facilitate further breakdown in a lower electric field than for 

conventional breakdown [Lehtinen et al., 1997]. Thus, it was originally thought that this 

model could characterize the blue tendrils seen in sprites [Rakov and Uman, 2003].  
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Recent high speed and high resolution observations have now shown that these lower 

altitude sprite components are individual streamers, and not diffuse glows.  Thus, the 

runaway model is unable to explain the blue streamers of sprites [Lehtinen et al.,  

1999, 2001].  The runaway-breakdown model also predicts the formation of x-rays and 

gamma rays with TLE production, although to date, this result has not yet been 

confirmed. 

 Pasko et al. [1997a] when forming their QE model did not attempt to explain the 

lower altitude sprite features, such as blue tendrils.  This was due, mainly, to the lack of 

observations and understanding as to the morphology of sprite mechanisms at these lower 

altitudes.  In retrospect, it is believed that the original QE model is unable to spatially 

resolve streamers.  However, Lehtinen et al. [1997] did allow that both the conventional 

breakdown mechanism and the runaway mechanism might operate simultaneously in 

sprite formation.  This finding was in essence, the precursor to the discovery of halos, 

which were unidentified at that time. 

 

2.4.  Elve Theories 

The atmospheric density at the bottom of the ionosphere, near 90 km, is such that 

both transient radiation fields associated with return strokes, and other impulsive 

lightning processes, as well as QE fields, can accelerate electrons to sufficient energies to 

result in optical emission, via collisions with neutral molecules.  Inan et al. [1991] 

investigated the effects of lightning on the lower ionosphere, as an explanation for 

absorption and phase changes of VLF sferics.  A one-dimensional model was used to 

study the EMP and thermal heating of the lower ionosphere, as it related to VLF 
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propagation (this is discussed further in Section 2.7). They also pointed out that 

ionization of N2 molecules around 90 km level could cause airglow emissions.  Rodriguez 

et al. [1992] used this same model and looked at the EMP and thermal ionization at the 

lower boundary of the ionosphere.  By using ray tracing, they showed that a vertical 

discharge would form an ellipsoid shaped region, creating a donut-shaped region of 

heating with the hole centered directly over the discharge.  This model compared three 

different density models of the ionosphere, and varied the power of the lightning 

discharge, and did not consider refraction or reflection of power. Figure 2.3 shows a 

sketch of the electron ionization based on this model. 

 

 
Figure 2.3.  Electron ionization for a vertical discharge centered over a source.  This 
figure is for h = ~93 km, with E100 (Electric field normalized to 100 km range) = 40 V/m 
[Rodriguez et al., 1992, Fig. 4b].  Reproduced by permission of the AGU. 
 

 Since these original models were reported, many variations have been published 

[e.g., Taranenko et al., 1993a,b; Rowland et al., 1995, 1996; Milkikh et al., 1995; Inan et 

al.,1996; Glukhov and Inan, 1996; Sukhorukov et al., 1996b], each of which added new 

information and details.  Additional effects and processes include, but are not limited to, 

reflection of the EMP pulse off the ionosphere [Rowland et al., 1995], looking at 

dynamics due to lightning discharge orientations [Rowland et al., 1996], plasma densities 

at the ionospheric boundary [Sukhorukov et al., 1996b], and simulations taking into 
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account relaxation times to achieve steady states in the ionospheric plasma [Glukhov and 

Inan, 1996]. 

 

2.5.  Halo Theories 

Pasko et al. [1995, 1996b, 1997a] developed a two dimensional cylindrically 

symmetric QE field model  to investigate electric fields at mesospheric altitudes 

following sudden removal of charges at lower altitudes due to lightning flashes.  Figure 

2.4 illustrates the optical luminosity of the N2 first positive band corresponding to the 

removal of 100-300 C of charge from a 10 km span of altitude. Although physically 

unknown at the time, this luminosity corresponds to what is now referred to as a halo. 

The establishment of large QE fields above thunderstorms is slow (~1ms) when 

compared with a typical lightning return stroke (~100�s).  High speed video demonstrates 

that halos usually occur within 1 ms of the lightning stroke.  This time sequence led 

Barrington-Leigh et al. [2001] to use a two-dimensional cylindrically symmetric 

electromagnetic model that includes both the EMP and QE fields to study elves, sprites, 

and halos.  This model allows effective studies of lightning-driven ionospheric variations 

on time scales ranging from several �s to tens of ms.  Figure 2.5 shows a time sequenced 

high speed video image, as well as models for the quasi-static electric field, (shown as 

QSF in the diagram), and the model due to an EMP.  This figure clearly shows that the 

QE fields are the most probable mechanism for generations of sprite halos. 

 Using this model Barrington-Leigh et al. [2002] suggested that ionization and 

optical emissions in this halo region, as well as the lower streamer region of sprites, are 

observed to occur both as coupled events, or may occur separately.  Halos are  
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Figure 2.4.  Simulation results for emissions from the 1st (left panel) and 2nd (right 
panel) positive bands of N2 at 0.501 ms after lightning discharge.  The top panels show 
the emission intensities just above the lightning discharge as a function of altitude for 
charges of Q = 100-300 C [Pasko et al., 1995, Fig. 4].  Reproduced by permission of the 
AGU. 
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characterized by very fast relaxation of the driving electric field, owing to high 

conductivity at the lower edges of the ionosphere.  The upward concave shape sometimes 

evident in sprite halos is due to enhanced ionization along the edges of the halo.  They 

also discussed how since the timescale for electrical relaxation varies with altitude, a 

lightning discharge with a fast (<1ms) charge moment change may be sufficient to cause  

 just a halo, especially if lightning currents do not continue to flow.  Conversely, a sprite 

may occur without a halo if the lightning flash is characterized by slow currents. 

 

2.6.  Blue Jet Theories 

In 1996 a model of blue jets was reported based upon positive charge streamers 

[Pasko et al., 1996a].  When the QE field exceeds breakdown threshold at the top of the 

cloud, ionization occurs, and current flows into a streamer head so that the field 

increases, causing further breakdown.  As the streamer head moves upwards, the process 

continues.  This paper used the same process developed by Pasko et al. [1995] for sprite 

formation.  Typical charges of 300-400 C are used with the charge reservoir assumed at 

an altitude of 20 km.  Model results agreed well with limited measurements of the 

velocities and observed shapes of blue jets. 

 Sukhorukov et al. [1996a] also presented a model based upon ionization 

breakdown waves.  In this model the streamer head is negative, and the QE field is 

pointed down, in contrast to Pasko’s model where the streamer head is positive, and the 

QE field is pointed up.  The Sukhorukov model requires an intra-cloud of positive 

polarity or a +CG discharge, moving at least 350 C of charge.  Once again, modeled 

speeds are in good agreement with blue jet observations. 
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 In agreement with the runaway electron model proposed by Roussel-Dupre and 

Gurevich [1996] for sprite production, Sukhorukov demonstrated that when the vertical 

electrical field falls below the breakdown field, the blue jets will stop propagating 

upwards; this usually occurs between 40 and 60 km.  If Q is smaller than the 350 C used 

in the model, the terminal altitude could be much smaller, explaining blue starters 

[Wescott et al., 1995].  Both Sukhorukov et al. [1996a] and Pasko et al. [1996a] showed 

that when the conductivity at the head of the blue jet matched the ambient conductivity of 

the atmosphere, the blue jet will stop propagating.  Neither of these models have, to date, 

been definitively substantiated. 

 

2.7.  VLF/ELF Monitoring and Charge Moments 

In 1994, during storms over the Great Plains, Walter Lyons and Dennis Boccippio 

compared video observations of sprites in Colorado with electromagnetic observations 

from a Massachusetts Institute of Technology (MIT) field station located in Rhode Island 

[Boccippio et al., 1995].  They showed that sprite-producing lightning also excite 

Schumann resonances – electromagnetic wave modes in the natural Earth-ionosphere 

wave guide.  Schuman resonances, being global, extend farther from lightning than the 

QE fields, which is substantial only at distances less than the height of the ionosphere 

[Williams, 2001]. 

 Lightning causes low frequency (<20kHz) electromagnetic impulses (also known 

as radio atmospherics or sferics).  Boccippio et al. [1995] showed that sprite-producing 

lightning strokes are very strong at the lowest frequencies (~<100 Hz).  This discovery 
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provided a new method to study lightning-driven TLEs.  The question that remained was 

why some lightning strokes cause TLEs while others do not. 

 Boccippio et al. [1995] and Reising et al. [1996] showed indirectly that the 

primary difference between lightning flashes producing sprites, and their non sprite-

producing counterparts is that they contain larger charge moment changes (as introduced 

in section 2.2), and thus transfer more charge from the cloud to the ground.  However, 

Cummer and Inan [1997] were the first to qualitatively measure the lightning charge 

moment change.  Further methods and studies have since been conducted [e.g., Cummer 

and Inan, 2000; Cummer and Lyons 2005]. Measurements of these Schumann resonances 

and other extremely low-frequency (ELF) radiation from mesoscale convective systems 

(MCSs) show that for large +CGs, the changes in the charge moment may exceed 1000 

C.km, which is much larger than the charge moments of negative lightning (~100 C.km) 

from ordinary thunderstorms, first measured by Wilson in the early 1900s.  Since charge 

moments depend on charge transfer, as well as a displacement distance from the cloud to 

the ground, +CG flashes typically have larger charge moments, as the positive charge 

reservoirs in clouds are usually higher in altitude. 

 This method of studying sprites follows well established methods of studying CG 

flashes using remote electro-magnetic fields [e.g., Norinder and Knudsen, 1956] which 

have been used for decades.  Information about different lightning parameters is 

embedded in the electromagnetic fields.  Charge moment data is contained in sferics at 

frequencies below roughly 1 kHz (for a more complete description, see Cummer and Inan 

[2000]).  These techniques are based on measuring the electrostatic field change resulting 

from a lightning stroke [e.g., Krehbiel et al., 1979].   
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      Using Schumann resonances, lightning charge moment data can only be 

resolved with approximately 20 ms time resolution, which is substantially longer than the 

typical delay between lightning and sprite formation.  A new method was developed 

using both ELF and VLF radiation from lightning to calculate charge moment change 

[Cummer and Inan, 2000].  The chief advantage of using this band for lightning remote 

sensing is that the wider bandwidth enables sub-millisecond time resolution in calculating 

charge moments.  Another advantage of this method is that ELF and VLF sferics are 

easily detectable many thousands of km away from the lightning stroke.  An example of 

an ELF-VLF magnetic field waveform from a distant lightning stroke is shown in Figure 

2.6.  It has been theorized that to obtain TLEs above thunderstorms, there is a minimum 

threshold (~350-600 C.km) that must be met for initiation [Cummer and Lyons, 2005], 

with larger charge moments providing greater probability of TLE production [Hu et al., 

2002].   

 

2.8.  Summary 

Many different models have been proposed for TLE production.  However, the 

most accepted models agree on the following:  elves are most likely caused by electro-

magnetic pulses (EMPs) due to lightning discharges, where sprites and halos are due to 

quasi static-fields (QEs) due to similar lightning discharges.  Blue jets and blue starters 

are quite possibly due to the same mechanism, but with different starting conditions, but 

are not obviously associated with cloud to ground lightning.  Figure 2.7 shows the 

mechanisms of these events. 

 When multiple TLEs are formed due to the same lightning stroke, they typically  
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Figure 2.6.  The ELF/VLF azimuthal magnetic field Bphi associated with a positive 
lightning stroke (Courtesy S.A. Cummer, Duke University). 
 

 

 
Figure 2.7.  Mechanisms of ELVEs, sprites, halos, and blue jets [Pasko et al., 1997a, Fig. 
1].  Reproduced by permission of the AGU. 

 

 

 



   

59

follow a specific sequence.   High speed photometer and image measurements show  

ELVES occur first, followed within 10s of ms by a halo, which may or may not be 

followed by a sprite within a few ms.  Figure 2.8 shows photometric data to this effect. 

 

 
 

Figure 2.8.  (a) High-speed image of a sprite-halo, captured from a ground station in 
Wyoming on August 18, 1999; (b) associated array photometer data plot and VLF sferics 
waveform [Miyasato et al., 2002, Fig. 3].  Reproduced by permission of the AGU. 

 

 Recent global studies of ELF/VLF measurements have shown that TLEs are 

happening in many areas of the world.  In fact, a recent study [Sato and Fukinishi, 2003] 

showed that during the fall and winter of the northern hemisphere, South America, and 

especially the northern Argentina/southern Brazil region, may be very active in producing 

TLEs.  Figure 2.9 shows a global map of projected TLE occurrence based on these 
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ELF/VLF measurements.  The two observational campaigns conducted in Brazil and 

discussed in Chapters 3 – 6 were stimulated by these findings.  

 

         

Figure 2.9.  Global map of TLE occurrence in fall and winter of the northern hemisphere 
[Sato and Fukunishi, 2003, Fig. 4c].  Reproduced by permission of the AGU. 
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CHAPTER 3 

 

BRAZIL 1 CAMPAIGN 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First sprite imaged from the ground in Brazil. The data were obtained on November 25, 
2002, and show a cluster of column sprites.   

 

 

“I was amazed to read in New Scientist recently, that lightning coming out of the 

top of a thunderstorm had only recently been accepted as a real phenomenon! 

     I saw such an occurrence in the seventies.  I was driving with my parents along 

the road from Umvuma to what is now Masvingo in Zimbabwe.  We were on our 

way to spend the weekend at Kyle Dam.  Ahead of us, perhaps 20 km away, was a 

single very tall thunderstorm.  The rest of the sky was clear.  The top of the storm 

was not flattened into an anvil, but looked rounded like the dome of a Van de Graff 

generator.  From the top of this storm I clearly saw several ‘bolts of lightning’ 

going upwards.  I seem to remember it looked like forked lightning going up from 

the top of the storm and dissipating in the clear air above the storm. 

     I remarked to my parents that there was lightning coming out of the top of the 

thunderstorm ahead of us, and I am sure they saw it too.  All in all, I must have 

seen 5 or 6 occurrence of lightning above that storm before it stopped.  I remember 

thinking that what I had seen was unusual, and I have never seen it since!” 

 
— Richard Grant, Senior Lecturer, Department of Physics and Electronics 
 Rhodes University, Grahamstown, South Africa 
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3.1.  Introduction 

In conjunction with the University of Washington and the Brazilian National 

Institute for Space Research (INPE), Utah State University participated in two 

exploratory campaigns to investigate TLE occurrence and properties over Brazil.  The 

first campaign focused on intense thunderstorms over the state of São Paulo and was 

divided into two parts. The primary measurements were conducted from November 6 to 

December 14, 2002 during the austral spring, which was determined to have better 

weather conditions for our exploratory TLE observations.  The second observation period 

was from February 22 to March 26, 2003, and was planned as a back up to gain 

supplemental information.  Following the success of this campaign, a second observation 

program was conducted from Santa Maria, in the southern-most state of Brazil during 

austral fall, 2006.  The U.S. participation in both of these campaigns was funded by the 

National Science Foundation (NSF).  This chapter introduces measurements obtained 

during the first campaign.   

 Our first campaign in Brazil was strongly influenced by (then) recent ELF/VLF 

observations suggesting that South America is an important and prolific region for sprite 

production [Sato and Fukunishi, 2003].  Until this time, the only optical evidence of 

TLEs over South America was limited to a few chance measurements from the space 

shuttle in the early 1990’s [Boeck et al., 1995], and more recently, several TLE 

observations from the International Space Station (ISS) in October, 2002 [Blanc et al., 

2004]. Figure 3.1 shows the locations of the events imaged by the ISS. The primary goal 

of our first Brazil campaign was to perform exploratory ground-based and aircraft image 
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observations of TLEs over south-central Brazil in coordination with high-altitude, 

balloon-borne measurements by the University of Washington. 

  

 

Figure 3.1.   Map showing the locations of several TLEs detected by nadir pointing 
cameras on the International Space Station (ISS) [Blanc et al., 2004].  The TLEs are 
indicated by the yellow diamonds, while the blue diagonal lines indicate the ISS orbital 
path. The numbers correspond to groups of TLEs imaged.  Of particular note is #11, 
where five sprites were seen near the Brazil/Argentina border on October 6-7, 2002, 
about one month prior to our first Brazil campaign [Blanc et al., 2004, Fig. 3].   
Reproduced by permission from the AGU. 
  

 The two main mission objectives were: 

 
1)  To obtain novel near-field measurements of electromagnetic signatures of 

lightning-producing TLE events (electric and magnetic fields, their visible 

signatures, as well as possible x-rays), using a combination of balloon-borne 

payloads within the stratosphere and ground based/aircraft image observations. 

2) To investigate the occurrence and morphology of TLEs produced over southern 

Brazil, for comparison with prior TLE observations, primarily from the U.S.A.   
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              This program was recognized as ambitious, yet important, as up through the time 

of our campaign these objectives had never been accomplished in any previous 

experiment.  TLEs have been imaged from a number of sites globally, and their 

characteristics have been studied remotely using their VLF signatures.  Current models 

make discriminating predictions of electric fields and runaway electrons, but these 

models have yet to be substantiated, as there have been no successful in-situ 

measurements of the middle atmosphere electrodynamics within 100 km of TLE 

production.  

 Previous investigations of electromagnetic pulses (EMPs) produced by lightning 

have shown them to have an important effect on the ionosphere [e.g., Kelley et al., 1985, 

1990, 1997; Li et al., 1991].  However, the lightning discharges studied were significantly 

smaller than the positive lightning discharges associated with TLE production.    

      Our campaign focused on the electrical coupling between the atmosphere and the 

ionosphere during sprite production.  A similar balloon-borne program (dubbed the 

Sprites99 campaign) took place over the U.S. high plains in 1999 [Bering et al., 2002].  

During this campaign, stratospheric balloons were each equipped with a number of 

sensors to measure the in-situ fields and optical signatures associated with TLEs.  

Ground-based observations using low-light video cameras were also made from three 

sites (Yucca Ridge, CO, Jelm Mountain, WY, and Bear Mountain, SD) to identify the 

sprite signatures. The balloons reached altitudes of ~31 km, and succeeded in obtaining 

electric field measurements, some of which were correlated with sprites and halos imaged 

simultaneously from Yucca Ridge and Jelm Mountain [Bering et al., 2004].  
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 However, a key limitation of their campaign was that balloons were not allowed 

to fly directly over large TLE producing storms, due to safety considerations and 

difficulties in tracking the payloads.  As a result, the measurements were performed at 

significant ranges from the storms, and they did not quantify the near-field signatures.  It 

was later noted that the Sprites99 payloads utilized a low pass filter of 1 kHz, which 

complicated the interpretation of the mesospheric current data and their association with 

sprites [Thomas, 2005].    

 South-central Brazil was chosen as a location for our first Brazil (Brazil 1) 

campaign due to frequent and intense thunderstorm activity, and due to the limited flight 

restrictions for high-altitude balloon measurements. The U.S. Principal Investigator (PI) 

of this program (Dr. R. W. Holzworth, University of Washington) has a long-standing 

collaborative research program with INPE (Brazilian PI Dr. Osmar Pinto Jr.), and the 

INPE research site at Cachoeira Paulista (22.73° S, 44.93° W) was selected for these 

measurements.  This research facility is located in the state of São Paulo, about halfway 

between the cities of São Paulo and Rio de Janeiro in south-eastern Brazil, and provided 

good facilities for the integration, testing and launch of the balloon payloads (supported 

by INPE), as well as a ground-based site for the imager measurements.  This site was also 

in close proximity to a small airport at Guaratingueta where we outfitted an INPE aircraft 

with intensified cameras for our airborne sprite measurements.   

 Difficulties were expected in the observing conditions, so it was proposed that 

two ground stations and the INPE aircraft be employed in our TLE search.  This required 

several cameras, some from USU, and some on loan from Dr. Peter Jenniskens, of the 

Search for Extra Terrestrial Intelligence Institute (SETI) and used previously for airborne 
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meteor studies.  The aircraft was non-pressurized (it had a limited operational altitude of 

~ 4500 meters), so it was planned  for the plane to stand off from nearby storms and 

observe sprites emanating from them at the same time as the balloon payload performed 

in-situ measurements over the storms.  To operate these multiple stations, the imager 

team consisted of Dr. Michael Taylor, Dr. Pierre-Dominique Pautet, and Matthew Bailey 

(all from USU), along with Fernanda São Sabbas (University of Alaska-Fairbanks). 

Our efforts focused on the ground-based and aircraft image measurements to 

quantify the occurrence and spatial/temporal characteristics of TLEs during these two 

extended observing periods in the austral spring and fall.  In particular, our objectives 

were: 

1) To obtain simultaneous observations with the in situ balloon electric and magnetic 

field measurements to definitively correlate their association with TLEs. 

2) To image TLEs on as many nights as possible to provide new evidence on the 

occurrence frequency of these events over South America. 

3) To investigate the optical properties of the TLEs and their associated peak 

currents and charge moments of the causative lightning. 

4) To study the relationship of TLE production with the tropospheric thunderstorms 

within the area. 

  The rest of this chapter describes the instrumentation used in the Brazil 1 

campaign, our first ground-based measurements of sprites over Brazil, subsequent data 

analysis, and results. 
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3.2.   Instrumentation 

 
3.2.1.  University of Washington Instrumentation 

The University of Washington (UW) has considerable experience with prior 

balloon-borne and sounding-rocket measurements studying lightning [e.g., Holzworth et 

al., 1985; Holzworth and Bering, 1998].  However, this was their first balloon program 

focusing on lightning associated with sprites, and as part of this campaign, UW designed 

a new stratospheric payload to be flown near and above thunderstorms.  The payload 

included: (1) vector electric field sensors from DC to VLF (up to 195 V/m); (2) upward 

and downward looking X-ray sensors (20 keV – 1MeV); (3) vector VLF magnetic field 

sensors; (4) positive and negative polar ion conductivity detectors; and (5) an optical 

lightning detector [Holzworth et al., 2005].  All of these instruments had been flown 

previously, except for a new electric field instrument, designed to dramatically increase 

the range of the vector electric field detector.  This instrument was developed by Dr. 

Jeremy Thomas, and the Brazil 1 balloon measurements are described in his Ph.D. 

dissertation [Thomas, 2005].  All data were transmitted to ground using a new 3 megabit 

per second digital telemetry system [Holzworth et al., 2005].  Figure 3.2 shows a 

photograph of one of the balloon payloads under testing in the INPE hangar.  In this 

configuration, the insulated central payload is surrounded by deployed booms, which 

were used to measure the electric and magnetic fields.  Figure 3.3 (a) shows a view of the 

hangar and the dirt runway used for the balloon launch at Cachoeira Paulista while (b) 

shows a photograph of a test payload shortly after launch from Tillamook, Oregon.  
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Unfortunately, no photographs were taken of the balloon during launch at Cachoeira 

Paulista due to the close proximity of a rapidly developing thunderstorm.  

 

                     
Figure 3.2.  University of Washington balloon payload, under testing in INPE hangar at 
Cachoeira Paulista. 
 

 

 

Figure 3.3.  (a) View of the hangar and the dirt runway used for the balloon launch at 
Cachoeira Paulista, and conveys well the nature of these field measurements; (b) a 
photograph of a test payload shortly after launch from Oregon. 
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3.2.2.  USU Instrumentation 

The USU instrumentation consisted of two Gen III intensified Xybion ISG – 780 

CCD cameras (operated at 60 Hz., field rate), and one Gen II intensified Xybion ISG –  

750 CCD camera (operated at 50 Hz., field rate).  In addition, three image-intensified 

Sony camcorders (on loan from P. Jenniskens, SETI Institute) were used to image TLEs 

during this campaign.  Each camera was fitted with a GPS timing system (timing accurate 

to within 1 ms), and video data were recorded on Sony GV-D8000 digital video cassette 

recorders, using Hi-8 and SVHS digital video tapes.  Each camera was fitted with 

standard lenses, providing fields of view ranging from 40 - 60°.  Figure 3.4 shows a 

photograph of one of the Xybion ISG-780 intensified cameras.  This instrument uses a 

GEN III intensifier, and required ITAR (International Trafficking in Arms Regulations) 

approval to be used in Brazil.  This delayed the use of these cameras until the second 

phase (February/March 2003) of this program.  The SETI instruments were used to make 

the first sprite measurements, as described below. 

 

                        

Figure 3.4.    Xybion ISG – 780 Intensified CCD camera. 
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 Figure 3.5 shows a photograph of the INPE aircraft used for airborne imaging of 

the sprites.  This aircraft was based out of nearby Guaratingueta airport, a few km west of 

Cachoeira Paulista, and was used successfully to image sprites during both phases of the 

Brazil 1 campaign. As mentioned earlier, INPE provided this small aircraft to fly at night 

in the vicinity of thunderstorms, with the objective of capturing TLEs using our CCD 

video cameras mounted at low elevations looking out the windows.  Figure 3.6 shows 

camera integration within the aircraft (the insert shows a close up of the SETI institute 

intensified camcorder).  As the flights were limited to approximately three hours 

duration, after landing the cameras were removed and used for further ground-based 

measurements at Cachoeira Paulista.   

   

                                       

Figure 3.5. Research aircraft provided by INPE for Brazil 1 campaign.  
  
 
 During the first phase (November/December 2002) of the campaign, two 

intensified Sony camcorders were installed on the aircraft, providing a wide overlapping 

field of view of ( ~80° ).  These camcorders were secured in such a way that they could 

be moved from one side of the aircraft to the other during flight, depending upon the  
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Figure 3.6.  M. Bailey (foreground) taking a well-earned rest during camera integration, 
while Dr. Michael Taylor and Fernanda São Sabbas finalize adjustments to 
instrumentation.  Insert shows the SETI intensified camcorder mounted on specialized 
moveable supports. 
 
 
flight plan and the location of the target thunderstorm(s).  In addition, a third intensified 

camcorder was stationed at Santa Rita do Passo Quatro (290 km to the north-west 

Cachoeira Paulista, see Figure 3.7).  The choice of this second ground site was based on 

our expectation (using previous meteorological data) that most of the storms would 

develop to the southwest of Cachoeira Paulista.  Having two ground sites also increased 

our probability of recording the TLEs during the prevailing stormy conditions, and 

provided the opportunity for triangulation on the sprites to precisely determine their 

geographic location and altitude. 

 During the February/March 2003 observing phase, the USU Xybion intensified 

imagers were available for measurements, and two were mounted within the aircraft, as 

well as two intensified Sony camcorders.  This set up eliminated possible safety hazards  
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Figure 3.7.  A map showing the state of Sao Paulo, Brazil, indicating the two ground 
sites of the Brazil 1 campaign, Cachoeira Paulista and Santa Rita do Passo Quatro. 
 
 
encountered when moving imagers from one side of the aircraft to the other during flight.  

As measurements at Santa Rita do Passo Quatro were severely compromised by clouds 

during the first phase, a single ground site at Cachoeira Paulista was instrumented with 

the remaining camera. 

 
3.2.3.  Brazilian Lightning Network 

Lightning data were obtained by a network developed at INPE (PI. Dr. Osmar 

Pinto) that was capable of measuring lightning parameters over a large area 

encompassing the southeast region and part of the south and central regions of Brazil 

[Pinto et al., 2004].  At the time of the Brazil 1 campaign, the network composed 23 

sensors (7 Impact and 16 LPATS sensors, see Appendix A for further details), and has 

Santa Rita do Passo Quatro 

Cachoeira Paulista 
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since been further enhanced. Data were analyzed to determine lightning location, number 

of strokes, peak current, and polarity.  As intra-cloud lightning can contaminate the 

measurement of +CG strokes, a minimum event detection of 10 kA peak current was 

used during data analysis to help eliminate uncertainties in +CG detection by this 

network [Pinto et al., 2004]. 

 

3.3.   First Sprite Observations 

On the evening of November 25, 2002, a Mesoscale Convective System (MCS) 

developed and moved over the state of São Paulo.  After the storm passed over Cachoeira 

Paulista, and local cloud cover had significantly dissipated, we successfully imaged 

sprites from this storm located to the north near the city of Belo Horizonte, at a range of 

~320km.  The first image is shown in Figure 3.8, and consisted of a beautiful cluster of 

column sprites (occurring at 02:49:19.611 UT) that appear to be slightly tilted from the 

vertical. Within three minutes, a second single C-sprite was captured at the same location.  

These events were captured in the waning stages of the MCS, and no further TLEs were 

imaged.  No balloon launch was attempted on this night.  Nevertheless these first data 

demonstrated the existence and capability of measuring sprites over Brazil using ground-

based stations [Pinto et al., 2004]. A map showing the geographical locations of these 

two events, as determined by the Brazilian Lightning Network, is shown in Figure 3.9 

(corresponding to events 1 and 2 in Table 3.1), together with a GOES satellite image of 

the storm at approximately the same time (2:40 UT).   

The next night, November 26, a cold front moved over São Paulo and the 

neighboring state of Parana, generating strong storm activity.  Although ground visibility  
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Figure 3.8.  First ground-based observation of a sprite from Cachoeira Paulista, Brazil.  
The event comprised a cluster of near vertical C-sprites observed at low elevations, at a 
range of 320 km.  A tree obscures the view to the left, and a tractor is evident in the 
foreground.  The GPS information indicates the date and time of this event, and the 
latitude and longitude of the ground site. 
 
 

           

Figure 3.9. Satellite image showing locations of the two sprite events captured from 
ground-based cameras on November 25, 2002, as well as the observation site at 
Cachoeira Paulista.  This image was taken at 02:40 UT. 
 

 



   

75

was limited at Cachoeira Paulista, the aircraft was able to take off and fly alongside a 

large storm in a clear corridor (as shown in Figure 3.11).  This was the first instrumented 

test flight of the aircraft, and four sprites were successfully imaged to the southwest of 

Cachoeria Paulista (corresponding to events 3 – 6 in Table 3.1) and comprised several 

carrots and clustered columns.  An example of one of these events (#6) is given in Figure 

3.10, and shows two isolated carrot sprites to the right of the field of view with lightning 

activity illuminating clouds at lower elevations to the left.  This event was captured at 

03:09:50.630 UT. Figure 3.11 maps the location of events 3, 4, and 6, as identified by the 

lightning network. The image data show that event 5 occurred at a similar azimuth to the 

other events, but was not detected by its lightning signature.  The GOES map showing 

the location of the aircraft and the sprite events is given in Figure 3.11.  All four events 

were recorded at ~ 300 – 350 km range from the aircraft. 

 

 

Figure 3.10.  Carrot sprites imaged from the INPE provided aircraft on November 26th at 
03:09:50.630 UT.  Note the lightning illuminated clouds below. 
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Figure 3.11. Map showing location of the three events captured on the night of 
November 26, 2002, along with the corresponding satellite image showing the cold front 
at 2:40 UT.  Also shown is the approximate location of the aircraft as it captured the TLE 
images. 
      

Meteorological conditions again did not allow for the launching of the balloon-

borne payload on this night, and no corresponding electric or magnetic field 

measurements were made. Ground-based measurements were continued until Dec 14, but 

no further sprites were imaged due to deteriorating weather conditions. However, a 

balloon was successfully launched on December 6-7, and high-quality in-situ 

measurements were made above an intense localized storm that grew rapidly.  The 

balloon achieved an altitude of 34 km, and detected exceptionally large vertical electric  

fields of 140 V/m, more than an order of magnitude higher than previous measurements 

taken at >30 km altitude [Holzworth et al., 2005]. This electric field was clearly 

associated with +CG with a peak current of 53 kA, and may have been associated with a 

TLE.  However, the onboard photometer did not register any optical signature, and from  
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the ground we were not able to correlate this event with a sprite, as the close proximity of 

the storm restricted our aircraft and ground observations on this occasion.   

 In summary, the first phase of this exploratory campaign was successful in 

detecting and measuring sprites over Brazil and in obtaining high-quality balloon-borne 

measurements of large lightning-generated electric fields.  However, our efforts to obtain 

coincident balloon and ground-based measurements were thwarted by rapidly changing 

meteorological conditions.  As a result, further measurements were planned for the 

following austral fall period in 2003. 

 

3.4.   Phase 2 Sprite Measurements 

During the second phase of the Brazil 1 campaign (February 22 – March 26, 

2003), images of TLEs were captured only on March 21, 2003, which proved to be a very 

active night.  On this occasion, there were many storms in the area, and TLEs were 

imaged from four separate storms; three of which developed within a large cold front 

moving in from the southwest, and one of which was associated with a local air mass 

thunderstorm to the northeast [Pinto et al., 2004].  Figure 3.12a summarizes the events 

imaged by our cameras, These events were successfully located by the Brazilian lightning 

network and the associated satellite imagery are shown at two times, 01:40 and 07:10 UT, 

identifying active regions in the cold front. 

 On this night airborne measurements were made during the early evening hours, 

and two sprites were detected, one from the isolated storm to the northeast (~00:40 UT), 

and the second (not registered by the lightning network) from an active region in the cold 

front near the coast to the southwest.  Subsequently, ground-based observations from  
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Figure 3.12.  (a) Map showing locations eleven TLE events (events 7-10, 12-18, Table 
3.1), imaged on March 21, 2003, and correlated with positive lightning discharges 
recorded from the Brazilian lightning network.  These events were imaged both from the 
ground and the aircraft.  An additional event (event 11) had no associated lightning 
signature;  Inserts b and c show satellite infra-red images (01:40 and 07:10 UT) locating 
intense convective regions in the cold front where sprites were produced. 
 

Cachoeira Paulista captured a further 10 sprites (events 9-18, as listed in Table 3.1) 

originating from the two main active areas to the west (around 06:15 UT) and southwest 

(~07:00 UT) as indicated by Figure 3.12a.  Unfortunately, again no balloon 

measurements were possible on this night due to strong winds at Cachoeira Paulista.  A 

collage illustrating 16 of the 18 TLEs observed during the Brazil 1 program is shown in 

Figure 3.13.  The majority of the events were sprites, ranging from a faint unit sprite 

(e.g., event 2) to multiple carrots (e.g., events 6 and 16), and clustered c-sprites (e.g., 

events 1, 4, and 17), with only two halo/elve detections. 

 

3.5.  Results 

Separately, the balloon-borne payload succeeded in capturing in situ 
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Figure 3.13.  Images of 16 sprite events seen during the Brazil 1 campaign (excluding 
events 12 and 13).   
 
 
measurements indicating very high electric fields over intense thunderstorms, while the 

ground-based and airborne images established the frequent presence of sprites over Brazil 

(they were imaged whenever observing conditions permitted), and their direct association 

with lightning events as determined by the lightning network.  The analysis of the 

lightning data showed that all TLEs were correlated with +CG (as detected by the 

Brazilian lightning network) lightning strokes, with the possible exception of event 8, 

whose lightning signature was ambiguous.  Peak currents ranged from 26 – 150 kA, the 
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lowest values of which are somewhat smaller than typical peak currents over the mid-

western U.S. associated with sprite production [Lyons, 1996]. 

Table 3.1 summarizes the 18 TLEs imaged on this campaign, and compares the 

GPS times of the optical emission with the lightning detections (two of which had no  

corresponding lightning data).  The peak currents are also listed together with their 

calculated impulsive charge moment changes (the charge moment for the first 2 ms of the 

lightning stroke), as discussed in Chapter 2 and Appendix B.  These were determined 

using ELF/VLF signatures of the parent lightning strokes, as measured at Syowa Station, 

Antarctica by H. Fukunishi and M. Sato, Tohoku University, Japan. These independent 

measurements confirmed the positive polarity of the sprite CGs in each case, and 

revealed a broad range of impulsive (2ms) charge moments (an order of magnitude) 

associated with these events, varying from 153 C.km to 1497 C.km.   

   It is interesting to note that some (~18%) of the charge moments were less than 

300 C.km, which is a surprising result since this is considered as an approximate working 

lower limit for TLE production, at least for spriting storms over the U.S. [Cummer and 

Lyons, 2005].  This result has been further investigated by Hu et al. [2002] who 

determined the probability of sprite initiation as a function of charge moment, for a single 

spriting storm over the U.S.  Their results are illustrated in Figure 3.14.  Of the 76 events 

they analyzed, the overwhelming majority were associated with large charge moments 

over 600 C.km, with only 18% occurring in the 200-600 C.km range, and 4% with lower 

charge moments.  In comparison, our Brazilian observations indicate 71% below 600 

C.km.   



   

81

Table 3.1.  Summary of all Brazil 1 TLE events, including peak current (from the 
Brazilian Lightning Detection Network), and impulsive charge moment changes (from 
ELF/VLF measurements, Tohoku University, Japan).  

  
 

 

 

 

Figure 3.14.  Probability of sprite initiation vs. charge moment change for positive CG 
discharges.  The numbers labeled above each bar indicate the number of sprites (76 total) 
[Reproduced from Hu et al., 2002, Fig. 6]. 
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To investigate our data further, we have analyzed all lightning events with peak 

currents >26 kA (the lowest peak current associated with a sprite, Table 3.1) that 

occurred within our ground-based cameras’ fields of view for March 21, 2003.  Tohoku  

University determined the charge moments associated with each of these events 

(regardless of whether they produced a TLE or not). Results are plotted in Figure 3.15.   

Within the cameras’ fields of view, a total of 125 events had peak currents of over 26 kA.  

The number of lightning events that did not produce TLEs decreased rapidly with 

increasing charge moment.  Also shown on the plot are the charge moments for the +CGs 

associated with all 18 TLEs.   This shows that as the charge moment becomes larger, it is 

more likely that a +CG flash will cause a TLE.  This result agrees well with the study of 

Hu et al. [2002] over the Mid-western U.S. 

 

 

Figure 3.15.  Plot showing all lightning flashes >26 kA peak current within ground 
cameras fields of view, for March 21, 2003.   For comparison, the distribution of charge 
moments for the 18 TLEs is indicated. 
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3.6.  Brazil 1 Campaign Summary 

The Brazil 1 campaign was important in many ways, mainly in establishing the 

apparent prevalence of sprites over Brazil, an important region that had not previously 

been studied.  These coordinated balloon and ground-based measurements also raised 

many questions.  Pinto et al. [2004] showed that during the storms associated with TLE 

production, sprites occurred when the percentage of positive flashes in the storm was 

much higher than the average percentage for the whole life of the storm.  All sprite events 

were also associated with +CG flashes with average peak currents larger than mean peak 

currents of the positive CG population within the same storm.  Although direct 

correlation with image data proved to be extremely difficult, the balloon-borne 

instrumentation measured the largest electric field change (>140 V/m) ever observed 

above 30 km.  However, as discussed in Thomas et al. [2005] this electric field change 

was not deemed large enough to initiate conventional breakdown, which would result in a 

TLE.  Thomas et al. [2005] hypothesized that the measured electric fields support the QE 

model for sprite production, and suggest further measurements were needed to correlate 

the electric field changes with TLE imagery.   

  Our study of the charge moments associated with sprites observed in this 

campaign suggests significant differences in the storms capable of creating sprites over 

Brazil as compared with their U.S. counterparts.  However, as research groups use 

different methods to determine charge moments, it is also possible that this discrepancy 

may lie solely in the analysis of the charge moments.  As will be discussed in Chapter 4 

(which details further measurements from Brazil), this led to the inclusion of ELF/VLF 

measurements by the Duke University group who developed a robust estimate for the 
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impulsive (2ms) charge moments.  As a result of the Brazil 1 campaign and the questions 

it raised, a second sprite measurements program was planned for February-March of 

2006.  This campaign and its results are discussed in Chapters 4, 5, and 6. 
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CHAPTER 4 

 

BRAZIL 2 CAMPAIGN 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Example of a sprite-halo imaged over Northern Argentina on February 23, 2006. The 

event was particularly bright, and temporarily overloaded the camera, but nevertheless it 
clearly shows a well-developed horizontal halo structure, with superposed vertical sprite 

tendrils. 

 

“In 1991, I was with my family at a KOA campground in far northeastern New 

Mexico.  That night, a huge thunderstorm developed in the distance.  I was in high 

school at the time, but was interested in meteorology. 

 The thunderstorm was huge and the lightning was very impressive.  Lots of 

branched fingers of lightning which propagate upwards throughout the 

mesocyclone, illuminating the entire storm – it was probably the most beautiful 

storm I have ever seen.  The campground was in a flat area and the storm was 

sufficiently far away to see it in its entirety. 

 During the storm, I noticed weird blue flashes above the cloud from time 

to time.  I didn’t know what they were.  I figured they were some weird optical 

illusion, or maybe reflections off my glasses or something.  Several years later I 

saw a report on TV and realized that I had seen blue jets.  They were definitely 

blue jets because they “poofed” upwards in an inverted cone shape almost like a 

fountain.  During the storm I noticed maybe 15 to 20 of these…..” 

 

—Joe Warmbrodt, amateur observer 
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4.1.  Introduction 

Following the first Brazil sprites campaign, which demonstrated that TLEs are an 

important and prominent phenomena in Brazil, a second joint NSF/INPE campaign was 

funded with the following main objectives:  (1) to obtain new coordinated in-situ balloon 

and image measurements, and (2) to investigate TLEs from exceptionally large, long 

duration storms located over southern Brazil and northern Argentina.  This campaign was 

somewhat different in instrumentation, field techniques, location, and results from the 

Brazil 1 campaign.  In particular, an important technical aspect of this new program was 

to overcome inherent problems of obtaining coordinated imagery by including a small 

all-sky imager on the balloon payload. 

 Santa Maria is centrally located in the southernmost state of Brazil, Rio Grande 

do Sul, which borders Argentina and Uruguay.  This site was chosen as the primary base 

for the Brazil 2 campaign (see Figure 4.1).   In this region of Brazil, as well as 

neighboring Argentina and Uruguay, exceptionally large MCS storms, such as those that 

form over the midwestern U.S., occur frequently during the late spring and early autumn 

seasons.  This new location in southern Brazil provided an excellent opportunity to fly a 

balloon-borne payload over exceptionally large TLE-producing storms.   

 The Federal University of Santa Maria (UFSM) and co-located INPE facilities 

provided housing and support for the balloon payload integration, testing, and launch.  In 

addition, a ground-based measurement site was set up at the Southern Space Observatory 

(SSO), located on a plateau at São Martinho da Serra (29.4°, 53.8° W), approximately 30 

km to the north of Santa Maria.  This isolated facility (altitude 480 m) enabled high-

quality observations at ranges of up to ~1000 km over a broad azimuth range, as there 
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were few viewing obstructions, and no lights from nearby cities to pollute the image data.  

This is illustrated in Figure 4.2, which shows a view to the south and west from SSO.   

  

                   

Figure 4.1.  Map showing the location of Santa Maria, in Rio Grande do Sul, which was 
the center for the Brazil 2 campaign.  
 

 

 

Figure 4.2.   Wide field image from the ground site (29.4° S, 53.8° W) at the Southern 
Space Observatory (SSO) showing excellent viewing conditions at low elevations over a 
broad westward azimuth range.  
 

 As with the Brazil 1 program, this second campaign was a cooperative endeavor 

with the University of Washington, INPE, and Utah State University.  In addition, Duke 
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University provided new ELF/VLF instrumentation at SSO to record near-field lightning 

sferic data to determine the impulsive charge moments of the TLEs.  The University of  

Washington refurbished the balloon-borne payloads which were modified to include an 

all-sky camera provided by USU, while INPE provided the integration and balloon 

launching facilities and personnel.  Utah State University also fielded cameras at SSO for 

ground-based sprite measurements alongside the Duke University ELF/VLF detectors.

 This chapter describes this second campaign, including the instrumentation and 

detailed discussion of two MCS storms which occurred in February and March, 2006, 

and their associated TLEs measurements.  Chapters 5 and 6 present statistical studies of 

halos and sprite-halos, and rare measurements of TLEs caused by –CG discharges 

discovered during one of these storms. 

 

4.2.   Instrumentation 

 
4.2.1.   USU Imaging Instrumentation 

During the Brazil 2 campaign, image measurements were made using two Xybion 

ISG – 780 GEN III intensified CCD cameras for ground-based observations, and four 

new WATEC WAT-120N cameras, one each mounted on top of the four balloon 

payloads.  The addition of the WATEC cameras provided a new capability for real-time 

measurements of TLEs from the balloon at ranges of up to several hundred km, thereby 

negating problems of local cloud cover that often inhibited coordinated measurements 

from the ground during the Brazil 1 campaign.  Figure 4.3a shows a photograph of the 

WATEC cameras, fitted with a Fujinon YV 2.2 x 1.4 A-2 all-sky lens.  The camera is 

small, lightweight (6.3 cm long, and 150 grams without the controller and lens), and low 
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power, making it ideal for balloon-borne measurements.  Furthermore, WATEC cameras 

have been used successfully to image sprites, as well as giant jets [Su et al., 2003].   

  

Figure 4.3. (a)  WATEC 120N Camera, fitted with a Fujinon all-sky (180°) lens. (b) 
Close-up showing WATEC camera mounted on top of the balloon payload (in pink 
insulated box). 
 
 
 For the balloon-borne measurements, the camera was environmentally tested at 

the University of Washington, to simulate cold, low pressure atmospheric conditions at 

nominal balloon altitudes (> 30km).  Our plan was to switch the camera on at launch, and 

to continuously transmit video data via a separate telemetry link from the balloon-borne 

payload during the course of each mission.  Two receiving stations, one at the launch site 

at Santa Maria, and the second at SSO, were used to record the video data, as well as to 

superimpose GPS timing information on each video field (positional information was 

recorded onboard the balloon payload and transmitted separately with the other 

instrument data). Figure 4.3b shows a close-up of the camera mounted on the top of one 

of the balloon payloads.  Each system was housed in a lightweight insulating box, fitted 

with a Perspex dome, enabling all-sky viewing (except in the zenith, which was blocked 
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by the balloon), and was purged with dry nitrogen for an extended period of time prior to 

each launch, to eliminate problems with condensation of the inside of the dome.   

 As with the Brazil 1 campaign measurements, the Xybion cameras utilized 

interchangeable lenses with fields of view of 48°, 30°, or 15°. Both of these cameras were 

operated in manual gain and field mode (60 Hz), resulting in 16.7 ms exposure time. 

Each camera was fitted with a GPS timing system (timing accurate to within 1 ms), and 

data were recorded on Sony GV-D8000 digital video cassette recorders, using Digital8 

video tapes.     

 Since difficulties were expected with the ground-based observing conditions, it 

was initially proposed that two ground stations be employed, as well as the new WATEC 

cameras on each balloon payload.  The second ground site was originally planned at 

Uraguaiana (near the border with Argentina and Uruguay), which was also planned to be 

a down-range telemetry reception site.  However, due to limitations in personnel, this site 

was not utilized.  No INPE aircraft was available for this campaign.  However, it was our 

hope that between the ground site at SSO and the balloon-borne cameras, we would be 

able to see a majority of TLEs within several hundred km of the balloon flight path.   

 
4.2.2.   University of Washington Balloon-Borne Instrumentation 

The University of Washington (UW) payloads were outfitted with similar 

instrumentation as used for the Brazil 1 campaign, with one notable exception.  The new 

payloads included an improved electrical field sensor capable of measuring large vector 

fields up to about 500 V/m per axis.  This modification was made as a result of the high 

fields observed during the Brazil 1 campaign. Figure 4.4 shows the UW balloon payload 



   

91

being hand carried from the integration facility at Santa Maria to the nearby field launch 

site.    

         

 
Figure 4.4.  UW and USU researchers moving the balloon payload from the integration 
facility at the University of Santa Maria to the launch site in an adjacent field.  The USU 
camera (covered) is evident on the top of the payload. (Personnel left to right, Mike 
McCarthy, Dominique Pautet (behind payload), Matthew Bailey, and Michael 
Kokorowski.) 
. 

 Figure 4.5 shows preparations for a test launch at the University Federal de Santa 

Maria February 15, 2006.  The balloon was launched during expected moderate storm 

activity from a field adjacent to the INPE integration facility in the early evening hours.  

Figure 4.6a shows balloon launch and (b) an all-sky video image recorded by the onboard 

sprite imager as the balloon ascended.  At this time, the video field depicts the balloon in 

the center of the image together with the upward pointing boom spheres.  This data, 
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which was taken soon after launch, illustrates the available fields of view for sprite 

measurements.  However, on this occasion, the balloon failed to reach observation 

altitude, and the flight was terminated after approximately 2 hours.  Nevertheless, it was 

successful in demonstrating the operational capability of the USU camera. 

 

                    
 

Figure 4.5.  Preparations for a test balloon and payload launched from Santa Maria on 
Feb. 15, 2006. 
 
 
4.2.3.  Lightning Detection Networks 

For the Brazil 2 campaign, a set of lightning sensors was deployed by INPE, 

providing lightning location and peak current data over most of the state of Rio Grande 

do Sul.  Unfortunately, this network was not able to accurately characterize lightning 

events in neighboring northern Argentina and in Paraguay, where the storms that we 

observed during the campaign were located.  However, the University of Washington had  
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Figure 4.6.  (a) Photo showing balloon launch configuration.  The payload was 
suspended 27 meters below the balloon. (b)Video image taken from USU WATEC 
camera mounted on top of the balloon payload.  This figure shows a 180° field of view, 
with the balloon and one of the spherical payload booms in the center.   
  

real-time access to the World Wide Lightning Location Network (WWLLN, see 

http://wwwlln.net), which was a new global system that they had helped develop.   

 WWLLN data were used extensively to identify the timing and geographic 

location of lightning discharges by measuring very low frequency (VLF) radiation (3-30 

kHz) from the lightning strokes.  The timing, position, and efficiency of WWLLN have 

been estimated for several key geographic regions, including South America, by 

comparison with local ground-based lightning detection systems [e.g., Lay et al., 2004]. 

These investigations show that WWLLN is most sensitive to large lightning strokes and it 

is estimated that ~15-20% of all cloud-to-ground lightning discharges within South 

America are located with a spatial accuracy of ~10 km and a timing uncertainty of <30 

µs. The WWLLN data were updated every 10 min and were used to monitor the storm 

conditions in near real time to aid the balloon launch and subsequently for the ground-
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based TLE image measurements at SSO.  These data were also used for detailed analysis 

of the storms as discussed in Chapters 5 and 6. 

 
4.2.4.   Duke University Instrumentation 

 The addition of Duke University electromagnetic sensor array provided accurate 

measurements of the impulsive charge moments associated with the parent lightning of 

the observed TLEs.  This system comprised of one pair of magnetic field coils to measure 

the vector horizontal magnetic field and one vertical AC electric field sensor (provided 

by Quasar Federal Systems, Inc). Each signal was continuously sampled at 100 kHz. The 

magnetic and electric field sensors had flat pass bands from 2 Hz to 25 kHz, and 5 Hz to 

25 kHz, respectively. Figure 4.7 shows the Duke sensor located in a nearby field at SSO.  

This system was operated semi-autonomously throughout the campaign.  Absolute timing 

of lightning strokes was obtained using GPS, which was validated to better than 20µs 

prior to deployment in Brazil, using U.S. National Lightning Detection Network data. 

Cross calibration measurements were also used to ensure that the impulsive �MQv were 

directly comparable with recent measurements using permanent sensors at Duke 

University [e.g., Cummer and Lyons, 2005].  These data also yielded directional 

information to the lightning source with an uncertainty of ~2°, as discussed in Taylor et 

al. [2008]. 

   

4.3.   Storm 1 

 During this campaign, TLEs were captured on two nights, February 22-23, 2006 

(hereafter referred to as storm 1), and March 3-4, 2006 (storm 2). Between these two  
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Figure 4.7. (a)  Duke University electromagnetic sensors, used to measure lightning 
sferics, and (b) system deployment at SSO. 
 
 
storms, over 550 TLEs were imaged, mainly over Northern Argentina.  On 22 February, 

during the late morning hours (local time), a large thunderstorm system developed over 

the Pampas region of northern Argentina, east of Buenos Aires.  As the day progressed, 

this system continued to develop and strengthen while moving northwards.  By the late 

evening (02:30 UT /23:30 LT), the storm encompassed ~300,000 km2,as determined from 

the Geostationary Operational Environmental Satellite (GOES) infrared images of cloud 

top temperatures [Thomas et al., 2007].  During most of the night the storm complex lay 

almost due west of SSO at a large range of ~ 500-900 km and had grown to encompass 

an area of about 550,000 km2. This storm was significantly larger than most sprite-

producing storms over the US High Plains [~300,000 km2, Lyons et al., 2006], but such 

storms are relatively common for this region of South America during the summer 

months.  Figure 4.8 shows a GOES image of the storm at 06:30 UT (03:30 LT) over 

Argentina, well to the west of Santa Maria, and alas, out of range of the balloon 

measurements.  It is interesting to note that the size of the storm is as large as the state of 
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Rio Grande do Sul. The site at Santa Maria (SM) is marked, as well as a scale size, 

showing the large size of the storm.     

 

           

Figure 4.8.  GOES 12 infrared image of a TLE producing thunderstorm to the west and 
southwest of SSO.  The color bars shows the temperature scale within the storm.   
 
 
 Recently, São Sabbas et al. [in review]1 compared this storm with a similar size 

storm over the Midwestern U.S. that also produced many sprites, of which 40 were 

analyzed [São Sabbas and Sentman, 2003].  Three differences were emphasized:  (1) 

Using satellite data, minimum cloud top temperatures of the south American storm (-70° 

C) were shown to be ~10° C warmer than its North American counterpart.  (2) The South 

American storm comprised several separate convective core regions within the main 

storm complex, whereas the MCC over the Midwestern U.S. consisted of one main 

                                                 
1 São Sabbas, F. T., M. J. Taylor, P.-D. Pautet,  M. Bailey, S. Cummer, R. R. Azambuja,  J. P. C. Santiago, 
J. N. Thomas, O. Pinto Jr., N. N. Solorzano, N. J. Schuch, S. R. Freitas, N. J. Ferreira, and J. C. Conforte 
(in review), Observations of prolific transient luminous event production above a mesoscale convective 
system in Argentina during the Sprite2006 campaign in Brazil, J. Geophys. Res. 
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convective core.  These differences may or may not be significant, as U.S. storms may 

also have multiple convective cores (Dr. Walter Lyons, personal communication), and 

cloud top temperatures can vary from storm to storm by at least 10°C. (3) In the U.S.  

storm, the TLEs were associated with CG lightning in the trailing stratiform region of the 

storm, as that is where large +CG strokes tend to be located [Lyons et al., 2008].  

However, in the February 22-23 storm, TLEs occurred in many different areas of the 

storm, which may, in part, be due to the existence of multiple convective cores of the 

storm.  Moreover, Solorzano et al. [2006] has shown that the maximum rate of TLEs 

occurred approximately one hour after the peak in lightning rates, as determined by 

WWLLN.  This differs from the study of São Sabbas and Sentman [2003] which showed 

that TLE rates peaked at the same time as the lightning rates. 

 Sprites were first detected at 02:35 UT (23:35 LT), shortly after our image 

observations began at SSO.  Observations continued until dawn (~08:30 UT), resulting in 

445 TLEs captured during ~6-hrs of observations, making it the third most active TLE-

producing storm on record [Thomas et al., 2007]. The majority of the TLEs were imaged  

at large ranges (500 -1000 km), and approximately 60% comprised sprite clusters (with 

carrot and columnar forms). The storm was also rich in halo events, and a total of 121 

sprite-halos as well as 62 unstructured halos, were observed.    

 To determine the geographical location of each of these TLEs, we used WWLLN 

lightning data which identified timing and position of the parent lightning flashes 

associated with these sprite and halo events.  WWLLN is not able to detect polarity of 

CG lightning, but was able to accurately determine the location and timing of each 

lightning stroke with an uncertainty of approximately 10 km and 1 ms respectively.   
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Using the GPS timing (accurate to <30�s) encoded on our video data, TLEs matching 

WWLLN detection were first identified. The majority of these events were found to 

occur within the duration of the video field.  However, we also investigated TLEs that 

occurred up to 30 ms after the WWLLN lightning detection to account for delayed onset 

of the sprite. Using the star field to calibrate each video image, these events were then 

projected onto a geographical grid (using an initial assumed height of 90 km for the TLE 

top).  This enabled us to determine whether the image of the sprite occurred at the same 

azimuth as the one determined from the lightning data.  The observed sprite clusters were 

typically 50-100 km wide, and located at ranges of 500-1000 km, which corresponded to 

an uncertainty in azimuth of typically ± 2-4°. Once the parent lightning was identified, 

the true altitude of the TLE was then found by adjusting the assumed altitude so that its 

geographic projection matched the lightning location (to within an uncertainty of 25-50 

km, due to the finite size of the sprite).  As sprites are known to occur over a finite 

altitude range of typically 80-90 km for their tops, self-consistency of the derived 

altitudes was then used as the final discriminating factor in their correct identification.    

Using this technique, a total of 141 TLEs were successfully correlated with WWLLN 

lightning data for storm 1 (A more detailed description of the projection method is given 

in Chapter 5 where the same technique was used to quantify halo events).    

 Of these 141 events, 56 were sprites, while the other events comprised halos and 

sprite-halos and are discussed in detail in chapter 5.  Figure 4.9 is a histogram plot of the 

sprite altitudes for these 56 events, indicating a mean altitude for the top of the sprites of 

85 km (± 2 km).   This mean altitude was then used together with video TLE data for the 

remaining 204 events (not identified by WWLLN) to estimate their geographic location. 
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Figure 4.9.  Distribution of sprite top altitudes, as determined using WWLLN lightning 
locations, which resulted in a mean sprite top altitude of 85 km. 
 
 
4.3.1.   Example Data 

 Figure 4.10 is a typical example of some of the TLE data recorded on this night.  

The data show a complex sequence of TLEs that all occurred within 0.6 seconds.   

Starting from left to right: a bright halo occurred at 07:30:50.473 UT, followed by a 

separate sprite-halo in the same location (center image) which occurred 83 ms later, 

followed by a separate sprite-halo in the same location (center image) which occurred 83 

ms later, followed by a group of short column sprites 468 ms later, and finally an intense 

carrot sprite two fields later (34 ms), both of which are evident in the right hand image.  

All of these events, with the exception of the carrot sprite, correlated well with separate 
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WWLLN lightning detections, within close spatial proximity to each other.   The initial 

halo (left frame) occurred at a range of 585 km, at a measured altitude of 80.5 km, and 

exhibited a visible diameter of 72 km.  Using the Duke University sensors, it was found 

to be associated with a +CG lightning stroke with an impulsive charge moment change 

(�MQv) of 254 C.km.  

 

Figure 4.10.  Three snapshot images depicting a complex sequence of TLEs imaged over 
Northern Argentina during the night of February 23.  They occurred at approximately the 
same azimuth and all with 0.6 seconds of each other. 
 
 

The sprite-halo in the middle image (recorded 83 ms later) was determined to be 

at a range of 578 km, at a central altitude of 79.5 km, with a halo diameter of 92 km.  The 

impulsive �MQv of this event was calculated to be 368 C.km, and was also associated 

with a +CG.  The right side image shows several short c-sprites that were rapidly 

followed by the carrot sprite evident on the left.  These two events occurred 

approximately 0.5 seconds after the sprite-halo event at a range of about 610 km, and  

were correlated with two positive lightning events (one believed to have caused the 

columnar sprites, and one associated with the carrot sprite), with impulsive �MQvs of 157 

and 194 C.km, respectively.  The horizontal width of these two events was ~90 km.  Very 

large continuing currents, which are low-level currents following lightning return strokes, 

were measured by Duke’s ELF/VLF sensor in relation to these two events.  The 194 
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C.km impulsive �MQv +CG lightning had a continuing current amplitude of about 20 

kA.km that lasted for approximately 200 ms. Thus, it is likely that the total charge 

moment of the carrot event may have been much larger.  This interesting event is 

discussed further in Thomas et al. [2007].     

 During this night, TLEs were imaged at horizontal distances ranging from 480 to 

over 1000 km.  Each event has been individually analyzed to determine their ranges, 

widths, top heights, polarity, and impulsive charge moments.  More detailed studies of 

specific subsets of this data set are presented in Chapters 5 and 6. 

 

 4.4.   Storm 2 

A second MCC was observed on March 3-4, 2006.  This large thunderstorm 

began to develop over southern Paraguay during the day, and slowly expanded northward 

and moved eastward as nighttime approached.    This storm had a maximum cloud shield 

(determined at < -40° C) of ~420,000 km2, which is again significantly larger than a 

typical MCS over the Midwestern U.S.  Figure 4.11 shows a series of GOES 12 satellite 

images of this storm after it had reached MCC status.  The minimum cloud top 

temperatures for this storm (-80° C) were approximately 10°C colder than the storm of 

February 22-23, but similar to MCC event studied by São Sabbas and Sentman [2003].  

The storm appeared to have multiple convective core regions as well, and is currently 

under investigation to determine more about its meteorological development.   

As shown in Figure 4.11 this storm was located approximately 400-800 km due 

north of Santa Maria, and as such was again not accessible for our balloon measurements, 

but ground-based observations were successfully made from SSO.  As with storm 1, the 



   

102

cameras were arranged with overlapping fields of view to encompass the general area of 

the MCC, and sprites were first imaged at 01:40 UT (22:40 LT).  In total, over 118 events  

were imaged over a four hour period (until 05:30 UT), consisting mainly of sprites, halos, 

and sprite-halos, as well as two possible elves.  Figure 4.12 plots the distribution of all of 

the events recorded from this storm, using the method described in section 4.3.  On this 

night, WWLLN data were successfully correlated with only 9 TLEs (2 sprites and 7 halo 

the MCC, and sprites were first imaged at 01:40 UT (22:40 LT).  In total, over 118 events 

were imaged over a four hour period (until 05:30 UT), consisting mainly of sprites, halos, 

and sprite-halos, as well as two possible elves.  Figure 4.12 plots the distribution of all of  

the events recorded from this storm, using the method described in section 4.3.  On this 

night, WWLLN data were successfully correlated with only 9 TLEs (2 sprites and 7 halo 

events), with calculated altitudes of 90 km and 87 km, respectively, similar to those  

 determined from storm 1.  As the number of WWLLN identified events were limited, an 

average altitude of85 km (for sprite tops), and 83 km (for halo centers) determined from 

the storm 1 data were used to estimate the geographical locations of the remaining 108 

events (total 118) plotted in Figure 4.12.  The TLE locations appear to have a higher 

density near the coldest regions of the storm, but otherwise are dispersed throughout the 

storm. Charge moments for the 9 WWLLN events have been investigated, but the 

electrical properties (charge moment and polarity) have yet to be analyzed for all of the 

events.  This storm is still under investigation with ongoing studies dealing with both 

TLE production, and relating lightning strokes to specific areas of the storm using 

meteorology.   
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Figure 4.11.  An array of GOES 12 infrared images of a TLE producing thunderstorm to 
the north-northwest of SSO.  Also shown is a temperature scale for the figure. (Some of 
the TLE locations are marked (in red) on the storm complex.  
 

4.5.  Summary 

 Remarkably, over 550 TLEs were observed from the Southern Space Observatory 

in southern Brazil during these two storms.  Both were Mesoscale Convective Complexes 

(MCCs), and were significantly larger than typical MCCs seen over the Midwestern U.S.  

Both storms had comparable cloud top temperatures (within 10°C) and multiple 

convective core regions. A singular comparison with a MCC over the Midwestern U.S. 

suggests some differences in temperature, size, and the relationship between peak  
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Figure 4.12.  Map showing relationship between observing site at SSO and all of the 
TLEs observed during storm 2 on the night of March 3-4, 2006. 
 
 
lightning rates and TLE occurrence.  These differences are currently under further 

investigation by colleagues at the University of Washington and at INPE.  

Alas, balloon-borne payloads were not able to reach either of these TLE producing 

storms due to their extreme ranges.  Thus, we were not able to collect any in-situ 

measurements of the electric and magnetic fields or onboard sprite imagery associated 

with these two MCC storms. 

 However, the large number of TLEs captured by our ground-based imagers and 

the Duke University sensors from SSO, have clearly demonstrated that MCCs in this 

geographic region are prolific producers of TLEs.    The following two chapters detail 

investigations of the TLEs measured during the February 22-23 storm.  Chapter 5 
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presents a statistical study of the halo events, which comprises the largest number of 

events ever studied from one storm.  Chapter 6 focuses on rare measurements of TLE 

events associated with –CGs. To date, there are only two (possibly three) confirmed 

detections of negative sprites, yet surprisingly storm 1 was found to contain at least seven 

such events.    
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CHAPTER 5 

 

HALO STUDY 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
Example of a diffuse disk-like halo imaged over Paraguay at 3:06:52 UT on March 4, 

2006.  Also seen is a portion of the star field used to calibrate the image data and 
determine halo spatial characteristics. 

 

 

“…en route from Denver to Louisville in our B767 at flight level 370, we 

paralleled an intense line of thunderstorms running from Arkansas to Indiana.  

Unbelievably, we witnessed around thirty or so sprites (many other airline crews 

witnessed them as well) and a few jets.  We could not make out any particular 

color because the lightning activity associated with the line of thunderstorm cells 

(cold front in area) was extremely active and bright.  We were shocked at the 

number of sprites – they tended to shoot out from the most intense line of cells, 

about 50-60 miles in depth.  The whole line of cells extended several hundred 

miles.  At first we saw a few jets, then they died off for a while and sprites 

replaced them.  An occasional jet would pop up during the sprite show.  

FANTASTIC!” 

 

—   Mark E. Evans, Pilot, United Parcel Service 
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5.1.   Introduction 

Halos, initially known as sprite halos, were only recently identified in video and 

photometric data by Barrington-Leigh et al. [2001].  As discussed earlier, they were 

originally confused with elves, which also appear as optically diffuse disks.  Barrington-

Leigh et al. [2001] used high speed (1000 frames per second) image intensified video 

systems and model results developed by Veronis et al. [1999], to distinguish between 

these two types of TLEs.  Their results revealed the following properties: 1) halos are 

produced by quasi-static electric fields (QEs) that are also responsible for sprites, and are 

not due to electromagnetic pulses (EMPs) that produce elves; (2) halos ensue when the 

charge moment changes occur over relatively short time scales (~1ms), with longer 

charge moment changes producing sprites; (3) high speed halo images sometimes have a 

concave upward shape, which indicates significant ionization that occurs on the underside 

of the halos.  

 Somewhat surprisingly, halo studies are few in the literature.  To date, they 

comprise four main investigations by Barrington-Leigh et al. [2001], Stenbaek-Nielsen 

[2000], Wescott et al. [2001], and Miyasato et al. [2002].  Each of these four studies 

reported characteristics of halos detected over the Midwestern U.S. 

 In support of NASA’s Sprites ’99 balloon campaign, Wescott et al. [2001] used 

cameras stationed in South Dakota and Wyoming to make two-station observations of 

TLEs including four halo events that were used in triangulation studies. Figure 5.1 shows 

an example of a sprite-halo imaged at Bear Mountain, South Dakota on August 18, 1999.  

The triangulated altitude was 84 km, and the center of the halo was estimated to be at 

approximately 7.7 km from a large +126 kA CG as detected by the National Lightning  
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Detection Network (NLDN).  Their two-station measurements suggested that halos 

initiate at a mean altitude of ~78km, have an average diameter of ~66 km, and an 

apparent thickness of ~4 km.  Importantly, they also showed that halos tend to be 

approximately centered over the parent lightning stroke (to within 5 km). This is very 

different from sprites, which have been shown to occur at horizontal distances of up to 50 

km from their associated-lightning stroke.  This situation is illustrated in Figure 5.2, 

which maps the location of three sprites (solid circles) associated with ~ +115 kA and ~ 

+14 kA NLDN strokes, and a 33 km radius circle centered on the triangulated location of 

the halo.  The center of the halo was displaced from the lightning flash by 2.8 km, while 

the sprites were ~ 20 km away.  This study, although limited in number of events, is 

unique to date, as the only triangulation of halos that has been published.  The close 

centering of the halo above the lightning strike (within several km) has important 

implications for our single-station measurements of halos from Brazil. 

 Coordinated halo measurements from Yucca Ridge, CO, using USU intensified 

CCD video camera co-aligned with University of Tohoku, Japan, fast vertical array 

photometer, have helped enormously in establishing the distinction between elves and 

halos [Miyasato et al., 2002].   In particular, the array data contained information on both 

the elve and the halo signatures, while the video camera clearly showed the halo.  

Together these data were used to investigate the altitudinal and temporal relationships of 

elves and halos.  Figure 5.3 shows an example of their coordinated measurements. 

The upper panel (a) shows the halo signature, which occurred at an altitude of ~87 

km, together with the locations of the photometer array marked by the grid on their right 



   

109

 

Figure 5.1.  Video image of a well-defined sprite halo recorded from Bear Mountain, 
South Dakota on August 18, 1999. The triangulated altitude was 84 km [Wescott et al., 
2001, Fig. 9]. Reproduced by permission from the AGU. 
 

 

 

Figure 5.2.  Map showing triangulation location of three sprites (solid circles) and 
estimated size and location of coincident halo together with positions of their parent 
+CGs [Wescott et al., 2001, Fig. 5].  Reproduced by permission of the AGU. 
 

hand side.  The array itself spanned much of the field of view of the camera, capturing 

the halo signature. The lower panel (b) illustrates the photometer signal from several 

channels, each aimed at progressively higher elevations, as indicated in the figure.  The  
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Figure 5.3.  Coordinated high-speed photometer and video data taken from Yucca Ridge, 
CO, on July 21, 1996, showing both elve and halo optical signatures, as well as VLF data 
by a Stanford University sensor.  The time after the VLF onset is displayed in 
milliseconds [Modified from Miyasato et al., 2002, Fig. 1].  Reproduced by permission 
from the AGU. 

 
 

bottom of panel (b) shows the VLF signature from Stanford University associated with 

the lightning strike.  The elve occurs in the highest elevation data (channel 14) and 

appears to propagate downwards in time.  The halo occurs at a lower altitude, and 

somewhat delayed from the elve.  Miyasato et al. [2002] analyzed 35 such halos, 

determining a mean altitude of the halo centroid of 80.4 km (range 87.2 to 73.0 km), and 

horizontal diameters of 50-110 km, with a mean of 85.5 km.  They also analyzed the 

temporal behavior of halos, indicating a mean time delay from the CG of 0.85 ms, and 

halo duration of 0.6 to 2.2 ms (mean, 1.0 ms).  With the exception of one event, these 
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events were all associated with +CGs, with peak currents from 50-180 kA.  These are the 

most comprehensive measurements of halos to date. 

 

5.2.   South American Halo Data 

 A large MCC thunderstorm formed over the Pampas region of northern Argentina 

on February 22-23, 2006, providing an exceptional opportunity to perform a statistical 

investigation of the optical and ELF/VLF signatures of halo events.  This is because over 

445 TLEs were imaged within a limited (~6 hr) period on this night.  Of these, 182 events 

were determined to be associated with either isolated halos or sprite-halos.  This is a very 

large number for one storm, which was the third largest TLE producing storm on record 

[Thomas et al., 2007].  Examples of halo and sprite-halo data recorded during this night 

are shown in Figure 5.4.  In this figure the two left-hand images show the development of 

a sprite halo event.  The upper left image shows a well-formed halo imaged at low 

elevation, with the parent lightning flash evident near the horizon.  This event which 

occurred at 03:12:37.355 UT, shows faint vertical sprite structures emanating from the 

diffuse halo.  The lower left panel shows the resultant sprite image one field later (17 

ms).  By this time, the sprite is fully developed vertically, and the halo has faded.  The 

two right-hand images illustrate individual examples of pure halo events.  The upper right 

image shows a bright halo that occurred at an azimuth and elevation similar to the sprite 

halo, but approximately 15 minutes earlier.  This event also shows some evidence of 

initial sprite development, but subsequent video fields revealed no sprite structures.  The 

halo imaged in the lower right panel was obtained approximately 4 hours later and at 

lower elevation than the other two events, as the storm was tracked by the cameras.   
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These data illustrate the diversity of the halo events that we imaged, and their frequent 

occurrence throughout this night.  

 

  
 

Figure 5.4. (Left) Two sequenced images showing a sprite-halo, with the halo and a faint 
streamer seen in the top panel, followed 17 ms later by multiple vertical structures, as the 
halo fades; (Right) Two halos imaged almost four hours apart on February 23, 2006.  The 
azimuths of the camera changed during the evening, as it followed storm development. 
 

5.3.   Halo Analysis Method 

To investigate the spatial properties of the halo events, it is necessary to know 

their altitude.  Our halo measurements were made from a single station and triangulation 

was therefore not possible.  However we can obtain good estimates of the altitude, and 

hence geographic location of the halos, using the findings of Wescott et al. [2001] who 

determined that halos (like elves) are formed almost centered on the parent lightning 
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discharge, as identified by the U.S. NLDN lighting network data.  Of the 182 halo and 

sprite-halo events imaged from Brazil on February 22-23, 85 of these events correlated 

with WWLLN lightning detection, corresponding to ~ 46% of all halo related events.  

This number is large when compared with the number of other TLE detections by 

WWLLN (56 of 263 events, or 21%).  This is thought to be due to the fact that WWLLN 

is more sensitive to large impulsive lightning signatures that are typically associated with 

halos than with sprite-related discharges whose signatures can last for several tens of 

milliseconds (Jeremy Thomas, private communication). 

 Using the geographical coordinates of the 85 WWLLN lightning events to 

identify the halo locations, the altitude and diameter of each event were then estimated.  

This was done using a software program developed at Utah State University for narrow 

angle image measurements. This program was specifically developed to study TLEs 

imaged at low elevations, and includes full corrections for refraction.  To initiate the 

analysis, a halo image must first be digitized and entered into the program.  At this point, 

the star field was used to calibrate the image in azimuth and elevation, using a catalog of 

known stars.  The software requires the geographical location of the observer and the 

timing of the event, as well as the angles of view of the imager and the rotation of its 

optical axis (which it later corrects for).  When these data are input into the program, a 

star field is projected onto the halo image, and may be adjusted until the projected stars 

match the star locations evident in the image data.  An example of this can be seen in 

Figure 5.5. 

After calibrating the image, the visible outline of the halo is traced, using the 

same program, which allows the user to adjust the size and shape of the halo manually.   
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Figure 5.5.   Halo imaged over Northern Argentina at 06:57:02.682 UT on Feb. 23.  The 
superimposed stars (red dots) illustrate how the star field from our narrow angle 
calibration program can be matched with the actual star field.  The halo outline is then 
traced and mapped for a range of assumed altitudes. 
  
 
Once this trace is saved, the geographical projection of the halo can be plotted for a  

range of assumed altitudes, with an initially input value of 90 km, and altitude steps of 

0.5 or 1 km. Figure 5.6 illustrates this process.  Other variables that may be plotted are 

the lightning coordinates (in this case, from WWLLN), as well as the camera location.  

The figure shows four maps of the halo projection for assumed altitudes ranging from 77 

- 91 km.  The WWLLN lightning location is also marked on each map.  Inspection of 

these four maps shows that the halo projection aligns well (but not perfectly) with the 

lightning position for an assumed altitude of 82 km.  Minor adjustment on either side of 

this altitude indicates an estimated height for this halo of 82 ± 1 km.  This is the best 

visual fit for this event, given the uncertainties of the WWLLN lightning location 

(typically ± 10 km), and our projection method.  Our results using this technique agrees 

well with the study of Wescott et al. [2001], and also provides independent confirmation 
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of our correct association of the WWLLN lightning detection with this event.  Having 

determined the mean height of the halo, the average diameter was estimated from spatial 

measurements from its traced outline, yielding ~60 km. 

 

 

Figure 5.6.  Geographic projections of the halo event of Figure 5.5, for different assumed 
altitudes of 77, 82, 87, and 91 km.  Each plot shows the WWLLN lightning location for 
the parent lightning stroke.  A mean altitude of 82 km is determined, and a diameter of 60 
km.  The ground site at SSO was directed due eastward of this event. 
 
 

5.4.   Halo and Storm Comparison 

Before presenting statistical results of the halo analysis, it is interesting to 

investigate the locations of the halos within the storm during the course of the night.  Of 

the 445 events imaged, 61 were isolated halo events, with 121 sprite-halos.  The sum total 

of 182 events constitutes ~ 41% of all TLEs recorded, and had a similar frequency of 

occurrence (38%) to the storm studied by Miyasato et al. [2002] over the Great Plains.   
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 In order to perform a comparison between halo locations and their relationship to 

the thunderstorm, the location of each halo event has been plotted on a geographic grid in 

two hour blocks for the duration of this night.  For halo events with no associated 

WWLLN detection, an assumed altitude of 83 km was used to estimate their locations.  

This is the mean altitude of all 85 halo events mapped using WWLLN data.  This 

analysis is described later in section 5.5.  The following Figures 5.7 - 5.9 present maps of 

showing halo distributions, and associated GOES satellite images indicating the main 

activity within the storm during each two hour period.  The halos are indicated by the red 

dots, all of which were determined to be associated with positive lightning, using 

combined WWLLN and ELF/VLF data.   

 Figure 5.7 shows the first two hour period during which 47 halos and sprite-halos 

were detected.  They were well distributed in range from ~ 400-900 km, and the majority 

was captured in both the narrow and wide field cameras, as the azimuth of the storm was 

relatively narrow.   The two GOES images show the thunderstorm location and size at 

02:30 and 04:00 UT.  Close comparison with the map shows that the halos were 

distributed throughout the storm, and were apparently not generated by prominent, 

individual storm cell activity within the large-scale MCC.   

 Figure 5.8 shows the subsequent two hour period.  During this time, significantly 

more halos were observed (69 events), as well as the first detection of rare negative halo 

and sprite-halo events (indicated by the green stars), which are discussed in detail in 

Chapter 6.  During this period the wide field camera, which was detecting relatively few 

events to the southwest, was modified to narrow field (~15°), and aimed due west of 

SSO, providing overlapping fields of view where the storm was most active.  While the  
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Figure 5.7.  Plot showing the location of all halo events imaged between 02:30 UT and 
04:00 UT.  The fields of view of the two cameras are indicated.  Also shown are two 
GOES infrared images depicting the storm at 02:30 UT and 04:00 UT.  Unfortunately, 
there were no satellite data available at 04:30 UT. 
 
 
primary halo activity was clearly associated with the main storm, a significant number of 

events were seen in the trailing storm region.  During this time the storm intensified, as 

indicated by the larger region of colder cloud tops. 

 Figure 5.9 shows the halo locations for the last two hour period, 06:30-08:30 UT.  

During this time, the storm complex was almost due west of SSO, and the halo events 

were concentrated more towards its leading (northern) edge.  During this period, three 

further negative halo/sprite-halo events were detected (see Chapter 6).  There were 66 
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Figure 5.8.  Plot showing the location of all halo events imaged between 04:00 UT and 
06:30 UT.  The fields of view of the two cameras are indicated.  The two GOES infrared 
images show the storm at 04:00 UT and 06:30 UT.  Unfortunately, there were no satellite 
images available between 04:00 – 06:30 UT. 
 
 
halo events detected.  Observations ceased at dawn, but it was evident that the sprite 

activity was continuing, albeit at a lower frequency of occurrence. 

 In summary, these three figures illustrate how the storm developed from several 

separate convective regions, which evolved and intensified as the night progressed.  The 

maps demonstrate that halos were occurring in many parts of this storm complex.  This 

result is somewhat surprising, as previous comparisons of sprite and storm locations over 
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Figure 5.9.  Plot showing the location of all halo events imaged between 06:30UT and 
08:30 UT, which was when our data set ended.  The two GOES infrared images show the 
storm at 06:30UT and at 08:30 UT.  Events associated with –CGs are indicated by green 
stars. 
 
 
the Great Plains have shown that sprites tend to form in the trailing stratiform region ofan 

MCS [e.g., Lyons, 1996].  This is thought to be due, in part, to the fact that large negative 

lightning strokes tend to occur at the leading edge of the storm, while positive lightning 

strokes are more copious in the trailing regions, and these strokes are the main producers 

of sprites [Lyons et al., 2008].  
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5.5. Halo Statistical Results 

  
5.5.1.   Altitude Range 

Using the 85 halo events that were directly associated with WWLLN lightning 

events, the altitude of each event has been determined, using the method described in 

section 5.3.  Figure 5.10 plots the distribution of altitudes for these events.  Our 

measurements indicate a limited range of altitudes, from ~78-91 km, with a clear 

preference for events in the 80-84 km range (mean value, 82.7 ± 1 km).  These results are 

in excellent agreement with the previous limited studies performed over the Midwestern 

U.S. by Wescott et al. [2001] and Miyasato et al. [2002].   Our statistical analysis, shown 

in Figure 5.10, also suggests that sprite-halos can occur at somewhat higher altitudes (> 

90 km) than pure halos.  More specifically, the results suggest that halos may be formed 

at a more limited altitude range (80-88 km), which could provide a distinction between 

these two types of halo events. However, our data set is limited for this analysis.  It is 

also possible that some of the higher altitude events may be signatures of elves, that due 

to their rapid development (within 1 ms), were not fully resolved in the video data.  This 

is not thought to be a significant factor in this analysis, as elves also have significantly 

larger diameters (as illustrated in Figure 1.18), and the events reported here were all <100 

km in diameter.   

 
5.5.2.   Halo Diameters 

Having established the geographical location and altitude of the halo events using 

the combined video and WWLLN data, the diameter of each event was determined from  

its geographic projection (as illustrated in Figure 5.6).  A histogram distribution of these 
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Figure 5.10.  Altitude distribution (mean of 82.7 ± 1 km) of halos and sprite-halos, 
determined from 85 WWLLN lightning detections. 
 
 
results is shown in Figure 5.11.  The distribution indicates a distinct peak around 50-60 

km (mean value 58 ± 5 km), but a relatively broad range from 31 – 93 km.  These results  

also agree well with the studies of Wescott et al. [2001] and Miyasato et al. [2002] (mean 

diameters of ~66 km and 85.5 km, respectively).  Estimating halo diameters is 

complicated by the fact that halos tend to be faint around their edges, and thus tracing 

their visual outline can produce errors.  Indeed, some halos were captured simultaneously 

by both cameras that were operated at different gains, and measurements of these events 

indicated differences of up to 5 km in the diameter, which does not significantly affect 

our statistical results. Uncertainties in the WWLLN lightning location (± 10 km) were 

determined to have a minimal effect on these results.  Figure 5.11 also suggests that 

sprite-halos exhibit the largest diameters (up to 100 km), although small diameter (30-40 

km) sprite-halos were also observed.   
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Figure 5.11.  Distribution of diameters (mean of 58 ± 5 km) for halos and sprite-halos 
that were correlated with WWLLN lightning data.  
 
 
5.5.3.   Charge Moment Analysis 

The Duke University ELF/VLF data were analyzed to determine the charge 

moments associated with 185 halo and sprite-halo events observed on Feb. 22-23.  As the 

Duke sensors were sensitive to ELF/VLF sferic emissions originating from lightning all 

around the globe (see Appendices A and B), key information concerning the azimuth, 

range, and timing of each event was necessary to correctly identify the waveforms with 

our TLEs.  This information was provided by a combination of WWLLN location data, 

image azimuth information, and GPS timing.   Figure 5.12 shows the distribution of 

impulsive (2 ms) charge moment changes derived from the ELF/VLF data for the halo 

and sprite-halo events.  The distribution shows a broad range of charge moments, from 

<100 to >600 C.km, with a distinct peak between 200-300 C.km (mean value of 255 

C.km).  This is a unique result, as there have been no such studies to date of charge 
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moments associated with halo events.  The distribution also demonstrates well that the 

larger charge moments (>300 C.km) were essentially all associated with sprite-halo 

events.  

  While there are no measurements in the literature with which to directly compare 

our observations, we can contrast them with previous measurements during the Brazil 1 

campaign (discussed in Chapter 3), and with a study by Cummer and Lyons [2005] where 

charge moments associated with sprite events over the Midwestern U.S were 

investigated.  During the Brazil 1 measurements, 18 TLE events were identified, of which 

two (events 12 and 13 in Table 3.1) were pure halos.  The impulsive charge moments 

using the University of Tohoku sferic measurements for these two events were 153 and 

379 C.km.  As discussed in Chapter 3, these values were thought to be too small when 

compared with the sprite results of Cummer and Lyons [2005].  One outcome of that 

study was the involvement of Duke University with the Brazil 2 campaign.  The results of 

Figure 5.12 clearly demonstrate that all of the pure halo events and ~50% of the sprite-

halo events imaged on Feb 22-23, exhibited charge moments of less than 300 C.km, and 

support our tentative finding that charge moments associated with TLEs were generally 

smaller than for those over the U.S.   In general, Cummer and Lyons [2005] showed that 

charge moment changes of >600 C.km were associated with sprite production, yet Figure 

5.12 shows that nearly all of the halos and sprite-halos observed from this large MCC 

over Argentina had charge moment changes significantly less than 600 C.km.  This result 

is amplified by the study of Hu et al. [2002] who showed that the probability of sprite 

initiation is typically only 10% for charge moment changes less than 600 C.km (which is 

essentially the upper limit of our halo and sprite-halo observations).  The reason for this 
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large discrepancy is not clear, as the same sensors and analysis method were utilized for 

this campaign as in the Cummer and Lyons [2005] study.   

 

 
Figure 5.12.  Impulsive (2ms) charge moment distribution (mean 255 C.km) for all 185 
halo and sprite-halo events observed on Feb. 22-23.  
 
 

5.6.    Summary 

Since their formal discovery in 2001, halos have only been studied sparingly.  

This is due, in part, to the early misidentification of halos as elves that was not corrected 

until modeling and high-speed video data revealed their distinction [Barrington-Leigh et 

al., 2001].  The few studies of halos that have been made all took place over the 

Midwestern U.S., and in total were limited to <50 events.  The large number of halo 

related events (185) from the MCC observed over Argentina has enabled a statistical 

study of their altitude and spatial characteristics, as well as a unique investigation of the 

charge moments associated with these events. The locale of South America used in this 
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study further enhances the interest and intrigue associated with these events, as it is also 

the first halo study performed outside of the continental U.S.   

 This statistical analysis has established that halos can frequently occur in South 

America, and that they have similar altitudes (~83 km) and diameters (~58 km) to those 

studied previously over the U.S. Great Plains [Wescott et al., 2001; Miyasato et al., 

2002].  However, a novel investigation of the impulsive charge moment changes of these 

events (which included 121 sprite-halos), has revealed that they are significantly smaller 

than those associated sprites imaged over the U.S.A.   

 Also of great interest during this analysis was the detection of seven events 

associated with –CG strokes.  Halos have previously been associated with –CGs, but 

apparently with a strong preference for their occurrence over open water [Frey et al., 

2007].  In contrast, the halo events reported here all occurred over the Argentinean 

Pampas region (over ~ 600 km to the nearest ocean).  Furthermore, the detection of 

negative sprite-halo events was most surprising, as to date, there had only been two sprite 

events that have been accurately correlated with negative lightning events [Williams et 

al., 2007].  A detailed investigation of these most unusual negative events is presented in 

Chapter 6.   
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CHAPTER 6 

 

INVESTIGATING NEGATIVE CG EVENTS 

 
 
 

 

 

 

 

 

 

 

 

 

 

                            

 Sprite-halo imaged at 06:32:06.085 UT on Feb 22-23, 2006, showing both a diffuse halo 
and well-developed tendril structure.  This event has definitively been associated with a   

-CG discharge. 
 
 

 

“On August 28
th

 I witnessed two sprites above a storm 100-150 miles due south of 

my location.  I live in the edge of Phoenix, so there was a lot of background light. 

 The first Sprite was a series of vertical red streams from the top of the 

thunderstorm.  It extended a considerable distance above the top of the cloud. 

 The second sprite was the mother of all Sprites.  It was the largest and 

widest Sprite I have ever witnessed.  It was in the shape of a funnel, with the small 

end at the top of the cloud.  It was also red.  It was so bright, my wife even saw it, 

and she can’t see anything at night.” 

 

— Steve Schendel, amateur observer 
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6.1.   Introduction 

The overwhelming association of sprites with +CG events [e.g., Lyons, 1996] 

appears enigmatic as the conventional quasi-static breakdown mechanism for sprites 

(discussed in Chapter 2) does not depend on the polarity of the parent CG discharge 

[Pasko et al., 1997a].  In a recent paper by Williams et al. [2007], entitled, “Polarity 

asymmetry of sprite producing lightning: A paradox?,” a summary is presented of all 

sprite measurements since 1995 where reference is made to their polarity.  This is 

reproduced in Table 6.1, and shows that of the several thousand sprites reported in the 

literature only two (possibly three) events have been unambiguously associated with -CG 

discharges (indicated in the confident totals listed at the bottom of the table).   

      Several of the reports listed in Table 6.1 have associated sprite observations with 

possible -CG discharges (these reports include Hardman et al., 2000; Neubert et al., 

2001; São Sabbas, 1999; São Sabbas and Sentman, 2003; Winckler, 1998; Miyasato et 

al., 2002; Barrington-Leigh et al., 1999).   

  However, Williams et al. [2007] questioned the validity of many of these reports, 

mainly due to significant timing discrepancies (as listed in the right hand column of the 

table), and concluded that the ratio of positive to negative sprite production is at least 

1000:1, leaving unambiguous identification of two (possibly three) negative events by 

Barrington-Leigh et al. [1999].  It is interesting to note that a significant number of 

events listed as negative TLEs were simple halos [Bering et al., 2004 (17 events) and 

Miyasato et al., 2002 (one event)].  But again, there was significant timing uncertainty 

with the Bering et al. measurements. As already discussed in Chapter 5, investigations of 

halos are relatively few [e.g., Miyasato et al., 2002; Wescott et al., 2001], and have only  
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Table 6.1.  Table showing a summary of case studies of sprite parent lightning polarity 
[Williams et al., 2007, Table 1].  Reprinted by Permission of the AGU. 

 

 
 
recently been associated with both positive and negative CG discharges [Frey et al., 

2007], who also determined a clear predominance for -CG halos to occur over open 

water.  

      Due to their rarity, observations of sprites triggered by -CGs are of great interest 

and the measurements of Barrington-Leigh et al. [1999] remain exceptional to date.  

They reported high-speed photometric and ELF/VLF data on two discrete sprite  
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events observed over the Gulf of California, Mexico, that were closely associated (within 

5 ms) with two large -CG lightning strokes (vertical charge moment changes �MQv ≈ -

1550 and -1380 C.km).  Coincident low-light video data showed clear evidence of sprites 

with vertical (columnar) structure, despite intervening cloud cover and the large range 

(~695 km) to the storm.  A third event (-1340 C.km) was also discussed, but no obvious 

sprite structure was identifiable through the clouds.   Enlargements of the Barrington-

Leigh et al. image data, along with an altitude scale, are shown in Figure 6.1.                                                      

  

 

Figure 6.1.  Sprite captured over the Gulf of California by low light level cameras 
operating at 60 Hz.  These two events are the only substantiated sprites associated with -
CGs up until the Brazil 2 campaign.  Note the rectangular boxes indicate photometer 
fields of view [Adapted from Barrington-Leigh et al., 1999b, Figs. 2c and 3b].  Reprinted 
by Permission of the AGU. 
 
 
  In this chapter we report comprehensive new measurements of several well 

formed sprite-halo and halo events and establish their temporal and spatial association 

with a large -CG discharges.  The first event (sprite-halo) was found serendipitously 

during analysis of the Feb. 22-23 storm data.  This event is discussed in detail, comparing 

its optical and ELF/VLF signature [Taylor et al., 2008].  Subsequently, six additional 

events have been identified in association with negative lightning discharges, and are 
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presented here for comparison.  These data provide the first measurements of the spatial 

structure, altitudinal extent, and relative brightness of negative events and their associated 

electromagnetic properties.   

 

6.2.  The First Negative Event 

 In studying the data from the February 22-23 storm, we isolated each TLE and 

narrowed down initiation time to within 16.7 ms, which is the limit of our video data 

resolution.  These times were then correlated with WWLLN events provided by the 

University of Washington.  Originally, there were 42 lightning discharges located by 

WWLLN that correlated with TLEs (although later analysis using an improved WWLLN 

lightning detection algorithm increased the total number of correlated events to 144).  Of 

the original 42 events, analysis of charge moment data by Duke University revealed that 

one of the TLEs was unambiguously associated with a –CG. 

  Figure 6.2 shows the observing geometry of the cameras from 05-06:00 UT 

encompassing the negative event.  As discussed in Chapter 4, to capture the majority of 

the TLEs the two cameras were aimed W-SW with fields of view of ~15° and ~30° that 

overlapped by ~5°.  The open/solid circles map the locations of 81 TLEs imaged during 

this one hour interval, all of which were found to be associated with +CGs. Furthermore, 

WWLLN identified 18 of these events (open circles) providing accurate information on 

their location. The positions of the remaining TLEs (solid circles) were estimated from 

their central azimuth and elevation in image data assuming an altitude of 86 km (the 

mean of 58 sprites identified by WWLLN during this night, as discussed in Chapter 4).  
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The resultant uncertainty in the location of these events was ~10-15 km, and had minimal 

effect on their overall spatial distribution.   

 

 

Figure 6.2.  Map showing locations of 81 TLEs observed from 05-06:00 UT.  The main 
storm activity was due west of SSO with a second, less active region to the ~WSW.  
Open circles denote 18 events identified by WWLLN.  Solid circles depict estimated 
locations of remaining events.  The star locates the negative sprite-halo event. 
 
 
  The star indicates the WWLLN location of the negative event (31.039°S, 

63.457°W), which occurred at ~05:29:33 UT, and was clearly detected by both cameras 

(as it occurred in the overlapping region), and the ELF/VLF sensors.   This TLE will 

hereafter be referred to as Event 1.  Figure 6.3 shows a GOES infrared satellite image of 

the storm at 06:30 UT, approximately one hour after this negative event.  Unfortunately, 

no satellite data were available from 04:00 – 06:30 UT.  However, WWLLN lightning 

locations and rainfall data from the Tropical Rainfall Measuring Mission (TRMM) 

satellite [J. Thomas, private communication, 2007] indicate the events shown in Figure 
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6.2 occurred predominantly above the stratiform region of the MCS, rather than the 

convective core regions, in good agreement with previous U.S. High Plains TLE 

measurements [e.g., Lyons, 1996]. 

 

                       

 Figure 6.3.  GOES 12 infrared satellite image showing the storm at 06:30 UT.   

 

  Figure 6.4 shows an enlarged (6° x 4°) image of the negative event as captured by 

the narrow angle camera at 05:29:33.522 UT.  A well-developed sprite-halo is evident 

exhibiting a characteristic upper diffuse horizontal disk with several embedded, bright 

columnar forms and fainter tendrils extending downwards and branching at lower 

elevations.  The event occurred at a central azimuth of 257.9° N and a range of 944 km. 

In the wider field image this event was observed in a single video field (16.7 ms duration) 

at 05:29:33.535 UT, whereas the narrow angle data (Figure 6.4) show development of the 

sprite-halo over two consecutive video fields.  Together these data limit the sprite 

initiation time to between 05:29:33.515-519 UT (taking into account the ~3 ms 
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propagation time to SSO), with a maximum duration of <17 ms, which is in excellent 

agreement with the WWLLN time of 05:29:33.5162 UT.    

 

  
Figure 6.4.  (a) Enlarged (6° x 4°) video image of the negative event imaged at 
05:29:33.522 UT  (azimuth ~257.9° N, range ~944 km) showing a well developed sprite-
halo with streamers; (b) Same event with same camera 17 ms later, showing further 
streamer development as the halo slowly fades; (c) Same negative event imaged by the 
second camera with larger field of view and higher electronic gain.  The event was only 
captured in one field with this camera, limiting its lifetime to less than 17 ms, and is 
temporarily overloaded in the image. 
  

  Coincident ELF/VLF measurements from SSO have been used to determine the 

polarity, current, and charge characteristics of the causative lightning stroke.  Figure 6.5a 

shows its ELF/VLF azimuthal magnetic field (Bφ) waveform. The sferic onset time of 

05:29:33.5193 UT matches the WWLLN data within 0.1 ms (taking the 3 ms travel time 

into account).  The large upward pulse unmistakably shows that this TLE was produced 

by a -CG discharge with associated downward net charge transfer.  In comparison, Figure 

6.5b shows Bφ for a similar sprite-halo that occurred at the same azimuth (255.4°) ~1 
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hour earlier.  The sharp downward pulse is typical for a TLE produced by a +CG (these 

two events are compared further later).  The �MQv (first 2 ms) for the –CG (method of 

Cummer and Inan [2000]) was determined to be –503  

C.km.  Confirmation of the negative polarity of this event was also provided by 

simultaneous vertical electric field data from SSO (not shown), and by Y. Yair, 

University of Tel Aviv using ELF measurements from Israel and Hungary [Taylor et al., 

2008].   

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 6.5.  (a) The ELF/VLF azimuthal magnetic field (Bφ) waveform corresponding to 
Figure 6.3. The large positive pulse unambiguously identifies this TLE with a ` stroke.  
(b) The Bφ waveform of a sprite-halo (Figure 6.5c) produced by a positive CG of similar 
�MQv. 
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      By combining the WWLLN location of the negative event with its measured 

azimuth and elevation from the image data (determined using standard star field 

calibration and taking full account of refraction effects), the altitude of the halo was 

determined to be 83 ± 1 km, and its diameter 89 ± 5 km, using the analysis methods 

discussed in Chapter 5.   These results are in good accord with previous halo observations 

[e.g., Wescott et al., 2001] and provide further evidence for the accurate identification of 

this event. 

 
6.2.1.   Comparison with Previous Negative Results 

 Previously, only two negative events have been substantiated, both exhibiting 

exceptionally large �MQv (-1380 and -1550 C.km) as measured within the first 5 ms of 

the spheric.  However, their video signatures were partially obscured by cloud and no 

estimates of their vertical extent were made [Barrington-Leigh et al., 1999].  Both events 

originated from a thunderstorm system that was part of a MCS located over the Gulf of 

California. This storm was unusual as the sprites were produced from a region overly 

dominated by –CG lightning, with very few (~1.5%) +CG discharges detected during its 

lifetime, compared with the surrounding MCS that exhibited +CG occurrence rate of 

~6% (of total lightning strokes) which is more typical of a spriting storm.  In contrast, the 

negative event reported here originated from a large MCS over the Pampas of Argentina 

(~ 600 km to the nearest open water), that produced numerous TLEs (at least 445), within 

the stratiform region in close proximity to the observed negative event (Figure 6.2).  The 

�MQv (-503 C.km in 2 ms) associated with this event was at least 30% larger than other 

TLEs observed within ±10 min and 100 km radius (total 6 events), all of which were 
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positive and had �MQv ranging from +32 to +383 C.km.  For direct comparison with the 

Barrington-Leigh et al. results, Duke University further evaluated the �MQv of our 

negative event yielding -822 C.km (over a 5 ms interval) with a total of 843 C.km over 

the 8 ms duration of the charge moment change as determined from the spheric data.   

These are large values compared with typical sprite producing +CGs [e.g., Cummer and 

Lyons, 2005], but are significantly lower (~ 40%) than the negative �MQv reported by 

Barrington-Leigh et al.   

 
6.2.2.   Comparison with Positive Event 

  As discussed in Chapter 2, the conventional breakdown mechanism for initiating 

sprites and halos is largely independent of the electric field direction, and thus the 

lightning polarity [Pasko et al., 1997a].  However, the critical field needed to maintain 

streamer propagation is approximately a factor of two larger for negative streamers when 

the field and propagation direction are anti-parallel [Pasko et al., 2000; Bazelyan and 

Raizer, 2000].  Furthermore, simulations by Pasko et al. [2000] predict that although 

positive and negative sprites should be morphologically similar, positive sprites should 

extend approximately 10 km lower in altitude under otherwise identical conditions (e.g., 

charge moment change and atmospheric conductivity).   

  To investigate this, Figure 6.6 (a, b) shows the development of the negative sprite-

halo as recorded by the narrow field camera over two consecutive video fields (total 

duration 33 ms).  The data are shown as photographic negative images, after background 

subtraction, to enhance the sprite structures.  As the halo (center altitude 83 km ± 1 km) 

faded during this interval, the sprite evolved with additional streamers and some limited 
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downward development of existing streamers.  Using the WWLLN location, the lowest 

visible border of the streamers was determined to be ~ 63 km for the first field and ~ 61 

km for a small part of the second field.  However, the base of the streamers clearly 

remained above the horizon at SSO (as shown by the horizontal line).  This indicates a 

relatively short vertical extent (~25 km) for the negative sprite with no obvious streamer 

penetration into the stratosphere.    Figure 6.6c shows the optical signature of a sprite-

halo that was produced by a +CG with a similar �MQv (480 C.km, shown in Figure 6.6c) 

to that of the negative event.  This TLE was imaged by the narrow field camera at 

approximately the same azimuth (255.4°) as the negative event, but ~1-hour earlier 

(04:28:01 UT).  The video data also show it occurred at almost the same geographic 

location as the negative sprite-halo (within 30 km) and exhibited a similar halo diameter 

(85 ± 5 km), assuming a central altitude of 83 km.  The tendrils appear to be cut-off at the 

horizon (horizontal line) suggesting they extended to lower altitudes than ~60 km.  

Comparing these two events of different polarity suggests the positive sprite-halo 

exhibited streamers that were significantly longer, in agreement with predictions of Pasko 

et al. [2000].  

  As the Xybion camera was operated at the same electronic gain throughout the 

night, changes in relative brightness of the negative event as it developed have also been 

investigated.  This is shown in Figure 6.6 (d, e) which plot the relative brightness of the 

sprite-halo as determined from a horizontal intensity scan through the middle of the halo 

centered at 83 km altitude.  Significant development of both halo and sprite emissions are 

evident from one field (17 ms duration) to the next.  Initially, several narrow sprite 

structures are evident (Plot d) imbedded in the diffuse halo emission, which appears as a 
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Figure 6.6. Images (a, b) showing the downward development of the negative event over 
two video fields (duration 33 ms).  The data are shown as negative images, after 
background subtraction, to enhance the sprite structures (lower visible border ~61 km).  
Image (c) shows the positive sprite-halo, which occurred at approximately the same 
location 1-hr earlier.  Panels (d, e, f) compare horizontal cross-sections of the relative 
brightness of the negative and positive events. 
 

 
large symmetric bulge of peak relative brightness ~30,000 counts (or ~60% of maximum 

signal level).  The subsequent field shows further intensification of the sprite’s columnar-

like structures (close to the video saturation level) and a significant decrease in the 

relative brightness of the halo emission by ~50%.  Plot f shows a relative intensity scan 

through the halo region of the positive event, which exhibited comparable spatial 

dimensions to the negative event (but was only evident in one video field).  Although the 

basic shape of the plot is similar, the combined sprite and halo emissions saturated the 

camera and the imbedded sprite structures are not discernable.    

  Together these results suggest that both the length and the apparent brightness of 

the downward negative streamers are more limited for this negative driven sprite-halo 
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event as compared with a positive event of similar location, morphology and �MQv.  The 

shorter negative streamer lengths are consistent with the need for larger critical fields to 

maintain downward streamer propagation [Bazelyan and Raizer, 2000].  Furthermore, Liu 

and Pasko (2004) have shown that under identical conditions, positive sprite streamers 

should appear brighter, due to the larger expansion of their streamer heads as they 

propagate downwards into the higher electric field region, as compared with negative 

streamers which would appear dimmer when propagating over the same distance.   

  To summarize, there are many factors which ultimately control the development 

of a sprite, and the widely used phrase in the sprite community that no two sprites are the 

same underlines the inherent difficulties of comparing sprite events (even of similar 

charge moments).  However, these data have provided the best opportunity to date to 

study a well-defined negative sprite event and to compare its optical properties with those 

of a similar sprite-halo generated by a +CG.   

   

6.3.   Other Negative Events 

 After discovering our first negative event, Duke University undertook a detailed 

investigation of their ELF/VLF lightning data examining waveforms associated with each 

of the 445 events observed on February 22-23, 2006.  As WWLLN only measured 

lightning timing and location, the ELF/VLF data were the only way to determine TLE 

polarity.  During this study an additional six negative events were found, all of which 

were associated with halos (2 sprite-halos and 4 halos).  These events and their 

characteristics are now described. 
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6.3.1.   Sprite-Halo Events 

 Two negative sprite-halo events of similar morphology to the event discussed in 

Section 6.2 were imaged from the storm during the next 1.5 hours as it moved 

northwards.  Both events occurred at closer ranges of ~620 and ~650 km.  Figure 6.7 

shows a very clear sprite-halo event initiated between 06:32:06.085 - 06:32:06.099 UT, 

with a corresponding lightning time (as determined by the ELF/VLF sensor) of 

06:32:06.091 UT.  The sprite halo occurred at an azimuth of 266.1°, with an elevation of 

4.31°.  This event was also captured by both cameras, but in this instance the TLE was 

evident in only one field in each camera.  This limited its lifetime, coupled with the 

lightning data, to < 8 ms.  This event was not associated with a WWLLN lightning 

detection, and so a mean height of 83 km (based on the halo analysis of Chapter 5) was 

assumed for the spatial analysis.  This event occurred at ~29.8°S, 60.5°W at a range of 

647 km, and is indicated in Figure 6.8 as event 2.  Using this result for the TLE location, 

the halo diameter was estimated to be 67 km, and the sprite tendrils were determined to 

extend down to ~61 km in altitude, which agrees well with the measured altitude from 

negative event studied in Section 6.2.  The impulsive charge moment associated with this 

event was determined to be -317 C.km, somewhat lower than that of event 1. 

 The third negative sprite-halo is shown in Figure 6.9 and occurred at an azimuth 

of 265° and an elevation of 4.5°, in close proximity to event 2 (see Figure 6.8).   The halo 

is very prominent in this TLE, which exhibited limited sprite structures.  This event was 

initiated approximately 45 minutes after event 2, and was associated with WWLLN 

lightning detection at 07:17:17.143 UT.   Event 3 was also captured in both cameras, and 

was seen in two fields of one camera, but only one field of the second camera, which 
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Figure 6.7.  A sprite-halo associated with a negative event at 06:32:06.085 UT. 
 

 

 

                 

Figure 6.8.   Map showing the locations of all TLEs associated with –CGs imaged on 
February 22-23.  Also shown are identification numbers of these events.  
 
 



   

142

limits its lifetime to <14 ms.  Combining this information with the WWLLN data, 

indicates a TLE initiation time within 4 ms of the negative lightning stroke (between 

07:17:17.143 and 07:17:17.147 UT).  Using its WWLLN lightning location, the mean 

halo altitude was measured to be 81 km, and its diameter 64.5 km.  This event occurred at 

a range of 623 km, and measurements of the tendrils show that they extended down to 

~64 km.  The impulsive charge moment associated with this event was -304 C.km, 

similar to event 2. 

 

 
 

Figure 6.9.  A sprite halo associated with a –CG at 07:17:17.131 UT. 
 

As luck would have it, this negative event was immediately preceded by a large, 

long-lived, positive sprite-halo, which occurred in almost the same location.  Figure 6.10 

shows this positive event, which was clearly identified in WWLLN and had a charge 
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moment of 368 C.km.   In comparison with event 3, this event had a similar range of 640 

km, and a similar mean altitude of 83 km for its halo, but a somewhat larger halo 

diameter of 82 km.  Figure 6.11 plots the location and apparent sizes of the halos 

associated with this positive and negative pair.  The solid squares indicate the location of 

the WWLLN lightning for each event, which occurred within 0.9 s of each other.  The 

map also shows that these two events are spatially overlapped, making this a very 

interesting pair of TLEs to study.  The images of these two events, shown in Figures 6.9 

and 6.10, were both taken by the same camera within a second of each other, and at the 

same electronic gain.  Both events temporarily overloaded the camera, and it appears that 

the positive event is significantly brighter and more spatially extensive for both the halo 

and its associated sprite streamers.   

 

 

Figure 6.10.  A sprite halo associated with a +CG occurring at 07:17:16.264, 867 ms just 
before the halo shown in Figure 6.9. 
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Figure 6.11.  Map showing the locations of the positive and negative sprite-halos imaged 
at ~07:17:17 (within 1 second of each other).  

 

 
This is qualitatively consistent with the measured charge moments, which were 

~20% l00arger for the positive event.  However, it is also expected that the brightness of 

the halo depends more on the impulsiveness of the charge moment than on its polarity.  

This point is illustrated earlier in Figure 6.5, which shows charge moments for event 1 

compared with a similarly located positive event.  The inspection of the waveform shows 

the charge moment change of the positive event was much more rapid than that of the 

negative event, yet it had a larger charge moment.  To investigate this negative/positive 

pair further, we utilize image data of these two events from the second camera which, as 

mentioned earlier, had an overlapping field of view.  This camera was operated at a lower 

electronic gain, and structure in these events is more easily discernable.   
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Figure 6.12 shows a composite image of these two distinct TLEs.  The upper 

section shows the positive sprite-halo (left hand side only).  In this image the halo and the 

associated sprite structures are quite distinct.   The lower section shows the negative 

event in the correct lateral position, but displaced in altitude with respect to the positive 

event, so that we can compare their structures.  This is illustrated in Figure 6.13 which 

shows intensity scans across each section, passing through the center of each halo.  The 

negative event is plotted shown in red, and exhibits a well-formed bulge in emission 

intensity associated with the halo, with superposed fine-scale structure, due to the narrow 

c-sprites emanating from the halo and penetrating down to ~64 km.  The black curve 

shows the intensity signature of the positive event, which appeared to exhibit similar halo 

emission brightness, but with significantly brighter embedded sprite structures that 

overloaded the camera near the edge of the field of view.  Thus it is possible that it was 

the embedded sprite structures which cause the brighter TLE signature evident in Figure 

6.9 (negative event) as compared with Fig 6.10 (positive event), rather than their 

associated halo signatures. 

 Also indicated on this plot is a strong signature of a unit sprite which is readily 

evident in the upper panel of Figure 6.12 (indicated by the arrow).  Close inspection of 

the lower panel shows faint evidence of this structure in the negative event.  This is 

remarkable as the negative event occurred ~0.9 s following the positive TLE, and 

suggests that the negative TLE, which has its own associated structure was also able to 

re-illuminate parts of this unit sprite structure that were closest to it.  Such re-brightening 

has been observed in high speed imagery [Stenbaek-Nielsen et al., 2000], but the rather  
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Figure 6.12.  Composite image showing a positive sprite-halo (upper panel) and a nearby 
negative (bottom panel) event that occurred within 1 s of each other.  Note both events 
are shown in their correct lateral position, but the negative event is displaced downwards 
in altitude to facilitate their comparison. 

 
 

large time delay between these two events is unprecedented.  This is because the 

relaxation time at sprite initiation altitudes (~70 km) is expected to be significantly <100 

ms [Pasko et al., 1997a].  Furthermore, it is interesting to note that the large sprite 

structure evident near the center of the positive halo extended down to ~50 km, 

approximately 14 km lower than the negative streamer structures, and that there is no 

evidence or re-brightening of this feature during the negative event (possibly due to its 

further lateral distance from the centroid of the negative event, ~20km, compared with 

the small unit sprite).  This said, it also appears that the lightning stroke identified by 

WWLLN is offset, with respect to the estimated center of the optical signature, towards 
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the positive event, and therefore the electric field may have been stronger near the unit 

sprite.  Further analysis of this complex pair and their continuing currents identified by 

the ELF/VLF data is ongoing. 

 

 
Figure 6.13.  Horizontal scans across the TLE images shown in Figure 6.12 centered on 
the peak of the halo signatures.  Note in these data the negative event is no longer 
overloaded. 
 

 
6.3.2.   Halo Events 

 As discussed earlier in this chapter, halos are mostly associated with +CG flashes 

(see Table 6.1), but recently they have been associated with negative lightning 

discharges, especially over open water [Frey et al., 2007].  In addition to the three 

negative sprite halo events that were detected on this night, we have identified four 

simple halo events with no associated sprite streamers closely associated with –CGs.  
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These events occurred over the Pampas of Argentina, approximately 600 km to the 

nearest open water.  

The two brightest halo events were observed over an hour apart at 05:59:43.467 

UT and 07:00:10.581 UT.  They were detected by WWLLN and by the ELF/VLF sensor 

and are designated as events 4 and 5.  Figure 6.14 shows two images of halo event 4 as 

captured simultaneously by both cameras.  The halo was evident for only one field in 

both data, and appears brighter in the left hand image due to the higher camera gain.  The  

distinct form of the halo is clearly evident in both images.  From these data, the halo 

initiated between 05:59:43.467 and 05:59:43.474UT, and its corresponding WWLLN 

lightning time was 05:59:43.470 UT.  These data show that this event was very transient 

(<4 ms).  The halo had an elevation of 3.66°, and occurred at an azimuth of 264.2°.  From 

the mapping analysis, this event occurred at a range of 690 km, yielding an estimated 

altitude was ~85 km, and a diameter of ~50 km.  Analysis of the image data shows that 

there were 27 TLE’s within ±10 minutes of this event, of which two were halos, six were 

sprite halos, and 19 were sprites, all associated with +CGs.  The impulsive charge 

moment of the parent lightning for this event was -279 C.km.   

 

 

Figure 6.14.  Two simultaneous images of a negative halo (event 4) imaged at 05:59:43 
UT by separate cameras, each with different electronic gain settings. 
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 Figure 6.15 shows a close up image of a second well-defined halo (event 5) which 

initiated between 07:00:10.587 and 07:00:10.598 UT.  The corresponding lightning time 

was 07:00:10.596 UT.  The halo occurred at an azimuth of ~270° and at an elevation of 

2.4°, and at a range of 790 km, assuming an altitude of ~83 km, which yields a diameter 

of ~64 km.  There were 21 TLE’s associated with +CGs within ±10 minutes of this event, 

of which three were halos, eight were sprite-halos, and 10 were sprites.  Figure 6.16 

shows the ELF/VLF azimuthal magnetic field Bphi associated with negative halo.  The 

impulsiveness of this lightning event is clearly evident, suggesting a duration of about 1 

ms, comparable to waveform signatures of the sprite-halo event (shown in Figure 6.5).  

The associated charge moment for this halo event was determined to be -296 C.km, 

which is significantly less than that shown in Figure 6.5, due to the absence of continuing 

current in this case.  For comparison with the sprite-halo data, the locations of these two 

halo events (4 and 5) are indicated on the map of Figure 6.8. 

 

  

Figure 6.15.    A negative halo captured at 07:00:10 UT on Feb. 22-23. 
 

 
 Two significantly fainter halo events were also identified during our image 

analysis and correlated well with –CGs.  These events occurred somewhat earlier at 

04:34:50.882 UT and 04:35:43.955 UT, within a minute of each other, and in geographic  
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Figure 6.16.  The ELF/VLF azimuthal magnetic field Bphi associated with a negative 
halo (event 5).  
 
 
proximity.  Their positions are indicated in Figure 6.8 as events 6 and 7.  Although these 

halos were both very faint, they were visible to the eye as transient flashes during data 

analysis at standard video rates.  Figure 6.17 shows a difference image of event 6 

obtained by subtracting the halo image from an image immediately preceding the event.  

The ellipse indicates the location of the halo at an azimuth of ~263° and at an elevation of 

~2°.  This event occurred in a single field between 04:35:43.938 - 04:35:43.955 UT.  It 

was detected by WWLLN at 04:35:43.943 UT, and its location was successfully 

correlated with the lightning data yielding an altitude of ~82 km.  This event was also 

transient (<12ms) based on optical data coupled with the lightning data.  It occurred at a 

large range of ~808 km, and had a diameter of ~42 km.  Importantly, the impulsive 
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charge moment of the parent lightning associated with this event was only -97 C.km, 

significantly smaller than the brighter halo events 4 and 5.  

  

Figure 6.17.  Contrast stretched difference image of a faint halo (event 6) that occurred at 
04:35:43.955 UT on February 23, 2006.  The oval indicates the location and approximate 
size of the halo. 
 

 
The second faint halo (event 7) was initiated between 04:34:50.882 - 

04:34:50.899 UT, with a corresponding sferic lightning time of 04:34:50.874 UT, 

indicating a lifetime of <10 ms.  It was also only imaged in one field, with an estimated 

azimuth of ~263° and an elevation of ~2°.  Using an assumed mean altitude of 83 km, 

this event was estimated to have occurred at a range of ~820 km, with an approximate 

diameter of 59 km.  As with event 6, the impulsive charge moment of the parent lightning 

for this event was also quite small at -107 C.km.    

 
 



   

152

6.3.2.1.  Halo Discussion 

 Although evidence for sprites associated with –CGs is extremely rare, there are 

reports associating negative lightning strokes with halos.  For example, studies by 

Miyasato et al. [2002] and Bering et al. [2004] associated at least 18 halo events to –CGs.  

In particular, Bering et al. [2004] detected 17 negative events which he associated with 

halos, using stratospheric balloon photometry measurements.  Recent analysis of ISUAL 

satellite data suggests that the ratio of negative to positive lightning associated with halos 

was 2 to 1 [Frey et al., 2007], with a majority of the events occurring over the ocean.  

The favored working hypothesis in present models suggests that the streamer-like 

structure of sprites requires a sustained electric field, whereas Williams et al. [2007] in 

their discussion on the polarity paradox suggest that an impulsive overvolting at 

mesospheric heights is all that is needed to create a simple halo.   Evidence supporting 

this theory may be found in Barrington-Leigh et al. [2001] and Bering et al. [2004].  

Both of these studies show measurements of halos with short time delays (~1ms) from 

the parent CG, indicating their impulsive nature.  This result is supported in laboratory 

measurements where a fast overvolted electric field produced a uniform (diffuse) 

discharge in air at stratospheric pressures, whereas slower growing electric fields 

typically resulted in localized streamer-like discharges, of similar morphology to sprites 

[Roth et al., 2005].   

 Because the negative charge reservoir typically resides at a lower altitude in the 

thundercloud than the positive reservoir (as discussed in Chapter 1), sustained quasi-static 

fields are thought to be harder to produce with –CGs, as their impulsive charge moment 

changes are usually smaller, and not sustained for long periods of time.  However, -CGs 



   

153

as well as +CGs, are equally capable of producing large, very short-lived fields in the 

mesosphere, which are thought to be the driving force behind halo formation.   

 Ground-based observations using conventional video cameras have proven to be 

sensitive enough to capture halos, but available coordinated polarity measurements 

indicate that, like structured sprites, they are essentially associated with +CGs.  Our 

observations of negative halos over northern Argentina provide conclusive evidence for 

negative driven halo events.  These negative events represent only four out of a total of 

183 halo related events (of which 61 were pure halos), indicating the prominent halos are 

indeed mainly driven by +CGs.   

  It has been speculated that there are many more negative halos than reported in 

the literature.  This may be due to their lower brightness, especially when using cameras 

of limited sensitivity.  Indeed, ISUAL satellite observations indicate that halos are 

typically less intense than sprites by usually an order of magnitude [Williams et al., 

2007].  However, there is no comparison to date between halo luminosities over ocean 

and land, or for positive and negative events.  What is clear is that published reports from 

both ground-based and aircraft observations have yet to associate large numbers of halos 

with –CGs.  Clearly sensitivity is a factor in this discrepancy, as two of the negative halo 

events reported here were associated with large negative charge moment changes, and 

were easily captured by our cameras (each of which was operated at a significantly 

different electronic gain).  In contrast, the two faint halos were associated with much 

smaller negative charge moment changes.  This said, the negative charge moments 

associated with our two highly visible halos were not unusually large, and therefore the 
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puzzle remains why there are so few examples of negative halos in ground-based data, 

especially given the preponderance for negative lightning in most thunderstorms. 

  

6.4.  Summary 

  Of the many thousands of sprites reported in the literature, clear images of a 

negative polarity sprite are extremely rare.  This chapter presents detailed measurement 

of up to seven sprite-halo and halo events that were unambiguously associated with –CG 

lightning strokes originating from an MCC over Argentina.  The identification of these 

TLEs were made using a combination of simultaneous video, ELF/VLF radio 

measurements, and WWLLN lightning data (when available) and provides further proof 

that sprites can be driven by upward as well as downward electric fields, as predicted by 

the conventional breakdown mechanism [e.g., Pasko et al., 1997].   A summary of the 

properties of these unique events is given in Table 6.2.   

 
Table 6.2.   Summary of TLE events associated with negative CGs observed on February 
23, 2006. 

 
 

 
  Each of these negative events was similar in morphology and duration to 

comparable positive polarity events observed from the same storm.  However, detailed 
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analysis suggests that streamer brightness may be lower in the negative events and less 

vertically extensive, when compared with positive events of similar charge moments.  

The fact that we have detected several negative events from one storm is quite amazing, 

and at the same time puzzling.  Many studies over the Midwestern U.S. have produced 

thousands of TLEs associated with positive lightning, yet no substantiated negative 

sprites and few halos have been reported.  It is possible that this Argentinean storm was 

exceptional in both activity and strength of its lightning discharges.  In a study by 

Cummer and Lyons [2005] that analyzed all lightning strokes from two MCSs over the 

U.S. Great Plains, no -CGs with charge moments over 300 C.km were detected using the 

same ELF/VLF instrument utilized in this campaign.  However, in the South American 

storm analyzed here, the three negative sprite-halos exceeded this value.  The 

characterization of these negative events is very important in trying to bridge the gap 

between observations and theory.  Why we saw so many from one storm is not clear, 

especially considering the apparent lack of negative events over the U.S.A.  

Investigations to date of the March 3-4 storm have yielded no other negative events, 

although the analysis is still ongoing.  Future studies in this part of the world, as well as 

other areas of high activity may answer the polarity paradox question, or at least help in 

improving our understanding. 
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CHAPTER 7 

 

SUMMARY AND FUTURE WORK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consecutive sequence of video images at 16.7 ms sample rate showing a remarkable ring-
like cluster of sprites, recorded on February 23, over Northern Argentina. 

 

 
 

“…  An American Airlines captain reported this event at approximately 0850GMT 

on 06/12/99 while flying near the coast of Costa Rica.  He said the anvil of a 

thunderstorm (located 40 nautical miles west-northwest of his aircraft) lit up with a 

very bright glow and then several discharges shot vertically to very high altitudes.  

He indicated the color of the event was white.  The location of the aircraft was 

09.423° N and 85.2° W. 

  The pilot also indicated that he had read an article about Sprites and Jets!” 

 

— Rob Hudson, meteorologist, American Airlines 
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7.1.   Summary 

 Lightning-driven events in the middle atmosphere known as Transient Luminous 

Events (TLEs) have been discovered and characterized over the last two decades.  These 

magnificent optical phenomena exhibit several different morphological forms, known as 

sprites, elves, halos, and jets, each characterized by differing horizontal and vertical 

structure and lifetimes.  These events have been shown to be associated with terrestrial 

cloud-to-ground lightning, which temporarily provides large electric fields above active 

thunderstorms that can excite optical emissions by electron collision in the neutral upper 

atmosphere.  Serendipitously discovered over the Midwestern U.S. in 1989, these 

beautiful phenomena have now been observed in many parts of the world, including Asia, 

Europe, and South America, in association with strong storm activity.  

  Previous studies of the low frequency waveforms generated by lightning 

discharges have indicated that the regions of southern Brazil and northern Argentina are 

prolific TLE producers.  As part of a joint, collaborative Brazilian campaign with the 

University of Washington, INPE, and later Duke University, Utah State University 

deployed sensitive imagers on ground, aircraft, and balloon payloads to capture novel 

data of these transient events over South America.  Two campaigns were conducted.  

During the Brazil 1 campaign, which was conducted from Cachoeira Paulista, SP, in 

2002-2003, our exploratory measurements led to the first ground-based detection of 

sprites over Brazil, in association with large-scale storms driven by strong frontal 

activity.  Planned coincident ground-based and balloon-borne measurements were not 

achieved.  However, electric field measurements were successfully obtained above these 
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types of storms, using balloon-borne instrumentation, revealing the largest in-situ electric 

fields on record [Holzworth et al., 2005]. 

 Based on these successful, but limited measurements, a second campaign took 

place in 2006, this time from Santa Maria, in the southernmost part of Brazil.  This site 

was chosen due to extremely large Mesoscale Convective Complexes, or MCCs, which 

occur frequently in this region of South America during the austral spring and fall 

seasons.  On February 22-23, such a system formed over northern Argentina, several 

hundred km to the west of our observing site.  This system was observed for over six 

hours as it developed throughout the night.  However, its extreme range made it 

inaccessible to coordinated balloon-borne measurements.  Our ground-based 

measurements were successful, and a total of 445 TLEs were recorded, making this the 

third largest spriting storm ever witnessed.  Of these 445 TLEs, a high percentage were in 

the form of halos and sprite-halos, providing a unique opportunity to study the physical 

characteristics of these events over South America. 

 Halos are diffuse optical emissions which originate near 80 km altitude, and are 

primarily driven by the quasi-static electric field that occurs shortly after large cloud-to-

ground lightning.  Over 180 of these events were studied in detail, to determine their 

central altitude, mean diameters, and association with lightning charge moment changes.  

These measurements utilized ELF/VLF sferic data from Duke University, and lightning 

location information from the World Wide Lightning Location Network (WWLLN).  The 

ELF/VLF sensors were co-located with our ground-based image measurements at the 

Southern Space Observatory (SSO) near Santa Maria, providing crucial information on 

the causative lightning.  Key results of our investigation show that halo events occurred 
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at similar mean altitudes, and exhibited comparable scale-sizes and morphology to prior 

limited studies performed from the Midwestern U.S.  Novel measurements of their 

associated charge moments were significantly smaller for almost all of the South 

American events as compared with similar North American sprite measurements.   

 Remarkably, seven of the halo and sprite-halo events were directly associated 

with –CGs, as confirmed by Duke University ELF/VLF data [Taylor et al., 2008].  

Negative sprite events are extremely rare, with only two (possibly three) out of many 

thousands of events reported in the literature.  The absence of TLEs driven by negative 

lightning has puzzled many in the scientific community, because the prevailing quasi-

static electric field theory is not polarity dependent.  Our observations of seven negative 

events in a single storm are unprecedented.  Detailed analysis of these data indicates that 

the three sprite-halo events were associated with relatively large charge moments, while 

the fainter pure halos exhibited smaller charge moments.  Comparison of the sprite 

structures associated with the negative events with nearby positive events of similar 

charge moment changes suggest that the negative sprite streamers are significantly 

shorter and somewhat lower in luminosity.  Our results, although limited in number, 

provide the first quantitative measurements of negative sprite morphology and scale 

sizes, and appear to agree well with theoretical expectations for negative driven TLEs 

[Pasko et al., 2000]. 

 These exploratory measurements have established the potential for large numbers 

of TLEs over South America.  The events appear morphologically similar to those 

reported elsewhere, particularly over the Midwestern U.S.  However, the MCC observed 

on February 22-23, 2006, appears to have been unusual in many ways, producing TLEs 
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with much lower charge moment changes, as well as several negative sprite events.  

Although not discussed in detail in this dissertation, a large number of events with 

unusual morphology and dynamics, such as dancing sprites, which are multiple sprites 

that appear to trigger in sequence, and remarkable ring-like clusters of sprites, as 

illustrated at the beginning of this chapter were also observed.  These studies have raised 

the following questions:  

 

• Why did this storm produce so many TLEs, and why did they occur throughout 

the storm complex, rather than in the trailing stratiform region as determined from 

previous measurements over the U.S.A?   

• Why was this storm able to produce several negative sprite-halo events, and was 

this an anomaly or typical of storms in this geographical region? 

• What are the relationships between halos (altitude, brightness, and diameter) and 

their associated charge moments?   

• Why were the charge moments changes associated with the sprite-halo events at 

the lower limit of the expected ranges of charge moments for sprites observed in 

the U.S.? 

• Is there a polarity difference between halo events produced over land versus 

oceans?  If so, why did the MCC over Argentina produce at least four negative 

pure halos? 

• What are the atmospheric dynamics associated with a negative event immediately 

following a positive event, as observed at 07:17:17 UT on Feb. 23, 2006, which 

revealed sprite re-brightening after ~1s and possible partial loss of halo signal? 
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• Given the apparent differences between TLEs produced in North and South 

America, what other regions of the world should be studied to further our 

understanding of their global characteristics?   

 

7.2.  Future Research 

 The coordinated measurements in Brazil were exploratory in nature and have 

raised new questions requiring continued data analysis, as well as new measurements.  

Important topics for future research are: 

• To extend the charge moment analysis to shorter and longer time scales, to 

better quantify the impulsiveness and duration of the lightning and its 

relationship with the observed halo signatures (diameter, brightness, altitude). 

• To compare and contrast the properties of the TLEs observed from the 

February storm with those of the March storm, focusing on halo 

characteristics. 

• To compare charge moments associated with the sprites observed from both 

storms with published results from similar studies over the Midwestern U.S. 

• To obtain new measurements from southern Brazil, to further characterize 

sprites from large MCCs, and to investigate occurrence of other negative 

events. 

 Finally, recent ISUAL satellite measurements and ground-based ELF/VLF data 

strongly suggest that the Central America is most likely the largest producer of TLE 

events. Yet, to date, there have been few ground-based observations from this region. 

Given the differences that we have determined between TLEs in North and South 
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America, new observations from this important region, in particular focused on detecting 

negative events over land and ocean, could provide crucial information for improving 

current theoretical and modeling studies. 
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APPENDIX A:  LIGHTNING DETECTION NETWORKS 

 
 

A.1.  Introduction 

 Many individual physical processes take place during the formation of a lightning 

stroke.  Each of these processes has characteristic electric and magnetic fields associated 

with them.  These fields also may be related to electromagnetic waves emitted by the 

formation lightning strokes.  This Appendix contains a brief summary of how this type of 

electromagnetic radiation can be used to determine the location of the source lightning.  

The following discussion of lightning detection sensors is condensed from a study by 

Rakov and Uman [2003].   

      Mathematically, it can be shown that any waveform or wave pulse may be 

constructed by superimposing sinusoidal waves of different amplitudes and frequencies.  

Similarly, one may think of a lightning stroke as a very impulsive antenna, which radiates 

electromagnetic waves with a multitude of frequencies.  In fact, lightning is known to 

emit significant electromagnetic energy in the frequency range from below 1 Hz to 300 

MHz, with a peak in the frequency spectrum near 5 to 10 kHz for lightning at distances 

beyond ~50 km [Rakov and Uman, 2003].  There are other frequencies which lightning 

emits as well, such as in the microwave range (300 MHz to 300 GHz), as well as in the 

visible spectrum (1014 to 1015 Hz), although electromagnetic waves with frequencies in 

these ranges have limited energies.  Any of these observable signals can be used to detect 

and calculate the location of the lightning process which produced it.   

     The three most common electromagnetic radio-frequency locating techniques are 

known as magnetic direction finding (MDF), time of arrival (TOA), and interferometry 
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where the type of locating information depends on the wavelength (or the frequency) of 

the radiation detected.  If the detected signals wavelength is very short compared with the 

length of the radiating lightning channel (very high frequency), the whole lightning 

channel can be imaged in three dimensions.  For lower frequency detections, generally 

only a single location can be obtained by these detectors. 

      Single-station sensors can detect lightning occurrence, but are not designed to 

determine the location of the lightning stroke (there are many single-station detectors that 

are sold which claim to be able to provide lightning locations, using the amplitude of 

radio static to approximate distances, intrinsically causing large errors). However, a 

single-station detector can be used to assign groups of flashes to approximate distance 

ranges if data are accumulated and averaged over a period of time.  Accurate lightning 

locating networks utilize multiple locator sensors to determine where lightning occurs.   

 

A.2  Magnetic Field Direction Finding (MDF) 

 Two vertical and orthogonal loops, each measuring the magnetic field from a 

given vertical radiating source, can be used to obtain the direction of that source.  For 

example, two loops oriented in the North-South (NS) and the East-West (EW) directions 

will measure different magnetic fields due to a lightning stroke.  Faradays Law shows us 

that the output voltage from a loop is proportional to the direction of the magnetic field 

emitted by the source compared with the normal vector of that loop.  For two orthogonal 

loops, the signal in one of the loops will be proportional to the cosine of the angle 

between the loop and the source, while the other loop’s signal will be proportional to the 
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sine of the angle between the loop and the source.  When comparing the two signals, the 

ratio is proportional to the tangent of the angle between the source and the sensor. 

      These types of direction finders (DFs) for lightning location can be divided into 

narrowband and gated wideband DFs.  Narrowband DFs have been used for decades to 

detect distant lightning, and generally operated in a narrow frequency band (with a center 

frequency of 5 to 10 kHz), where lightning signal is relatively high.  These types of 

sensors were used to identify and map thunderstorms at large ranges before the 

development of weather radars in the mid 1900’s [Rakov and Uman, 2003].  Two such 

sensors at known locations are sufficient to approximate the location of a lightning 

stroke.  A major disadvantage of narrowband DFs is that if the lightning range is over 

200 km, inherent errors in the calculated azimuth occur, known as polarization errors, 

which can be as large as 10° [Nishino et al., 1973].  These errors are caused by detection 

of non-vertical lightning channels and the reflection of the electromagnetic signals from 

the ionosphere (see Figure A.1).  Additionally, variations in the topography near the 

sensors, as well as nearby conducting mediums may cause uncertainty in the analysis of 

the sensor data. 

 To deal with the polarization errors associated with narrowband DFs, gated 

wideband DFs were developed in the 1970’s.  These sensors sample the orthogonal 

components of the return stroke’s magnetic field, this field originating from the bottom 

part of the lightning channel, which is typically vertical.  Additionally, this type of DF 

does not record reflections of the signal from the ionosphere, as this signal arrives after 

the direct signal is sampled.   The operating bandwidth of the gated wideband DF ranges  
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Figure A.1.  Illustration showing the Earth-Ionosphere wave guide, which allows VLF 
(3– 30 kHz) sferics to propagate over large distances (100s – 1000s km) through 
reflection off the ionosphere.  [Pessi et al., 2008: Figure 1].  © American Meteorological 
Society.  Reprinted with permission. 
 
 
from a few kHz to about 500 kHz [Rakov and Uman, 2003].  Early studies of the 

accuracy of these systems showed that these sensors individually located lightning 

strokes to ± 1° [Krider et al., 1976].  Gated wideband DF sensors were originally 

designed to detect only –CGs, but were configured in the late 1980s to measure both 

positive and negative CGs, by also measuring the electric field associated with the 

lightning stroke. 

       Gated wideband DFs, like their narrowband counterparts, are vulnerable to site 

errors, which are typically a function of direction, but not of time.  These errors arise 

from non-horizontal terrain near the sensors, as well as nearby conducting objects.  Since 

field sites with a totally flat surrounding area and no conducting mediums in the nearby 

vicinity are not common, it is often easier to measure the site errors and then compensate 

for them in the data analysis.   
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      Although only two detectors are necessary to determine the location for a 

lightning stroke, when three or more sensors detect the same lightning signature, the 

accuracy in the calculated lightning stroke location is increased.  When multiple sensors 

are used, each with a known uncertainty, a minimization technique can be performed 

using the azimuthal direction provided by each sensor.   

 

A.3.  Time of Arrival (TOA) Sensors 

 A single time-of-arrival sensor provides the time at which some component of the 

electromagnetic signal produced by a lightning stroke arrives at the sensor.  TOA sensors 

typically are derived into three categories, based upon the wavelengths (or the 

frequencies) of the signal detected.  These three types are: (1) very-short-baseline 

(wavelengths typically 10s to 100s of meters); (2) short-baseline (10s of km’s); and (3) 

long-baseline (hundreds to thousands of km).  The first two types are typically used to 

study the development of the lightning channel, while the third (long-baseline) type of 

TOA sensors are utilized to determine the geographical coordinates of the lightning 

strike. 

      Long-baseline TOA sensors were first operated at a bandwidth of 4 to 45 kHz 

using four stations with a total separation distance of 100 km.  Since all electromagnetic 

radiation propagates through a vacuum (and very near that speed in air) at 3 x 108 m/s, by 

measuring the time of arrival at different sensors, and coordinating that information 

between all sensors, the location of the lightning stroke can be determined.  In theory, 

four sensors are needed to accurately locate a lightning stroke, while two such sensors 

would give a direction, similar to one DF sensor. 



   

183

      There are difficulties with this type of sensor.  It does not differentiate between a 

cloud-to-cloud flash from a cloud-to-ground flash, and errors in locations arise when 

anything changes the arrival time of an ideal signal, such as topography, or stations 

receiving different parts of the lightning signal.  In fact, the early versions of these 

sensors were shown to be only about 50% accurate [Casper and Bent, 1992]. 

 

A.4.   Lightning Detection Networks 

 The first commercial venture for lightning detectors using orthogonal magnetic 

direction finders (DFs) was started in the mid 1970s, when E.P. Krider, M.A. Uman, and 

A.E. Pifer formed the company Lightning Location and Protection, Inc. [Rakov and 

Uman, 2003].   These networks needed operators at each station to report the calculated 

azimuth from each sensor to determine locations of lightning strokes.  Original studies 

using the Lightning Location and Protection (LLP) network were performed in Florida, in 

Alaska, and along the U.S. Gulf Coast.  These early programs relied on three stations 

communicating with a central command by telephone. 

      Meanwhile, larger networks were being developed.  The United States Bureau of 

Land Management developed an LLP DF system to cover 11 western states and Alaska, 

originally using the data to predict forest fires.  In the early 1980’s, networks covering 

Oklahoma and the U.S. East Coast were developed.  The efficiency of these types of 

networks was studied by many during the 1980’s and early 1990’s, and it was found that 

lightning detection was approximately 70% efficient if the stroke occurred within 400 km 

of three sensors.  The polarity of the lightning and season of the year were found to effect 

this efficiency [Hojo et al., 1989].   
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      In 1989, the United States National Lightning Detection Network (NLDN) was 

created, mainly by combining multiple LLP gated wideband magnetic DFs.  Today, this 

network utilizes both DFs and TOA sensors, which provides increased detection 

efficiency to ~ 90%, and almost an order of magnitude improvement in locating accuracy 

(from ~ 12 km to ~ 3 km).  This network now employs 106 lightning sensors throughout 

the U.S. 

 

A.5.   World Wide Lightning Location Network 

 The World Wide Lightning Location Network (WWLLN) consists of a series of 

VLF (3 - 30 kHz) sensors located at a number of distributed sites around the globe.  This 

network is made of TOA sensors, with readings from four or more sensors needed to 

determine a lightning location.  This is a cooperative network that has been operated by 

the University of Washington since 2003.  In this type of network, geographical location 

of the lightning as compared to the network’s sensors is pivotal in locating the stroke.  

For example, if a lightning strike is enclosed by network sensors, the probability of the 

network picking up that lightning stroke is improved.  Because the Earth is spherical, 

every lightning stroke is technically enclosed by the network, but as of 2008, there are 

not as many sensors placed around the world as would be ideal to detect lightning flashes.  

The WWLLN is currently looking for host sites to improve the networks accuracy.  This 

is especially true in less-developed areas of the world.  A satellite image, showing an 

example of WWLLN data are shown in Figure A.2. 

    WWLLN currently picks up ~ 50% of all lightning strokes worldwide, but only 

15 – 20% of lightning in South America.  It is believed (although not technically proven)  
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Figure A.2.  Map of South America, with overlaying WWLLN lightning stroke 
locations.  The blue dots depict lightning detection, while the red dots show the locations 
of the WWLLN sensors. 
 
 
 that large, impulsive lightning strokes are detected at a higher rate than smaller strokes 

(an example of this is that the causative lightning of  halos seen during the February 22-

23, 2006 storm had a much higher WWLLN detection rate than its normal detection 

efficiency, see Chapter 5).  WWLLN has a timing accuracy of 30µs, and a spatial 

accuracy of 10 km.  Due to the type of sensors within this network, lightning polarity 

cannot be measured.  WWLLN data are available online and are updated every 10 

minutes.  They were used through our South American programs to first identify the 

general location(s) of distant thunderstorms to help aim our cameras, and later to 

determine the location of the individual TLE events used in this analysis. 
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APPENDIX B:  CHARGE MOMENT CALCULATION 

 

B.1.  Introduction 

 Direct measurements of charge transfer during lightning strokes have been made 

in the past using electrically grounded rockets [Hubert et al., 1984], from chance 

instances when lightning strikes an instrument tower [Berger, 1967], and from  multi-site 

electrostatic field measurements [Krehbiel et al., 1979].  These types of measurements 

are difficult to perform because of the unpredictability of where (and when) a lightning 

stroke will actually occur, and the proximity at which the sensors must be placed.   

      As lightning strokes inherently produce electromagnetic radiation, new methods 

have been devised to use remote detection of this radiation to estimate the amount of 

charge transferred during a lightning event.  This Appendix gives a brief overview of a 

method developed and utilized by Steven Cummer and U.S. Inan, used to calculate 

charge moment changes of sprite-producing lightning over the Midwestern United States 

[Cummer and Inan, 1997; Cummer et al., 2006; Cummer and Lyons, 2005].  Although 

other similar techniques are being employed by research groups around the globe, this 

was the method used to calculate charge moments during our collaborative TLE 

campaign in South America.  This appendix does not contain detailed discussion of such 

techniques, but provides essential background information for the reader to show how the 

charge-moments used in this dissertation were calculated.  This summary is derived 

almost exclusively from a paper outlying the method [Cummer and Inan, 2000].  The 

reader is encouraged to study the method in its entirety in the above mentioned 

publication. 
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     Lightning emits electromagnetic (E-M) radiation over a wide range of 

frequencies (see Appendix A), but most of the energy is radiated in the very low 

frequency (VLF) and extremely low frequency (ELF) range (3 Hz to 30,000 Hz).  E-M 

waves in these bandwidths have large enough wavelengths that they can reflect multiple 

times off the ionosphere and Earth’s (conducting) surface which forms a natural 

waveguide (see Figure A.1).  This wave proliferation has low attenuation rates [Taylor 

and Sao, 1970], enabling waves to propagate over large distances.  Various sensors 

around the globe can therefore make measurements of lightning-induced ELF/VLF radio 

atmospheric waves (or sferics, for short).  Since the sensors do not need to be in close 

proximity to a lightning source(s), using ELF/VLF radiation to determine the amount of 

charge removed during a lightning flash is a very powerful tool for remotely studying 

lightning and its effects.  The particular sensors used by Duke University to detect and 

measure these ELF/VLF lightning signatures during the South American campaigns are 

discussed in Chapter 4. 

 

B.2.  QTEM Modes in the Ionosphere 

 When modeling how low frequency waves behave as they propagate within the 

Earth-ionosphere waveguide, natural changes in the ionosphere must also be included.  

Early studies of ELF sferic wave propagations were based on simple representations of 

the ionosphere and do not reproduce some of the details evident in sferic signatures 

reported in later studies.  University of Stanford researchers used a well-validated 

ionospheric program (MODEFNDR) [Shellman, 1986] to model the ionosphere, 

successfully reproducing some of the fine sferic features observed by sensors [Cummer 
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and Inan, 1997].  Their work compared measured sferic waveforms with differing 

theoretical results selecting different electron densities in the E and F region ionosphere 

in the MODEFNDR model.  Thus, the proper ionospheric conditions (electron densities, 

as well as height) can be investigated, and included in their model of propagating sferic 

waves.     

       To simplify the determination of the source lightning’s current moment from the 

sferic signature, only the quasi-transverse electromagnetic (QTEM) propagation in a 

horizontally homogeneous Earth-ionosphere waveguide is used.  This assumption is valid 

at night in the mid-latitude region, where the ionosphere is relatively stable.  The QTEM 

mode is predominantly produced by vertical current discharges, and therefore, horizontal 

current sources (such as intra-cloud lightning) will not provide similar waveforms.  A 

low-pass (~1.5 kHz) filtering system is utilized to extract the QTEM mode, which on 

arrival at the sensor composes superposition of many modes.  This filtering limits the 

bandwidth of the extracted waveforms to frequencies above 1.5 kHz, and although some 

of the waveform’s characteristics are lost, the determination of the total charge moment 

change of the discharge (important for TLE production) is not significantly affected.   

 

B.3.  ELF Sferic Modeling 

 A lightning stroke can be treated as an electrically short antenna having a time-

varying current that is constant along the channel length.  This approximation is valid due 

to the fact that for frequencies below 1.5 kHz, the E-M wavelengths will be greater than 

200 km (which is much larger than the actual lightning channel length, typically several 

km), and because the radiated fields are nearly independent of source altitude for 
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propagation in QTEM mode [Cummer et al., 1998; Cummer and Inan, 2000].  The 

magnitude of the radiated fields depends primarily on the charge moment of the lightning 

stroke (see Chapter 2), but the propagation of these fields is time invariant, so it is 

sufficient to consider the fields produced by an impulsive current.   

      The model developed by Cummer and Inan [2000] is based upon a single 

frequency LWPC ELF/VLF propagation model originally developed by Pappert and 

Ferguson [1986].  For ELF propagation, this model solves the time harmonic propagation 

using mode theory [Budden, 1961], in which the E-M field at the distance from the 

source are produced by the QTEM waveguide mode.  This mode is composed of a 

horizontal magnetic field perpendicular to the propagation direction and a vertical electric 

field. 

     The linearity and time invariance of the sferic propagation means the fields can 

be related to any given current waveform by a simple convolution operation [see 

Bracewell, 1986, p. 24], when considering fields produced by an impulsive current 

source.  Such fields can be mathematically represented by the Green’s function for a 

known distance between the receiver and the source.  This propagation can be readily 

modeled using Fourier transform methods, from which a time domain waveform can be 

computed from the inverse transform of the frequency domain solution, which works 

well in a horizontal waveguide [Cummer and Inan, 2000].   

 The shape of the observed ELF waveform is also strongly related to the 

bandwidth of the receiver instrument.  Therefore, filters must be applied to effectively 

model any ELF waveform or impulse response so that it is directly comparable with the 

ELF sferics.  Cummer and Inan [2000] applied a single-pole high-pass filter to the 
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observed spectra, as well as to their modeled spectra.  It is also possible to digitally filter 

the data after observation.  In general, it is desired to keep the lower frequency cutoff as 

low as possible, but not so low that other (Schuman) resonances contribute to the 

observed signal. 

      As already mentioned, the Cummer and Inan [2000] method utilizes a single-

frequency LWPC ELF/VLF propagation mode, initially proposed by Pappert and 

Ferguson [1986].  This mode is composed primarily of a horizontal magnetic field 

perpendicular to the propagation direction and a vertical electric field.  It allows for 

arbitrary altitude profiles of ionspheric electron density, an arbitrary orientation of the 

magnetic field, and arbitrary homogeneous ground permittivity and conductivity. 

      For example, the transverse horizontal magnetic field By at a distance x along the 

ground from a vertical electric dipole source as a function of frequency is: 
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where the wave number k is given by k = 2π/ω, Me(ω) is the vertical electric dipole 

moment of the source (which is related to the source current moment by Me(ω) = -i 

Mi(ω)/ω, and Mi is the source current moment amplitude).  The term [REsin(x/RE)]-1/2 

accounts for the spreading of the fields over a spherical Earth of Radius RE.  The 

eigenangle θ is related to the index of refraction for the QTEM mode, and the excitation 

and receiver factors, Λt  and  Λr correlate the coupling between the transmitting and 

receiving antennas and the fields of the waveguide mode.  The terms θ, Λt,, and  Λr are 

functions of  frequency and depend on the ionospheric electron density and the collision 
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frequency profiles inputted into the model.  These profiles are site and time dependent 

and are calculated numerically, as discussed in detail by Pappert and Ferguson [1986]. 

     Figure B.1 shows the ELF sferic amplitude spectra calculated with this model 

using representative nighttime and daytime electron density (Ne) altitude profiles.  These 

profiles are for mid-latitude local midnight and midday and were calculated using the 

1995 International Reference Ionosphere [Rawer et al., 1978].  The positive ion density is 

taken to be equal to the electron density except where Ne, 100 cm-3, at which altitudes the 

positive and negative ion densities are both set to 100 cm-3.  The spectra shown in Figure 

1 are the amplitude of the transverse horizontal magnetic field By as a function of the 

frequency observed at different distances from the source, specifically, at x = 1000, 2000, 

and 3000 km.  The source current for each is an impulse with a total charge moment 

change of 10 C·km.  The secondary peaks in the nighttime spectral amplitudes are a 

consequence of the nighttime ionosphere.  These types of resonance effects have been 

seen in theoretical studies of ELF propagation in the presence of narrow sporadic E layers 

[Barr, 1977].  This suggests that electron densities at high altitudes can strongly influence 

ELF propagation.   

The sferic spectrum of Figure B.1 can be converted to a time domain waveform 

using an inverse Fourier transform operation.  However, this operation must be 

approximated since the spectrum is only a sampled version of the continuous spectrum.  

Cummer and Inan [2000] use a fast Fourier transform (FFT) to do this calculation.  The  
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Figure B.1.  Calculated ELF sferic spectra for propagation distances of 1000, 2000, and 
3000 km under nighttime and daytime ionospheres.  The source is an impulsive discharge 
with a charge moment change of 10 C*km [Cummer and Inan, 2000, Figure 2].  
Reprinted by permission of the AGU. 
 

 
continuous time domain waveform f(t) is defined by the inverse Fourier transform: 
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where F(ω) is the continuous sferic spectrum for positive ω.  This inverse transform can 

be approximated by: 
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which utilizes the fact that f(t) must be causal, and therefore F(ω) must have Hermitian 
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symmetry.  In Equation (2) �ω is the difference between frequency samples and N is the 

number of samples of F(ω) calculated through (1).  Using the definition of the inverse 

FFT, namely: 
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.  A frequency of �ω = 2π·5 Hz is small enough to capture the fine 

spectral variations.  A relatively smooth waveform results from a sampling period of �t = 

10-4 s, which is justified since the signal strength is essentially zero for frequencies 

greater than 2.0 kHz.  Together, these two values require a sample set of N = 2000, which 

corresponds to a maximum calculated frequency of ωmax=  2π·10 Hz.  Since the sferic 

spectrum is approximately zero for frequencies above 2 kHz, F(ω) need only be 

calculated up to this frequency.  In fact, applying a 1-kHz low-pass filter can eliminate 

any contributions to the signal from the QTM or QTE modes, ensuring that 0)( ≈ωF  for 

f > 2 kHz.  Figure B.2 shows the calculated By waveforms for the three propagation 

distance under daytime and night-time ionospheric conditions for the spectra shown in 

Figure B.1. 
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Figure B.2.  Calculated ELF By waveforms for the ELF sferic spectra of Figure 1, 
[Cummer and Inan, 2000, Figure 3].  Reproduced by permission of the AGU. 
 
 

B.4.   Source Current Extraction 

 Due to the time invariance and linearity of the propagation problem, the 

relationship between the sferic waveform, current moment waveform, and propagation 

impulse response is a simple convolution, namely: 

 

                                                 τττ dthmtf i )()()( −= ∫
∞

∞−

,                                              (6) 

 
where h(t) is the propagation impulse response, mi(t) is the source current moment, and 

f(t) is the observed electric or magnetic field waveform.  If an observed sferic has a 
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known propagation distance from the discharge to the receiver, the ELF propagation 

impulse response h(t) can be modeled.  After this, the source current moment can be 

extracted by solving the inverse convolution (or deconvolution) problem.  Deconvolution 

methods can be problematic, due to the non-unique nature of the problem.  In particular, 

convolution removes information contained in higher frequencies of mi(t). This 

information cannot be recovered and there are many waveforms that satisfy the forward 

convolution problem nearly as well as each other.  A deconvolution technique must 

therefore be used to handle the non-uniqueness of the situation.  Cummer and Inan 

[2000] discuss that different techniques have been used in past studies, but that linear 

regularization has proved to be the most effective method (as considered by Press et al. 

[1992, p. 799]).   

     Solutions from the linear regularization must be physically reasonable; the 

solution must be causal (the current must be zero before the sferic starts), and it must be 

positive (because the vertical current in a single lightning discharge does not change 

direction).  The linear regularization technique itself does not guarantee these conditions 

and Cummer and Inan [2000] uses an additional technique to implement these conditions 

in the solution.  This solution is known as the method of Projections Onto Convex Sets 

(POCS) [Press et al., 1992, p. 804]. 

      Cummer and Inan [2000] tested their techniques using a modeled sferic, and 

showed that the current moment (and thus the charge moment for a given time interval) 

can be accurately extracted from the sferic information.  However, it should be 

mentioned that a significant deviation in the extracted charge moment change from the 

actual charge moment change occurred around 10 ms after the discharge onset, when the 
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background noise began to dominate the signal.  Therefore, although the method works 

well, it is limited when the signal-to-noise ratio is low.  Cummer and Inan [2000] has 

successfully applied this technique to observed sferic, providing quantitative information 

about the causative lightning stroke. 

 

B.5  Conclusion 

 Lightning discharges generate electromagnetic waves at very low frequencies, 

known as radio atmospherics or sferics.  A method using these sferics to extract 

information about the lightning discharge, namely, the current moment (and thus the 

charge moment), has been developed and described in Cummer and Inan [2000].  This 

method consists of two components.  The first is a model which deals with the 

propagation of the low frequency energy from the lightning source to the receiver, and 

the second is a deconvolution technique in which the source current moment can be 

extracted from the observed sferic signature.  This method has been used to quantify 

charge-moments of lightning in many studies, and was used extensively during the South 

American campaign discussed in this dissertation.  
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APPENDIX C:  PERMISSION FOR PUBLICATION FORMS 
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