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Abstract

Recent developments in network neuroscience have highlighted the importance of developing techniques
for analyzing and modeling brain networks. A particularly powerful approach for studying complex neural
systems is to formulate generative models that use wiring rules to synthesize networks closely resembling the
topology of a given connectome. Successful models can highlight the principles by which a network is organized
(identify structural features that arise from wiring rules versus those that emerge) and potentially uncover the
mechanisms by which it grows and develops. Previous research has shown that such models can validate the
effectiveness of spatial embedding and other (non-spatial) wiring rules in shaping the network topology of the
human connectome. In this research, we propose variants of the action-based model that combine a variety of
generative factors capable of explaining the topology of the human connectome. We test the descriptive validity
of our models by evaluating their ability to explain between-subject variability. Our analysis provides evidence
that geometric constraints are vital for connectivity between brain regions, and an action-based model relying
on both topological and geometric properties can account for between-subject variability in structural network
properties. Further, we test correlations between parameters of subject-optimized models and various measures
of cognitive ability and find that higher cognitive ability is associated with an individual’s tendency to form
long-range or non-local connections.

1 Introduction
The network of connections between neural elements of the human brain, often referred to as the human connectome
[1, 2], creates an intricate and complicated structural network [3, 4]. The human connectome is an anatomical
network, where nodes consist of neural elements (neurons or brain regions), and edges correspond to physical
connections (synapses or axonal projections) between different neural elements. The network map of the human
connectome can be used to describe the organization of the brain’s structural connections and their role in shaping
functional dynamics [5, 6]. In the past decade, the areas of network neuroscience and brain connectomics have
highlighted the importance of developing a wide variety of techniques for analyzing and modeling brain networks
[7, 5, 8, 9, 10, 11]. For instance, topological analysis based on various network measures has provided evidence for
the non-random topology of the connectome, and has aided our understanding of the organization of the human
brain [12, 13]. In this research, we propose variants of the action-based model that combine a variety of generative
factors capable of explaining the topology of the human connectome. Our goal is to study the role of spatial
constraints and multiple wiring rules as generative rules for connectivity between brain regions and their ability to
capture between-subject variability in structural network properties.

Early applications of Graph Theory and Network Science in Neuroscience mainly focused on gathering summary
quantities in an attempt to find common features describing the organization of most biological neural networks
[1, 7, 5, 14, 15, 16, 13], see [12] for a review. These summary features and measurements have been used to
detect functional integration (shorter path lengths and efficiency) and segregation (high transitivity and presence
of clusters) in the brain. The importance of specific brain regions and pathways can be computed using centrality
metrics, such as betweenness, closeness, etc [12]. These measures have also been useful for topological analysis and
characterizing structural patterns observed in the network representation of the brain [13, 11].

An alternative approach for studying brain networks is to formulate generative models that use wiring rules to
synthesize networks resembling the topology of a given connectome [17, 18, 19, 20, 21, 22, 16] (see Figure 1 for a
pictorial description). Those models can highlight the principles by which a network is organized (identify structural
features that arise from wiring rules versus those that emerge) and potentially uncover the mechanisms by which
it grows and develops [6]. For example, the spatial embedding of the brain [23], along with the economical wiring
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Observed Network G∗

Algorithm Network Model
1: Input: Network G∗ and parameters θ
2: procedure SynthesizeNetwork
3: · · ·
4: return G̃

1

fit/learn θθθ

θθθ ⇒ insights

Figure 1: A generative network model uses an undirected and binarized network representation of the brain as an
input to learn model parameters θθθ, which can then be used to draw insights about the topology of networks similar
to G∗.

constraints [24, 25, 26, 27, 28] that arise from this embedding play a vital role in crucial network characteristics, such
as efficient network communication and information processing [13]. Previous research has shown that generative
models can validate the effectiveness of spatial embedding and other (non-spatial) wiring rules in shaping the
network topology of the human connectome [18, 21].

Generative models can also provide insights into potential mechanisms that give rise to functionally important
network attributes [29]. In addition to providing explanations for the wiring rules and processes of network for-
mation, generative models can compress our descriptions of the network representation of the brain and highlight
potential regularities in their structural organization [16]. This compact description of the wiring rules enables
these models to make out-of-sample predictions about unobserved network data.

Early work on generative modeling of the human brain (using resting state functional connectivity [18] or
the connectome [21]) utilized at most one or two generative factors (such as homophily, preferential attachment,
and geometric distances) for synthesizing the network topology. Consequently, there has been growing interest in
developing generative models that incorporate multiple rules for the probability of connections between regions of
the brain [30, 20]. The action-based model for networks [31] combines several pre-defined actions/wiring rules to
learn a probabilistic model for a given input network G∗.

The representation of complex systems using interactions and dependencies between units has been the main
focus of network science [32, 33]. Identifying universal mechanisms for network growth that can explain the emergent
patters observed in real-world networks is often cited as an important challenge in the field [34, 35]. Consequently,
mechanisms like preferential attachment [36] and homophily [37] have been identified as driving forces for interactions
in a network. These mechanism coupled with the observation that stochastic local interactions give rise to emergent
global structure [38] has inspired researchers to combine multiple mechanisms for link formation in networks [39,
40, 31, 41, 42, 43].

The ability of a generative model to make out-of-sample predictions means that they can be utilized to synthesize
networks that can capture the difference between subjects [44]. The ability of a generative model to synthesize real-
istic networks and creating a compressed model of the connectome highlights the possibility of providing important
insights into the factors that have shaped the emergence of specific architectural or performance characteristics of
an individual [11]. This distinctive feature allows us to answer questions about how the structural organization of a
brain can carry information useful for deciphering inter-individual differences in cognition [45, 46]. Although little
is known about the organization principles that lead to individual differences between the connectomes, it is widely
believed that these differences are associated with cognitive functioning [47, 48, 6, 49]. Consequently, a recent topic
of interest in neuroscience has been to uncover how individual differences in the network architecture are associated
with differences in general intelligence and cognitive functioning [49, 50].

Cognitive ability has usually been linked with an individual’s ability to reason, learn from experience, solve
problems, and think abstractly [51]. The g factor (also known as general intelligence) proposed by Charles Spearman
[52] is often used for measuring cognitive ability. John Carroll proposed the three-stratum theory of cognitive
ability as an expansion and extension of previous theories [53]. The three-stratum theory proposes that individual
differences in cognitive ability can be classified into three different strata – narrow, broad, and general abilities [54].
With the advancement of brain imaging technologies and the availability of large datasets, computational models
have been playing an important role in advancing our understanding of cognitive science [55].

In an attempt to understand the differences in cognitive ability between individuals, researchers have tried to

2



investigate the role of connectivity patterns between different sets of brain areas [48]. Using fMRI measurements,
[17, 47] found that the inter-individual variability in positively associated with long-range connectivity, i.e., the
differences between individuals are more pronounced in the connectivity between brain regions that are farther
apart in space. Further, the individual differences in cognition can predominantly be attributed to regions with high
connectivity variability [47]. Similar differences can also be observed in the anatomical or structural connectivity,
which acts as a backbone for communication between different brain regions that support a wide range of cognitive
functions [56, 57, 55]. Thus, one would expect a generative model for the anatomical connectivity that can accurately
deduce the individual difference in connectivity, especially in long-range connectivity, can prove useful in our quest
for understanding the relation between the structural organization of the brain and the individual differences in
cognitive ability.

In this paper, we propose and assess four generative models (details in Section 2): (i) null model based only
on geometric distances, (ii) action-based model proposed in [58, 31], (iii) a variant of (ii) with an additional action
based on geometric distances, and (iv) action-based model with visibility, where wiring rules use both topological
and geometric properties to create edges. For each of these models, we cross-validate their ability to explain
between-subject variability when trained on a single group representative network G∗ in Section 3.1. Following the
evaluation of the four models, we use our best model, ABNG (vis), for understanding the relationship between the
structural organization of human brains and the cognitive ability of subjects in Section 3.2.

2 Methods
The choice of input network G∗ is particularly critical for generative modeling because the network should typify
the complex structure of the entire set of brain networks of interest [30, 17, 20]. In this paper, we use the whole-
brain structural connectivity networks of 100 unrelated subjects from the HCP dataset [59] to create a group
representative median network G∗ (See Section 5.1 for more details). We also learn action-based models and its
geometric counterpart, ABNG (vis), for each subject to study correlations between measures of cognitive ability
and model parameters.

To develop an understanding of the structural organization of the human brain, we implement four generative
models (briefly described in Sections 2.1-2.4) that account for different mechanisms for link creation. For each of
the generative models, we formulate the problem of determining parameters θθθ as a multi-objective optimization
problem:

minimize E [Q(G|G∗, Y,θθθ)]

subject to θθθ ∈ D,
(1)

where G is a network synthesized by a generative model with parameters θθθ in the feasible domain D, and
Q(G|G∗, Y,θθθ) is a measure to quantify the dissimilarity between a synthesized network G and the group represen-
tative network G∗ based on a user-defined set of network characteristics Y . We minimize the expectation of Q
to account for the stochasticity in the networks synthesized by a generative model. We would like to note that
synthesizing graphs isomorphic to G∗ is the optimal but degenerate solution to the problem stated in Equation 1.
Our goal is not to exactly reproduce G∗ but rather learn a model that can synthesize networks statistically similar
to one another and G∗ i.e. variation is expected/desired. Also, since generative models are inherently stochastic in
nature, it is unlikely that the networks synthesized for a fixed parameters setting will be isomorphic to each other
or G∗.

Recent observations have highlighted the need to consider multiple global characteristics when comparing net-
works [60, 61, 62, 31]. For our experiments, we use the first three terms of the dk-series [63] (i.e., Y = degrees +
correlations + clustering/transitivity) as they have been shown to almost fully define local and global organization
of most real-world networks. The 2-sample Kolmogorov-Smirnov (KS) D-statistic is used to quantify the difference
in distribution of these properties between G and G∗. As the resulting problem is multi-objective in nature, we
obtain a set of Pareto efficient solutions after solving the optimization problem described in Equation 1. For each
of the models, the solution closest to the origin, i.e. the one with lowest sum of objectives based on 1-norm, was
chosen as the representative parameter setting. This choice assumes that all the objectives are equally important
for choosing a model, but our approach allows for the user to specify other criteria for selecting a solution of their
choice from the Pareto Front.
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2.1 Null model
The most basic model we consider in our experiments assumes that the probability of connection Pij between nodes
vi and vj is a function of the Euclidean distance dij between them

Pij ∝ exp(−ηdij). (2)

This model assumes that the topology of the connectome can be attributed to minimization of the wiring cost,
and the parameter η ≥ 0 can be optimized (as formulated in Equation 1) to determine the degree of cost penalization.
NSGA-II [64] was used to solve the optimization problem for the null model, which resulted in η ≈ 0.73 as the most
representative solution. As illustrated in Figure 4, networks synthesized using the estimated parameter setting for
the null model were unable to match the between-subject variability in the topological properties.

2.2 Action-based model
The action-based model [31, 58] uses a first principles perspective to create an algorithmic procedure that learns
a compact probabilistic representation of a given input network. In the action-based model (ABNG), we assume
that the generative process is composed of two main components: (i) node inherent potential to create links using
different strategies capturing the collective behavior of nodes, and (ii) an algorithmic environment F (·) that provides
opportunities for nodes to create links; thus simulating the emergence of a macroscopic structure from individual
interactions. The different actions for creating a link between nodes vi and vj are enumerated using a pre-defined
action set A = {a1, . . . , aK}, for example

A =


a1 = probabilistically select vj based on its degree,
a2 = probabilistically select vj based on its betweenness,
a3 = select vj based on inverse log-weighted similarity to vi,
a4 = do not make an edge


The environment to create links using these actions is specified by a generative algorithm F (M, n) that can

be used to synthesize networks containing n nodes using an action matrix M. The action matrix M = [P(A =
ak)|P(T = t)] contains the probability that action ak ∈ A is chosen by a node using P(A = ak) conditioned on
the node type t = 1, . . . , d � n chosen using P(T = t) (see SI for additional details). Pareto Simulated Annealing
(PSA) [65] is used to solve the optimization problem of estimating an action matrix for the group representative
network G∗. The action set used in our experiments consists of K = 8 actions, which are listed in Table 1 along
with the representative action matrix MG∗ . It should be noted that the estimated action matrix MG∗ contains only
three actions that have a probability greater than 0.05, implying that multiple mechanisms play a dominant role in
the organization of the connectome. Further, the results in Figure 4 shows that while ABNG can characterize the
variability in degree and assortativity, but it fails to capture the variability in local clustering distributions.

2.3 Action-based model with distance
The importance of minimizing wiring cost necessitates an action that uses the spatial embedding of the connectome
to create links between two nodes. To utilize this additional geometric information, an action is added to the model
described in the Section 2.2, where a node vi probabilistically selects vj based on Euclidean distance. This new
variant, ABNG (dist), uses the optimal cost penalization learnt in the null model (η ≈ 0.73) to create an action
based on geometric distance between nodes.The action matrix is optimized using PSA and the learnt model is used
to synthesize networks. As seen in Figure 4, ABNG (dist) outperforms ABNG in capturing the distribution of
properties with the help of the additional action that is chosen with probability 0.197 in the representative action
matrix shown in Table 1.

2.4 Action-based model with visibility
Previous research on generative models for the brain have highlighted the effectiveness of combining a distance
based penalty with non-geometric rules to infer the probability of connection between different regions of the brain
[18, 21]. This is a phenomena observed in many spatially embedded networks that have evolved to optimize similar
functional requirements – high efficiency of information transfer between nodes at low connection cost – or to attain
ideal balance between functional segregation and integration [7]. This observation becomes even more relevant for
the brain because of the significance of long-range connectivity variability.
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We propose the intuitive concept of restricted node visibility (or visibility in general), which states that the
probability of creating a link between two nodes is determined by a combination of actions and external factors
intrinsic to the nodes. For example, in networks that exist in the Euclidean space (structural brain networks,
transportation networks, etc.), a visibility function can be defined using node locations. In the context of ABNG,
visibility can be seen as a way of skewing an action such that a node is more likely to connect with particular sets of
nodes, consequently leading to the formation of communities. The idea has some similarity to network models that
infer an embedding of nodes based on topology and use it to synthesize networks, see [66, Section 4] for a review of
these models.

To combine the effect of multiple non-geometric actions with a distance-based penalty, we propose the action-
based model with visibility, where the probability of an edge between two nodes is proportional to the output of an
action (αij) scaled by the geometric distance between the nodes:

Pij ∝ αij × exp(−ηdij). (3)

The overall idea is that the likelihood of an edge between a pair of nodes depends on a combination of their
topological properties and geometric distance. We would like to point out that by setting η = 0 in Equation 3,
we can recover the original action-based model described in Section 2.2, thus making the action-based model with
visibility a generalized version of the action-based model. The process of learning such a model consists of two
steps: (i) estimate action matrix MG∗ using the action-based model, and (ii) estimate the visibility parameter η
for the model learnt in step (i). In our experiments, we used the action matrix optimized for ABNG followed by
optimization of the visibility parameter using NSGA-II [64] to learn ABNG (vis) parameters (η = 0.11) for the
group representative network G∗. The results in Figure 4 shows that ABNG (vis) is the best model among the ones
considered here.

Figure 2 uses a simple example to demonstrate that a model with multiple actions can improve the quality of
the networks being synthesized. ABNG with sequentially increasing number of actions (from left to right in Figures
2 (c) and (d)) gets better at reproducing the edges present in the target network1 shown in Figure 2(a). The quality
of the synthesized networks is evaluated using the edge overlap, which is evaluated using the formula show in Figure
2(b). The same improvement is also seen when the concept of visibility is introduced in ABNG, as with the same
action set the networks synthesized by ABNG (vis) in (d) outperform their counterparts with the same number of
actions in (c). This further cements the need for having multiple mechanisms as well as the distance-based penalty
for modeling brain networks.

3 Experiments and results
To assess the validity and effectiveness of the generative models proposed in Section 2, we performed the experiments
outlined in Figure 3. The first step is to create a group representative median network G∗ using the measurements
of structural organization of the brains of the 100 unrelated subjects in the HCP dataset [59] (see Section 5.1 for
further details). This is a crucial step as the models discussed in Section 2, similar to most generative network
models in the literature, are designed to learn parameters using a single input network. Thus, creating an input
network that can capture the structural regularities of a cohort of subjects can facilitate the learning of better
models. The importance of choosing a representative network for the parameterization of generative models for the
brain has also been highlighted in previous research [30, 17, 20].

Once the group representative median network is constructed, it can be used as the input to learn parameters
for each of the models, as previously described in Figure 1 and Equation 1. The parameterized models are then
used to synthesize networks and their ability to replicate the structural features observed in the networks in the
HCP dataset is evaluated in Section 3.1. While the group representative network G∗ can capture the structural
regularities of the cohort of subjects, it is expected that there will be subtle distinct features that are important
for interpreting the difference between individuals [67]. The next step is to parameterize the models separately for
each subject, and test if the fitted parameters can provide insights that can discern these individual differences.
Structural brain networks are quantitative measurements of white matter micro-structure, whose integrity is crucial
for healthy cognitive function [68]. Consequently, we decided to use our best model, ABNG (vis), for understanding
the relationship between the structural organization of human brains and the cognitive ability of subjects in Section
3.2.

1it should be noted that reproducing the edges is not the goal of generative network modeling but we do it here to present a simple
illustrative example.

5



(a)

γ =
|E(G∗) ∩ E(G)|
|E(G∗)|

,

where γ in the edge overlap between G∗ (target net-
work) and G (synthesized network), E(·) returns the
edge set of a network, and | · | computes the cardinality
of a set.

(b)

A = {a1, a4}
M = [1 0]

γ̄ = 0.47

A = {a1, a3, a4}
M = [0.1 0.33 0.57]

γ̄ = 0.51

A = {a1, a2, a3, a4}
M = [0.09 0.29 0.51 0.11]

γ̄ = 0.52

(c)

γ̄ = 0.61 γ̄ = 0.57 γ̄ = 0.64

(d)

Figure 2: Highlighting the need for multiple mechanisms in network synthesis using a toy example: (a) The target
network G∗ constructed using structural brain data. Each node in this network corresponds to one of the 18
RSN (resting state network) regions. The network has 45 edges. The network constructed using the green edges
corresponds to the backbone network (G0) used by the action-based model. (b) Legend describing the color coding
of different edges. To test the effectiveness of using multiple mechanisms/actions in the generative model, we
evaluate the edge overlap γ between the target and synthesized networks. We use ABNG and ABNG (vis) with
varying action sets A and the corresponding action matrices M to synthesize 100 networks for each scenario. In
(c) (ABNG) and (d) (ABNG (vis)), each network shows the 45 most likely edges generated in the 100 synthesized
networks, with the edges that are also present in the target network shown in blue. For clarity, we have omitted the
green edges in the backbone as they are present in every network. Mean edge overlap γ̄ is also reported in every
figure.
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Subject 1
Subject 2

...
Subject 100

Data

Group represen-
tative network G∗

Null Model

ABNG

ABNG (dist)

ABNG (vis)

M1

M2

...
M100

η̄1
η̄2
...

η̄100

Cognitive
ability

Network Models

median
network

subject
level
ABNG

ABNG (vis) insight

Figure 3: The structural brain networks of 100 unrelated subjects from the HCP dataset are used to create a group
representative median network G∗. This network is used to parameterize the four models described in Section 2.
Each model is cross-validated by evaluating their ability to explain between-subject variability when parameterized
using G∗ (see Figure 4). We also learn action-based models and its geometric counterpart ABNG (vis) for each
subject to study correlations between measures of cognitive ability and mean model parameters η̄ (see results in
Section 3.2).

3.1 Model evaluation
Models fitted using Equation 1 should be able to synthesize networks that replicate some properties of the group
representative network G∗. To evaluate descriptive validity, we can use the best-fitting parameters from a model to
synthesize networks that provides good estimates for the topological properties of a second network that was not
involved in the model-fitting process. Such a procedure can help us ensure that the generative model is identifying
wiring rules and not overfitting the observed data [16]. Some recent research has highlighted the importance
of examining the variability in network populations synthesized by generative models [69, 70]. Following these
observations, we test the ability of the network models to reproduce the topological variability across subjects in
Figure 4. Our results show that the different variants of the action-based model significantly outperform the null
model (and other network models, see results in Section 5.2), thus showing that the proposed models can highlight
potential regularities in the structural organization of the brain by using heterogeneous wiring rules. Figure 4
comprises of three different plots described below:

1. Scatter plots below the diagonal show each synthesized/real network as a point in a network dissimilarity
space, where the coordinates are computed using the KS distance of the associated properties when the
network is compared to the observed network G∗. Network models (colored triangles) showing higher overlap
with the real brain networks (black dots) are better.

2. In the blocks above the diagonal, we quantify the extent to which a given generative model is able to reproduce
the between-subject variability of topological network properties of the 100 subjects using the 2-D KS distance
[71] (lower the better).

3. Plots along the diagonal show the density distributions of the KS distance of the associated properties when
the network is compared to the observed network G∗. Similar density distribution to the real brain networks
(black curves) implies good match in the properties.

The results in Figure 4 clearly show that the action-based model with visibility turns out be the best model,
which is in agreement with past observations stating that the organization of the human brain arises from a
combination of wiring rules based on wiring cost reduction and topological attachment mechanisms [18, 21]. In
addition to learning accurate models for data, the parameters of our action-based approach can be used to draw
conclusions about potential mechanisms for network formation. The action matrices shown in Table 1 suggest that
multiple mechanisms might be at play in the organization of the human brain. The parameters for the action-based
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2-D KS distance

Null model: 1

ABNG: 0.72

ABNG (dist): 0.57

ABNG (vis): 0.45

2-D KS distance

Null model: 0.92
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ABNG (dist): 0.77

ABNG (vis): 0.43

2-D KS distance

Null model: 0.96

ABNG: 0.97
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Figure 4: Empirical evaluation of the ability of the aforementioned network models to capture the between-subject
variability using the group representative network G∗ as the input.

Table 1: The table shows optimized action matrices for the group representative structural brain network G∗. The
following actions were used: Preferential attachment on - average neighbor degree (PAND), degree (PAD), PageRank
(PAPR) and betweenness (PAB); Triadic closure (TC); Inverse log-weighted (SLW) and Jaccard similarities (SJ);
No action (NA); and Euclidean distance (ED). P̄ corresponds to P(T = t), while η is the optimal distance penalty
parameter for each of the models. The parameters are color coded to match with Figure 4: null model is blue,
ABNG is green, ABNG (dist) is orange, and ABNG (vis) is red.

Triadic closure No action Distance Penalty︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
PAND PAD PAPR PAB TC SLW SJ NA ED P̄ η

0 0.004 0.013 0.091 0 0.492 0.384 0.016 - 1 0.111
0 0 0 0.030 0.731 0 0 0.042 0.197 1 0.731︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

Preferential attachment Similarity Euclidean Distance

model show that homophilic attachment (action based on similarity of neighborhoods) mechanisms are the most
important, but preferential attachment on betweenness is also crucial. Interestingly, the fitted distance penalty
parameter for ABNG (vis) is smaller than the one obtained for the null model leading to a model that can better
explain the individual variability.

3.2 Cognitive ability from structural connectivity
Our analysis so far has been restricted to evaluate the ability of the generative models to reproduce the between-
subject variability of various topological properties, while using only a single group representative network as the
input. The assumption that the connectomes of different subjects are topologically similar is pivotal to such an
analysis [72]. While the group representative network G∗ can capture the structural regularities of the cohort of
subjects, it is expected that the subtle differences in the connectivity patterns of different subjects are important
for interpreting the difference between individuals [17, 20]. Because the action-based model combines a variety
of generative factors (such as, preferential, homophilic, and distance-based mechanisms) capable of explaining the
topology of the human connectome and also accurately models the between-subject variability, it can highlight
potential regularities in the structural organization of an individual’s brain. Thus, we parameterize ABNG (vis)
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for the brain networks of each individual subject and use the model parameters to discern the differences in the
structural organization of brains of different subjects and its relation to cognitive ability.

(a) Multi-dimensional scaling of a single representative
action matrix for the 100 subjects, color shows mean
visibility parameter η̄.

(b) (left) Cosine similarity between MG∗ and action matrices
M1, . . . ,M100 for each subject. (right) Distribution of η̄ across
subjects. η̄ for G∗ is shown using the vertical blue line.

Figure 5: Visualizing the distribution of model parameters for individual subjects.

Parameterizing ABNG (vis) for each subject involves first obtaining action matrices M1, . . . ,M100 followed by
estimation of the respective mean visibility parameters η̄1, . . . , η̄100 (see Figure 3 for a pictorial description of our
procedure). In the optimization of the action matrix for each subject, we use the action matrix MG∗ obtained for
the group representative network as the starting solution (shown in green in Table 1 and as a grey square in the
2D space of Figure 5a), and perform a local search for each subject. After obtaining the most representative action
matrices M1, . . . ,M100 for each subject, we perform multi-dimensional scaling of the action matrices to highlight
the variation in the subject-level models. The results are shown in Figure 5, where we observed that while the
optimized action matrices for most subjects are similar to MG∗ , there is some variability between subjects in the
action matrices M1, . . . ,M100 as well as the mean visibility parameters η̄1, . . . , η̄100.

A widely used measure of cognitive ability is general intelligence (first defined by Spearman [52] as the g factor),
which is typically associated with the ability of an individual to perform a wide variety of cognitively challeng-
ing tasks well. An empirical approximation of the general intelligence of a subject can be obtained using the
first principal component (PCA) of multiple measures of cognition [73]. Using the HCP dataset [59], we compute
general intelligence using the following six measures of cognitive ability: (i) fluid intelligence (PMAT24_A_CR),
(ii) episodic memory (PicSeq_Unadj), (iii) cognitive flexibility (CardSort_Unadj), (iv) language and vocabulary
comprehension (PicVocab_Unadj), (v) verbal episodic memory (IWRD_TOT), and (vi) working memory (List-
Sort_Unadj).

As discussed in the introduction, the patterns in the structural connectivity are somehow related to an indi-
viduals’ general intelligence. In fact, there has been research supporting that the efficiency of network topology is
positively associated with cognitive ability [74, 75]. Building on the observations, we use the mean visibility pa-
rameter in ABNG (vis) as a proxy measure for the extent of functional integration and segregation in the structure
of an individuals’ brain, which plays a pivotal role in the ability of an individual to perform a variety of functional
tasks [56].

Figures 6 and 14–15 plot the mean visibility parameter η̄ (averaged across the Pareto front) for an individual
against different measures of cognitive ability for individual subjects. Figures 6 and 12 plot general intelligence
as the measure of cognitive ability with the mean visibility parameter η̄ for three different models optimized for
individual subjects. We see that ABNG (vis) with a separate AM for each subject outperforms the other models
(null model for each subject and ABNG (vis) using a common AM MG∗ for each subject), thus further highlighting
the need for individually parameterized models. A common observation across all our evaluations is that individuals
with lower value of η̄, i.e. individuals showing a tendency to form long-range or non-local connections due to a lower
distance penalty, obtain higher scores in the different tests for evaluating cognitive ability. This correlation agrees
with the intuitive idea that high clustering (due to high distance penalty) favours locally specialized processing
whereas short path length (due to low distance penalty) favours globally distributed processing [7].

4 Conclusions
In this paper, we explored the ability of the action-based model (and its variants) to capture the between-subject
variability in topological properties of structural brain networks while using a single group representative network
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Figure 6: Testing the correlations between mean visibility parameters η̄ of the individual-based models with the
empirically estimated general intelligence of a subject.

as the input. Though the action-based model performed better than other generative models proposed in the
literature, it failed to capture the local transitivity observed in the connectome. To tackle this issue, we used
the spatial embedding of the brain and introduced geometric distances between various nodes as an additional
factor responsible for the topology of the connectome. This enabled us to combine multiple topological properties
(in the form of different actions) and their interaction with geometric distances to create better models for the
human brain, something that prior models were unable to accomplish [18, 21]. Our results show that actions-based
models with geometric constraints using wiring rules based on homophilic attachment and preferential attachment
on betweenness can synthesize networks resembling human connectomes.

While other generative network models such as exponential random graphs [76, 17] and the weighted stochas-
tic block model [77] have also been used for generative modeling of the connectome, it remains difficult to use
these models for recovering plausible mechanisms and rules that lead to the formation of an observed network.
The action-based model with visibility outputs an action-matrix that shows the relative importance of various ac-
tions/mechanisms for a particular input network, and the visibility parameter highlights the role wiring cost plays
in the organization of the connectome, thus providing a compact representation of the connectome.

The ability of our proposed models to synthesize networks that account for the topological properties and
between-subject variability in these properties raises the possibility that the models can provide insights into the
individual differences between subjects [11]. To test this hypothesis, we use our best model, ABNG (vis), to study
differences in estimated parameters for different individuals and discover that the value of distance penalization is
significantly correlated with cognitive ability in the form of general intelligence. We find that the differences in
structural connectivity have some association with the the cognitive ability, specifically with the extent of functional
integration and segregation.

5 Supplementary Information

5.1 Network Construction
We used DWI data from the 100 unrelated subjects of the HCP 900 subjects data release [59] to get the structural
brain networks. The preprocessing of the DWI data to get the corresponding networks is described in detail in
[78]. One network represents the abstracted brain structure of one subject. Nodes in network represent regions
of interest (ROIs) in brain and edges represent the density of connecting fibers. All networks share the same set
of nodes since brain images of different subjects are regularized into a common template of ROIs. We employed
a cortical parcellation into 360 brain regions as recently proposed in [79] to produce a structural connectome.
Finally, a log10 transformation [80] was applied on the structural connectomes to better account for differences
at different magnitudes. Consequently, structural connectivity values ranging between 2.5 and 3.0 were used to
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ααα3
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Degree and distance distri-
bution of the input network

ABNG (vis)
50 most likely edges
from the four models

× exp(−ηdij)

Figure 7: Pictorial explanation of how the different generative models work using a toy example: Given the input
network, different models use or combine various rules to determine the probability of a new edge. In this toy
example, ABNG uses two action: (i) preferential attachment based on degree, and (ii) inverse log-weighted similarity,
which leads to output matrices ααα1 and ααα2 shown in the black rectangle labelled ABNG. ABNG (dist) also uses an
action based on geometric distances shown in matrix ααα3. The null model uses only ααα3 to determine probability of a
new edge, while ABNG (dist) combines the output of all three actions enclosed in the red rectangle. Finally, ABNG
(vis) determines the probability of an edge by multiplying the output of actions in ABNG with a distance penalty
term exp(−ηdij). To highlight the differences between the four models, we show output networks with 50 most
likely edges. The following parameters were used for creating the above example: ABNG M = [0.4, 0.6], ABNG
(dis) M = [0.3, 0.3, 0.4], ABNG (vis) η = 0.5, null model η = 1.

produce binarized networks with different edge densities. The results presented in the main text used a cutoff of
3.0 to create binarized networks, while cutoffs of 2.7 and 2.5 were used for dense1 and dense2 networks respectively.
To construct the median representative network, the structural connectome was created by taking the median of
density of connecting fibres for each pair of ROIs for the 100 subjects, which was then binarized using the previously
outlined procedure. Table 2 shows the statistics and some common network metrics of the brain networks obtained
from using different cutoffs for binarization. The modularity is calculated by assigning individual nodes to groups
based on their resting state network (RSN) defined using the hierarchical connectivity patterns [81].

Table 2: Statistics and network metrics of brain network populations with different edge densities (standard devia-
tion in parentheses).

Name Average degree Transitivity Assortativity Average path length Modularity
main 6.59 0.40 0.17 5.01 0.36

(0.22) (0.01) (0.04) (0.25) (0.01)
dense1 11.57 0.42 0.14 3.73 0.31

(0.41) (0.01) (0.04) (0.13) (0.01)
dense2 16.02 0.43 0.11 3.22 0.28

(0.60) (0.01) (0.03) (0.09) (0.01)
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5.2 Results: Network modeling
Another popular class of null models popular in the network science literature are defined by constraining various
microscopic properties of a network. The microcanonical ensemble imposes hard constraints on mesoscopic network
properties [82]. A well-known model that falls in this category is the configuration model [83, 84], where networks
are uniformly sampled from an ensemble of networks with a predefined degree distribution. dk-random graphs [63]
further generalize the idea of the configuration model by defining a series of null models or random graph ensembles,
where ensemble size is controlled using dk-distributions. dk-random graphs for d = 0, 1, 2 correspond to the random
graph model [85], configuration model [83, 84] and random graphs with a given joint degree distribution [86],
respectively. Randomizing network edges using dk-random graphs allows us to check if fixing certain properties
in a real-world network can lead to the appearance of other properties as a statistical consequence and if these
properties vary significantly from a null model [16].

Figure 8: Evaluating the ability of different variants of dk-random graphs to reproduce the observed topological
variability while using G∗ as the input network.

The dk-series methodology allows us to test if the structure of human brain can be simply explained using basic
degree or subgraph-based characteristics. Consequently, we use four different variants of dk-random graphs as null
models to test if the ensembles can capture the topological variability observed in the brain networks. Our results
in Figure 8 show that the dk-randomized networks show very little topological variability in the network properties.
Although adding average clustering (dk2.1) and degree-dependent clustering (dk2.5) as additional constraints to
the random graph ensembles improved the ability of the model to capture the local transitivity, the model is easily
outperformed by most versions of the action-based model (see Figure 4).

5.2.1 Fine-grain models

The human brain is known to be spatially organized in a set of specific coherent patterns, called resting state
networks (RSNs) [87]. These RSNs reflect the functional architecture of specific areas, namely: visual, somatomotor,
dorsal attention, ventral attention,limbic, frontoparietal, default, and cerebellum [81]. Given the prevalence of these
hierarchical connectivity patterns, we decided to validate the utility of using this organization in our generative
models. This lead to the creation of another variant of the action-based model, ABNG (rsn_vis), where each RSN
of the brain is associated with a different distance penalty parameter. That is, the parameter ηηη is now a vector
and the distance penalty parameter for a node is determined by its local network organization. Introducing such
fine-grained control adds extra degrees of freedom in our models as the distance penalty parameter is optimized
separately for each RSN. We also create a similar version of the null model, null (rsn), such that ηηη is now a vector
of distance penalty terms for each RSN.
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Figure 9: Empirical evaluation of the ability of four variants of ABNG to capture the between-subject variability
using the group representative network G∗ as the input. ABNG (rsn_vis) uses separate visibility parameter for
each resting state network.

As previously, we use the formulation in Equation 1 to learn parameters ηηη for ABNG (rsn_vis) using NSGA-II
[64] as the optimization algorithm. Results presented in Figure 9 (the null model is replaced by ABNG (rsn_vis),
refer to Section 3.1 for instructions on interpreting the results in Figure 4) show that ABNG (rsn_vis) marginally
outperforms ABNG (vis) (is the improvement enough given the extra degrees of freedom in the model? need to
test other network properties).

5.2.2 Networks with different densities

As previously described in Section 5.1, binarized brain networks with different edge densities can be obtained by
setting different cutoff thresholds during the network construction process. A successful network model should be
able to synthesize realistic network irrespective of the threshold used for constructing the networks, which is why
we test our models on networks with varying densities.

We first construct two more group representative networks (dense1 and dense2) using the procedure described
in Section 5.1. Structural properties of the network populations created using the new thresholds can be seen in
Table 2. We learn our models using these networks as input and the results are shown is Figures 10 and 11. We
observe that the performance of our models degrades, especially in reproducing local transitivity, as the network
density increases.

5.3 Results: Cognitive ability
In Section 3.2, we evaluated the ability of the parameters of our best model, ABNG (vis), to provide insights into
the cognitive ability of different subjects. Our analysis showed that the mean distance penalty parameter (η̄) is
correlated with the general intelligence of subjects. We can also obtain η̄ using other individual-based models. We
use the null model, and ABNG (vis) where the same action matrix MG∗ was used for each individual but η’s were
separately optimized. Our results in Figure 12 show that we see the same correlation, albeit a little bit lower,
between η̄ and general intelligence of different individual. These results further show that ABNG (vis) in addition
to capturing the structure of the networks provides the best insights into other aspects of the human brain.

We also evaluated the correlations between η̄ for the individual-based model ABNG (vis) and for six different
measures of cognitive ability described below. In Figure 14, the correlations and p-values are also reported. Using
a significance level of α = 0.05, we can conclude that the correlation is not insignificant for four of the cognitive
ability measures. In our evaluation of the cognitive ability, we used the following six measures:
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Figure 10: Empirical evaluation of the ability of the aforementioned network models to capture the between-subject
variability using the dense1 group representative network the input.

Figure 11: Empirical evaluation of the ability of the aforementioned network models to capture the between-subject
variability using the dense2 group representative network as the input.

1. Fluid Intelligence (PMAT24_A_CR): It reflects general cognitive ability, especially as it relates to cognitive
control. It is also related to novel/flexible processing.

2. Episodic Memory (PicSeq_Unadj): It involves recalling increasingly lengthy series of illustrated objects
and activities that are presented in a particular order on the computer screen. The participants are asked to
recall the sequence of pictures that is demonstrated over two learning trials; sequence length varies from 6-18
pictures, depending on age.
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Figure 12: Testing the correlations between mean visibility parameters η̄ of the individual-based models with the
empirically estimated general intelligence of a subject. (left) η̄ is obtained from the null model, (right) η̄ is for
ABNG (vis), but the same action matrix MG∗ is used for each subject.

Figure 13: Testing the correlations between properties of the brain of an individual, average path length (left) and
intra-cranial volume, with the empirically estimated general intelligence of a subject.

3. Cognitive Flexibility (CardSort_Unadj): Two target pictures are presented that vary along two dimensions
(e.g., shape and color). Participants are asked to match a series of bivalent test pictures (e.g., yellow balls
and blue trucks) to the target pictures, first according to one dimension (e.g., color) and then, after a number
of trials, according to the other.

4. Language and Vocabulary Comprehension (PicVocab_Unadj): This measure of receptive vocabulary
is administered in a computerized adaptive format. The respondent is presented with an audio recording of
a word and four photographic images on the computer screen and is asked to select the picture that most
closely matches the meaning of the word.

5. Verbal Episodic Memory (IWRD_TOT): Participants are shown 20 words and asked to remember them
for a subsequent memory test. They are then shown 40 words (the 20 previously presented words and 20 new
words matched on memory related characteristics). They decide whether they have seen the word previously
by choosing among “definitely yes”, “probably yes”, “probably no”, and “definitely no”.

6. Working Memory (ListSort_Unadj): This task assesses working memory and requires the participant to
sequence different visually- and orally-presented stimuli.

Given the important role of gender in neuroscience [88], we modify Figure 6 to explicitly account for the gender
of a subject as a factor in Figure 15. We observe that there are significant differences in the correlations between
the two groups, thus warranting further investigation.
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