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ABSTRACT

Prognostics and Health Management (PHM) is a multidisci-

plinary field aiming at maintaining physical systems in their

optimal functioning conditions. The system under study is

assumed to be monitored by sensors from which are obtained

measurements reflecting the system’s health state. A health

indicator (HI) is estimated to feed a data-driven PHM solution

developed to predict the remaining useful life (RUL). In this

paper, the values taken by an HI are assumed imprecise (IHI).

An IHI is interpreted as a planar figure called polygon and a

case-based reasoning (CBR) approach is adapted to estimate

the RUL. This adaptation makes use of computational geom-

etry tools in order to estimate the nearest cases to a given test-

ing instance. The proposed algorithm called RULCLIPPER is

assessed and compared on datasets generated by the NASA’s

turbofan simulator (C-MAPSS) including the four turbofan

testing datasets and the two testing datasets of the PHM’08

data challenge. These datasets represent 1360 testing in-

stances and cover different realistic and difficult cases con-

sidering operating conditions and fault modes with unknown

characteristics. The problem of feature selection, health indi-

cator estimation, RUL fusion and ensembles are also tackled.

The proposed algorithm is shown to be efficient with few pa-

rameter tuning on all datasets.

1. INTRODUCTION

Prognostics and Health Management (PHM) is a recent field

of research perceived as a key process (Vachtsevanos, 2006)

to increase the availability of equipments while decreasing

maintenance costs. Many applications of PHM can be found,

in particular for locomotives (Bonissone, Varma, & Aggour,

2005), fleet of vehicles (Saxena, Wu, & Vachtsevanos, 2005),

bearings (He & Bechhoefer, 2008; Gelman, Patel, Murray,

& Thomson, 2013), batteries (Saha, Goebel, Poll, & Christo-

phersen, 2009; Orchard, Cerda, Olivares, & Silva, 2012), tur-

bofan engine (T. Wang, 2010; T. Wang, Yu, Siegel, & Lee,
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2008; Coble & Hines, 2011; P. Wang, Youn, & Hu, 2012), ac-

tuators (Goharrizi & Sepehri, 2010; Daigle & Goebel, 2011),

wind turbines (Lapira et al., 2011; He, Bechhoefer, & Sax-

ena, 2013), electro-mechanical systems (Gucik-Derigny, Out-

bib, & Ouladsine, 2011), fuel cells (Zhang & Pisu, 2014),

electronics (Celaya, Kulkarni, Biswas, & Goebel, 2012),

and structures (Sankararaman, Ling, Shantz, & Mahadevan,

2009; Mulligan, Yang, Quaegebeur, & Masson, 2013).

A PHM solution is called data-driven when the underlying

models are built using sensor measurements while it is called

physics-based when physical laws (thermodynamics, physics,

mechanics and so on) are exploited to create the models.

In this paper, a data-driven approach is proposed. Never-

theless, in both cases, it is crucial to represent the uncer-

tainty and imprecision appropriately according to the under-

lying empirical information which is available (Beer, Fer-

son, & Kreinovich, 2013). For that, various techniques are

available (Vachtsevanos, 2006), in particular the theory of

probability (including Bayesian approaches, interval proba-

bilities and random sets) (Saha, Goebel, & Christophersen,

2008; Orchard, Kacprzynski, Goebel, Saha, & Vachtse-

vanos, 2008), the Dempster-Shafer’s theory of belief func-

tions (Serir, Ramasso, & Zerhouni, 2013; Ramasso & De-

noeux, 2013; Ramasso, Rombaut, & Zerhouni, 2013) and the

set-membership approaches (including fuzzy sets and possi-

bility theory) (Bonissone et al., 2005; Chen, Zhang, Vachtse-

vanos, & Orchard, 2011; Gouriveau & Zerhouni, 2012; Ra-

masso & Gouriveau, 2013). In PHM, the formulation of ap-

propriate solutions should also take significant information

into account but without introducing unwarranted assump-

tions to remain applicable and sufficiently general (Beer et

al., 2013). The solutions should also cope with the quantity

and quality of data that may have substantial impacts on re-

sults (Ramasso & Denoeux, 2013; Gouriveau, Ramasso, &

Zerhouni, 2013).

Knowledge-based systems and Case-Based Reasoning

approaches (CBR) have appeared as suitable tools for

data-driven PHM (Saxena et al., 2005; T. Wang et al., 2008;

T. Wang, 2010; Ramasso et al., 2013; Khelif, Malinowski,

Morello, & Zerhouni, 2014; Ramasso, 2014). In CBR,
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historical instances of the system - with condition data and

known failure time - are used to create a library of degrada-

tion models or health indicators. Then, for a test instance,

the similarity with the degradation models is evaluated

generating a set of Remaining Useful Life (RUL) estimates

which are finally aggregated. The required assumptions for

CBR implementation are limited, the main issues consisting

in, on the one hand, the choice of an appropriate similarity

measure and, on the other hand, the selection of the relevant

training instances. CBR approaches are also flexible since it

is simple to incorporate quantitative and qualitative pieces of

knowledge such as measurements and expertise.

We consider applications for which the noise due to various

sources, such as operational conditions or fault modes, can

not be well characterised and where filtering may change the

meaning of the health indicator. We assume that the health in-

dicator can not be well defined by a single real value but only

by an Imprecise Health Indicator (IHI). The data points are

supposed to represent vertices of a simple planar polygon: An

IHI is thus a polygon-shaped signal represented by a planar

figure. To fix ideas, an illustration taken from the turbofan en-

gine dataset (Saxena, Goebel, Simon, & Eklund, 2008) (used

and detailed in experiments) is given in Figure 1. The figure

pictorially represents the IHI taken from the fourth dataset

(made of two fault modes and six operating conditions) for

the 8th training data (P1), the 100th training data (P2) and

the 1st testing data (P3) of this dataset. As depicted, fault

modes may generate

• sudden changes in wear (e.g in P1, t ∈ [225, 275]) that

may increase the lifetime of the unit. It may be due to

both fault modes and operating conditions, for example

a drastic decrease of speed to cope with mechanical inci-

dents or meteorological phenomenons.

• Unexpected changes in the trend, such as increasing in-

stead of decreasing (e.g. P2, t > 125) that may disturb

the algorithm. It may be due to component failures such

as sensors or electronics.

• Sudden bursts characterised by low signal-to-noise ratio

(SNR) on a possibly short duration which deeply affect

the HI (e.g. on P3 with t ∈ [10, 75]) that may affect the

lifetime accordingly to the fault type which is generally

unknown.

Using computational geometry tools, a prognostics method is

proposed to handle IHI without knowing nor estimating the

noise properties. Performing prognostics in presence of IHI is

tackled by using a CBR approach for which a similarity mea-

sure adapted to IHI is developed. The set of cases is made

of training instances represented by polygons and the simi-

larity with a testing instance recorded on the in-service sys-

tem is made dependent on the degree of intersection between

both training and testing polygon instances. The prognostics

algorithm introduced is called “RULCLIPPER” (Remaining

50 100 150 200 250 300 350 400

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time unit

H
e
a
lt

h
 i

n
d

e
x

 

 

P
1

P
2

P
3

Figure 1. Effect of fault modes and operating conditions on
health indicators estimation. HIs (here obtained from training
instances) are described with planar figures called polygons.

Useful Life estimation based on impreCise heaLth Indicator

modeled by Planar Polygons and similarity-basEd Reason-

ing”) in reference to a widely used process in the Computer

Graphics community called polygon clipping (Rosen, 2004).

The next Section is dedicated to the presentation of a method-

ology to build IHI and perform prognostics. The methodol-

ogy is then applied on several datasets with fault modes and

operating conditions and compared to other approaches (Sec-

tion 3). An alphabetical list of terms used in the sequel is

available in a glossary located at the end of this paper.

2. PROGNOSTICS BASED ON IHI AND CBR

A health indicator (HI) takes the form of a 1-dimensional real-

valued signal H = [x1 x2 . . . xj . . . xT ]
T, xj ∈ R obtained

at some instants t1, t2 . . . tT .

2.1. Polygon-shaped representation of IHI

An IHI is defined as a polygon where each vertex is rep-

resented by a point (xj , tj) estimated from the original HI

where xj is the value of the HI at time tj . The number of

points is equal to 2 · T and each of them belongs either to the

upper or the lower envelope of the health indicator, where

each envelope is made of exactly T points. In presence of

high noise level, the extraction of the upper and lower en-

velopes is made easier by first filtering the original HI. The

filtering also decreases the number of self-intersections of

segments defined by consecutive vertices. The filter used in

experiments paper was a 15-point moving average and may

be stronger or softer according to the application considered.

Given the filtered health indicator denoted H̃ =
[x̃1 x̃2 . . . x̃j . . . x̃T ]

T, the upper envelope S is defined by:

S = {(xj , tj)|xj ≥ x̃j} ∪ {(xj−1, tj)|xj < x̃j} , (1)

meaning that, for a given data point j, if the HI value xj at

2
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time tj is greater than the filtered value x̃j then the upper en-

velope is equal to the HI value, otherwise it takes its previous

value. The lower envelope I is defined similarly by

I = {(xj , tj)|xj < x̃j} ∪ {(xj−1, tj)|xj ≥ x̃j} . (2)

Example 1 An example of envelope computation is given

in Figure 2 where the health indicator is decomposed into a

lower envelope (circle) and upper envelope (stars) around the

smooth HI (solid line).
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Figure 2. Illustration of envelope computation.

The ordered pairs of vertices listed counterclockwise repre-

sents a bounding closed polygonal chain that separates the

plane into two regions. The word “polygon” refers to a plane

figure bounded by the closed path defined as:

P =
{

(x1, t1)
S , (x2, t2)

S . . . (xj , tj)
S . . . (xT , tT )

S ,
(xT , tT )

I , (xT−1, tT−1)
I . . . (x1, t1)

I , (x1, t1)
S
}

(3)

with (xj , tj)
S ∈ S and (xj , tj)

I ∈ I. To close the polygon,

the first and last vertices are the same. The pairs of vertices

define a finite sequence of straight line segments representing

the polygon.

More specifically, a polygon is a region of the plane enclosed

by a simple cycle of straight line segments where nonadjacent

segments do not intersect and two adjacent segments inter-

sect only at their common endpoint (Rosen, 2004). However,

the second part of the definition of the bounds may gener-

ate some segment intersections. These inconsistencies can

be corrected easily by exchanging the corresponding values

of the lower and upper bounds when an intersection is de-

tected. When consistent bounds are obtained, the polygon

is made of non-intersecting line segments which characterise

a Jordan’s simple closed curve also called simple polygon

(Filippov, 1950). This category of polygon enables one to ap-

ply some standard algorithms from Computational Geometry

(Rigaux, Scholl, & Voisard, 2002; Rosen, 2004; Longley, de

Smith, & Goodchild, 2007). Note that some of the most effi-

cient algorithms for operations on polygons can manage self-

intersections (Vatti, 1992; Greiner & Hormann, 1998) but

these inconsistencies generally increase time-consumption.

2.2. CBR approach for prognostics based on IHI

2.2.1. Training dataset

We assume the training dataset to be composed of N training

instances:

L = {Pi,Ki}
N
i=1 (4)

where Pi is the ith polygon attached to the ith imprecise

health indicator Hi and Ki = [y1 y2 . . . yj . . . yT ]
T, yj ∈ N

represents a discrete-valued signal reflecting the system’s

health state. The component Ki may be useful in some ap-

plications where the system can be described by means of la-

tent variables (Ramasso & Denoeux, 2013; Javed, Gouriveau,

& Zerhouni, 2013). In that case, Ki may represent a partial

knowledge about the state. For example, in (Ramasso et al.,

2013), partial knowledge was encoded by belief functions to

express imprecision and uncertainty about the states.

Example 2 An illustration of the use of discrete and contin-

uous information (Ramasso et al., 2013) is depicted in Fig-

ure 3 for the same health indicator as in Figure 2. The states

Ki for the ith health indicator Hi represent degradation lev-

els and can be automatically found by applying a clustering

algorithm (here the Gustafson-Kessel (Gustafson & Kessel,

1978)) taking as input the HI shown in Figure 2 (solid line)

and run with 10 states. The transition to the last state means

that the end-of-life is approaching.
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Figure 3. Segmentation into degradation levels (same HI as
in Fig. 2).

2.2.2. Determining the nearest case

A testing instance takes the form of a health indicator H∗

from which the envelopes can be estimated as explained in the

previous paragraph, leading to the polygon representation P∗.

3



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

As in usual CBR approaches for prognostics (T. Wang, 2010),

the goal is to sort the training instances with respect to their

similarity to the testing instance. However, since the training

instances are made of polygons, usual distance measures are

not adapted.

Getting inspired from the Computer Vision community

(Powers, 2011), recall, precision and Fβ indices are used to

quantify the relevance of a training instance compared to the

testing one. Precision represents the fraction of the retrieved

instance that is relevant, while recall is the fraction of the rel-

evant instance that is retrieved. The Fβ is an harmonic mean

which gives equal weight to recall and precision when β = 1.

Note that the three indices are normalised into [0, 1].

More precisely, for the ith training instance:

1. Estimate the area of the intersection between the polygon

Pi and P∗:

A∩ = Area (Pi ∩ P∗) (5)

2. Compute the “recall”:

Rec =
A∩

Ai
(6)

3. Compute the “precision”:

Prec =
A∩

A∗
(7)

4. Compute the “Fβ,i”, in particular for β = 1, characteriz-

ing the similarity with the ith training instance:

F1,i = 2
Rec · Prec

Rec + Prec

(8)

where Ai,A∗,A∩ represent the area of polygons Pi, P∗ and

of their intersection respectively.

Example 3 An illustration of intersection is given in Fig-

ure 4 where the darkest polygon represents a training in-

stance and the two other polygons are testing instances. The

whitest polygon is within the testing instance meaning that

the precision is high, but the recall is pretty low since it cov-

ers only a small part of the testing instance. On the opposite,

the third polygon covers entirely the testing instance leading

to a high recall but its scattering decreases the precision.

Practically, intersection construction is the main difficulty and

was tackled quite recently in computational geometry for ar-

bitrary planar polygons. It consists in determining the region

of geometric intersection which can be performed in three

phases (Rosen, 2004) (Chap. 38):

1. Compute the intersection between the boundaries of the

objects using the linearithmic plane sweep algorithm

(Bentley & Ottmann, 1979);

2. If the boundaries do not intersect then determine whether

one object is nested within the other;
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Figure 4. Illustration of recall and precision.

3. If the boundaries do intersect then classify the resulting

boundary fragments gathered to create the final intersec-

tion region (Margalit & Knott, 1989; Chazelle & Edels-

brunner, 1992), which can be performed in linearithmic

time. Regularized Boolean operations ensure the closure

of the interior of the set-theoretic intersection.

In this paper, the Vatti’s algorithm (Vatti, 1992) has been

used because it is generic and can manage most of pratical

cases. Several implementations of this algorithm have been

proposed, especially in (Greiner & Hormann, 1998) which

was shown to be particularly efficient. Several implementa-

tions can be found, in particular the GPC library available

at http://www.cs.man.ac.uk/˜toby/gpc/ which

proposes a flexible and highly robust polygon set operations

library for use with C, C#, Delphi, Java, Perl, Python, and

Matlab (version above 7-R14SP1).

2.2.3. Estimating the Remaining Useful Life (RUL)

The F1 measure is used to sort the N training polygon in-

stances in descending order: P(1) > P(2) · · · > P(j) · · · >
P(N) so that P(1) is the closest instance to the testing instance

and P(N) the farthest one. The index (i) in P(i) represents a

reordering and the symbol “>” in “P(i) > P(j)” means that

the ith polygon is more similar to the testing instance that the

jth one.

CBR assumes that a limited number of instances, say K, are

enough to approximate the testing instance. The K closest

training instances can then be combined to estimate the RUL.

The length of a training instance minus the length of a test-

ing instance provides an estimation of the RUL (Figure 5).

Given the definition of a polygon (Section 2.1) and of the

training dataset (Eq. 4), the length of both the training and

testing polygon instances is given by Ti and T∗ respectively.

Therefore, the estimated RUL is given by

ˆRUL = Ti − T∗ . (9)

4
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Example 4 Two polygons are illustrated in Figure 5, one

coming from the training dataset #1 (the tenth instance) and

one from the testing dataset #1 (the first instance). Since

T1 = 222 and T∗ = 31, the estimated RUL is 191 time-units.
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Figure 5. Polygon instances: training (P1) and testing (P∗).

Each closest training instance P(i) can be accompanied by a

state sequence K(i) so that K estimations of the RUL, de-

noted ˆRULK, can be obtained from the state sequences in

addition to the ones obtained with P(i) and denoted ˆRULP .

Using K(i), the last transition in the sequence is supposed to

represent a jump of the system to a faulty state. This assump-

tion relies on the fact that the last part of a training instance

represents the system’s end-of-life (Ramasso et al., 2013; Ra-

masso & Gouriveau, 2013; Javed et al., 2013).

The 2K estimations of the RUL can then be pooled in one

set: ˆRULPK = { ˆRULP , ˆRULK} and an information fusion

process can then be performed to combine these partial RUL

estimates. According to the application, the fusion rule can

be adapted (Kuncheva, 2004; T. Wang et al., 2008; Ramasso

& Gouriveau, 2013). The fusion rules used in this paper will

be presented in details in Section 3 (dedicated to the experi-

ments).

A plot chart of the proposed methodology is depicted in Fig-

ure 6. The RULCLIPPER algorithm (in the dashed box) fol-

lows the steps presented in the previous sections. The remain-

ing elements are common to other prognostics approaches

based on health indicators, in particular the key paper pre-

sented in (T. Wang, 2010) where health indicators are defined

conditionnally on operating conditions. These elements will

be illustrated in the next section dedicated to experiments.

3. EXPERIMENTS: METHOD

RULCLIPPER is tested on the datasets obtained from the tur-

bofan engine degradation simulator (Saxena, Goebel, et al.,

2008). Before presenting results, several details about the

datasets have to be presented, in particular how to select the

features and how to compute the health indicator.

3.1. Turbofan engine degradation simulator

The simulation model (Saxena, Goebel, et al., 2008) was

built on the Commercial Modular Aero-Propulsion System

Simulation (C-MAPSS) developed at NASA Army Research

Lab., able to simulate the operation of an engine model of

the 90.000 lb thrust class. A total of 21 output variables

were recorded to simulate sensor measurements to the sys-

tem. Another 3 variables representing the engine operating

conditions were recorded, namely altitude (kilo feet), Mach

number (speed) and Throttle Resolver Angle (TRA) value

which is the angular deflection of the pilot’s power lever hav-

ing a range from 20% to 100%. In the sequel, references

to variables are made by using their column position in the

data files as provided on the data repository of the Prognos-

tics Center of Excellence website: it begins by number 6 and

finishes to 26 (see (Saxena, Goebel, et al., 2008) for details).

3.2. Datasets

Six datasets generated from independent simulation experi-

ments were provided, each with some specificities (Saxena,

Goebel, et al., 2008).

Datasets #1 and #2 include only one fault modes (HPC

degradation) while datasets #3 and #4 include two (HPC

degradation and fan degradation). Datasets #1 and #3 in-

clude a single operational condition against six for datasets

#2 and #4. Dataset #4 represents the most complex case

study. Datasets #5T (semi-final testing dataset) and #5V
(final validation dataset) were generated for the 2008’s PHM

data challenge with one fault mode and six operating condi-

tions. It is important to emphasize that the two last datasets

have common training instances. A summary of the six

datasets are shown in Table 1 according to information taken

from (Saxena, Goebel, et al., 2008).

Each dataset is divided into training and testing subsets. The

training set includes instances with complete run-to-failure

data (to develop life prediction models), and the actual fail-

ure mode for training instances in #3 and #4 is not labeled.

The testing datasets include instances with data up to a certain

cycle and are used for RUL estimation and algorithm perfor-

mance evaluation.

The testing instances are also simulated run-to-failure and

only an earlier portion of the history is provided. The ac-

tual life (RUL) of the testing instances are known only for

datasets #1, #2, #3 and #4 and can be used for testing the

algorithms. For datasets #5T and #5V , results have to be

uploaded to the data repository: uploading is allowed only

once a day for #5T whereas only a single try is possible for

dataset #5V .

The validation can be performed by many performance mea-

5
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Figure 6. The sequence of operations involved in the proposed approach.

Datasets
C-MAPSS DATASETS

TURBFOFAN CHALLENGE
#1 #2 #3 #4 #5T #5V

Nb. of faults 1 1 2 2 1 1
Nb. of operating conditions 1 6 1 6 6 6
Nb. training instances 100 260 100 249 218
Nb. testing instances 100 259 100 248 218 435

Minimum RUL 7 6 6 6 10 6
Maximum RUL 145 194 145 195 150 190

Table 1. Datasets characteristics according to the organisers. In this paper, results for all datasets are provided. Note that the
datasets called “data challenge” have a common training datasets made of 218 instances. The “semi-final” testing dataset (#5T )
is made of 218 instances and the “final” validation dataset (#5V ) is made of 435 instances.

sures (Saxena, Celaya, et al., 2008) among which accuracy-

based measures such as the timeliness, also called scoring

function in the sequel since it has been used in the data chal-

lenge to sort participants’ algorithm. The review of papers

using the C-MAPSS datasets show that the timeliness was the

most used performance measure (about 30% of papers). Note

that, for datasets #5T and #5V , this performance measure is

returned for each submission by the data challenge chairs.

For comparison purpose, the scoring function is also used in

this paper with the same parameters as in the challenge:

S =

N
∑

n=1

Sn (10a)

Sn =

{

e−dn/13 − 1, dn ≤ 0

edn/10 − 1, dn > 0
, n = 1 . . . N (10b)

dn = estimated RUL − true RUL (10c)

This function, that assigns higher penalty to late predictions,

has to be minimised. In addition to the scoring function (com-

puted for all datasets), a second performance measure was

used (on datasets #1 to #4 for which we know the RUL)

called accuracy measure A that evaluates the percentage of

testing instances for which the RUL estimate falls within the

interval [−13,+10] around the true RUL (Saxena, Celaya, et

al., 2008). These values are the same as the scoring function

and was used in several papers such as (Ramasso et al., 2013)

for dataset #1.

3.3. Related results on C-MAPSS

For comparison purpose, results of predictions from other re-

searchers (as exhaustive as possible) are summarised below

for each dataset. References have been put on the NASA

PCOE website and a survey of papers in under preparation.

To our knowledge, the full testing dataset of #1 was only

used in three papers: In (Liu, Gebraeel, & Shi, 2013) where

the authors reported results by using an average error between

true RUL and prediction; In the EVIPRO algorithm (Ramasso

et al., 2013) and in (Khelif et al., 2014) where the perfor-

mance was assessed by using the accuracy measure which

was equal to 53% and 54% respectively on the testing dataset

#1. The full testing datasets of #2, #3, #4 were not used

6
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in the past (only a few instances were considered in a few

papers).

Testing datasets #5T (corresponding to a “semi-final” test-

ing dataset) and #5V (corresponding to the “final” valida-

tion dataset) represent datasets for which the true RULs is not

known. These datasets were used in many papers summarised

in Table 2 (for published work after 2008) and in Table 3 (for

results of challengers during the competition in 2008). The

complete review of scores on these datasets were found on

the web or obtained by request to the conference chairs. In

Table 3, methods (1), (2) and (3) were published in (T. Wang

et al., 2008), (Heimes, 2008) and (Peel, 2008) respectively.

It can be observed that no score has been mentioned in the

literature on the final validation dataset #5V since 2008,

whereas the semi-final testing dataset #5T was used in sev-

eral papers. The final dataset is complex and the perfor-

mances obtained by the challengers are high. According to

our knowledge, good performances (in terms of scoring) can

be obtained on the final dataset only if the algorithm is robust.

Indeed, a few important mistakes (too late or too early pre-

dictions) can lead to bad scores. This was also observed with

RULCLIPPER on the other datasets. Robustness can be eval-

uated by computing several PHM metrics (Saxena, Celaya, et

al., 2008) as proposed in (T. Wang, 2010).

Therefore, the generalisation capability of the algorithm

should be ensured before trying the final dataset. This is illus-

trated in Tables 2-3 and Figure 15 which depict the scores ob-

tained on the semi-final dataset #5T and on the final dataset

#5V . Some algorithms exhibited very low score on #5T
(made of 218 instances), whereas a relatively poor score was

obtained on the final dataset. The winner obtained 737 on

#5T (according to the conference chairs) which is not the

best score, but only 5636 on the final dataset #5V .

Algo. (pseudo.) #5T #5V
RULCLIPPER 752 11672

SBL (P. Wang et al., 2012) 1139 n.a.
DW (Hu, Youn, Wang, & Yoon, 2012) 1334 n.a.
OW (Hu et al., 2012) 1349 n.a.
MLP (Riad, Elminir, & Elattar, 2010) 1540 n.a.
AW (Hu et al., 2012) 1863 n.a.
SVM-SBI (Hu et al., 2012) 2047 n.a.
RVM-SBI (Hu et al., 2012) 2230 n.a.
EXP-SBI (Hu et al., 2012) 2282 n.a.
GPM3 (Coble, 2010) 2500 n.a.
RNN (Hu et al., 2012) 4390 n.a.
REG2 (Riad et al., 2010) 6877 n.a.
GPM2B (Coble, 2010) 19200 n.a.
GPM2 (Coble, 2010) 20600 n.a.
GPM1 (Coble, 2010) 22500 n.a.
QUAD (Hu et al., 2012) 53846 n.a.

Table 2. Performance of the state-of-the-art approaches on
#5T (semi-final dataset) and #5V (final dataset) after 2008
(published work). See references and glossary for more de-
tails about the approaches.

Algo. (pseudo.) / Data #5T #5V
heracles (1) 737 (3rd) 5636 (1st)
FOH (2) 512 (2nd) 6691 (2nd)
LP (3) n.a. 25921
sunbea 436.8 (1st) 54437 (22nd)
bobosir 1263 8637
L6 1051 9530
GoNavy 1075 10571
beck1903 1049 14275
Sentient 809 19148
A 975 20471
mjhutk 2430 30861
RelRes 1966 35863
phmnrc 2399 35953
SuperSiegel 1139 154999

Table 3. Pseudonyms and scores (known on both #5T and
#5V ) during the 2008’s PHM data challenge. Methods (1),
(2) and (3) were published.

3.4. Priors about the datasets

Some rules were used to improve prognostics on these

datasets, some have been proposed in previous papers:

R1: The first rule is related to the fact that, according

to (Saxena, Goebel, et al., 2008), the maximum RUL

in testing instances for #5T was greater than 10 and

lower than 150 time-units, while being greater than 6 and

greater than 190 in testing instances for #5V . More-

over, most of previous approaches agreed on limiting

the RUL estimates around 135 (depending on papers

(T. Wang et al., 2008; T. Wang, 2010; Heimes, 2008;

Riad et al., 2010)) because too large and late estimates

are greatly penalized by the scoring function. So, for

most of tests presented below, the RUL was given by

max(6,min( ˆRUL, 135)).

R2: The difference between 1 and the average of the first

5% of an instance was used as an offset to compel the

health indicator (HI) to begin around 1. Even though

the health indicator function (Eq. 12) already compels it,

there are some cases, in particular for #2,#3 and #4,

for which the health indicator was strongly disturbed by

fault modes and operating conditions.

R3: To limit the impact of fault modes and to circumvent

too early and late predictions, a detection of the mono-

tonicity is performed. Monotonicity was pointed out as

a key point in prognostics in particular in (Coble, 2010).

The rule works as follows: When the testing instance

is less than the half of the training instance, then there

is a risk of early or late predictions. In that case, start-

ing from the end of the testing instance, if more than 25
consecutive samples are above (resp. under) the training

instance then it is assumed that this instance will be re-

sponsible of too early (resp. too late) predictions. In that

case, the training instance is not taken into account for

RUL estimation. This simple rule was applied as such

on all datasets considered (even without fault modes or

7
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without operating conditions).

R4: To decrease the risk of overpredictions, the sequence of

states K were made of two states, the second state being

activated only 15 samples before the end-of-life. This

setting similar to (Ramasso & Gouriveau, 2013) and was

the same for all tests and all datasets.

These rules have been developed specifically for the C-

MAPSS datasets and can probably not generalise to other

ones. The RULCLIPPER algorithm remains general enough

to be applied on other datasets with other specific rules.

3.5. Local/global health indicator estimation

To reflect a real-world and practical cases, the health indica-

tors (HI) for both training and testing datasets were not given

by the organisers (Saxena, Goebel, et al., 2008). An adapta-

tion of the approach proposed in (T. Wang, 2010) is presented

below to estimate the HI for each instance. These HIs (highly

corrupted by noise) are the basis of the proposed methodol-

ogy described in previous sections (Fig. 6).

The set of features for the ith unit is Xi =
[x1 x2 . . .xt . . .xTi

]T where xt = [xt,1 xt,2 . . . xt,m . . . xt,q]
is the q-dimensional feature vector at t (composed of sensor

measurements), and ut is the vector of operating conditions

at t. The latter can be clustered into a finite number of

operating regimes (T. Wang, 2010; Richter, 2012). Crisp

outputs are obtained such that the current regime at time t,
Ct, is precisely known. Then, for samples (ut,xt) collected

at early age of the system, e.g. t < σ1, the health indicator

attached to the ith training unit is HI(xt, θθθ
p) = 1, where

the set of parameters θθθp depends on the model used to link

regimes and sensor measurements.

At late age of the system, e.g. t > σ2, the corresponding

output is HI(xt, θθθ
p) = 0. In (T. Wang, 2010), the author

used only the data at t > σ2 and t < σ1 in addition to 6
models (one for each operating mode) built on all data. In

comparison, we propose to make use of samples between σ1

and σ2 while building a local model for each operating mode

in each training instance. Moreover, we have used one HI for

each training instance while in (T. Wang, 2010) a global HI

model was estimated using all instances.

The corresponding output of the HI is set to (Figure 7):

ĤIi(xt, θθθ
p) ≡ 1− exp

(

log(0.05)

0.95 · Ti
· t

)

, t ∈ [σ1, σ2]. (11)

This function allows to compel the health indicator to be glob-

ally decreasing, from 1 (healthy) to 0 (faulty). As proposed

in (T. Wang, 2010), σ1 = Ti · 5% and σ2 = Ti · 95% where

Ti is the length of the ith training instance. We used lo-

cal linear models for multi-regime health assessment so that

θθθpi = [θpi,0 θpi,1 . . . θ
p
i,q] represents the parameters of a linear

model defined conditionnally to the pth regime (Figure 8).
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Figure 7. The theoretical model (Eq. 11) of degradation:
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Figure 8. Operating conditions in each regime: Sensor mea-
surements are locally linear as assumed in Eq. 12

The health indicator at time t given the pth regime can thus

be estimated as

HIi(xt, θθθ
p
i ) = θpi,0 +

q
∑

n=1

θpi,n · xt,n (12)

where θθθp can be estimated by standard least-squares algo-

rithms. In experiments, in case the estimation of HI is per-

formed by considering the three operating conditions, then it

will be called a local approach (Fig. 6) and global otherwise.

HIs are then transformed into IHIs as proposed in previous

sections (Fig. 6). An example of HI estimation using local

and global approaches are illustrated in Figure 9.

3.6. Information fusion for improved RUL estimation

The first family of rules is a combination of minimum and

maximum RUL estimates suggested in (T. Wang, 2010):

αmM(R) = α ·minR+ (1− α) ·maxR (13)

where R is a set of RUL estimates and αmM(R) the

combination result. For example, in (T. Wang, 2010),

α = 13/23. In this paper, we considered α ∈
{0.1, 0.2, 0.3, . . . 0.9, 13/23}. The authors in (T. Wang,

2010) also added two outlier removal (OR) rules to keep

8
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Figure 9. All HI estimated for training dataset #2 with and
without operating conditions: High scattering in terms of ini-
tial wear, degree of degradation and RUL. The scattering is
strongly reduced when taking operating conditions into ac-
count.

RULs within the interquartile range:

OR : {a ∈ R : a ∈ [q25, q75]}
WL : {a ∈ R : inf < a < sup}

inf = q50 − 3 · (q50 − q25)
sup = q50 + 2 · (q75 − q50)

(14)

The set of RUL estimates considering either discrete (K) or

continuous predictions (P), is denoted

R ≡ ˆRUL
[OR|WL],[th],M

P[K] (15)

Only the M first RULs estimates were taken into account

(sorted according to the F1 measure) with M ∈ {11, 15} in

this study. OR|WL means that one of the outlier removal op-

erators was applied. The optional parameter [th] means that

only training instances with F1 measure greater than 0.5 were

kept.

Weighted average is the second family of rules:

mw
[e],[OR]
L =

L
∑

i=1

ω
[e],[OR]
i ·R(i) (16)

where the weights are made dependent on the similarity F1,i

(Eq. 8) between the testing instance and the ith training in-

stance; R(i) is the ith RUL estimate in set of RULs R sorted

in descending order with respect to the similarity (F1,i) ;

L ∈ {3, 5, 7, 9, 11, 15} is the number of RULs kept to com-

pute the average while applying or not the outlier removal

rule OR. The weights are given by the following equations:

ωi = F1,i/

L
∑

k=1

F1,k , (17)

with softmax normalisation:

ωe
i = exp(F1,i)/

L
∑

k=1

exp(F1,k) , (18)

using outlier removal (OR):

ωOR
i = OR(F1,i)/

L
∑

k=1

OR(F1,k) , (19)

and combining OR and softmax:

ωe,OR
i = exp(OR(F1,i))/

L
∑

k=1

exp(OR(F1,k)) . (20)

The third kind of rules is a combination of the previous ones:

ˆRUL = 0.5 · αmM(R) + 0.5 ·mw
[e],[OR|WL]
L (21)

Considering several combinations of parameters, about 3168
rules were considered.

3.7. Selecting the subset of sensors

As shown by the literature review presented beforehand,

many combinations of features can be used (among 21 vari-

ables), and a subset was particularly used made of features

{7, 8, 12, 16, 17, 20} (involving key sensors for the turbofan

degradation (Sarkar, Jin, & Ray, 2011)). To this preselec-

tion, a subset of sensors was added from every possible sub-

sets with cardinality equal to 1, 2, 3 and 4 in {∅, 9, 10, 11, 13,
14, 18, 19, 22, 25, 26} as well as subsets of cardinality 5 com-

prising sensor 9 leading to a total of 511 cases. For each com-

bination (511 cases for each dataset), we applied the prognos-

tics algorithm RULCLIPPER introduced previously and the

best subset was selected by minimising the scoring function.

3.8. Testing datasets

Given the training instances of a given dataset, the first task is

to create a testing dataset in order to select the input features

and the fusion rules. The training instances were truncated at

a time instant randomly selected from a uniform distribution

between 10% and 80% of the half-remaining life. This pro-

cedure allowed to obtain instances with small enough RULs

to allow the occurrence of substantial degradation, and also

large enough RULs to test the robustness of algorithms (Hu

et al., 2012). The obtained testing datasets were used in RUL-

CLIPPER with all subsets of features (511 subsets, 3168 fu-

sion rules) and with two subsets of features (511× 511 com-

binations for each fusion rule).

4. RESULTS AND DISCUSSIONS

Datasets #1,#3 are first considered (Section 4.2) followed

by #2 and #4 (Section 4.3). An ensemble strategy is then

proposed to improve results (Section 4.4). Results on the data

challenge are finally presented (Section 4.5) with comparison

(Section 3.3).

9
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Figure 10. Performances in terms of accuracy (to be maximised) and score (to be minimised) for 511 combinations of features
in each dataset where each point represents the best score (and its related accuracy) obtained for a particular subset of features.

4.1. Visualisation of results

The results are represented in the penalty – accuracy plane for

all combinations of features. Two complementary views are

proposed. The first one is depicted in Figure 10. Each type of

marker represents a dataset and it is filled if the local approach

was used for the estimation of the health indicator (otherwise

the global approach was used). Each marker represents the

performance for one subset and has two coordinates: The best

score over all combination rules and its associated accuracy.

Note that the latter can be smaller than the best accuracy. The

utopic performance would correspond to a marker located at

the bottom right-hand side (S → 0, A → 100%).

This figure immediately demonstrates that the increasing

complexity of datasets involves a degradation of the perfor-

mances. Indeed, the points moves from the bottom right-hand

side to the top left-hand side. RULCLIPPER performed well

on datasets #1, #3, #5T and less on #2 and #4. There-

fore, it shows that the operating conditions have the greatest

impact on the performances. The use of the local approach

also greatly improved the performances (see filled markers).

For example, results on dataset #4 with the local approach

are much better than the results on dataset #2 with the global

approach, while the latter is supposed easier than the former

due to two fault modes.

Considering datasets #1 and #3, the cloud of markers does

not show a large scattering on scores relatively to other

datasets whereas the accuracy has much more deviation. For

the other datasets, the scattering is more important which

means that the selection of the subset of sensors is more crit-

ical. These first observations argue in favor of using sev-

eral performance measures to assess prognostics algorithms

as suggested in (Saxena, Celaya, et al., 2008).

A complementary view is proposed in the next sections for a

deeper analysis of results and illustrated in Figure 11. A point

in the previous figure (Fig. 10) with coordinates (P1(S1, A1))
is obtained by considering the accuracy (A1) for the low-

est (best) penalty score (S1) given a subset of features. We

propose to represent the imprecision concerning the perfor-

mances by considering a second point P
′

2(S2, A2) defined by

the best accuracy A2 obtained while keeping the score lower

than the best score plus 25%, i.e. S2 ≤ S1 + 25%S1 (see

P2 and P
′

2 in Figure 11) . These two points define a rectan-

gle in the penalty – accuracy plane. These rectangles are then

accumulated over all sensor subsets (right-hand side in Fig-

ure 11). In the ideal case, the algorithm would be insensitive

to the choice of the subset of features (which are used to com-

pute the health indicators) and therefore all subsets will lead

to rectangles located at the same position. In a more realistic

case, the accumulation may take the form of a unique cuboid

when the sensitivity is limited (for example for #1 and #3)

or multiple cuboids when the performances are dependent on

the sensor subset (for example for #2 and #4).

In the following figures, the accumulation of rectangles are

represented in gray scale. The whitest part corresponds to the

area where most of rectangles are located and corresponding

to the likeliest performances given several subsets of features.

10
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Figure 11. Evaluation of the sensitivity of sensor subsets on performance.

The scores have been divided by the number of testing in-

stance for comparison purpose.

4.2. Performances on datasets #1 and #3

Figure 12 represents the accumulation of the rectangles for

all combinations of features in the testing datasets #1 and

#3. For dataset #1, the performance’s centroid is located

around (60%; 4.0) (or (60%; 400)). One can draw any sub-

set of features (among the 511 combinations considered) and

can expect a score between S = 310 and S = 440 with an

accuracy between A = 56 and A = 64. A few “optimal”

subsets led to better performances (reported in Table 5 for the

testing datasets). Due to the second fault mode, the scores

are more scattered and a clear global decrease of the accu-

racy is observed ( translation of the cluster of performances

to the left hand-side). The level of the colorbar indicates that

the choice of the features becomes more and more crucial as

the difficulty of the dataset increases: It is simpler to find a

subset of features for dataset #1 than for #3 leading to low

penalty and high accuracy because the level is quite similar

on a large area with less scattering (with a value around 8). It

is more critical for dataset #3 since the cuboid is larger (in

particular with respect to the timeliness) with a peak around

12 on a local area. A similar and magnified observation was

obtained on the other datasets as shown in the next section.

Based on these results obtained on the testing datasets, the

fusion rule and the subset of features were selected for final

evaluation of the testing datasets by minimising the scoring

function (as done for the PHM data challenge) and maximis-

ing the accuracy. The results obtained on the testing datasets

#1 and #3 are summarised in Table 5 (note that the features

indicated in the table have to be assembled with features 7, 8,
12, 16, 17, and 20). For each dataset, the combinations of fea-

tures are given with respect to the two best scores (“Best S”)

and the two best accuracies (“Best A”). For example, the first

line of Table 5 concerns dataset #1 for which the best score

is S = 261 (with A = 63%) when using features 9, 10, 14,

25 and 26, and the RUL fusion “0.9mM( ˆRUL
th,11

P ) ⊕mw7”

which corresponds to the combination of two elements: 1)

Figure 12. Performances for #1 (top) and #3 (bottom).

the output of the min/max operator (Eq. 13) with parameter

α = 0.9 applied on the 11 first RUL estimates and keep-

ing only estimates with a similarity greater than 0.5, and 2)

the weighted average (Eq. 16) of the L = 7 first RUL esti-

mates (without outlier removal). The high value of α (0.9)

implies more weight to the minimum (early) estimate mean-

ing that the algorithm selects training instances which over-

estimate the RUL. An accuracy of 70% on #1 was obtained

with the same subset of features while keeping a low score at

S = 301. This accuracy obtained by the RULCLIPPER algo-

rithm is significantly higher (+16%) than the previous known

results given by the EVIPRO-KNN algorithm (Ramasso et al.,

2013) which yielded 53% or (Khelif et al., 2014) with 54%.

Other metrics were computed (see Table 4, where metrics are

defined in (Saxena, Celaya, et al., 2008)) for performance

comparison with previous approaches: An exponential-based

regression model with health indicator estimation proposed

11
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in (Liu et al., 2013) reported a MAPE = 9% on #1 (com-

pared to 20% for RULCLIPPER) and an Echo State Network

with Kalman filter and submodels of instances presented in

(Peng et al., 2012) with1 MSE = 3969 (compared to 176 for

RULCLIPPER).

The part entitled (#1,#3)/S indicates the best scores for the

same subset of features tested with the same fusion method

on both datasets. Considering simultaneously #1 and #3 is

equivalent to a situation where the engine is degrading while

developing a fault. As the score is low and the accuracy high

on both datasets using the same subset of features and the

same method, it means that this parameterisation makes the

prognostics robust to the introduction of a second fault mode.

4.3. Performances on datasets #2 and #4

These two datasets differ from the number of fault modes:

one for #2 and two for #4. Moreover, compared to the two

previous datasets, the difficulty increases by considering six

operational conditions (Table 1) and 2.5 times more training

and testing instances. Figure 13 represents the accumulation

of the performance rectangles for all combinations of features

in the testing datasets #2 and #4.

Figure 13. Performances for #2 (top) and #4 (bottom).

Compared to the two previous datasets, the whitest area (like-

liest performances given several subset of features) is strongly

shifted towards the upper left corner meaning that both the ac-

curacy and score are degraded due to the presence of the oper-

ating conditions. For dataset #2, the performance’s centroid

1Authors in (Peng et al., 2012) actually provided the best RMSE obtained

equal to 63, so MSE was computed as 3969 = 63
2.

is located around (47%; 25) (or (47%; 6475) when not nor-

malised). The level of the colorbar indicates that the choice

of the features is still more critical compared to #3 with a

level around 19 on a very local area. A few “optimal” subsets

led to better performances (reported in Table 6 for the testing

datasets).

For dataset #4 (the most difficult dataset), four perfor-

mance’s centroids can be found, in particular one is located

around (43%; 27.5) (or (43%; 6820) when not normalised).

For this dataset, one can not randomly draw a subset as it

could be done with the other datasets. A few “optimal” sub-

sets that led to the best performances are reported in Table 5.

4.4. RULCLIPPERs ensemble to manage sensors faults

As pointed out in (Simon, 2012), effective sensor selection

tools are necessary to help end-users assess the health man-

agement consequences of adding or removing sensors and

more generally to cope with sensor faults. One way to cir-

cumvent this issue is to consider ensembles: Several algo-

rithms with different parameterisation are combined by ex-

pecting that the estimations will be improved and more re-

liable. Ensembles for prognostics have been considered in

several papers, for instance in (P. Wang et al., 2012) applied

to C-MAPSS datasets. In this paper, only two RULCLIP-

PERs were considered, each with one with a particular subset

of features. For that, all couples of subsets of features were

studied (about 130000 combinations) on each testing dataset.

The best couples are given in Table 7.

Beyond the important improvement of scores and accuracies

compared to the previous results (Table 5), it is interesting to

notice that the best performances are not obtained by combin-

ing the two best parameterisations. Indeed, in most cases, the

performances of RULCLIPPER with different parameterisa-

tions taken individually (with a given subset of features) are

not the best ones, but their combination yielded to significa-

tive improvement of the performances compared to Table 5.

For example, for dataset #1, combining RUL estimates pro-

vided by subset of features {10, 11, 14, 22} (in addition to 7,
8, 12, 16, 17, 20) with {13, 18, 19, 22} led to S = 216 and

P = 67%. It represents 27% of improvement on the score

and +4% on accuracy compared to the best performances ob-

tained in Table 5 with subset {13, 14, 18, 25}, and more when

considering the performances of single subsets (S1 = 301
and P1 = 64%, or S2 = 325 with P2 = 62%). Similar

observations can be made on the other datasets in particular

on datasets #2 and #4 for which important improvements

were obtained. A summary of results of RULCLIPPER on

the turbofan datasets is given in Table 4 (metrics are defined

in (Saxena, Celaya, et al., 2008)).
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RULCLIPPER performance
Dataset #1 #2 #3 #4 #5T #5V
Score 216 2796 317 3132 752 11672

Accuracy (%) 67 46 59 45 n.a. n.a.
FPR (%) 56 51 66 49 n.a. n.a.
FNR (%) 44 49 34 51 n.a. n.a.

MAPE (%) 20 32 23 34 n.a. n.a.
MAE 10 17 12 18 n.a. n.a.
MSE 176 524 256 592 n.a. n.a.

Table 4. Summary of results of RULCLIPPER on all datasets. Metrics are defined in the glossary.

TYPE DATA FEATURES FUSION S A

Best /S #1 9, 10, 14, 25, 26 0.9mM( ˆRUL
th,11

P )⊕mw7 272 68

Best /A #1 9, 10, 14, 25, 26 0.9mM( ˆRUL
th,11

P )⊕mw13 301 70

Best /S #3 9, 13, 14, 22, 26 0.9mM( ˆRUL
WL,11

PK )⊕mwOR
3 353 57

Best /A #3 9, 19, 25 0.8mM( ˆRUL
WL,11

PK ) 632 63
Best /A (2) #3 18, 25, 26 mw

e,OR
e,5 ⊕mw5 580 63

Best /A (3) #3 9, 10, 14, 18, 25 0.8mM( ˆRUL
WL,11

PK )⊕mw3 476 60

(#1,#3) /S #1 9, 11, 14, 25, 26 0.9mM( ˆRUL
th,11

P )⊕mw
e,OR
9

294 64
#3 − − 480 55

(#1,#3) /S(2) #1 9, 10, 14, 25, 26 0.9mM( ˆRUL
th,11

P )⊕mwOR
13 299 63

#3 − − 480 56

(#1,#3) /S(2) #1 9, 10, 14, 25, 26 0.9mM( ˆRUL
th,11

P )⊕mwOR
5 315 66

#3 − − 435 54

Table 5. Datasets #1,#3: Subset of features (in addition to 7, 8, 12, 16, 17, 20) leading to the best performances in terms

of scores and accuracies for each dataset using a single RULCLIPPER. The rule “0.9mM( ˆRUL
th,11

P ) ⊕mw7” corresponds to
the combination 1) the output of the min/max operator (Eq. 13) with α = 0.9 applied on the 11 first RUL estimates with a
similarity greater than 0.5, and 2) the weighted average (Eq. 16) of the L = 7 first RUL estimates (without outlier removal).

4.5. Results on the PHM’08 data challenge (#5T ,#5V )

Based on the 218 training instances provided, RULCLIPPER

was run on both testing datasets #5T and #5V called the

PHM’08 data challenge, using the 511 combinations of fea-

tures with the 3168 fusion rules. The results obtained were

then sorted with respect to the scoring function. The first

five best subsets of features were then selected: {9, 11, 26},

{9, 18, 22, 25}, {9}, {9, 10, 13, 25}, {9, 10, 18, 25, 26} (in

addition to 7, 8, 12, 16, 17, 20 for each subset).

These combinations of features were considered and evalu-

ated on the dataset #5T (submitting estimations once a day

on the NASA PCoE website). The best score was given by

averaging three configurations of RULCLIPPERs, each with

ensembles based on three subsets of features:

• RULCLIPPER 1 with inputs {9, 11, 26}, {9, 18, 22, 25}
and {9};

• RULCLIPPER 2 with inputs {9, 11, 26}, {9, 18, 22, 25}
and {9, 10, 13, 25};

• RULCLIPPER 3 with inputs {9, 11, 26}, {9, 18, 22, 25}
and {9, 10, 18, 25, 26}.

The RUL limit was set to 135 as described in Section 3.4

and the fusion rule was the same for all individual RULCLIP-

PER, namely 0.9mM( ˆRUL
11

PK)⊕mwOR
15 . The score obtained

on dataset #5T (on the NASA’s website) was equal to 752,

which is the 3rd score compared to published works. An al-

ternative was considered by increasing the RUL limit from

135 to 175. The fusion rule was the same as previously and

the score obtained was 934 which is quite low relatively to

the high risk taken by setting the RUL limit to 175.

The average of the three configurations given above provided

a set of RULs parameterised by both a RUL limit (135, 175)

and a fusion method. Three parameterisations were consid-

ered and combined:

• Ω1 = (135, 0.8mM( ˆRUL
11

PK)⊕mwOR
5 ),

• Ω2 = (175, 0.9mM( ˆRUL
11

PK)⊕mwOR
9 ), and

• Ω3 = (175, 0.9mM( ˆRUL
11

PK)⊕mw15).

The motivation of this configuration was to make long-term

predictions possible while minimising the risk of making late

predictions. The RULs obtained by Ω2 and Ω3 were aver-

aged and the resulting combined by a weighted average with

with Ω1. The weights were set by a sigmoid (with shape pa-

rameter: 0.3 and position: 120) to increase the importance

of RULCLIPPERs Ω2 and Ω3 when the estimation is greater

than 120 while giving more importance to Ω1 otherwise. The

selected strategy for these datasets is depicted in Figure 14.

This methodology was then applied with the final testing

13
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TYPE DATA FEATURES FUSION S A

Best /S #2 9, 13, 25 mean( ˆRUL
WL,11

PK )⊕mwOR
3 | L 3296 47.5

#2 − mean( ˆRUL
WL,11

PK ) | L 3354 47.5
#2 − mwOR

3 | L 3443 41.3

Best /A #2 9, 18, 22, 26 0.8mM( ˆRUL
WL,11

PK )⊕mwOR
7 | L 4667 51.7

#2 − 0.8mM( ˆRUL
WL,11

PK )⊕mw
e,OR
3

| L 4829 51.0

Best /S #4 9, 10, 11, 22 median( ˆRUL
OR,15

P ) | L 3576 41.9

Best /S (2) #4 9, 10, 11, 22, 26 0.9mM( ˆRUL
WL,11

PK )⊕mw5 | L 3936 49.2

Best /A #4 9, 11, 22 0.9mM( ˆRUL
th,11

P )⊕mwOR
5 | L 4527 50.4

(#2,#4) /S #2 9, 10, 13, 14, 26 0.9mM( ˆRUL
WL,11

PK )⊕mwOR
3 | L 4096 42.1

#4 − − 5024 40.3

(#2,#4) /S(2) #2 9, 13, 14 0.8mM( ˆRUL
WL,11

PK )⊕mwOR
3 | L 3792 40.2

#4 − − 4465 41.9

(#2,#4) /S(3) #2 9, 10, 18, 22, 26 0.8mM( ˆRUL
WL,11

PK )⊕mwOR
3 | L 4138 50.2

#4 − − 4980 43.5

(#2,#4) /S(4) #2 9, 10, 11, 25 median( ˆRUL
OR,15

P )⊕mwOR
5 | L 4168 42.9

#4 − − 5116 46.0

Table 6. Datasets #2,#4: Subset of features (in addition to 7, 8, 12, 16, 17, 20) leading to the best performances in terms of
scores and accuracies for each dataset using a single RULCLIPPER. L means that the local approach was used.

Figure 14. Methodology for #5T and 5V . The subsets
of features (left hand side) have to be concatenated with
7, 8, 12, 16, 17, 20.

dataset (#5V ) yielding 11672. The comparison with approa-

ches can be quantified on Figure 15. The generalisation of

RULCLIPPER parameterised as proposed in this paper is

lower than the first five algorithms (see square markers on

the left-hand side). Indeed, some of these algorithms pro-

vided higher scores on #5T but lower on the final dataset

#5V . One explanation accounting for the lack of general-

isation capability compared to the first five algorithms may

hold in the “rules” integrated in RULCLIPPER (section 3.4).

These rules have been tuned according to observations on the

five other datasets but may be not relevant for dataset #5V if

the statistics governing the generation of instances have been

modified (Saxena, Goebel, et al., 2008). In order to show

the applicability of RULCLIPPER algorithm with as less pa-

rameterisation as possible, the author intentionally kept the

same settings for all datasets without distinction in particular

concerning the number of fault modes or thresholds on RUL

limits. The authors also remarked on the previous datasets

(#1 to #4) that a few instances can disturb the algorithm (in

particular to test the robustness), generating very late or very

early predictions, degrading drastically the scores.

However, the generalisation is better than the 23 remaining al-

gorithms, for which lower scores on #5T have been obtained

with higher ones on #5V (see square markers on the right-

hand side). RULCLIPPER provided a relatively low score on

both datasets using the same parameters (816 on #5T and

11672 on #5V ). Scores obtained on the turbofan datasets are

also good compared to the state-of-the-art (Tables 2, 3 and 4).

5. CONCLUSION

The RULCLIPPER algorithm is proposed to estimate the re-

maining lifetime of systems in which noisy health indicators

are assumed imprecise. It is made of elements inspired from

both the computer vision and computational geometry com-

munities and relies on the adaptation of case-based reasoning

to manage the imprecise training and testing instances. The

combination of these elements makes it an original and effi-

cient approach for RUL estimation.

RULCLIPPER was validated with the six datasets coming

from the turbofan engine simulator (C-MAPSS), including

the so-called turbofan datasets (four datasets) and the data

challenge (two datasets), and compared to past work. These

datasets are considered as complex due to the presence of

fault modes and operating conditions. In addition to RUL-

CLIPPER, a method was proposed to estimate the health in-

dicator (in presence of faults and operating conditions) and

the problem of the selection of the most relevant sensors was

also tackled. Information fusion rules were finally studied to

combine RUL estimates as well as ensemble of RULCLIP-

PERs. The review of past work (a detailed survey is in under

preparation), the presentation of the datasets, as well as the

14
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Figure 15. Comparison of RULCLIPPER with other state-of-the-art approaches. Some scores on the testing dataset #5T are
missing. Scores have to be minimised.

results on sensor selection, health indicator estimation, in-

formation fusion rules and RULCLIPPERs ensemble are ex-

pected to give a hand to other researchers interested in testing

their algorithms on these datasets.

RULCLIPPER illustrates that computational geometry seems

promising for PHM in presence of noisy HIs. While some

similarity-based matching algorithms may suffer from com-

putational complexity in particular to sort training instances,

RULCLIPPER is characterised by fast operations: Intersec-

tion of IHI with length close to 220 units (among the longest

ones) took only 3.8 milliseconds (less than 2 minutes for

dataset #1). Computational geometry has become an active

field in particular to improve memory and time requirements,

with applications in multimedia for which CUDA implemen-

tations on processor arrays on graphic cards were proposed.

With such implementations, real-time and anytime prognos-

tics can be performed. The extension to multiple health indi-

cators is under study by using polytopes.
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NOMENCLATURE

A Accuracy

CBR Case-based reasoning

C-MAPSS Commercial Modular Aero-Propulsion

System Simulation

DW/OW/AW Diversity / Optimization / Accuracy-

based weighting

EXP Least-square exponential fitting

FPR/FNR False positive/negative rate

GPM General Path Model

(I)HI (Imprecise) Health indicator

MAPE Mean absolute percentage error

MLP MultiLayer Perceptron

heaLth Indicator modeled by Planar

Polygons and similarity-basEd Reasoning

MSE/MAE Mean squared/absolute error

OR Outlier removal

PHM Prognostics and Health Management

QUAD Quadratic fitting

REG Linear regression

RVM/SVM Relevance/Support vector machine

RNN Recurrent neural network

RUL Remaining Useful Life

RULCLIPPER RUL estimation based on impreCise

S Score (timeliness)

SBI Similarity-based interpolation

SBL Sparse Bayesian Learning

WL Whisker length
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Table 7. RULCLIPPERs ensemble: Combination of subsets
of features (in addition to 7, 8, 12, 16, 17, 20) leading to the
best performances.
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