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Supplementary material 
Abstract 

Background. The investigation of the structure and dynamics of signal transduction systems 
through data-based mathematical models in ordinary differential equations or other paradigms 
has proved to be a successful approach in recent times. Extending this concept, we here analysed 
the use of kinetic models based on power-law terms with non-integer kinetic orders in the 
validation of hypotheses concerning regulatory structures in signaling systems.  
Methods. We integrated pre-existent biological knowledge, hypotheses and experimental 
quantitative data into a power-law model to validate the existence of certain regulatory loops in 
the Ras/Raf-1/MEK/ERK pathway, a MAPK pathway involved in the transduction of mitogenic 
and differentiation signals. Towards this end, samples of a human mammary epithelial cell line 
(MCF-10A) were used to obtained time-series data characterising the behaviour of the system 
after epidermal growth factor stimulation in different scenarios of expression for the critical 
players of the system regarding the investigated loops (e.g., the inhibitory protein RKIP). The 
mathematical model was later calibrated using a computational procedure that included: analysis 
of structural identifiability; global ranking of parameters to detect the most sensitivity ones 
towards the experimental setup; model calibration using global optimization methods to find the 
parameter values that better fit the data; and practical identifiability analysis to estimate the 
confidence in the estimated values for the parameters. The obtained model was used to 
performed computational simulations concerning the role of the investigated regulatory loops in 
the time response of the signaling pathway. 
Results. Our findings suggest that the special regularity in the structure of the power-law terms 
make them suitable for a data-based validation of regulatory loops in signalling pathways. Using 
this approach, we could perform a quantitative data based validation of the existence of two 
regulatory loops in the pathway. The model proved to be useful to highlight the important 
consequences of phosphorylation/deactivation of RKIP during the transient stimulation of the 
signalling pathway. 
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SM0. Power law equations   
 
Figure SM0.1 shows how a unique power-law rate equation can represent completely different 
biological behaviours by only changing the values of the kinetic orders. 
 

 
 
 

 

Figure 1. Power-law models can describe a variety of enzymatic reactions and their control by variation 
of the kinetic order. For illustrative purposes, we discuss activation of protein P, a process that is mediated 
by the input signal S and potentially regulated by a second interacting partner called X (left-hand side of the 
figure). In order to investigate the regulatory dynamics induced by X we derive the following simplified 
power-law model:  
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In cases where no kinetic information on the effect of X on P is available, the value of the kinetic order g must 
be assigned using specifically designed experiments. The bar on the right-hand side depicts the values for the 
signal rate V(P,S,X) when the same values are assumed for P (P=1) and S (S=1) and the parameters other than 
g (h=1, j=1and γ=1). We compute the values of V for an interval of values in X using different representative 
values for g: i) inhibition (blue), g=-0.51; ii) no-interaction (red), g=0; iii) saturation (green), g=0.26; iv) 
linear kinetic (black), g=1.0; v) cooperativity (yellow), g=1.51). For simplifying purposes, in case of 
inhibition (g=-0.51) the variable X was normalised around X=0.05. As we see here, one and the same 
mathematical structure for the signal rate can display rather different biological dynamics by just tuning the 
value of critical kinetic orders, the property of power-law models that we analyse and explore here to 
elucidate cell signal regulation. 

 
 



SM1. Input signal EGFR*  
In the calibration process we model the input signal with the following differential equation: 
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Where Inp(t) is the function accounting for the stimulation of epidermal growth factor receptor 
activation and kdEGFR accounts for the process of deactivation of EGFR*. We here assume a 
quick activation of the receptor that is modelled by an input function Inp(t) with the structure 
defined above. Furthermore and in agreement with previous experimental measurements under 
similar experimental conditions, we assume that the activated epidermal growth factor receptor 
(EGFR) have a half-life approximately 45 minutes (Honegger et al. 1990*, Kholodenko 2006). 
Under this assumption, kdEGFR=0.015 (min-1) and after integration the input function of the 
system during the perturbatory experiments becomes:  ( ) ( ) tetEGFRtEGFR 0154.0*

* 0.00 −− ===  
(Figure SM1.1). 
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Figure SM1.1. Simulated input signal of the system used in the model 
calibration. 

 
 

SM2. Total concentration of proteins 
In the model the total concentrations of MEK and ERK were assumed to be constant in the 
considered time scale (102 minutes). This assumption is supported by the quantitative 
measurements for the total concentration of both proteins performed in parallel to the 

                                                 
* Honegger, A.M., Schmidt, A., Ullrich, A., Schlessinger, J. (1990) Separate endocytic pathways of kinase-defective 

and -active EGF receptor mutants expressed in same cells. J. Cell Biol. 110(5):1541-8.  
 



measurements of phosphorylated fractions. In the following figures we show how the total 
concentration for both proteins remains approximately constant and similar during both 
experiments. The agreement between our assumption and the data is especially strong in case of 
ERK (Figure SM2.A) and acceptable for MEK (Figure SM2.B). We obtained similar results for 
RKIP during the experiments, which showed a rather stable total amount during the perturbative 
experiments (data not shown).  
    

 Figure SM2.A 
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Figure SM2.B 
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Figure SM2.2. Total amount of proteins MEK and ERK. A) Measurement of the total amount 
of MEK during the experiments performed in our investigation (solid lines). Data were 
normalised in a way maximum concentration of MEK measured was considered equal to one. In 
the figure we also included the computed mean value for the concentration of MEK in both 
experiments (dashed lines). B) Measurement of the total amount of ERK during the experiments 
performed in our investigation (solid lines). As in Figure SM2.A, data were normalised in a way 
maximum concentration of ERK measured was considered equal to one. Mean value for ERK 
total amount in both experiments was computed and included in the figure (dashed lines).   



 
 
SM3. Calibration of the first candidate model  
SM3.1. First candidate model calibration. Each experiment in Figure 3 was done in three 
replicates thus allowing computation of the mean and the standard deviation for each 
measurement (Figure 6). In this way we could introduce experimental error information in the 
log-likelihood function used for parameter estimation (Equation 3).  Based on the structure of the 
mathematical model discussed before, we first derived a simplified version in terms of number of 
kinetic orders to be computed and assumed all g values were fixed to 1 excepting the ones 
corresponding to the feedback loops affecting MEK activation that we tried to validate (e.g. g2 
and g3). This will be regarded as first candidate model. The calibration of this first candidate 
model requires the estimation of 9 global parameters (the two cited kinetic orders and seven rate 
constants) plus two additional local (experiment dependent) unknowns, namely ERKT and 
pERK(0). The final computational problem has 9 global and 18 local parameters, which makes a 
total of 27 unknown parameters. The metaheuristic SSm [40] was used to estimate the unknowns 
from the experimental data in the following hyperrectangle: 
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The best fits, corresponding to a value of Jllk=339.5, are shown in the Supplementary material. 
Figures 6 a) and b) present two illustrative examples: (a)  presents results for experiment RKIP 
wt/ ERK o, which corresponds to the case that reported the minimum mean residual; and (b) 
presents results for experiment RKIP o/ ERK d which corresponds to the case reporting the 
minimum maximum residual.  
 �



�

Figure 6. Illustrative examples of the best fits achieved for the first candidate 
model corresponding to a Jllk=339.5. a) Experiment RKIP wt/ ERK d, 
corresponds to the experiment which reported the minimum maximum residual 
in average for both observables, b) experiment RKIP wt/ ERK o, reported the 
minimum mean residual for both observables. Predicted kinetics are shown as 
solid lines, experimentally measured results as data points with standard 
deviation. In these figures, time is measured in minutes and the phosphorylation 
of the different proteins is in arbitrary units  

 

It should be noted at this point that even though the sensitivity analysis showed maximum 
sensitivity for the experiment RKIP d/ ERK d, and thus one would expect to obtain the best fit 
for that experiment, this is not the case here (see Supplementary Material SM3). In addition, and 
attending to the sensitivity of pCREB to the parameters, one would also expect that predictions 
for pCREB  would be better than those for pMEK. Both behaviours may be explained attending 
to the experimental error. The data for pCREB are subject, in general, to more experimental error 
than those for pMEK, thus the log-likelihood is giving more confidence to the experimental data 
related to pMEK, and thus the quality of fit is better for pMEK. This is particularly true for 
experiment RKIP d/ ERK d for which the maximum mean experimental error is reported for 
pCREB.  

The model is able to capture the tendency of the data, however for some of the experiments 
prediction errors are rather significant (see Supplementary Material SM3). We notice that the 
computed solution reports the presence of the regulatory loops that we were trying to validate 
(e.g. RKIP and ERK inhibition of MEK activation, represented by the kinetic orders g2=-
0.86±0.05, and g3=-3.9±0.8 respectively). Since the experiments were designed to analyse in 
detail the possible presence of feedback loops confidence intervals for the parameter estimates 
are very reasonable. 

 



SM3.2. Practical identifiability analysis for the first candidate model. The confidence intervals 
for the parameters computed by means of the Fisher Information Matrix reveal that the 
experimental scheme is suitable to compute g2 and g3 with reasonable confidence. Taking into 
account that the maximum relative experimental error is around the 30% and 7% in mean, the 
maximum relative confidence interval of the 20% obtained for g3 is reasonable. The correlation 
matrix (Figure 7) reveals that g2 is, in general, not substantially correlated to the other parameters 
whereas g3 is slightly more correlated. The rate constants are in some cases highly correlated thus 
being more complicated to accurately estimate their values. This could be anticipated in view of 
the low sensitivity of the observables with respect to for example γ1, γ2 or γ3 (Figures 4 and 5) 
under the current experimental scheme. Further optimally designed experiments would be 
required to improve confidence for rate constants [34].  

  

 
Figure 7. Correlation matrix of the global unknowns corresponding to the best 
solution for the first candidate model. Figure reveals that the kinetic orders g2 
and g3 are almost fully uncorrelated whereas all combinations of γ1, γ2,  γ3, or 
 γ6,  γ7,are highly correlated, which introduces large difficulties at the time of 
estimating those parameters.  

�

To complement the information provided by the correlation matrix, Figures 8a-d show the 
projection of the maximum likelihood function over four pairs of parameters in the vicinity, 
within the 25% error, of the solution: a) presents an illustrative example of (almost) uncorrelated 
parameters γ1 - g2 , b) presents an example of low correlation between parameters (γ4 - g3) and c) 
and d) present examples of highly correlated parameters γ5 - γ2 and γ7 - γ6. 



 
Figure 8. Illustrative examples of the projection of the log-likelihood over pairs of parameters 
in the vicinity of the global solution: a) presents an illustrative example of (almost) 
uncorrelated parameters, b) presents an example of low correlation between parameters, c) and 
d) present examples of highly correlated parameters. These plots give an intuition of the 
difficulties to compute an unique value for the parameters. 

 

SM3.3. Experimental scheme. A total of 9 experiments were performed under different 
combinations of RKIP and ERK conditions (over expression, wild type and down regulation). In 
all experiments 6 measurements were performed for pERK, pCREB and total MEK at the 
following sampling times: 0, 5, 15, 30, 90, 180. Three replicates are available for each case thus 
allowing to compute the mean and the standard deviation for each measurement. This allowed to 
introduce experimental error information in the log-likelihood function.  

 

SM3.4. Definition of unknowns. For the first approximation to the problem only g2 and g3 were 
to be estimated together with the kinetic rates whereas remaining kinetic orders were fixed to 
one. The initial condition for pMEK and pCREB was assumed to be known and equal to the 
mean measured value and the initial condition for pERK was estimated for each experiment 
(local unknown).  In addition the value of total ERK was estimated for each experiment (local 
uknown). 

The following bounds were established for all unknowns: 
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SM3.5. Solution with a global optimization method. The model calibration problem was solved 
by means of SSm (Egea et al., 2007). Results achieved for the parameter values are: 

 
    g2 = -8.6019e-001  ±  4.5641e-002;  
    g3 = -3.9178e+000  ±  5.3651e-001;  
    γ1 =  1.4150e-003  ±  9.6817e-002;  
    γ2 =  2.7879e-003  ±  1.9082e-001;  
    γ3 =  9.1702e+000  ±  6.2354e+002;  
    γ4 =  8.9643e-002  ±  2.6275e-002;  
    γ5 =  1.3561e-001  ±  2.5110e-002;  
    γ6 =  1.0000e+001  ±  8.4764e+001;  
    γ7 =  4.0620e+000  ±  3.4663e+001; 

  

It should be noted that confidence intervals for the kinetic orders are reasonable whereas for the 
kinetic rates confidence is low. This may be explained considering that the design of experiments 
was performed to analyse the possible presence of feedback loops. Further experiments 
specifically designed for the purpose of kinetic rates estimation would possibly improve the 
quality of the results. Figure SM3.1 shows corresponding fits.  

 

 



 
Figure SM3.1: Best fits for the first candidate model: Jllk=339.5 
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SM4. Details on the calibration of the second candidate model  
SM4.1. Experimental scheme. A total of 9 experiments were performed under different 
combinations of RKIP and ERK conditions (over expression, wild type and down regulation). In 
all experimeevants 6 measurements were performed for pERK, pCREB and total MEK at the 
following sampling times: 0, 5, 15, 30, 90, 180. Three replicates are available for each case thus 



allowing to compute the mean and the standard deviation for each measurement. This allowed to 
introduce experimental error information in the log-likelihood function.  

 

SM4.2. Definition of unknowns. For the first power-law model g2 and g3 were to be estimated 
together with the most influencing kinetic orders as detected by the global sensitivity analysis 
(g11, g9,  g8 and g6 ) and the kinetic rates. As in previous case the initial condition for pERK and 
the amount of total ERK were estimated for each experiment (local unknowns). The following 
bounds were established for all unknowns: 
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SM4.3. Solution with a global optimization method. The model calibration problem was solved 
by means of SSm (Egea et al., 2007). Results achieved for the parameter values are:  

 
     g2 = -1.3972e+000  ±  1.1426e-001;  
     g3 = -1.2336e+000  ±  2.1159e-001;  
     g6 =  2.9594e+000  ±  3.7278e-001;  
     g8 =  6.4457e-002  ±  5.5995e-002;  
     g9 =  1.6221e-002  ±  9.0505e-002;  
     g11=  1.8035e-002  ±  1.4964e+000;  
     γ1 =  3.0692e-005  ±  2.6387e-004;  
     γ2 =  4.3944e-003  ±  1.0394e-002;  
     γ3 =  2.0728e-001  ±  4.3802e-001;  
      γ4 =  1.1914e-001  ±  6.8618e-002;  
     γ5 =  8.6303e-004  ±  1.1744e-004;  
      γ6 =  7.6618e+000  ±  4.8271e+002;  
     γ7 =  5.8766e+000  ±  3.6732e+002; 
 

Figure SM4.1 shows corresponding fits. 

 



 
Figure SM4.1: Best fits for the second candidate model: Jllk=239.4 
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