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Abstract: Recently proposed methods in intrusion detection are iterating on machine learning meth-
ods as a potential solution. These novel methods are validated on one or more datasets from a sparse
collection of academic intrusion detection datasets. Their recognition as improvements to the state-
of-the-art is largely dependent on whether they can demonstrate a reliable increase in classification
metrics compared to similar works validated on the same datasets. Whether these increases are
meaningful outside of the training/testing datasets is rarely asked and never investigated. This
work aims to demonstrate that strong general performance does not typically follow from strong
classification on the current intrusion detection datasets. Binary classification models from a range of
algorithmic families are trained on the attack classes of CSE-CIC-IDS2018, a state-of-the-art intrusion
detection dataset. After establishing baselines for each class at various points of data access, the
same trained models are tasked with classifying samples from the corresponding attack classes in
CIC-IDS2017, CIC-DoS2017 and CIC-DDoS2019. Contrary to what the baseline results would suggest,
the models have rarely learned a generally applicable representation of their attack class. Stability and
predictability of generalized model performance are central issues for all methods on all attack classes.
Focusing only on the three best-in-class models in terms of interdataset generalization, reveals that for
network-centric attack classes (brute force, denial of service and distributed denial of service), general
representations can be learned with flat losses in classification performance (precision and recall)
below 5%. Other attack classes vary in generalized performance from stark losses in recall (−35%)
with intact precision (98+%) for botnets to total degradation of precision and moderate recall loss for
Web attack and infiltration models. The core conclusion of this article is a warning to researchers in
the field. Expecting results of proposed methods on the test sets of state-of-the-art intrusion detection
datasets to translate to generalized performance is likely a serious overestimation. Four proposals to
reduce this overestimation are set out as future work directions.

Keywords: CIC-IDS2017; CSE-CIC-IDS2018; CIC-DoS2017; CIC-DDoS2019; cybersecurity; generalization;
intrusion detection; network security; network traffic classification; supervised machine learning

1. Introduction

Every day, a larger and more varied collection of devices is connected to the Internet.
This connectivity exposes the same devices to the malicious actors who are active on
the Internet, continually looking for exploitable targets. The discovery, classification and
tracking of malicious activity against any host or network thus becomes increasingly
important. Creating this type of defense has been an active research field since at least
1985 [1,2]. At the time, connectivity was not widespread, so researchers formulated their
defense in terms of monitoring the devices for intrusions instead of the network. This type
of defense is called host intrusion detection (HIDS), and its monitoring perimeter does not
extend beyond the device itself. Common techniques include analysis of the operating
system and the running programs in terms of system call usage, input/output behavior,
resource utilization and system/application logs.
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Because network connectivity kept increasing, a second branch that places commu-
nication between devices at its center was added. Network intrusion detection systems
(NIDS) aim to model attacks from the information present at various abstraction levels of
network traffic. At the highest level of resolution, deep packet inspection decides whether
traffic is malicious or not based on the information encapsulated in the data portion of the
network packets. This type of IDS is becoming more obsolete because many connections
use encryption at least on the payload [3]. Packet-level IDS increases its view by including
the protocol headers and other metrics to make a decision. Flow-level IDS no longer decides
on the individual packets of a connection but judges them together as a flow record. Further
abstractions are possible but uncommon.

At each resolution, a subdivision can be made into roughly two categories. Either the
system operates based on a set of rules or it has a more abstract representation of legitimate
behavior and reports the anomalous events. Traditionally, rule-based systems rely on a
signature database with condensed, unique representations of known attacks. Packets or
flows are matched against the signatures and rejected if they match an attack signature.
Precision is the main advantage of this approach. The signature’s metadata immediately
conveys the attack class, the specific attack and potentially even which strain of the attack.
The main downside is the fragility of these systems. Attackers try to fool rule-based IDS
by applying the smallest possible alteration that leads to a mismatch in the signature
engine [4,5]. Defenders try to update or generalize the rules to be more robust against these
attacks [6]. Both sides use more and more sophisticated (and computationally demanding)
techniques to evade or capture one another. Both open-source and proprietary rule-based
IDSs exist and they are commonly used as a layer of defense in current networks.

An IDS that relies on anomaly detection tries to model normality and reports the
anomalous events. Under modern conditions this definition only includes unsupervised
learning methods, which is overly restrictive. This is a historical artifact because early
anomaly detection IDSs relied on thresholds (static at first, later dynamic) derived from the
networks on which they operated. Many recent methods are based on supervised machine
learning algorithms (ML), and the authors still classify their proposals within the anomaly
detection IDS category. ML-based IDS promises to deliver models that have solid, general
representations of just benign traffic (pure anomaly detection) or of benign and malicious
traffic (supervised classification). If successful, ML-based IDSs would overcome the core
deficiency of rule-based IDS and supersede them.

Unfortunately, ML-based IDS has been studied for well over twenty years, and adop-
tion into open-source or proprietary network defense software is almost nonexistent. We
posit that this is in part due to the way in which ML-based IDSs are evaluated and adopted
by the research community. Well-adopted literature [7–14] from the state-of-the-art pro-
poses novel (combinations of) algorithms and validates its methods by showing increases
in classification metrics on a handful of academic benchmark datasets. Consistent increases
in classification performance are easily recognized as advances in the field. However, these
works do not include any form of testing beyond the datasets on which their models have
been trained, validated and tested.

1.1. Research Contribution

This work is the first, to the authors’ knowledge, large-scale investigation into the
interdataset generalizability of ML methods in intrusion detection. A varied set of well-
established ML methods which have been part of many published works is tested for their
ability to use their learned representations to recognize new samples from the same attack
classes without retraining.

Binary classification models have been trained for every attack class present in CSE-
CIC-IDS2018 (brute force, DoS, DDoS, botnet, Web attack and infiltration). Previous
work [15] has shown that the baseline classification (standard intradataset generalization)
of the same models on these attack classes is excellent. As a bonus, the models have shown
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equally great resistance to deliberate attempts to make classification more difficult (both by
restricting sample and feature access).

Those positive signals give the impression that the models are capable of learning
a robust, general representation of their attack class, but this article demonstrates that
claim is false. The general performance across datasets is erratic and the resistance to data
reduction does not carry through even though the samples are closely related. Despite
the unpredictability, a subset of models for the network-centric attack classes (brute force,
DoS, DDoS and botnet to some extent) do maintain their discriminating power on the
novel samples.

1.2. Paper Outline

The remainder of this article is split into 6 other sections. The related work in
Section 1.3 familiarizes the reader with existing, but largely theoretical, critiques of in-
trusion detection from multiple angles. In Section 2, we discuss the included datasets
and the training/evaluation procedures. Most of the body of this article is spent on
Sections 3 and 4. The results start off with the baseline results as a point of reference
(Section 3.2). The other subsections detail how well these pretrained models generalize
to the samples from the respective attack classes of CIC-IDS2017 (Section 3.3) with addi-
tional testing for the network-centric attack classes DoS and DDoS classes (represented by
CIC-DoS2017 Section 3.4 and CIC-DDoS2019 Section 3.5). The results have intermediate
conclusions to maintain oversight.

Because the result section is in-depth and verbose, the discussion (Section 4) takes a
different approach. It centers around the interdataset generalized results by comparing the
top 3 baseline models to the top 3 generalized models in a table per target dataset and attack
class. Although this representation hides the stability issues, it does give an immediate
overview of potential general performance on each attack class. This article ends with
an overarching conclusion in Section 5, followed by routes for further investigation into
improving IDS models for reliable use (Section 5.1).

1.3. Related Work

The related work demonstrates the need for research into generalization from dif-
ferent perspectives. It starts by noting the attention that is given to robust, generalized
performance in the computer vision (CV) and natural language processing (NLP) domains.
Subsequently, the lack of experimental research into generalization in network intrusion
detection is highlighted with some examples.

1.3.1. Generalization Research in Prominent ML Domains

How well learning methods generalize beyond the test sets of benchmark datasets has
been getting attention in the fields that are pushing the supremacy of machine learning
in pattern recognition. In computer vision research, object detection models trained on
CIFAR-10 and ImageNet were tasked with evaluating images from reproduced CIFAR
and ImageNet data generation experiments. The results showed a significant loss of
generalized performance (SoTA ImageNet models lost 3–15% accuracy, SoTA CIFAR-10
models lost 11–14% points in accuracy) [16]. The fragility of natural language models (NLP)
has been demonstrated several times, mostly to temper the claims that NLP models are
outperforming humans in tasks such as question answering and translation [17–19].

1.3.2. ML-NIDS Ignores Generalization

ML-NIDS eagerly adopts new techniques and model architectures from CV and NLP
research but without validating general performance [20–22].

This can be explained, in part, by the sparse dataset landscape. The lack of ample,
qualitative data in network intrusion detection research has been criticized frequently in
the literature (2015: [23], 2016: [24], 2019: [25]). Central issues include the frequency of
publication, the closed-off nature of the experiment and the dataset preparation, the variety
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and recency of included attacks and the realism of the user simulation. Two additional
critiques that stand out to us include the relevance of the included features and the lack of
consistency between datasets in terms of feature set. This restriction has kept everyone from
investigating the halfway solution of model generalization between academic datasets.

Mentions of generalization in intrusion detection are either limited to theoretical con-
siderations during algorithm choice [26] or mentioned as an abstract benefit that should
follow from using classifier ensembles [27] or preprocessing. Furthermore, generaliza-
tion in those articles is often synonymous with test set error (i.e., standard intradataset
generalization). Testing generalization in tougher circumstances is only ever implied.

1.3.3. Noteworthy Theoretical Objections to ML-NIDS

The potential for machine learning IDSs to overpromise and underdeliver in terms
of general ability has been pointed out by proponents of rule-based systems. Perhaps
foremost in a paper co-authored by one of the original inventors of Bro, currently Zeek
IDS, which uses deep packet inspection to detect specific threats. Sommer et al. [28] wrote
in 2010: “It is crucial to acknowledge that the nature of the domain is such that one can
always find schemes that yield marginally better ROC curves than anything else has for
a specific given setting. Such results however do not contribute to the progress of the
field without any semantic understanding of the gain.” The authors argue in favor of an
evaluation methodology that takes more into account than metric gains on benchmark
datasets. At various points in the text, they remind the reader of the contrast between
academic intrusion detection research which works toward a silver bullet solution and the
collection of highly specialized tools that protect current networks.

Gates et al. [29] challenged anomaly-based intrusion detection at a more fundamental
level. When network intrusion detection started, modeled on the requirements set out in
1985 for host-based intrusion detection systems, some issues were not considered carefully
enough. The authors criticize nine assumptions, grouped into three categories: problem
domain, training data and operational usability. Central issues of the problem domain
are the assumptions that attacks will differ substantially from normal traffic, attacks are
rare enough to be a small, but discernible cluster when compared to normal traffic and
that anomalous traffic is much more likely to be malicious. The three prerequisites for
training data are that there is attack-free data available, which is representative and static.
Exceedingly few publications address concept drift in intrusion detection directly [30].
If the term is included, it is mostly lip service. A final category that is nearly absent in
academic articles on intrusion detection is operational usability. Gates and coauthors point
to realistic settings for parameters such as the false alarm rate. Even at 1% with potentially
thousands of flows per second, this quickly becomes unmanageable. Other operational
problems include the company policy towards what is malicious and the interpretability of
anomalies by human reviewers. Ultimately, the authors made four recommendations which
could be moved straight to the contemporary discussion. The authors recommend hunting
for specific types of threats by a combination of classification and anomaly detection with
testing methodologies that are much more rigorous than just using benchmark datasets
and periodically re-examining what constitutes malicious behavior.

2. Materials and Methods

The methodology section is split in two parts. Section 2.1 and its divisions supply
the reader with more information about the datasets. Section 2.2 elaborates on the intra-
and interdataset evaluation frameworks, the included algorithms and the data reduction
measures that had been applied in the previous work [15] to yield equally discriminative
models with less (qualitative) data.

2.1. Included Data Sets

The sparsity of the dataset landscape in intrusion detection has been a continuous issue
exemplified by the positions in the literature of KDD99, published in 1999, and NSL-KDD,
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a KDD99 refresh from 2009. These datasets have become fixtures with novel publications
still using them as the central dataset(s), despite damning but valid criticism [31,32].

The one-off nature of these dataset creation experiments as well as their proprietary
methods of data collection and preprocessing have barred the addition of new sam-
ples that reflect more modern threats. The tendency of singular efforts that culminate
in one published dataset progressed throughout the past decade with datasets such as
UTwente2009 [33], CTU-13 [34] and UNSW-NB-15 [35].

The Canadian Institute for Cybersecurity, a collaboration between academia and
public/private sector partners, headed by the university of New Brunswick, advocates
for a more dynamic and open approach to dataset creation. Three years after refreshing
KDD99 [36], they published an initial dataset (ISCX-IDS2012), with inclusion of the IS-
CXFlowmeter feature extractor [37]. Although this dataset did not gain much traction with
other researchers, it laid the groundwork for their current data publication schedule which
has produced four IDS datasets in the last three years. Each entry includes the raw traffic
and the labeled flows in CSV format. The latest version of their flow reconstruction and fea-
ture extraction tool is publicly available on https://github.com/ahlashkari/CICFlowMeter
(accessed on 28 December 2022) Github. Sharing the feature extraction tooling has at
least opened the door to other researchers to evaluate novel samples from new dataset
generation experiments in proposed models, validated on the CIC’s datasets. A strong
case can be made for open sourcing other parts of dataset creation methodology. Because
this level of access is presently not available, this work focuses on working with the four
recent CIC datasets (CIC-IDS2017 [38,39], CIC-DoS2017 [40,41], CSE-CIC-IDS2018 [42,43]
and CIC-DDoS2019 [44,45]).

2.1.1. CIC-IDS2017

CIC-IDS2017 (Table 1) includes a large variety of attack categories, with flows from
multiple specific attacks per category. The malicious traffic is offset by a larger corpus of
benign traffic from a multitude of protocols (HTTP(S), IMAP, SSH, FTP, . . . ). The experiment
was executed in an on-premise network environment over a period of five days. A split
was made into seven distinct attack categories. There is an eighth split, which only contains
benign traffic. Representationwise, most modern attack types are accounted for. Network-
centric attack types such as (D)DoS, port scanning and brute force attempts are included, as
well as more host/application-centric attack types such as web and infiltration attacks and
botnet infections. CICFlowmeter extracts more than 80 features, of which some have to be
removed due to them being meta-information to assist in bookkeeping and labeling which
would contaminate models if included. The remaining 76 features typically characterize the
network flows by way of aggregate statistics. Some examples include fl_iat_avg (average
time between flows), pkt_len_avg (mean flow length) or fw_win_byt (number of bytes sent
in the initial window in the forward direction). For a full feature list with short descriptions,
consult the authors’ documentation [43]. The imbalance of this dataset for some attack
types should not be ignored. For CIC-IDS2017 the ratio of benign to malicious ranges
from 1.25:1 to 8000:1. Unsurprisingly, the network-centric classes have better class balance.
These attacks are easier to execute and often naturally generate more traffic because of the
mechanisms they exploit. The classification metrics in this text incorporate this imbalance,
by making use of balanced accuracy to represent the whole and measures such as precision,
recall and F1-score which give information about the classification of the positive (i.e.,
malicious) class.

https://github.com/ahlashkari/CICFlowMeter
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Table 1. CIC-IDS2017 Class Label Distribution.

Dataset Subset Nr. Attack Type #Benign #Malicious

0 FTP-SSH brute force 432074 13835
1 HTTP-DoS/DDoS 440031 252672
2 Web attacks 168186 2180

CIC-IDS2017 3 Infiltration 288566 36
4 Botnet 189067 1966
5 DDoS 128027 97718
6 Port scan 158930 127537

2.1.2. CIC-DoS-2017

CIC-DoS2017 (Table 2) is a one-off intermediate dataset that focuses solely on applica-
tion layer denial of service attacks (DoS). The L7-DoS attacks in CIC-DoS2017 are a superset
of the HTTP-DoS attacks in CIC-IDS2017. Application layer DoS attacks do much more
damage with limited bandwidth. They typically abuse one of three mechanisms: slow send,
maximally intermittent send or web server specific one-shot attacks. CIC-DoS2017 contains
malicious traffic from eight different L7-DoS attacks, run over a 24 h period against 10 Web
servers. CIC-DoS2017 has a class imbalance ratio of 5.8 (benign) to 1 (malicious).

Table 2. CIC-DoS2017 Class Label Distribution.

Dataset Subset Nr. Attack Type #Benign #Malicious

CIC-DoS-2017 0 Combined 248896 42706

2.1.3. CSE-CIC-IDS2018

CSE-CIC-IDS2018 (Table 3) is a direct expansion of CIC-IDS2017. The on-premise
network setup was scaled up on a cloud provider’s equipment (Amazon Web Services).
More traffic was captured, with a focus to ameliorate the class imbalance of CIC-IDS2017.
A total of 10 subsets were captured over a 10 day period. Some of the attack types have
been split up into their own subsets while others have merged. The benign traffic has
expanded in volume, but not in protocols whereas the malicious traffic has expanded
in both directions. Some subsets (i.e., attack classes) now have an over-representation
of malicious traffic. The only attack class which has regressed to lower representation
compared to CIC-IDS2017 is web attack traffic.

Table 3. CSE-CIC-IDS2018 Class Label Distribution.

Dataset Subset Nr. Attack Type #Benign #Malicious

0 FTP-SSH brute force 667626 380949
1 HTTP-DoS 996077 52498
2 HTTP-DoS 446772 601802
3 DDoS 576191 472384

CSE-CIC-IDS2018 4 DDoS 687742 360833
5 Web attacks 1048213 362
6 Web attacks 1048009 566
7 Infiltration 544200 68871
8 Infiltration 238037 93063
9 Botnet 762384 286191

2.1.4. CIC-DDoS-2019

CIC-DDoS2019 (Table 4) focuses exclusively on reflection and exploitation-based
distributed denial of service attacks. Akin to CIC-DoS2017, the end result is a dataset with
a superset of DDoS attacks, compared to their representation in the full IDS datasets. Most
specific types have representation in two designated subsets. Researchers who wish to
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improve DDoS modeling have an easy separation between training/validation samples and
testing samples. Separate sets designated for training and testing, provided by the authors,
have the added benefit of providing an even more stable reference point for adopters of
the dataset. Because this work does not do training on CIC-DDoS2019, all subsets were
used individually to assess the generalization potential of DDoS models trained on the CIC-
IDS2018 dataset. The original class imbalance between benign and malicious samples of
CIC-DDoS2019 was so egregious that all sets have been balanced by including all available
malicious samples and a randomly sampled set of benign traffic from the same subset to
match the malicious count.

Table 4. CIC-DDoS-2019 Class Label Distribution.

Dataset Subset Nr. Attack Type #Benign #Malicious

0 DNS 3403 3403
1, 11 LDAP 1613, 5125 1613, 5125
2, 12 MSSQL 2007, 2795 2007, 2795
3, 13 NetBIOS 1708, 1322 1708, 1322

4 NTP 14366 14366
CIC-DDoS-2019 5 SNMP 1508 1508

6 SSDP 763 763
7, 16 UDP 2158, 3135 2158, 3135
8, 15 SYN 393, 35791 393, 35791

9 TFTP 25248 25248
10, 17 UDPLag 3706, 4069 3706, 4069

14 Portmap 4735 4735

2.2. Training & Evaluation Procedure

The intradataset framework is directly taken from the previous work that pushed
the efficient use of training data and learning difficulty for 12 learning algorithms on
four intrusion detection datasets (NSL-KDD, ISCX-IDS-2012, CIC-IDS-2017, CSE-CIC-
IDS2018) [15]. The interdataset framework for pretrained models reuses the preprocessing
and performance measuring from the intradataset framework. The maximal reuse of
components is a conscious choice because changing design choices between the frameworks
would introduce doubt about the influence of methodological changes as the source of the
unexpectedly low generalized performance.

2.2.1. Included Algorithms

The CIC-IDS2018 collection of pretrained models includes twelve supervised classifiers.
Three classical algorithmic families are represented. The seven tree-based learners include
multiple improvements to the base decision tree model. All but plain decision trees are
ensemble methods that include bagging, some of which add boosting mechanisms and/or
rely on randomization for efficiency and robustness reasons. The other five methods fall
into two simple neighbor-based algorithms, two support vector machines and logistic
regression. The inner workings of these algorithms are described in detail in the following
references: [46] (general) [47] (xgboost framework) [48] (randomized decision trees). The
listing includes abbreviations which will be used throughout the remainder of the article
and the graphs.

1. Tree-based methods

• Decision tree (dtree)
• Decision trees with bagging (bag)
• Adaboost (ada)
• Gradient-boosted trees (gradboost)
• Regularized gradient boosting (xgboost)
• Random forest (rforest)
• Randomized decision trees (extratree)
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2. Neighbor methods

• K-nearest-neighbors (knn)
• Nearest-centroid (ncentroid)

3. Other methods

• Linear kernel SVM (linsvc)
• RBF-kernel SVM (rbfsvc)
• Logistic regression (binlr)

2.2.2. Increasing the Learning Difficulty

As alluded to earlier, when classifying within the included datasets, all models showed
great resistance against the two major forms of data reduction. Vertical data reduction,
i.e., setting increasingly stringent constraints on the amount of samples made available to
train/validate with the complement of samples for testing, could be pushed to extreme
splits such as 0.66%/0.33%/99% without incurring significant losses. There was some
variation between models and attack classes but stable convergence of performance on
intradataset test sets always occurred before using 10% of the data for training/validation.
Any sampling happened in a stratified (i.e., respecting class balance) manner. To increase
the learning difficulty even further an opposite approach to the standard feature selection
procedure was adopted. The top 20 features, derived from averaging the feature impor-
tances of the aggregate of random forests for CSE-CIC-2018, is listed in Table 5. Instead
of removing the less important features, the 20 most important features were removed in
blocks of five prior to training. This had a greater effect than vertical data reduction, but the
easy (network-centric) attack classes were still barely affected. Along with an invariance
to feature scaling and clear stability with small metric deviations from the mean after
aggregation in a fivefold cross validation procedure, the experiment concluded positively
about using classical supervised ML methods in intrusion detection.

Table 5. Most discriminative features of CSE-CIC-IDS2018

Dataset Most Discriminative

CSE-CIC-IDS2018

1–5 Timestamp, Init Win bytes forward, Destination Port, Flow IAT Min, Fwd Packets/s
5–10 Fwd Packet Length Std, Avg Fwd Segment Size, Flow Duration, Fwd IAT Min, ECE Flag Count
10–15 Fwd IAT Mean, Init Win bytes backward, Bwd Packets/s, Idle Max, Fwd IAT Std
15–20 FIN Flag Count, Fwd Header Length, SYN Flag Count, Fwd Packet Length Max, Flow Packets

3. Results

The following subsections summarize and highlight the important results of this
analysis. First, the base recognition of the models trained on the attack classes in CSE-CIC-
IDS2018 is established Section 3.2. The first information on generalization consists of the
ability of models pretrained on classes for which two subsets of traffic were available, how
well they generalize to each other’s data. Section 3.3 is an expansion of this analysis to
all available attack classes and moves across the boundaries of a single dataset. The last
two subsections (Sections 3.4 and 3.5) delve deeper into the generalization capabilities on
two of the best-recognized classes DoS and DDoS by exposure to two specific datasets that
contain a larger variety of attacks from these classes. Discussion and linking is interwoven
in the content of the subsections (and their further subdivisions), but to keep an overview
per dataset, every subsection ends with a minor discussion/conclusion. Some specific
issues are only visible when examining recurring patterns in the dense result collection. To
maintain an overview of the potential of the included algorithms in IDS systems, Section 4
gives a much less verbose view of the best results.

Figure 1 provides a visual overview of the methodology to be able to reproduce this
experiment more easily.
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Figure 1. Visual overview of the experimental methodology.

3.1. Note on Obtained Results and Graphics

The visualizations in this article are in support of the most salient results. The total
amount of available, interactive graphs however is much larger (covering more than half a
million result metrics). All raw result files (grouped per algorithm in folders D2018-M2018,
D2017-M2018, D2017DoS-M2018 and D2019DDoS-M2018) and plotting code is publicly
available at https://gitlab.ilabt.imec.be/lpdhooge/reduced-unseen-testing (accessed on
1 February 2023). With transparency and reproducibility in mind, the same repository also
contains the experiment code.

3.2. Internal Retest on CSE-CIC-IDS2018

To establish a baseline, the newly trained models were re-exposed to all data of the
subset on which they were trained. For models trained and validated on larger portions
of the data, this means that more samples that had been seen during training will be

https://gitlab.ilabt.imec.be/lpdhooge/reduced-unseen-testing
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re-evaluated. This might introduce some skew in the results. For models trained and
validated on little data, i.e., <5% of the samples, this is less of an issue.

This subsection will contain new pieces of information as well because CSE-CIC-IDS
has multiple instances where two subsets of traffic from the same class have been collected.
Therefore, it is possible to test generalization within CSE-CIC-IDS2018 between models
trained to classify the same attack class. The DoS (subset 1 and 2), DDoS (3 and 4), Web
attack (5 and 6) and infiltration (7 and 8) attack classes each have two subsets. For the Web
attack and infiltration classes the documentation remains vague on what the differences
between the two subsets are, so a substantial amount of overlap should be assumed. This
overlap is more clearly stated for the DoS and DDoS classes, where some tools to generate
attacks are used in both subsets and some are different.

3.2.1. FTP/SSH Brute Force

Tree-based models as well as knn, linsvc, binlr and rbfsvc reach perfect classification
scores. Both relationships training volume—classification performance and top-feature
removal classification performance behave as expected with an upward trend when in-
creasing training volume and a flat reduction in classification scores when disallowing the
models to use the most discriminative features.

3.2.2. OSI Layer 7 Denial of Service

Layer-7 denial of service (DoS) attacks are extremely well-classified by all models
except nearest-centroids. F1-scores above 99.5% even for models trained and validated on
just 0.1% (associated 99.9% test) of the data are the norm even when removing the 25%
most discriminative features prior to training. Unfortunately, when feeding the benign
and malicious samples of the second subset of DoS traffic to models trained on the first
subset and vice versa, these perfect scores do not remain. By and large the models revert
to balanced accuracies of 50%, which indicates models that are not better than chance
at recognizing the attacks. The new F1-scores mostly stay below 10%, showing that the
classification of attacks is lackluster. The confusion matrices for the individual models
confirm this, showing that most of the errors are type II (false negatives). Learning with
regard to training volume is nonexistent. There is one glaring exception to this crash in
classification performance. The linear SVMs trained on the normalized features in subset 2
of DoS traffic generalize as expected to the samples in DoS subset 1 (Figure 2). F1-scores
above 97.5% are observed for all models that used more than 5% of the data to train. The
results are stable and top-feature reduction has an impact, but it is minor.

3.2.3. Distributed Denial of Service

Distributed denial of service (DDoS) attack samples (subsets 3 and 4) are as well
classified as Layer-7 DoS samples (99.9%+ on all metrics, with fast conversion to an upper
bound with <5% training volume and resistant to the removal of the most discriminative
features). The results of exposing the pretrained models to the other subset containing
DDoS samples paints a different picture of the classification performance. While it is
possible to achieve models that have generalized perfectly to the class, this happens rarely
(Figure 3). The strongest performers are the SVMs and logistic regression models. Tree-
based models struggle by overfitting almost immediately. This is clearly visible in the result
graphs because invariably, the best tree-based models have only been trained on less than
1% of the data. These models can reach generalized performance up to 80% on the F1 score.
In cases where precision is high, it is most often 100%. The associated recall keeps these
methods down.
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Figure 2. Performance profile of the set of linear SVMs, trained on the first subset of DoS traffic in
CSE-CIC-IDS2018, when evaluating the second DoS subset from the same dataset.

3.2.4. Web Attacks

Web attack traffic is harder to classify, as evidenced by the lower overall classification
scores for all algorithms. The tree-based methods converge to 95% classification metrics
but take more training data than they did to accurately classify the previous attack classes.
They are now also significantly weakened when removing the most discriminative features.
Methods such as nearest centroids, binlr, linsvc and rbfsvc have such poor precision scores
that they are not even usable. Subsequently, pretrained models based on these methods are
not expected to do well when evaluating the samples of the other subset. The experimental
results confirm this with similar classification profiles (~0% precision regardless of training
volume or feature scaling). The tree-based methods fare much better, but for this behavior
to emerge the models had to be trained on nonscaled features and none of the most
discriminative features should have been removed from the data prior to training. Those
parameters lead to F1-scores that are consistently in the 80–85% range (class balanced
accuracy 95+%). The behavior of these models when removing top features is as expected,
showing a flat drop in classification performance (up to −35%), but stability is retained.
For tree-based methods this stability is peculiar, but it is an essential property if they are to
be included in real IDSs. This result does show that it is possible to train stable tree-based
methods, however further inquiry is needed to specify what the training conditions should
be. As stated in the introduction to this section, the Web attack class has two separate
subsets of traffic, but a substantial overlap in the attack methods should be assumed as per
the documentation of CSE-CIC-IDS2018.
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(a)

(b)

Figure 3. Performance comparison of the set of RBF-kernel SVMs, trained on the second subset of
DDoS traffic in CSE-CIC-IDS2018, when evaluating its own test set (a) and the same set’s performance
when evaluating the samples of the first DDoS subset of the same dataset (b).
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3.2.5. Infiltration Attacks

Recognition of infiltration attacks is poor for all methods on the first subset (7) but
substantially better for subset two (8). The documentation of CSE-CIC-IDS2018 does
not state how the infiltration attacks were executed in both subsets, but based on the
classification scores, it is safe to assume that the methodology differs. In concrete numbers,
classification metrics on subset 7 typically only have F1-scores below 50%. F1-scores on
subset 8 reach between 85–95% for the tree-based methods, with the other methods trailing
significantly behind at around 50% (F1). The models with decent performance are also
stable with regard to training volume, showing an upwards trend when allowed more
data to train on. Furthermore, this stability extends to models that were trained without
access to the most discriminative features. As expected, the models pretrained on subset
7 that all performed poorly overall have poor performance when classifying the samples
of subset 8. The other half with models pretrained on subset 8, evaluating the samples
from subset 7, reach a conclusion that is much more interesting. That conclusion is a
performance regression to low levels, indicating that the results obtained on the subset
itself are misleading. A learnable pattern does exist in the data, but it is not descriptive
of the difference between regular traffic and infiltration attacks (Figure 4). F1-scores most
often drop to 15–30%, rendering the models useless for practical purposes. Results like this
show why it is needed to validate existing models on novel but related samples because
omitting that part of the analysis would lead to the conclusion that the methods are suitable.
This conclusion would have been reinforced by the stability of the outcomes with regard to
training volume and feature reduction.

(a)

Figure 4. Cont.
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(b)

Figure 4. A visual representation of the broken link between training volume and model performance,
observed in the breakdown of models trained on subset 2 of infiltration traffic (a) when classifying
their subset’s test set and the same set of models’ performance on subset 1 of infiltration traffic (b).

3.2.6. Botnet Attacks

The final class in CSE-CIC-IDS2018 contains botnet traffic from two different botnets
(Zeus [49] and Ares [50]). The dataset contains all samples grouped in the same subset
(9). The labeling in the data prohibits manual splitting to execute analysis akin to that of
the previous subsections, using only botnet as label as opposed to keeping the distinction
between Zeus and Ares. Therefore, this subsection can only establish the baseline that
should be considered as the starting point for comparisons when exposing the pretrained
models to the botnet data of CIC-IDS2017 (Section 3.3.5). The baselines are that the tree-
based methods reach perfect classification with little data to train (~1%), losing at most 0.5%
when reducing the 20 most discriminative features before training. The binlr, linsvc and
rbfsvc models do not quite reach perfect classification with F1-scores consistently above
90% even when allowing little of the data to be used as training samples.

3.3. CIC-IDS2017

This section details the important experimental results of tasking the class-specific
models trained on CSE-CIC-IDS2018 with classification of the corresponding attack class
of CIC-IDS2017. To maintain oversight, Table 6 lists the mapping between the pretrained
models and the new data which they will have to classify. There are lots of similarities
in the methodology by which both datasets have been created. The same attack classes
are represented in both datasets, often generated with the same tooling. This should be
advantageous for the pretrained models. One important point of difference however is the
move from on-premise equipment to running the experiment on Amazon Web Services,
which has introduced changes in the network architecture and thus potentially in the base
network patterns. Whether this factor has significant implications and, if so, how they
should be quantified remains an open question.
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Table 6. Mapping of the subsets of CSE-CIC-IDS2018 to their counterpart in CIC-IDS2017.

Attack Class 2018 Tools 2017 Tools

Brute force 0 Patator.py (FTP/SSH) 0 Same attack tool
DoS layer-7 1 Slowloris Slowhttptest Hulk Goldeneye 1 Same attack tools
Heartbleed 2 Heartleech 1 Heartleech
DDoS 3 Low Orbit Ion Cannon (LOIC) (HTTP) 5 LOIC HTTP
DDoS 4 LOIC-UDP, High Orbit Ion Cannon (HOIC) 5 LOIC HTTP
Web attacks 5 Selenium (XSS, bruteforce), SQLi vs. DVWA 2 Same attack tools
Web attacks 6 Selenium (XSS, bruteforce), SQLi vs. DVWA 2 Same attack tools
Infiltration 7 Nmap, Dropbox download 3 Metasploit, Dropbox download
Infiltration 8 Nmap, Dropbox download 3 Metasploit, Dropbox download
Botnet 9 Zeus, ARES 4 ARES
Port scan - - 6 Various Nmap commands

3.3.1. FTP/SSH Brute Force

Subset 0 of CIC-IDS2017 contains attacks generated by the Patator tool against an
FTP and an SSH endpoint. Patator is designed as a multipurpose brute-forcer, a general
framework to execute brute force attacks against an array of services (https://github.com
/lanjelot/patator accessed on 28 December 2022).

Results of the tree-based classifiers reveal that generalization was possible under
the right circumstances (Figure 5). While no longer perfect at classification, the methods
preserve up to 89% F1 score (recall 99.9+% with 81.5% precision). The mistakes made by
the models are almost exclusively type II errors. The single combination of pretraining
parameters that yielded models with good results is that they needed access to all features
and were minmax-scaled before training. Any deviations from this result in models that
have F1-scores in a range as low as 0–10%. The models with good performance did not
have perfect stability with regard to training volume. All methods contain at least one
sharp downturn in performance, happening at an unpredictable training volume.

The neighbor-based methods are too simplistic with F1-scores in the 10–20% range,
invariant to training volume or feature removal. The other methods are not usable either
with similar classification scores.

3.3.2. OSI Layer 7 Denial of Service

CIC-IDS2017 has bundled all (application layer) DoS attacks in a single subset, whereas
CSE-CIC-IDS2018 split this into two hence two pretrained models have been tested. The
obvious result is the loss of perfect classification and the introduction of dramatic perfor-
mance swings. The fork in which metrics such as the F1-score lie has a top end above 90%
and a bottom as low as 0%. The relation between training volume and performance is not
predictable, further complicating the matter. The models pretrained on DoS subset 2 of
CSE-CIC-IDS2018 are consistently worse than those trained on subset 1, which is surprising
given that CIC-IDS2017 is actually biased toward the attacks contained in DoS subset 2 of
CSE-CIC-IDS2018. The models that exhibited decent performance required either minmax-
or no feature scaling prior to training. Removal of top features cripples these methods
further to the point of irrelevancy.

Curiously, the simplest method, nearest centroids, is quite capable of distinguishing
between DoS and normal traffic (Figure 6. In absolute figures, it reaches F1-scores around
72.5% (models pretrained on CSE-CIC-2018 DoS subset 1). Extra desirable properties
include the invariance of these scores to training volume and/or feature reduction. A
stratified sampling of just 1% in volume to train and validate is enough to produce the
outcomes. Resistance to removing some of the most discriminative features worked best if
the features were normalized before training, showing total disregard for the attempt at
reducing the model’s effectiveness.

https://github.com/lanjelot/patator
https://github.com/lanjelot/patator
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(a)

(b)

Figure 5. Best-case generalized performance of tree-based ensemble classifiers trained to recognize
bruteforce attacks from CIC-IDS2017, when evaluating the bruteforce samples of CSE-CIC-IDS2018.
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(a)

(b)

Figure 6. Generalized performance of the nearest centroids models when evaluating L7-DoS attacks
between datasets and their resistance to the removal of highly discriminative features prior to training.

The other methods provide the first set of consistent models with somewhat acceptable
performance. The logistic regression model trained on minmax-scaled features, is stable in
relation to training volume and has F1-scores up to 78% (Figure 7). It would be a stretch
to label this performance as good, but the stability is an interesting property. Similar
conclusions can be drawn from the results for the linear SVM and its rbf-kernel counterpart.
These methods have the additional benefit of withstanding reduction of top features up
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to a common breaking point. These properties are essential to dependable training of real
intrusion detection systems. The lackluster precision (~65%) that keeps these methods
down, might be elevated to a higher level by applying the feature reduction/selection
techniques in their standard direction, cutting out the irrelevancies and the noise.

(a)

(b)

Figure 7. Generalized performance of logistic regression models on the L7-DoS attack class, which
show reasonable consistency.
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3.3.3. Web Attacks

The crossover testing with pretrained models within CSE-CIC-IDS2018 revealed that
generalization did happen for tree-based models if training was done on nonscaled features
and without the removal of the most discriminating features (Section 3.2.4). Results with
other parameters were not worthy of further consideration. Looking at the results for
generalized performance on the Web attack traffic of CIC-IDS2017, a different picture
emerges. There is not a single pretrained model that performs well on these samples.
Even the distance-based methods now generate exclusively false negatives, indicated by
a balanced accuracy of 50%. The models are not better than chance at classifying any
of the Web attack traffic. This is especially strange because the documentation of both
datasets mentions very similar attacks. It calls into question if the stable generalized results
within CSE-CIC-IDS2018 Web traffic are actually the models learning a stable pattern that
is unrelated to Web attack traffic.

3.3.4. Infiltration Attacks

Infiltration attacks are underrepresented in CIC-IDS2017 with only 36 infiltration
samples out of a total of 288,602. This massive imbalance should be kept in mind when in-
terpreting the generalization results. The intradataset generalization testing for infiltration
attacks (Section 3.2.5) has shown that it was not possible to learn a good representation of
infiltration traffic, with F1-scores dropping to 15–30%. The results on the infiltration traffic
of CIC-IDS2017 are even worse, because none of the methods reach F1-scores above 0%.
The extremely poor performance is caused by the complete inability of all methods to be
precise when classifying the samples. Moderately high recall can be observed (~80%), but
coupled with 0% precision, this is not useful.

3.3.5. Botnet Attacks

CIC-IDS2017 uses the ARES botnet to generate samples for the botnet class. CSE-
CIC-IDS2018 adds another botnet, namely ZEUS. Since the models are thus pretrained
on a larger variety of botnet traffic, the expectation is that the performance will be good.
Upon inspection of the results, it can be shown that this claim is partly true. Once again,
tree-based models trained without feature scaling and without feature reduction, perform
rather well. F1-scores sit consistently in the 75–80% range (65% recall and 100% precision)
with class separability at 82%. Methods such as adaboost, gradient-boosted trees and
XGBoost (Figure 8), hold this performance stably, while the other methods have some
sharp drops at unpredictable training volumes. Another weakness of these methods is
their dramatic loss of classification performance when removing the most discriminative
features. Performance immediately degrades to unusable levels with F1-scores around
0%. Strong resistance to feature removal was a characteristic of the same models when
training and evaluating only within CSE-CIC-IDS2018. Once more, the desirable properties
disappear rapidly, calling into question the overall usefulness of these methods.

3.3.6. Distributed Denial of Service

The final class that is represented in both CIC-IDS2017 and CSE-CIC-IDS2018 is
distributed denial of service. Both datasets rely largely on the same tooling to generate
samples of this attack class. Section 3.2.3 details how the DDoS samples are recognized
perfectly even with low training volumes and aggressive feature reduction. That strong
baseline is immediately diluted by showing that the tasking classification of the 2018
pretrained models on each other’s data leads to performance that is significantly worse. In
the end, generalization worked best for the SVMs and logistic regression models, while tree-
based models could hold their own when trained on very low volumes to avoid overfitting.
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Figure 8. Best-case generalized performance by gradient-boosted, regularized decision tree ensembles
on the botnet class.

When exposing the same pretrained models to this DDoS data, a similar conclusion
can be drawn. Good to great generalization is possible, with tree-based methods as well as
the logistic regression and SVMs. Even the nearest-centroids classifier performs reasonably
(97.7% recall, 61% precision), despite summarizing each of the two classes into one label
each. This shows that the feature values that are computed for the flows do differ signif-
icantly for DDoS versus benign traffic. Models with more complex means of separation
classify the DDoS samples better. Here, the tree-based methods manage peak F1-scores of
90% (99% recall & 81% precision) and maintain these when removing the most discrimina-
tive features. Only two downsides remain: the occasional downward performance spikes
and the lack of lockstep performance metrics between the models pretrained on subset
1 and subset 2 of 2018 DDoS traffic (Figure 9). These shortcomings make overall recom-
mendations difficult. The tree-based methods that were trained on minmax-scaled features
performed best overall while SVMs and consorts preferred normalized features. This is
a rare instance where tree-based methods are robust to feature reduction and although
stability is not yet at a level where these methods can be easily included in real IDS, the
results are promising. Further investigation into how these tree-based models could be
made more robust, will be paramount to advance.

3.3.7. Intermediate Conclusion

Summarizing interdataset general performance from models pretrained on the attack
classes of CSE-CIC-IDS2018 to samples from the same attack classes in CIC-IDS2017 is
straightforward. True network attacks (brute force, DoS and DDoS) can be recognized with
minor regressions in absolute performance. Botnet traffic sits at an intermediate level, and
models for Web and infiltration attacks that just use the network for transport have really
poor performance. Tree-based learners typically outperform versus the other learners on
the classification metrics.
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(a)

(b)

Figure 9. Generalized performance on the DDoS attack class by tree-based models can happen
with modest losses in performance, but the unpredictability with regard to stability is a major
downside (a,b).
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Absolute performance, however, is not the entire picture. Reliability is much weaker
in the interdataset evaluation than it was for the exact same models during intradataset
evaluation. As expected, the fragility is more pronounced for tree-based learners than it
is for distance-based learners or regression models. Other properties that were lost in the
interdataset results versus the intradataset results are the clear relation between training
volume and model performance, the resistance against deliberate data quality reduction
and the indifference to feature scaling.

In short, even with tight overfitting control during training and hyperparameter search,
the excellent classification scores on the extensive test sets of CSE-CIC-IDS2018 cannot be
trusted as one-to-one proxies for general model performance. Advances in model training
and preprocessing may solve the reliability problem for network-centric attack classes, but
the other attack classes will require other solutions first.

3.4. CIC-DoS2017

Letting the models pretrained on the DoS subset of CSE-CIC-IDS2018 classify the
samples from the specific CIC-DoS2017 data set yields no satisfactory results. The over-
whelming majority of pretrained models do not reach F1-scores above 40%. This is in spite
of the fact that the malicious samples in the data set come exclusively from low-volume
layer 7 DoS attacks. Combining the results described in Sections 3.2.2 and 3.3.2 leads to an
even more damning conclusion. Relatively speaking, layer-7 DoS is among the classes that
the methods were able to best generalize to, but the results on this data set undermine the
earlier results. The nearest centroids classifier has decent performance on some occasions
(recall: 68%, precision: 52%). Tree-based models have recall–precision pairs that are most
often separated by a large gap. Either precision is very high 80–100% with low to very
low recall 0–30% or vice versa. The documentation that supports CIC-DoS2017, provides a
clue about this poor performance. It states that the attack samples were intermixed with
attack-free traces from the ISCXIDS2012 data set. ISCXIDS2012 was the first published
iteration of a new intrusion detection dataset, after the CIC had published NSL-KDD. A
potential explanation could be that the baseline traffic of ISCX-IDS2012 is more different
from the newer baseline traffic that was generated for CIC-IDS2017 and CSE-CIC-IDS2018.

3.5. CIC-DDoS2019

The most recent dataset iteration published by the CIC focuses on DDoS attacks.
It contains both reflection-based DDoS attacks as well as exploitation-based ones. As a
rationale for the creation of this dataset around a specific attack type, the authors cite the
small scope of attacks, covered under earlier taxonomies. In concrete terms, CIC-DDoS2019
contains 12 different DDoS attacks against a diverse collection of target machines (Windows
Vista, 7, 8.1 and 10 as well as Ubuntu Linux 16.04). The raw packet captures as well as
the labeled CSVs amount to a very large sample collection (more than 48 million of which
only around 110,000 are malicious). In order to cut down on processing time, the files
have been reduced to reach a balance between benign and malicious samples. Since the
benign traffic far outstripped the attacks in volume, the reduction matches a sampling of
normal traffic equal to the malicious count for every subtype of DDoS attack (Table 4). The
discussion of the classification results will be divided along these subtypes. The models
pretrained on the DDoS class of CSE-CIC-IDS2018 have only seen traffic generated by the
Low-Orbit-Ion-Cannon tool (LOIC), which only generates UDP, TCP or HTTP floods. The
attacks in this dataset span many more protocols, but if they are properly placed under the
umbrella term DDoS, the models should be able to latch onto the general representation of
DDoS traffic.

3.5.1. Reflection-Based DDoS

The traffic in this category is generated by abusing genuine commands that exist in the
implementations of several protocols. Attackers try to find a request that is small in size but
has a large response, thereby achieving amplification. The secondary component to these
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attacks is executing them from a network that allows IP spoofing, redirecting the responses
to an arbitrary IP. In lab settings, IP spoofing is not even required as ARP poisoning can
redirect all traffic on a subnet to a specific host.

• DNS

DNS amplification is a typical DDoS attack whereby spoofed clients send small re-
quests such as ”dig ANY [domain] @[resolver] + edns = 0 + notcp + bufsize = 4096“ that
lead to large responses (50×) sent over UDP. The requests are sent to open DNS-resolvers
that respond to spurious requests. Some of the tree-based methods have very high per-
formance with up to perfect recall, matched with 60–80% precision, but the volatility is
staggering (Figure 10). Moreover, although there are two separate subsets of DDoS traffic
in CSE-CIC-IDS2018, there is typically little agreement between the models trained on
these separate subsets. Part of this might be due to the fact that the first subset has HTTP
flooding attacks as well as UDP flooding attacks. It should also be noted that the tooling of
CSE-CIC-IDS2018 for DDoS attacks is limited to pretty straightforward tools that do not
use amplification.

Figure 10. Generalized performance of DDoS models pretrained on CSE-CIC-IDS2018 DDoS has the
potential to be high, but the volatility precludes reliability.

• LDAP

The subsets labeled 1 and 11 of CIC-DDoS2019 contain LDAP DDoS amplification
attacks. The ingredients for this form of attack are similar. LDAP servers will typically
communicate over TCP, but they offer a UDP endpoint as well. Well-configured LDAP
servers should not respond to information requests by systems that have no authority
to ask, but unfortunately, misconfigured LDAP servers exist that serve the open Internet.
Services like Shodan scan the Internet looking for all kinds of vulnerable machines and
subsequently expose this data through an open and a paid API. The tested algorithms show
that they are capable of separating the novel malicious samples from the benign traffic with
which they have been mixed and that separation can be done with a certain amount of
stability (for example, Figure 11). Only the tree-based learners had acceptable performance
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and only if they had been trained on minmax-scaled features. The majority of models still
did not have stable plateaus of classification performance but typically had an early spike
(< 1% training volume) in performance (~85% F1), followed by a sharp decline. As with
most of these models, the declines lead to very low levels of performance, mostly stably
down, but unpredictable upshots do exist.

Figure 11. A rare occurrence of stable, generalized performance by a set of tree-based models. The
best general performance exists for models that had little exposure to training data (<2.5% of sample
count). This observation is very common, especially for the tree-based learners.

• MSSQL

A discovery protocol for Microsoft SQL Server (MSSQL) that informs clients of the
capabilities of an MSSQL cluster is vulnerable by design to be abused for DDoS purposes.
It works on top of UDP and the functionality is to serve information to interested clients so
attackers can blend in with legitimate users. Subsets labeled 2 and 12 from CIC-DDoS2019
contain samples of this attack class. Overall recognition here is once again done best
by meta-estimators based on decision trees. A random forest trained on minmax-scaled
features has the expected pattern with regard to training volume and maintains a stable
profile even when removing the 15 most discriminative features from the data prior to
training (Figure 12). These models performed equally well on subset 2 and subset 12. Such
concordance between pretrained models is rare, but because the instances can be found,
it must be possible to train the models to have a good general understanding of DDoS
traffic. Simple methods such as knn or nearest centroids also performed quite well on
the MSSQL traffic, reaching recall upwards of 90%, coupled with precision above 80%
(knn) and 100% recall coupled with 50% precision (ncentroid). It should be noted that the
reported classification scores only apply to models with minmax-scaled features.



Sensors 2023, 23, 1846 25 of 39

Figure 12. More observations of stable, general performance on the DDoS class by tree-based meta-
estimators.

• NetBIOS

The NetBIOS amplification attack abuses the NBSTAT query within the protocol
that gives a status about an endpoint that responds to NetBIOS queries. Although the
amplification factor is low at 3.8× [51], this attack has been observed in the wild. The
results clearly indicate that the set of models that was dominant in previous subsections
remains dominant on this form of amplified DDoS over UDP. The bagging classifier built on
decision trees has stable performance with perfect recall and 61% precision, with the best
model scoring 95.5% recall and 87% precision. Similar scores exist for the gradient-boosted
trees (normal and regularized) as well as for random forests. The stability with regard
to removal of features with high discriminating power is finally equal to the classifiers’
performance within CSE-CIC-IDS2018. The results show that the property can thus stay
intact. Fast convergence with subsequent invariability to training volume which also
was a property within IDS2018 can be maintained as well. Any combination of models
trained on either of the DDoS subsets of IDS2018, combined with either one of the NetBIOS
DDoS subsets of DDoS2019 achieve these results, making them the most robust so far.
The best classification scores achieved by pretrained models bar none are achieved by the
randomized decision trees, a method that had faltered until now. With minmax-scaled
features, it manages to reach almost perfect classification scores (recall: 99.88% with 99.7%
precision). Unfortunately, these models do not have stable profiles with regard to training
volume or feature reduction, making them less reliable overall.

• NTP

The monlist command in implementations of the network time protocol (NTP) used for
clock synchronization between hosts is perhaps the best-known amplification DDoS attack.
Like the others, it works over UDP, but unlike the others NTP reflection attacks have an
amplification factor of more than 550. The command is a diagnostic tool that gives a list of
600 clients that recently made use of the NTP server. Subset 4 of CICDDoS2019 contains the
NTP amplification attack samples. By now, the pretrained models that have shown good
stable performance in the previous sections only have to continue exhibiting this behavior
to solidify their position. This does appear to be the case with all tree-based methods
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scoring high (perfect recall with 60+% precision). Stability is strong for methods such
as the bagging classifier, random forests and the gradient-boosted trees. There are some
discrepancies between the models pretrained on DDoS subset 1 of IDS2018 compared to the
models pretrained on subset 2 of the same dataset. That does weaken the results somewhat.

• SNMP

SNMP amplification abuses the GET BULK request type of the protocol which bundles
smaller amounts of information that would otherwise have to be retrieved through several
GET NEXT calls. Like the other attacks it is wrongly configured SNMP servers that respond
to illegitimate use of a legitimate feature that causes the problem. Classification of this
subset by the models pretrained on IDS2018 DDoS loses the roughly equal performance by
models trained on either of the subsets. Several methods also perform worse in absolute
terms on this specific attack that had been strong performers for the other variants (adaboost,
extratree and xgboost spike high but have no consistency anymore). Good classifiers
maintain large stable sections with perfect recall and 60–70% precision. The single constant
so far have been nearest-centroid models, which score with identical performance numbers
on all subsets (perfect recall and ~50% precision, Figure 13).

Figure 13. The constant behavior of nearest-centroid models when blindly evaluating DDoS samples
from CIC-DDoS-2019. The method maintains perfect recall, but precision is heavily affected, falling
back to a mere 50%.

• SSDP

Simple Service Discovery Protocol (SSDP) is a part of the Universal Plug and Play
(UPnP) protocols, allowing seamless discovery and access of services on a network by
interested clients. The devices themselves can announce their presence and capabilities on
the network with passive listeners, but an active version exists where a newly connected
device can query the network for services to which it would like to connect. An M-SEARCH
query looking to obtain responses from all service endpoints can easily reach more than
20× bandwidth amplification. SSDP amplification attacks were recognized fairly well
both by tree-based models trained on standardized features as well as minmax-scaled
features. This is rare, because most tree-based models built on normalized features have
terrible performance across the board. It should be noted that the recall of models on
standardized features is about half that of models trained on minmax-scaled features
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(Figure 14). Performance on the whole is consistent with the previous attack types. Still,
even the highest performing pretrained models do not have equal performance if their data
was either the first or second subset of DDoS traffic of CSE-CIC-IDS2018. These concerns
keep on pushing current viability down, while at the same time opening new lines of
research into robust tree-based models for intrusion detection.

(a)

(b)

Figure 14. Feature scaling prior to training has a significant impact on performance in the interdataset
case (a,b). The same methods did not show this weakness when just evaluating intradataset.
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• TFTP

The trivial file transfer protocol (TFTP) is a lightweight version of FTP that works
over UDP. It has primarily seen adoption in network-booted environments. It was never
intended to be exposed to the Internet, but as with all of these reflection attacks, miscon-
figured TFTP and firewalls allow misuse of the protocol. Recognition by the pretrained
models follows the pattern of SSDP with mostly tree-based models that perform well and
with some stability even retaining lots of performance if the features were normalized prior
to training. This indicates that it is no fluke and while models built on minmax-scaled
features still outperform, it might be possible to abstract over this choice altogether with
the right training scheme. One other algorithm that has the interesting property of stable
metrics that are tightly clustered and stable with regard to training volume and feature
reduction is the RBF-kernel SVM. All metrics are densely packed around 55%, which is
not high enough to be immediately usable, but the tightly clustered metrics are interesting
(Figure 15). They have also been observed for the logistic regression and linear SVM (albeit
at much lower values ~10–20). Perhaps these models could be improved while retaining
the metric clusters and stability.

Figure 15. Even though performance is not high in absolute terms, the regression models and SVMs
can exhibit clustered performance metrics. If these can be lifted to a higher plateau, then the methods
could become viable.

• Portmap

The portmapper service (also known as rpcbind) provides a linking of program
number, program version and listening port. The client can ask for this information and
then pick a preferred level to interact with the available service(s) through remote procedure
calls (RPC). This access should be restricted to authorized users, but because there is no
authentication/authorization by default, attackers can simply ask for a listing of the entire
table and send it to a spoofed victim because UDP is available as the transport layer.
Results on this class are almost equal to those on the previous classes. Decent patches
of performance exist, but the variability is large and no overall recommendations can be
made that will guarantee stable, high performance. There is almost no agreement between
the pretrained models on subset 1 of DDoS from IDS2018 versus those pretrained on
subset 2. This issue has been intermittently showed up for the other attack classes as well.
Good performance in numbers for this class ranges from perfect recall paired with 60%
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precision, which can be fairly stable, to models with recall–precision pairs above 99.5%
without stability.

3.5.2. Exploitation-Based DDoS

The attacks described in the previous Section 3.5.1 all rely on exploiting available
commands in protocols that through misconfigured daemons respond to illegitimate re-
quests. The power of those attacks is in the amplification factor, which enables an attacker
to use fewer resources but still reflect massive amounts of traffic to a spoofed target. The
three attacks described in this section are less sophisticated but require more resources on
the attacker’s side (e.g., a larger botnet). These attacks can use IP spoofing, but they stay
effective without it.

• UDP-flood

UDP-floods simply overwhelm a server by sending packets to random UDP ports,
not even interested in a particular service. The OS on the receiving end has to process the
packet and potentially send an ICMP packet back. If there is a firewall between the target
and the attacker that will take the first hit, but it too has to handle the traffic somehow.
Even if it manages to ignore the majority of malicious packets, the link itself can get filled
up with the packets. Despite their simplicity, these attacks can have the same practical
outcome as the reflection-based DDoS attacks. Basic UDP floods are well-recognized, with
some degree of consistency between the models and relative stability. This applies most to
the tree-based meta-estimators. Raw performance numbers are perfect recall with 60–92%
precision. Minmax scaling had to be applied to the inputs before training for these results.
Models trained with normalized features can still be decent, up to perfect recall and 89%
precision, but hampered by stability issues. These conclusions apply to both subsets with
UDP-flood traffic (7 & 16).

• SYN-flood

SYN floods work by an attacker creating lots of half-open TCP connections (client
SYN, server SYN/ACK, client does not send ACK) but never actually using them. Because
the number of connections always has an upper bound, it is only a matter of resources to tie
up all available connections. The result pattern for SYN-flood attacks is strange. On the one
hand, the models pretrained on DDoS subset 1 of CSE-CIC-IDS2018 do not perform well at
all, except for some cases where high classification metrics are posted, but only at minute
training volumes (<1%). Models trained on DDoS subset 2 of IDS2018 score much better,
but even the tree-based models no longer hold perfectly stable recall. The observation that
some of the best models were trained on little data, flows to lesser or greater extent through
all attack types. It is possible that for clear network attacks, limited exposure is enough to
achieve robustness, rather than the typical assumption that more data is better (Figure 16).

• UDP-lag

The UDP-lag attack is a niche network attack whereby a client abuses an existing con-
nection between itself and the server by introducing lag at the client side. Typically, clients
do not immediately disconnect from the service as that would hurt the user experience
but instead can continue local interaction with the service and the network will catch up
when the link improves. This may create advantages for the client because the server is
not in control and might have to deal with a state generated on the client side that would
have been impossible if the connection had stayed intact. This attack is classified under
DDoS because one way of introducing it is by DDoSing your own machine. The clearest
case of requiring models to train on a limited amount of samples to have a good general
representation is this DDoS subclass and the nearest neighbors algorithm. Even though
it is so simple, F1-scores above 90% happen with a large degree of consistency, not just
with regard to feature removal but also between the two sets of pretrained models and the
two sets of UDP-lag traffic of CIC-DDoS2019. The only caveat is a serious performance
regression when increasing the training volume (most visible with standardization). These
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performance regressions have been observed for the logistic regressions and SVMs for
this and other attack types of this data set, but the slope of the decline is much less steep,
because these models did not achieve good metrics to begin with. One final illustration that
summarizes many of the observations in all the previous subsections is shown in quadrant
Figure 17. The four images show how the RBF-kernel SVM’s performance can differ. The
pair of pretrained models have perfect consistency on both subsets of UDP-lag traffic, but
they are almost fully negatively correlated with each other.

(a)

(b)

Figure 16. Another instance where, contrary to standard assumptions, increasing the training volume
has a clear negative effect on generalized performance (a,b).
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(a) (b)

(c) (d)

Figure 17. RBF-SVMs pretrained on the available DDoS subsets in CSE-CIC-IDS2018 have signifi-
cantly different, but self-consistent general performance profiles on the UDP-lag attack subsets of
CIC-DDoS2019.

3.5.3. Intermediate Conclusion

When tasking CIC-IDS2018’s pretrained DDoS models with classifying CIC-DDoS2019,
the interdataset generalization of these models can be summed up as follows. Classification
results can be near-perfect and highly volatile (for tree-based learners) or significantly less
accurate, but more often stable for SVMs and simple distance-based learners. Consistency
when classifying is possible, but it is not the norm. Nevertheless, the existence of consistent
sets of models indicates that it is possible to train them. Further investigation is required to
compare this sparse set of stable, well-generalizing models to their failing counterparts. As
a network-centric attack class, models with pockets of good generalization were expected
and confirmed, but they exhibit the same flaws observed from generalization on the other
datasets. The inconsistent loss of key intradataset generalization properties such as high
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discriminating power, stability with regard to data reduction and invariability to scaling
seriously hamstrings dependable, effective use of these methods.

4. Discussion

The intermediate conclusions (Sections 3.3.7 and 3.5.3) interspersed in the result
Section 3 are meant to maintain oversight of the patterns observed in the result collection.
However, in order to provide an even more succinct overview, this discussion is structured
around Tables 7–9. Every table shows the baseline performance (B) of the top 3 models,
selected based on an equally weighted combination of balanced accuracy, f1-score and
training volume (lower is better). The performance metrics of the top 3 interdataset gen-
eralizing models on the corresponding attack class follow immediately. The classification
metrics are percentages with a maximum of 100.

The tables show the numeric confirmation of the statement from the intermediate
conclusions that it is possible to train models that generalize well to novel samples, gener-
ated by unseen attacks from the same class, executed in a different network environment.
Structuring the entire result section around these results would have been misleading
because the top 3 models obscure the loss of stability and invariance to data reduction and
feature scaling.

Table 7. Classification metrics for the best 3 models per attack class, both for baseline (B) and
generalized (G) classification, with mention of the preprocessing parameters.

B/G Class M Algorithm Balanced Acc. F1 Precision Recall Scaling Reduction % Train

B 18-0.Bruteforce 18-0
rforest 100.00 100.00 100.00 100.00 MinMax 0 0.1

gradboost 100.00 99.99 99.99 100.00 No 0 0.1
bag 99.99 99.98 99.95 100.00 No 0 0.1

G 17-0.Bruteforce 18-0
gradboost 99.81 94.61 89.79 99.98 No 0 0.1

dtree 99.81 94.59 89.75 99.98 No 0 0.5
gradboost 99.76 94.57 89.79 99.89 No 0 1.0

B 18-1.L7-DoS 18-1
ada 100.00 99.93 99.87 100.00 MinMax 0 0.5

dtree 100.00 99.91 99.82 100.00 No 0 0.5
dtree 99.87 99.61 99.47 99.76 Z 0 0.1

B 18-2.L7-DoS 18-2
xgboost 99.98 99.99 99.97 100.00 MinMax 0 0.1
rforest 99.98 99.99 99.98 100.00 MinMax 0 0.1
dtree 99.98 99.99 99.97 100.00 MinMax 0 0.1

G 17-1.L7-DoS 18-1
ada 93.53 92.54 96.43 88.94 No 0 11.0
ada 92.64 91.11 93.57 88.78 MinMax 0 11.0
ada 87.84 83.89 79.31 89.02 No 0 1.0

G 17-1.L7-DoS 18-2
extratree 88.22 84.26 79.19 90.04 No 5 6.0
extratree 87.51 82.80 74.03 93.94 No 0 6.0
extratree 88.46 84.58 79.71 90.09 No 5 11.0

B 18-3.DDoS 18-3
gradboost 99.81 99.83 99.87 99.79 MinMax 0 0.1
xgboost 99.80 99.83 99.72 99.94 MinMax 0 0.1

knn 99.80 99.83 99.72 99.94 MinMax 0 0.1

B 18-4.DDoS 18-4
extratree 99.99 100.00 99.99 100.00 No 20 0.1

ada 99.98 99.99 99.97 100.00 MinMax 5 0.1
extratree 99.98 99.99 99.98 100.00 Z 5 0.1

G 17-5.DDoS 18-3
knn 91.29 90.70 98.99 83.70 Z 15 0.1
knn 88.88 87.70 99.18 78.61 Z 5 0.1
binlr 86.58 89.05 86.73 91.50 Z 15 0.1

G 17-5.DDoS 18-4
linsvc 89.42 90.81 90.91 90.71 MinMax 15 1.0

xgboost 86.68 88.79 87.66 89.95 MinMax 15 6.0
linsvc 81.02 86.82 78.29 97.42 MinMax 15 0.5
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Table 7. Cont.

B/G Class M Algorithm Balanced Acc. F1 Precision Recall Scaling Reduction % Train

B 18-5.Web 18-5
xgboost 96.96 96.87 100.00 93.92 Z 0 6.0
xgboost 98.90 98.88 100.00 97.79 MinMax 0 11.0

dtree 97.93 91.80 88.07 95.86 Z 0 6.0

B 18-6.Web 18-6
xgboost 95.49 95.19 99.81 90.99 Z 0 11.0
xgboost 96.82 96.28 99.07 93.64 No 0 16.0
xgboost 96.29 96.06 99.81 92.58 MinMax 0 16.0

G 17-2.Web 18-5
ncentroid 90.34 42.42 28.44 83.39 MinMax 15 35.0
ncentroid 84.62 9.51 5.01 91.79 No 15 1.0
ncentroid 84.62 9.51 5.01 91.79 No 20 1.0

G 17-2.Web 18-6
xgboost 91.13 71.47 62.81 82.89 MinMax 0 21.0

ada 91.24 30.87 18.74 87.39 MinMax 15 0.5
ada 94.54 46.19 30.87 91.74 MinMax 0 35.0

B 18-7.Infil 18-7
gradboost 74.88 37.13 23.88 83.39 Z 0 0.1

ada 69.73 46.62 47.32 45.93 No 0 6.0
ada 69.47 46.50 47.94 45.14 Z 0 6.0

B 18-8.Infil 18-8
dtree 93.31 86.96 79.06 96.63 No 0 1.0
dtree 92.33 86.35 79.95 93.87 MinMax 0 1.0
dtree 92.08 85.80 78.96 93.95 MinMax 0 0.5

G 17-3.Infil 18-7
ada 85.19 0.40 0.20 75.00 Z 15 0.1
bag 84.06 1.30 0.65 69.44 MinMax 5 0.1

gradboost 83.43 0.18 0.09 77.78 MinMax 20 1.0

G 17-3.Infil 18-8
dtree 88.84 0.69 0.35 80.56 Z 15 1.0

gradboost 83.71 0.13 0.07 83.33 MinMax 10 0.5
gradboost 81.07 0.12 0.06 77.78 Z 20 0.1

B 18-9.Botnet 18-9
rforest 99.91 99.88 99.89 99.87 Z 0 0.1

extratree 99.88 99.86 99.95 99.77 Z 0 0.1
extratree 99.89 99.81 99.77 99.86 No 0 0.1

G 17-4.Botnet 18-9
gradboost 82.07 78.13 99.92 64.14 No 0 0.5

bag 82.07 78.10 99.84 64.14 No 0 1.0
xgboost 82.06 77.53 97.98 64.14 No 0 0.5

Table 7 summarizes the generalized results from training on CSE-CIC-IDS2018 to
classifying CIC-IDS2017. Generalization on the brute force attack category shows the
smallest deviation between baseline and generalized performance (<1% loss in balanced
accuracy). Losses of 10–15% in class-balanced accuracy are the norm. This loss still obscures
information. The distinction in interdataset generalization performance is more noticeable
when looking only at the classification of malicious samples. The F1-score typically drops
5–15 points for the network-centric attack classes (brute force, DoS, DDoS), but the other
classes show drops of at least 20 points (botnet). Web attacks show the steepest overall
loss of performance. F1-scores are reduced from north of 90% to anywhere between 10
and 70% and these are the performance numbers of the best-generalizing models. Precise
recognition of infiltration attacks drops close to 0%, although it should be noted that the
baseline performance on this class was the weakest to begin with. Recognition of botnet
traffic is affected mostly on the recall front, which suggests that the best models have
learned precise traffic profiles for the specific botnets. For this attack class, it may even be
preferable to favor precision over recall to correctly identify infected machines.

Table 8 is a lot shorter, because it summarizes general performance of application layer
DoS models, trained on CSE-CIC-IDS2018 to CIC-DoS2017. The conclusion in the result
section (Section 3.4) for this target dataset already stated the underwhelming performance
and this is reflected in the top 3 generalizing models. Recall consistently outstrips precision,
but both are lackluster overall (never exceeding 80%). The mixture of a much larger variety
of DoS attacks and attack-free traces from the older ISCXIDS2012 instead of the network
setup for 2017’s datasets are the most likely culprits for the performance regression. Further
investigation is required to parse the weights of each factor individually.
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Table 8. CIC-DoS2017 data classification metrics by DoS models pretrained on CSE-CIC-IDS2018
for the best 3 models per attack class, both for baseline (B) and generalized (G) classification, with
mention of the preprocessing parameters.

B/G Class M Algorithm Balanced Acc. F1 Precision Recall Scaling Reduction % Train

B 18-1.L7-DoS 18-1
ada 100.00 99.93 99.87 100.00 MinMax 0 0.5

dtree 100.00 99.91 99.82 100.00 No 0 0.5
dtree 99.87 99.61 99.47 99.76 Z 0 0.1

B 18-2.L7-DoS 18-2
xgboost 99.98 99.99 99.97 100.00 MinMax 0 0.1
rforest 99.98 99.99 99.98 100.00 MinMax 0 0.1
dtree 99.98 99.99 99.97 100.00 MinMax 0 0.1

G 0.L7-DoS 18-1
ncentroid 79.56 60.07 52.68 69.89 No 10 0.1
ncentroid 78.74 59.31 52.58 68.01 No 0 0.5
ncentroid 78.65 58.89 51.83 68.17 No 0 1.0

G 0.L7-DoS 18-2
bag 75.56 48.15 35.68 74.02 MinMax 5 0.1
ada 74.64 44.63 30.99 79.74 Z 20 0.5
bag 71.61 45.84 36.49 61.63 MinMax 10 0.5

Finally, the generalized results of 2018’s DDoS models to every specific attack repre-
sented in CIC-DDoS2019 are listed in Table 9. Baseline performance in the DDoS category
is close to perfect and this largely carries over to generalized performance. Recall is least
affected, with drops nearly always capped at 5 points. Precision varies slightly more, with
maximal drops around 15 points. An interesting phenomenon in the DDoS results is the
consistency of certain models. The randomized decision trees classifier (extratree), with
minmax scaled features, 10/15 top features removed and access to no more than 11% of the
data to train and validate, appears frequently. Its generalization performance is thus quite
stable across the novel DDoS attacks.

Table 9. Classification metrics for the best 3 models per attack class, both for baseline (B) and
generalized (G) classification, with mention of the preprocessing parameters.

B/G Class M Algorithm Balanced Acc. F1 Precision Recall Scaling Reduction % Train

B 18-3.DDoS 18-3
gradboost 99.81 99.83 99.87 99.79 MinMax 0 0.1
xgboost 99.80 99.83 99.72 99.94 MinMax 0 0.1

knn 99.80 99.83 99.72 99.94 MinMax 0 0.1

B 18-4.DDoS 18-4
extratree 99.99 100.00 99.99 100.00 No 20 0.1

ada 99.98 99.99 99.97 100.00 MinMax 5 0.1
extratree 99.98 99.99 99.98 100.00 Z 5 0.1

G 19-0.DNS
18-4 bag 91.28 91.96 85.35 99.68 Z 15 0.1
18-4 xgboost 88.45 89.61 81.40 99.68 Z 15 0.5
18-4 xgboost 96.15 96.29 92.92 99.91 MinMax 15 21.0

G 19-1.LDAP
18-3 xgboost 98.98 98.98 98.35 99.63 MinMax 10 1.0
18-3 ada 98.11 98.13 96.97 99.32 Z 0 6.0
18-3 dtree 97.98 98.01 96.74 99.32 Z 20 6.0

G 19-11.LDAP
18-3 ada 87.98 88.27 86.16 90.50 MinMax 5 1.0
18-3 rforest 87.54 87.90 85.44 90.50 MinMax 0 0.5
18-3 dtree 87.69 88.02 85.68 90.50 MinMax 20 1.0

G 19-2.MSSQL
18-3 ada 93.64 94.02 88.72 100.00 MinMax 5 0.1
18-3 rforest 93.69 94.07 88.80 100.00 MinMax 20 0.5
18-3 bag 93.64 94.02 88.72 100.00 MinMax 5 1.0

G 19-12.MSSQL
18-3 rforest 91.75 92.38 85.86 99.96 MinMax 0 0.5
18-3 ada 91.23 91.94 85.08 100.00 MinMax 5 0.1
18-3 ada 91.32 92.01 85.21 100.00 MinMax 5 1.0
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Table 9. Cont.

B/G Class M Algorithm Balanced Acc. F1 Precision Recall Scaling Reduction % Train

G 19-3.NetBIOS
18-3 extratree 99.77 99.77 99.77 99.77 MinMax 10 6.0
18-3 xgboost 97.10 97.05 98.91 95.25 MinMax 10 1.0
18-4 extratree 99.30 99.29 99.70 98.89 MinMax 15 11.0

G 19-13.NetBIOS
18-3 xgboost 97.99 98.03 96.28 99.85 MinMax 10 1.0
18-3 extratree 99.77 99.77 99.70 99.85 MinMax 10 6.0
18-3 gradboost 99.36 99.36 98.88 99.85 Z 20 6.0

G 19-4.NTP
18-3 extratree 99.48 99.48 99.53 99.44 MinMax 10 6.0
18-3 xgboost 95.30 95.12 98.92 91.60 MinMax 10 1.0
18-4 extratree 99.54 99.54 99.65 99.43 MinMax 20 11.0

G 19-5.SNMP
18-3 xgboost 95.72 95.58 98.73 92.63 MinMax 10 1.0
18-3 bag 94.86 95.11 90.67 100.00 MinMax 0 1.0
18-3 bag 94.72 94.99 90.46 100.00 MinMax 20 1.0

G 19-6.SSDP
18-3 extratree 99.34 99.34 99.60 99.08 MinMax 10 6.0
18-3 extratree 98.95 98.94 99.87 98.03 MinMax 20 11.0
18-4 extratree 98.62 98.61 99.60 97.64 MinMax 15 11.0

G 19-7.UDP
18-3 extratree 99.75 99.75 99.63 99.86 MinMax 10 6.0
18-4 extratree 99.65 99.65 99.58 99.72 MinMax 15 11.0
18-3 gradboost 96.94 97.03 94.39 99.81 MinMax 15 6.0

G 19-16.UDP
18-3 extratree 99.47 99.47 99.43 99.52 MinMax 10 6.0
18-4 extratree 99.20 99.20 99.05 99.36 MinMax 15 11.0
18-3 gradboost 94.51 94.80 90.11 100.00 MinMax 15 6.0

G 19-8.SYN
18-4 knn 98.21 98.25 96.55 100.00 Z 20 0.5
18-3 knn 96.68 96.66 97.41 95.92 Z 5 0.1
18-3 rbfsvc 95.54 95.39 98.64 92.35 Z 20 0.5

G 19-15.SYN
18-4 knn 97.81 97.85 96.00 99.78 Z 20 0.5
18-3 rbfsvc 94.63 94.84 91.25 98.71 MinMax 5 1.0
18-3 rbfsvc 94.14 94.41 90.26 98.96 MinMax 15 1.0

G 19-9.TFTP
18-3 ada 92.50 92.97 87.49 99.18 MinMax 5 0.1
18-3 rforest 92.67 93.12 87.75 99.18 MinMax 20 0.5
18-3 rforest 92.53 92.99 87.53 99.18 MinMax 0 0.5

G 19-10.UDPLag
18-3 knn 91.81 91.30 97.37 85.94 Z 5 0.1
18-3 ncentroid 91.73 91.27 96.62 86.48 Z 15 0.1
18-3 ncentroid 91.57 91.11 96.27 86.48 Z 5 0.1

G 19-17.UDPLag
18-3 ncentroid 90.51 89.86 96.47 84.10 Z 15 0.5
18-3 knn 89.75 88.89 97.01 82.03 Z 10 0.1
18-3 ncentroid 89.13 88.56 93.52 84.10 Z 15 0.1

G 19-14.Portmap
18-3 gradboost 99.14 99.14 99.34 98.94 Z 20 6.0
18-3 dtree 93.05 93.44 88.51 98.94 Z 20 1.0
18-4 extratree 97.06 97.13 95.10 99.24 MinMax 10 11.0

Generalizability will need improvement to start adopting learning IDS models. The
major issue to resolve is consistency. In our opinion, four options are available. On the pure
data science track, it is possible that models trained on an intelligent selection of features
might suffer less from instability. Second, models with a higher capacity might achieve
better abstracted versions of the attack classes. A third solution could lie in the expansion
of the quality and variety of academic data available for model building. By doing so
the inconsistency issue may be overcome because the models are trained on much more
comprehensive samples of the attack classes. A fourth option would be to compare the sets
of best-in-class general models for each attack class and compare their internals to those
of the unsuccessful models trained for the same attack class. This would provide more
insight into the factors that drive general performance. The future work and hypotheses
Section 5.1 provides more details about these potential solutions.
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5. Conclusions and Future Work

This work exposes supervised ML intrusion detection models with excellent recog-
nition on CSE-CIC-IDS2018 to the novel samples of CIC-IDS2017, CIC-DoS2017 and CIC-
DDoS2019. Those datasets share the included attack types but have been generated with
mostly different individual attacks and in different network environments. Based on the
results obtained by these models within CSE-CIC-IDS2018, it was assumed that the pre-
trained models would generalize well and successfully classify the other datasets’ samples.
This assumption has been standard but untested in ML-based intrusion detection research,
in part because of the low availability of compatible, labeled datasets. As a consequence,
new proposed IDS systems are recognized as an improvement in the state-of-the-art if
they succeed at reaching higher classification scores, with training, validation and testing
limited to samples of one or two datasets without crossover testing. This work shows
experimentally that the assumption that good intradataset generalization will yield good
interdataset generalization (and further implied extradataset generalization) is faulty.

Models for attacks that rely heavily on network interaction tend to suffer the smallest
performance regression in interdataset testing. Recognition of the malicious samples for
the brute force, DoS and DDoS attack classes decreases by 5–15 points (from near-perfect
classification F1 > 99% to 85% < F1 < 95%). Performance degradation in terms of
balanced accuracy is typically lower, meaning that the loss of recognition impacts the
malicious classes more than it does the benign class. Even for the network-centered classes,
this conclusion is an overgeneralization because specific performance loss can be lower
(e.g., for many attacks in CIC-DDoS2019) or higher (e.g., for CIC-DoS2017).

General performance in recognizing attacks that use the network for transport but
are otherwise targeted more toward the disruption of the host can easily be summarized.
Even for the highest-achieving models in every class, interdataset performance is poor
to extremely poor. Recognition of botnet traffic drops in terms of recall from 99+% to
64% but keeps precision intact. Recognition of Web attacks loses a couple of points in
recall, but more than 50 points in precision (~>95% to <30%), rendering the models useless.
Interdataset recognition of infiltration traffic is nonexistent as generalized precision never
exceeds 1%. The full tables with the performance numbers of the three best generalizing
models for each attack class and each dataset are part of the discussion (Section 4).

Whereas data reduction (both features and samples) and feature scaling had little to
no impact on the excellent intradataset classification ( [15]), in interdataset classification,
these benefits are gone.

In short, it is impossible to tell in advance if a model will have a good general repre-
sentation of the attack class. It is possible, but not the norm and metrics from the standard
intradataset generalization overestimate real classification ability. Unless a solution is found
that guarantees a model’s general performance, having to train and test many models and
cherry-picking those with good intra- and interdataset performance, is a costly endeavor
and a procedure that would still only be viable for the network-centered attack classes.

Ultimately, this work urges researchers to consider adopting a more rigorous validation
approach that includes testing with unseen samples by default. Novel methods should be
recognized as improvements to the state-of-the-art primarily by how well they continue to
function in the most realistic test scenario available.

5.1. Future Work and Hypotheses

Several routes remain open for further investigation. First, the models in this work
were pretrained as part of an earlier publication which investigated how far data could
be reduced/damaged prior to training and still yield models with high discriminating
power [15]. The poor interdataset results of these models may be due to them having
had suboptimal access to data. Future work will train new models with only the highest
quality features and even more strict control to prevent overfitting. If these maximally data-
efficient models have stable, strong baseline performance and stable, strong interdataset



Sensors 2023, 23, 1846 37 of 39

performance, then the concerns raised in this article can be attenuated. If not, then the
findings in this article will be reinforced.

A second route for future investigation is the inclusion of newer ML-based intrusion
detection models. Many publications have adopted techniques from the deep learning
research field and applied them to the IDS pattern recognition problem [52–55]. None of
these articles however include a section on generalized performance. It is possible that
these advanced models are able to capture the problem in a more robust way and, in doing
so, eliminate the current gap. This hypothesis should be tested early to avoid building
castles in the sky.

If neither classical models trained with optimal features or deep neural networks
provide an answer for the generalization problem, then solutions three to five should be
considered. Solution three consists of setting up new data generation experiments for
intrusion detection. The emphasis should be on generation of samples from a large variety
of modern attacks in variable, but controlled mirrors of realistic network environments.
Variety and interoperability should be the main goals. In this regard, the LUFlow project [56]
is interesting because it has captured compatible data between 2020 and 2022. This dataset
directly enables work on interdataset generalization and concept drift across time.

Solution four includes comparing the rare instances of sets of models of the same
algorithm that generalize well to their poorly generalizing counterparts. The focus should
be on examining what makes these models different and if they can be adapted or trained
in such a way that they are more likely to exhibit the desired behavior.

Solution five tailors IDS to a specific protocol. Rather than trying to build models
that can work to detect misuse of any service on the network, specialized models could
integrate knowledge of how specific protocols should operate. Within wireless intrusion
detection, this approach has shown promising results [57].
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