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Abstract

The output of state-of-the-art reverse-engineering methods for biological networks is often based on the fitting of a
mathematical model to the data. Typically, different datasets do not give single consistent network predictions but rather
an ensemble of inconsistent networks inferred under the same reverse-engineering method that are only consistent with
the specific experimentally measured data. Here, we focus on an alternative approach for combining the information
contained within such an ensemble of inconsistent gene networks called meta-analysis, to make more accurate predictions
and to estimate the reliability of these predictions. We review two existing meta-analysis approaches; the Fisher
transformation combined coefficient test (FTCCT) and Fisher’s inverse combined probability test (FICPT); and compare their
performance with five well-known methods, ARACNe, Context Likelihood or Relatedness network (CLR), Maximum
Relevance Minimum Redundancy (MRNET), Relevance Network (RN) and Bayesian Network (BN). We conducted in-depth
numerical ensemble simulations and demonstrated for biological expression data that the meta-analysis approaches
consistently outperformed the best gene regulatory network inference (GRNI) methods in the literature. Furthermore, the
meta-analysis approaches have a low computational complexity. We conclude that the meta-analysis approaches are a
powerful tool for integrating different datasets to give more accurate and reliable predictions for biological networks.
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Introduction

Gene expression microarrays yield quantitative data about the

intricate biological processes in cells. They give a systematic

understanding of the cell status under specific conditions and at a

specific time when inferred by gene regulatory network inference

(GRNI) methods. The approaches for inferring gene networks can

be classified into two broad categories [1]: those based on physical

interactions and those based on influence interactions. The former

category deals with identifying interactions among transcription

factors and their target genes (gene-to-sequence interactions)

whereas the latter category attempts to relate the expression of a

gene to the expression of other genes (gene-to-gene interactions).

In this study, we refer to GRNI methods as ‘influence interactions’

approaches.

Other expression measurements can also be utilised for

experimental detection of biological interaction networks. The

most common of these methods, two-hybrid system, uses a

physical interaction approach. However, the two-hybrid system

has been criticised for having a high false-positive discovery rate

[2]. Mass spectrometry has been successfully adapted for large-

scale identification of gene and protein complexes [3]. Unfortu-

nately, low correspondence among the different high-throughput

interaction studies requires further investigation both computa-

tionally and experimentally. Furthermore, a comparison of two-

hybrid and mass spectrometry experiments in yeast discovered a

relatively small overlap of 387 interactions between the two

approaches [4], and similar comparisons by [2] found relatively

little correspondence between the studies. These results highlight

the need for a computational approach that integrates the

inconsistent information from variable high-throughput studies.

In microarrays alone, multiple interaction experiments in

budding yeast, for the most part, have revealed different

interactions. In such a case, a series of gene expression microarray

datasets on the same phenomenon, such as in the same cell under

the same condition and at the same time, often contain different

levels of noise from both technical and biological factors. If

analyzed by a single GRNI method, those datasets might give

many inconsistent networks that are only consistent with the

specific experimentally measured data. One reason for this

inconsistency is that many GRNI methods are based on the

fitting of a mathematical model to a specific dataset. Therefore,

the outputs produced by a single GRNI method from different

gene expression microarray datasets are often not single consistent

network predictions but an ensemble of inconsistent networks.

One method to alleviate this inconsistency and to form more

accurate and reliable predictions is to integrate the inconsistent

networks or to identify a unique ‘best’ network from this

inconsistent ensemble according to additional criteria [5]–[7].

Moreover, the problem of how to optimally analyse the ensemble

of inconsistent gene networks from multiple datasets to estimate

the true structure of the underlying gene network has received
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relatively little attention, although for differentially expressed gene

applications, many methods have been proposed to utilise such

ensemble techniques [8]–[11].

Recently, many single GNRI methods have been proposed for

biological networks; each offers its own unique disadvantages and

advantages. Methods such as Boolean networks [12] and Bayesian

networks [13] use a mathematical model for inferring gene

networks. Other methods such as relevance networks [14], genetic

algorithms [15], and neural networks [16] utilise static or dynamic,

continuous or discrete, linear or non-linear, and deterministic or

stochastic approaches. The latest approaches such as Self-Adaptive

Differential Evolution [17], Stepwise Network Inference (SWNI)

[18] and parallel island evolutionary strategy [19] adapt learning

models based on a linear time-variant approach. Nonetheless, the

best of our knowledge, none of these approaches can integrate

inconsistent networks from multiple sources. Instead, the GNRI

methods produce inconsistent networks when applied to different

microarray datasets. Here, we focus on an approach for

integrating biological networks called meta-analysis, which aims

to integrate the information contained within ensembles of

inconsistent networks inferred by a single GNRI from multiple

gene expression microarray datasets to give more accurate and

reliable predictions for biological networks.

The paper is organised as follows. In the next section, we first

justify the use of meta-analysis approaches for biological networks

and then formalise the approaches. We describe our simulation

set-up and the expression data we used for biological datasets. We

present numerical results analysing the performance of the

FTCCT, FICPT, ARACNe, CLR, MRNET, relevance network

(RN) and Bayesian network (BN) methods in terms of area under

the curve (AUC) and tIDR (true integration discovery rate) as well

as tIRR (true integration reversion rate) as an accuracy

benchmark. We use reproducibility measured by correspondence

at the top (CAT) plots, as a reliability indicator. We finish this

article with the Discussions.

Methods

How can we process an ensemble of inconsistent gene networks

to obtain an estimate of the true gene network? Let us assume that

we have a gene regulatory network of N genes called the target

gene network. This target gene network is typically represented by

an NxN weight matrix B. The entries bij of this matrix give the

strength of the regulatory effect of gene j on gene i. We possess a

series of Z microarray datasets concerning the activity of the

network, from which a reverse-engineering method infers an

ensemble of tentative networks. Each network has an associated

score sk that indicates how well it fits the data. Thus, the ensemble

is a collection C = {(Bk,sk)} where Bk is a plausible network kth in

ensemble with the highest score sk. To restate the problem, we

consider how to process the ensemble C to obtain an estimate of

the ‘true’ weight matrix B. In this paper, we show that in practice

even simple meta-analysis approaches often allow an improvement

the accuracy of an ensemble C compared to individual inferred

networks of the ensemble.

Combined statistical approaches
The general meta-analytic framework assumes that N indepen-

dent studies have been conducted; in the case of biological

networks, these studies would have focused on the relationships

between genes. Furthermore, it assumes that a measurable

relationship exists between certain quantities of interest such that

the relationship can be quantified and each study produces an

estimate of the relationship. This estimation is termed an ‘effect

size’ if the estimates are appropriately standardised. Thus, an effect

size is essentially a standardised quantitative expression of the

relationship of interest. In general, there are three main classes of

effect size estimates. The first class is the standardised difference

estimate, such as Hedge’s g. The second class is the standardised

relation estimate such as the sample correlation coefficient r, and

the last class is the measure of significance, such as the p-value

from a particular hypothesis test.

To combine results across samples or datasets, effect size

estimates must address the same measure or quantity, be

standardised, and include some measurement of the variability

of the effect size estimate. After each study has provided its effect

size estimate and a measurement of its variability, a meta-analysis

can be performed. In this paper, we have chosen two repre-

sentations from the second and the third classes of effect size

estimates: Fisher’s inverse combined probability test (FICPT),

which uses a test of significance as its effect size [20] and the Fisher

transformation combined correlation test (FTCCT), which uses

the correlation coefficient as its effect size [21]. The simplest meta-

analysis approach is FICPT, which combines the p-values from

independent datasets. One approach for combining the p-values

[20] is the Fisher summary statistic,

X 2~{2
Xk

i~1

loge(pi), ð1Þ

which tests the null hypothesis that, there is no correlation between

given pair of genes. The pi is the p-value for the correlation

between ith and jth genes from the kth dataset. The theoretical null

distribution should be a chi-squared distribution, X2. On the other

hand, instead of using a test of significance for combining the

results, FTCCT uses correlation coefficients as its effect size. The

individual correlation estimates are first converted to z-values

using Fisher’s r-to-z transformation.

zk(gx,gy)~0:5 � ln½1zrk(gx,gy)=1{rk(gx,gy)�: ð2Þ

This statistic is approximately normally distributed with variance

sk
2~(Nk{3){1, where Nk is the profile length in experiment k

[22]. The similarity is estimated using the weighted average

zR(gx,gy)~
Xk

i~1

wi � (gx,gy) � zi(gx,gy)=
Xk

i~1

wi � (gx,gy): ð3Þ

The weights are defined as wi(gx,gy)~sk
2zt2(gx,gy)){1, where

the coefficient t2(gx,gy) is estimated using Cochran’s Q-statistic as

described by [23]. Finally, Fisher’s z-to-r transformation is applied

to convert the results back into correlations.

r
R(gx,gy)~e2z

R(gx,gy){1=e2z
R(gx,gy)

z1
: ð4Þ

After the transformation it is reasonable to check the significance

of the effect size estimate. Even if the variables have no correlation,

for samples of finite size, the correlation coefficient will be non-

zero. There are two ways to test the significance for FTCCT. The

first method uses a test statistic t:

T~r �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
(n{2)

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1{r2)

p
*T(n{2): ð5Þ
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This test statistic is distributed approximately according to a t-

distribution. The correlation coefficient is considered to be

statistically significant if the computed t value is greater than the

critical value of a t-distribution with a level of significance of a.

The second test of significance is a z-test that assumes the gene

profile (X,Y) has a jointly bivariate normal distribution. Thus, the

correlation coefficient can be transformed such that the trans-

formed statistics conform to the normal distribution as follows

W~0:5 � log(1zr)=(1{r) *N(0,1=n{3): ð6Þ

Reverse-engineering methods
Thus far several methods have been suggested for inferring gene

regulatory networks [24]–[26]. For comparison, we chose

ARACNe, CLR, MRNET, Bayesian network (BN), and relevance

network (RN). All the parameter settings are discussed in the

Supplementary Information S2, and the software is freely

downloadable. For detailed information about these inferring

algorithms considered in this study, we refer the reader to [27],

[28], [29], [30], and [31]. In this subsection, we discuss the

correlation coefficient used in both FICPT and FTCCT. Gene

expression is recorded as an nxn matrix with n genes, each of which

has m experimental conditions or time points. We used the partial

correlation coefficient r as the pair-wise measure of the linear

relationship between two gene profiles. A partial correlation

coefficient quantifies the correlation between two variables when

conditioning on one or several other variables. Partial correlation

can be calculated as follows

rxy:z~rxy{rxz � ryz=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
((1{rxz

2) � (1{ryz
2))

q
:

For FICPT, the partial correlation coefficients r are first converted

to p-values before they are combined using (1). For FTCCT, the

partial correlation coefficients r are first combined before they are

converted to p-values.

Simulated and experimental datasets
For analysing and comparing meta-analysis approaches

(FTCCT and FICPT) together with single inferring methods

(ARACNe, CLR, MRNET, BN and RN), we utilised simulated

and experimental expression datasets from microarray experi-

ments. Simulated microarray data are needed because the

knowledge about biological regulatory networks is still incomplete

and imperfect. Simulated data are used because, for these data, we

know the true regulatory network precisely. This knowledge allows

a detailed and accurate analysis. The experimental microarray

datasets are used to demonstrate the reliability of meta-analysis

approaches over single inferring methods and to show that the

assumptions made for simulated datasets are sufficiently valid.

All simulated data are generated based on a scale-free network.

It has been shown that the network presents a difficult challenge

for reconstruction algorithms. The challenges present in the

network are important to approximate the true network in

experimental cells, which have a few highly interconnected genes,

and the biologically motivated non-linear transcriptional depen-

dencies among genes [32]. It is highly unlikely that any inferring

method that does not perform well on this network could

withstand a more complex case. To generate a synthetic network,

we utilised Synthetic Transcriptional Regulatory Networks

(SynTRen) by [33]. The gene network is shown in Figure 1. All

simulations and settings are described in the Supplementary

Information S1.

For experimental datasets, we used two different cancer

samples: breast cancer and colorectal cancer. The colorectal

cancer datasets consist of three datasets obtained from a public

repository (NCBI) with 62 samples for the first dataset (accession

Figure 1. Sub-network generated by SynTReN based on scale-free topology using a Saccharomyces cerevisiae source network
containing 15 genes and 17 edges.
doi:10.1371/journal.pone.0028713.g001
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code GSE 12945), 55 samples for the second dataset (accession

code GSE17357) and 73 samples for the third dataset (accession

code GSE 13067). The breast cancer expression datasets consist

of three datasets with 266 samples for the first dataset (acces-

sion code GSE 21653), 51 samples for the second dataset

(accession code GSE 17907) and 55 samples for the third dataset

(accession code GSE 16391).

Benchmarking tools
It is important to assess the performance and reliability of meta-

analysis approaches and single reverse-engineering methods. In

this paper, we evaluated the performance and reliability of the

single reverse-engineering methods and the meta-analysis ap-

proaches. For the performance evaluation, we use area under

curve (AUC), true integration discovery rate (tIDR) [23] and true

integration revision rate (tIRR) [34].

We defined tIDR as the true associations identified in the meta-

analysis (FTCCT and FICPT) that were not identified in any of

the separate studies alone (ARACNe, CLR, MRNET and RN).

We fixed the statistical threshold to filter any insignificant

associations, a= 1e-12, and labelled genes as correlated if

(pi,a), pi as p-value.

tIDR(a)~
#true associations½(piva)in meta analysis�and½(piwa)in all individual studies�

#true associations½(piva)in meta analysis�

On the other hand, tIRR can be defined as the proportion of

true pairs of genes that were declared correlated in at least one

separate study but not in the meta-analysis,

tIRR(a)~
#true associations½(piva)in at least one individual studies�and½(piwa)in meta analysis�

#true associations½(piva)in meta analysis�

In addition to the aforementioned performance indicators, we

also utilised ensemble evaluations that make statistical statements

about the individual edges or motifs of underlying simulated

networks structure inferred by either single reverse-engineering

methods or meta-analysis approaches to reveal and investigate

their strengths and weaknesses. These ensemble evaluations have

been shown to be good explanatory tools for investigating

inference algorithms on the level of network components, such

as edges, motifs or sub-networks [35]. The statistical statements of

characteristics of a network structure of an inferring method could

give an insight into why AUC meta-analysis approaches are better

than single reverse-engineering methods. More details can be

found in [35].

The reliability of the single reverse-engineering methods and

meta-analysis approaches was also evaluated for experimental

datasets using reproducibility measured by CAT plot [36]. It is

important to assess an agreement for interactions that are likely to

be called significant because interactions identified in multiple

independent studies are likely to be the truly significant ones.

Thus, high reproducibility among independent studies suggests a

high specificity. CAT plots can be used as a reliability assessment

tool for assessing the agreement of the identification among

studies. CAT plots were originally developed for differentially

expressed gene applications, where a list of n top candidate

differentially expressed genes for each of two studies is used. For

biological network application, we modified the list of genes from a

hub to accommodate the different outcomes for gene regulatory

networks. CAT plots were produced by the same procedure as in

differentially expressed gene applications [36].

Results

Because reverse-engineering methods (ARACNe, CLR,

MRNET, BN and RN) and meta-analysis approaches (FICPT

and FTCCT) are used in different contexts, we divided

performance evaluation into three benchmarks but used only

Figure 2. AUCs of FTCCT, FICPT, BN, ARACNe, CLR, MRNET and RN. RNCT represents RN. Boxplots for FTCCT (blue), FICPT (dark green), BN
(red), ARACNE (magenta), CLR (cyan), MRNET (brown) and RN (grey). A subnetwork of yeast is used for the simulations. The sample size is 1000 and
the ensemble size is 24.
doi:10.1371/journal.pone.0028713.g002
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PLoS ONE | www.plosone.org 4 January 2012 | Volume 7 | Issue 1 | e28713



one benchmark for reliability evaluation. The first performance

benchmark is for analysing the AUCs of meta-analysis approaches

and the single reverse-engineering methods; the second bench-

mark is to measure the power of single reverse-engineering

methods and meta-analysis approaches using tIRR and tIDR; and

the last benchmark is for ensemble evaluations.

Performance evaluations
Benchmark for performance evaluation #1: Which meta-

analysis approaches have significant differences in

performance compared to single reverse-engineering

methods. We first analysed the performance of the single

reverse-engineering methods and meta-analysis approaches in

terms of their sensitivity-specificity measurements using AUC.

Fig. 2 shows the boxplots of the resulting AUCs for FTCCT,

FICPT, BN, ARACNe, CLR, MRNET and RN for an ensemble

size of N = 24. The yeast gene network generated by SynTReN

used as the underlying network structure is shown in Fig. 1. From

Fig. 2, overall, one can see that the meta-analysis approaches

provided better results than ARACNe, CLR, MRNET, RN and

BN, as indicated by the median values of the AUC of each

boxplot. The boxplots show that, statistically, FTCCT with a

median AUC of ,0.80 is better than BN with a median AUC

score of ,0.77, ARACNe with a score of ,0.63, CLR with a

score of ,0.67, MRNET with a score of ,0.56 and RN with a

score of ,0.73. FICPT with a median AUC of ,0.79 also shows a

better AUC median score than ARACNe, CLR, MRNET and

RN, and the score is comparable to that of BN. A summary of the

AUCs for FTCCT, FICPT, ARACNe, CLR, MRNET, RN and

BN is provided in Table 1 and details in Supporting Information

S3. Table 1 suggests that, for a significance level of a= 1e-05,

FTCCT has a statistically significant performance result compared

to BN (p-value = 9.424e-07), RN (p-value = 6.609e-09), ARACNe

(p-value = 6.609e-09), MRNET (p-value = 3.591e-08) and CLR

(p-value = 3.591e-08). FICPT has a statistically significant

performance result at a significance level of a= 1e-03 compared

to BN (p-value = 2.097e-03), RN (p-value = 6.609e-09), ARACNe

(p-value = 6.609e-09), MRNET (p-value = 6.609e-09) and CLR

(p-value = 6.609e-09).

Benchmark for performance evaluation #2: Which meta-

analysis methods have significantly different discovery

rates compared to the single reverse engineering me-

thods. The parameter tIDR measures the power of a meta-

analysis approach over a single reverse-engineering method, while

tIRR measures the associations missed by the meta-analysis. In

other words, tIDR measures the power of meta-analysis

approaches, and tIRR measures the power of the single reverse-

engineering methods. We used 1e-12 as the statistical threshold for

producing tIDR and tIRR. All twenty-four datasets were com-

Table 1. Test of significance of the AUC metric for single
reverse-engineering methods and meta-analysis approaches
from 24 simulated datasets.

AUC

Methods BN RN ARACNe MRNET CLR

FTCCT 9.424e-07 6.609e-09 6.609e-09 3.591e-08 3.591e-08

FICPT 2.097e-03 6.609e-09 6.602e-09 6.602e-09 6.602e-09

p-values in bold-italic indicate meta-analysis approaches with significantly
better AUCs than the single reverse-engineering methods.
doi:10.1371/journal.pone.0028713.t001

Table 2. tIDR-tIRR metric for RN, ARACNe, MRNET and CLR,
FTCCT and FICPT from 24 simulated datasets.

tIDR-tIRR

Methods RN ARACNe MRNET CLR

FTCCT 3.122e-05 2.817e-09 2.887e-09 1.119e-08

FICPT 4.921e-09 1.775e-09 1.775e-09 8.284e-08

p-values in bold-italic indicate cases in which tIDR is significantly better than
tIRR.
doi:10.1371/journal.pone.0028713.t002

Figure 3. Directed network motifs consisting of three genes. 1) chain, 2) collider, 3) fork, and 4) triangle.
doi:10.1371/journal.pone.0028713.g003
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bined to create cumulative samples using either concatenation or

meta-analysis formulae. The concatenated method is used to

combine multiple datasets into a single dataset with copula-

transform. The resulting single dataset is then submitted to the

reverse-engineering methods for inferring. Copula-transform is a

technique for concatenating individual datasets into a single

dataset that is widely used in the reconstruction of gene networks

(Basso et al., 2005). The inferred results from this single dataset are

then used for analysis. FICPT and FTCCT gave significantly

better results than ARACNe, CLR, MRNET, RN and BN, as

shown in Table 2. From Table 2 and details in Supporting

Information S4, for a significance level of a= 1e-05, FTCCT is

better than RN (p-value = 3.122e-05), ARACNe (p-

value = 2.817e-09), MRNET (p-value = 2.887e-09), and CLR (p-

value = 1.119e-08). At the same significance level, FICPT shows

improvement over RN (p-value = 4.921e-09), ARACNe (p-

value = 1.775e-09), MRNET (p-value = 1.775e-09) and CLR (p-

value = 8.282e-08). We dropped BNs because to make a reliable

comparison, the output from this method needs to be converted

from a probability value to a p-value and it was safer to forgo

analysis to avoid biased results.

Benchmark for performance evaluations #3: Are there

any statistical similarities or differences between MAs and

RNCT. In this section, we study two ensemble evaluations. The

first ensemble evaluation measures the ability to infer basic motif

types that consist of four different three-gene motifs. The motifs

are shown in Fig. 3 and discussed in detail in [35]. The second

ensemble evaluation analyse the behaviour of individual edges.

Here, we only compare FTCCT and FICPT to RN, as these

methods use the same effect size, which is equal to the correlation

coefficients.

Table 3, details in Supporting Information S5, shows the results

for the first ensemble evaluation using four network motifs for a

sample size of 24, providing their mean true reconstruction rate p.

Briefly, to calculate p, for motifs of types 1, 2 and 3 for example, is

given by averaging

p~(TPR(AuB)zTPR(BuC)zTNR(AuC))=3

over all motifs of the same type within the network (Emmert-Streib

and Altay, 2010). In this equation, TPR represents the true

positive rate, and TNR represents the true negative rate. Table 3

suggests that FICPT and FTCCT behave similarly in favouring all

motif types with a mean true reconstruction rate greater than 0.5.

The mean true reconstruction rate for RN is the lowest (below 0.5)

for types 1 and 2. However, as one can see from Table 4, all mean

true reconstruction rates for motif type 3 are larger than 0.5 for

FTCCT, FICPT and RN. The results suggest that no bias is

introduced by FTCCT and FICPT regarding the ability to infer

individual motif types. However, RN is biased toward motif type 3.

There is no motif type 4 in the simulated gene network.
For the second ensemble evaluation, we show a visualisation of

the mean TPR of edges in the true network for FTCCT (Fig. 4A),

FICPT (Fig. 4B) and RN (Fig. 4C). The edges are colour coded

corresponding to their mean TPR. Specifically, for black edges,

1$TPR.0.75; for blue edges, 0.75$TPR.0.5; for green edges,

0.5$TPR.0.25; and for red edges, 0,25$TPR.0. Two items in

the graph, in-hubs and leaves merit further analysis. An in-hub is a

gene that has more than two incoming edges, and a leaf is a

terminal gene that has exactly one incoming edge. Table 4

provides a quantitative summary of these qualitative visualisations.

Table 4 was calculated by counting the number of leaf edges

(leaf#) and in-hub edges (in-hub#) with respect to the occurrence

of red, green, blue and black edges (Emmert-Streib and Altay,

2010). One can observe in Table 4 that, in general, the black and

Table 3. Summary of motif statistics for FTCCT, FICPT and RN.

Measure/motif type 1 2 3 4

#m 5 10 18 0

FTCCT (p) 0.6927536 0.668116 0.5716586 0

FICPT (p) 0.7275362 0.5318841 0.5764896 0

RN (p) 0.3942029 0.2536232 0.510467 0

doi:10.1371/journal.pone.0028713.t003

Table 4. Summary statistics for leaf and hub edges for FTCCT,
FICPT and RN.

FTCCT

Measure/edge type Red Green Blue Black

True network (#) 6 1 0 10

True network (%) 35.3 5.89 0 58.8

Leaves (#) 1 0 0 6

Leaves (% EL) 14.3 0 0 85.7

Leaves (% Net) 5.88 0 0 35.3

In-hubs (#) 1 0 0 6

In-hubs(% EL) 12.5 0 0 75

In-hubs(% Net) 5.88 0 0 35.3

FICPT

Measure/edge type Red Green Blue Black

True network (#) 5 1 1 10

True network (%) 29.4 5.88 5.88 58.8

Leaves (#) 1 0 0 6

Leaves (% EL) 14.3 0 0 85.7

Leaves (% Net) 5.88 0 0 35.3

In-hubs (#) 1 0 0 4

In-hubs(% EL) 12.5 0 0 50

In-hubs(% Net) 5.88 0 0 23.5

RN

Measure/edge type Red Green Blue Black

True network (#) 10 4 1 2

True network (%) 58.8 23.5 5.88 11.8

Leaves (#) 2 2 1 2

Leaves (% EL) 28.57 28.57 14.29 28.57

Leaves (% Net) 11.76 11.76 5.88 11.76

In-hubs (#) 5 1 0 0

In-hubs(% EL) 83.33 16.67 0 0

In-hubs(% Net) 29.4 5.88 0 0

Leaves (% EL) refers to the percentage of leaf edges of a certain colour with
respect to the total number of leaf edges, and leaves (% Net) refers to the
percentage of leaf edges of a certain colour with respect to the entire network.
Correspondingly for in-hubs. (In-hubs (%EL) refers to the percentage of in-hub
edges of a certain colour with respect to the total number of in-hub edges, and
In-hubs (%Net) refers to the percentage of in-hub edges of a certain colour with
respect to the entire network.)
doi:10.1371/journal.pone.0028713.t004
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red leaf edges are much more frequent than the blue and green

leaf edges. Likewise for the in-hub edges red and black edges are

much more frequent than blue and green edges. Table 4 suggests

that, in general, the probability for black edges (FTCCT = 58.8%

and FICPT = 58.8%) is greater than that of red edges

(FTCCT = 35.5% and FICPT = 29.4%) while RN shows a higher

probability of red edges (58.8%) than the other types of edges

(black edges (11.8%), green edges (23.5%) and blue edges (5.88%))

with respect to the entire network. For leaf nodes, the probability

of black leaf edges was 85.7% for both FTCCT and FICPT, but

that of red leaf edges was only 14.3%. For RN, this situation is

reversed. In-hub edges show almost the same systematic bias for

FTCCT and FICPT as shown by leaf edges, with a tendency

towards black edges rather than red edges. Again for RN, the

situation is reversed. This finding implies a systematic bias for

FTCCT and FICPT towards better inference of the true network

compared to RN.

Reliability evaluation
Benchmark for reliability evaluation #4: Are FTCCT and

FICPT more reliable than the single reverse-engineering

methods. Breast cancer data: Three breast cancer expression

datasets have been used to analyse the reliability and

reproducibility of ARACNe, CLR, MRNET, BN, RN, FTCCT

and FICPT. We used CAT plots for reliability measurements. We

followed the method introduced by [36] to produce CAT plots

with one exception; we replace differentially expressed genes with

a hub of the gene network. A master gene connected to other

genes to form a hub. Genes connected to the master gene,

excluding the master gene itself are ranked at the end of the

process. Briefly, we chose the BRCA1 gene as the master gene and

took its hub as a benchmark study. For the three cancer datasets,

three ranked lists that contain the BRCA1 hub are produced. The

first step in producing CAT plots for the biological network is to

compare the top n genes identified in ranked list 1 and 2, treating

the top n genes identified in the third dataset as a reference.

Subsequently, CAT plots for the single reverse-engineering

methods can be produced. For meta-analysis, two rather than

three ranked lists are produced; the first ranked list is generated

by applying meta-analysis approaches (FICPT and FTCCT) to

the first and third datasets. Subsequently, the meta-analysis

approaches are applied to the second and third datasets to

produce the second ranked list. Lastly, the ranked lists are

compared to produce CAT plots for meta-analysis. The CAT plots

show the percentage in common among the top genes that have

significant associations with BRCA1. Because, we would expect a

sizeable number of gene interactions, the CAT plots are drawn for

the top 500 genes, as shown in Fig. 5. In Fig. 5, ‘meta’ represents

FTCCT and FICPT, and ‘individual’ represents ARACNe, CLR,

MRNET, and RN. The CAT plot for BN was dropped because

the datasets are too large to be inferred by Bayesian approaches.

FTCCT and FICPT, in general, had higher reliability than the

single reverse-engineering methods, suggesting that the results are

more likely to be reproduced by an independent study. For

example, the rediscovery rate was above 60% for FTCCT and

FICPT, while it was below 50% for ARACNe, CLR, MRNET

Figure 4. Visualisation of the results for FTCCT (A), FICPT (B) and RN (C) for an ensemble of size 24 containing 15 nodes. The colour of
each edge reflects its mean TPR. Specifically, for black edges, 1$TPR.0.75; for blue edges, 0.75$TPR.0.5; for green edges, 0.5$TPR.0.25; and for
red edges, 0.25$TPR.0.0.
doi:10.1371/journal.pone.0028713.g004
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and RN. These rates are consistent with the simulation study, in

which FTCCT and FICPT yielded more robust gene interactions

based on ensemble evaluations, leading to both higher

reproducibility and increased specificity.

Colorectal cancer data: Three colorectal cancer datasets were

downloaded from a public repository (NBI). The CAT plots for

both the single reverse-engineering methods and the meta-analysis

approaches were produced by the same procedures as when

BRCA1 was the hub. Consistent with previous CAT plot results

from the breast cancer data, Fig. 5 confirmed the higher re-

discovery rate for FTCCT and FICPT compared to ARACNe,

CLR, MRNET and RN.

Discussion

Our results show that in practice, meta-analysis approaches

perform better than individual reverse-engineering methods and

drastically improve the accuracy and reliability of predictions from

noisy datasets, as shown in simulated gene network and

experimental datasets. The meta-analysis approaches in this paper

were used to construct an ensemble of consistent and good-scoring

networks, in contrast to the results of individual reverse-

engineering methods. The reconstruction of a gene network by

individual reverse-engineering methods often aims to reliably find

the best-scoring network. Compared to generating gene networks

from individual reverse-engineering methods, the complexity of

meta-analysis approaches is negligible. It means that the meta-

analysis approaches entail little additional complexity and they are

not nearly as complex as the individual reverse-engineering

methods. Thus, scalability to larger networks is possible using

meta-analysis approaches. In this paper, we only considered small

networks, and we plan to study the performance of meta-analysis

on different network sizes in the future. The meta-analysis

approach holds promise for improving the accuracy of any

reverse-engineering method than can produce sufficiently diverse

network predictions.

Performance evaluations
Overall, meta-analysis approaches significantly outperform

single reverse-engineering methods. In this paper, we accumulated

inconsistent scoring networks generated by RN from multiple

datasets to be integrated by meta-analysis approaches to produce

more consistent and better-scoring networks. However, integrating

datasets using conventional methods, such as copula-transform, to

increase the AUC seems to have been ineffective at increasing the

performance of any of the reverse-engineering methods. This

finding indicates that using copula-transform may generate

varying AUCs for any reverse-engineering method across datasets

but neither significantly increases nor decreases their performance

owing to data normalisation issues and a lack of temporal re-

lationships among the datasets. Moreover, the median AUCs of

both meta-analysis approaches outperformed BNs, suggesting that

FTCCT and FICPT can increase the performance of individual

inferring reverse-engineering methods on par with BNs, or even

higher. This performance improvement occurs because meta-

analysis approaches provide a systematic integrating framework

compared to the copula-transform technique. As shown in

previous results, significantly better AUCs for both FTCCT and

FICPT compared to ARACNe, CLR, MRNET and RN indicate

the usefulness of these meta-analysis approaches in increasing the

number of true associations detected across datasets.

The tIDRs of FTCCT and FICPT were somewhat higher than

the tIRRs of ARACNe, CLR, MRNET and RN. In the other

Figure 5. CAT plots of the breast cancer (left panel) and colorectal cancer (right panel) data. META represents FTCCT and FICPT, and
INDIVIDUAL represents ARACNE, CLR, MRNET and RN. The black solid horizontal line indicates 50% agreement. The horizontal axis shows the size of
the list, which is the number of genes. The line with solid circles represents META, and the line with open circles represents INDIVIDUAL.
doi:10.1371/journal.pone.0028713.g005
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words, we found that FTCCT and FICPT produce higher rates of

true associations compared to ARACNe, CLR, MRNET and RN.

The discovery rates also indicate that FTCCT and FICPT are

more robust than ARACNe, CLR, MRNET and RN (excluding

BN) and demonstrate that FTCCT and FICPT could somewhat

overcome some problems suffered by individual reverse-engineer-

ing methods. As shown, we used the most stringent threshold for

producing tIDR and tIRR (1e-12), yet both meta-analysis

approaches still uncovered more true associations than any of

the individual reverse-engineering methods.

We also examined the results at the level of individual edges to

gain insight into how FCCT and FICPT can increase the

performance of RN with ensemble evaluations. From simulation

studies, one can see that the AUC of a single RN is not

homogeneous across datasets but varies considerably across the

whole network. One can see the effects of this inconsistency on

network predictions in that a single RN can infer motif type 3 well

but is less effective for motif types 1 and 2 across datasets. The

inconsistency can also be observed where there are more red edges

than black in the gene network inferred by RN. In contrast,

FTCCT and FICPT diluted this inconsistency by effectively

predicting all three motifs and increasing the proportion of black

edges in the gene network. Thus, the high performance of these

meta-analysis approaches occurs because the approaches are not

biased towards any particular motifs in biological networks.

Incorporating more motifs that can be reliably inferred by any

reverse-engineering method could subsequently increase the

performance of these methods such that more black edges than

red edges would be present in the gene network. However, motif

type 4 has not been investigated.

Reliability evaluations
Inconsistency in reconstructing gene networks could also be

measured using CAT plots. CAT plots measure both the reliability

and reproducibility metrics of reverse-engineering methods in

inferring and predicting gene networks. In our case, reliability

indicates consistency, and the more consistent the gene network,

the more accurate the predictions. Poor reproducibility and

reliability have been major concerns, discouraging some biologists

from trusting the results of microarray experiments. CAT plot

results reveal that FTCCT and FICPT produce more reliable and

reproducible results than ARACNe, CLR, MRNET and RN. It

appears that FTCCT and FICPT consistently have the highest

reproducibility/specificity in real biological datasets, regardless of

the scale of heterogeneity among the datasets. This result also

suggests that the gene networks produced by FTCCT and FICPT

are more robust against noise and other hidden variables that

might be embedded in different biological samples and datasets.

In conclusion, meta-analysis approaches have an intuitive

appeal, and the results from this paper show that they work well

in practice. We hope that the encouraging results presented here

will stimulate further research on this topic.
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