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Benjamin B. Wheatley*

Department of Mechanical Engineering, Bucknell University, Lewisburg, PA, United States

Introduction: The passive stiffness of skeletal muscle can drastically affect muscle

function in vivo, such as the case for fibrotic tissue or patients with cerebral palsy. The

two constituents of skeletal muscle that dominate passive stiffness are the intracellular

protein titin and the collagenous extracellular matrix (ECM). However, efforts to correlate

stiffness and measurements of specific muscle constituents have been mixed, and

thus the complete mechanisms for changes to muscle stiffness remain unknown. We

hypothesize that biaxial stretch can provide an improved approach to evaluating passive

muscle stiffness.

Methods: We performed planar biaxial materials testing of passively stretched skeletal

muscle and identified three previously published datasets of uniaxial materials testing.

We developed and employed a constitutive model of passive skeletal muscle that

includes aligned muscle fibers and dispersed ECM collagen fibers with a bimodal von

Mises distribution. Parametric modeling studies and fits to experimental data (both

biaxial and previously published) were completed.

Results: Biaxial data exhibited differences in time dependent behavior based on

orientation (p < 0.0001), suggesting different mechanisms supporting load in the

direction of muscle fibers (longitudinal) and in the perpendicular (transverse) directions.

Model parametric studies and fits to experimental data exhibited the robustness of the

model (<20% error) and how differences in tissue stiffness may not be observed in

uniaxial longitudinal stretch, but are apparent in biaxial stretch.

Conclusion: This work presents novel materials testing data of passively stretched

skeletal muscle and use of constitutive modeling and finite element analysis to explore

the interaction between stiffness, constituent variability, and applied deformation in

passive skeletal muscle. The results highlight the importance of biaxial stretch in

evaluating muscle stiffness and in further considering the role of ECM collagen in

modulating passive muscle stiffness.

Keywords: muscle stiffness, extracellular matrix, modeling, finite element, non-linear, hyperelastic

INTRODUCTION

The human body is comprised of roughly 40% skeletal muscle – the tissue that drives locomotion,
enables fine movements, and provides the capability to breathe in humans and animals alike. This
is due to the innate ability of skeletal muscle to generate contractile force and thus drive movement
of our musculoskeletal system. While skeletal muscle is a highly adaptable and regenerative tissue

Frontiers in Physiology | www.frontiersin.org 1 August 2020 | Volume 11 | Article 1021

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2020.01021
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2020.01021
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2020.01021&domain=pdf&date_stamp=2020-08-20
https://www.frontiersin.org/articles/10.3389/fphys.2020.01021/full
http://loop.frontiersin.org/people/888750/overview
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


Wheatley Muscle Stiffness and Biaxial Stretch

(Lieber, 2010; Lieber et al., 2017), neuromuscular conditions
such as cerebral palsy, sarcopenia, and damage from acute injury
can severely limit the ability of skeletal muscle to function
properly (Lieber, 2010). Reductions in contractile capabilities can
greatly impair muscle, howevermore recent work has highlighted
the effects of passive muscle stiffness on form and function
(Lieber and Fridén, 2019).

Dramatic increases in passive muscle stiffness, for example,
can be detrimental for patients with cerebral palsy in comparison
to healthy persons (Chapman et al., 2016; Lieber and Fridén,
2019). It follows then that understanding what mechanism(s)
and/or constituent(s) in skeletal muscle dictate stiffness is
necessary to treat these conditions and prevent extreme
impairment. The two constituents that are recognized as the
major contributors to the tensile stiffness of passive skeletal
muscle are (1) muscle fibers (cells), and (2) the collagenous
extracellular matrix (ECM) that provides the hierarchical
organization of skeletal muscle (Huijing, 1999; Gillies and
Lieber, 2011; Brynnel et al., 2018; Meyer and Lieber, 2018).
Passive muscle stiffness has a non-linear and anisotropic nature
that has been shown to vary between species and different
muscles (Mohammadkhah et al., 2016). It should be noted here
that throughout the manuscript we use the term “stiffness”
to represent the intricate non-linear, anisotropic, and variable
tensile material properties of passive skeletal muscle, and not
the structural property k often used in Hooke’s Law that
characterizes the structural stiffness of a physical object with
specific dimensions and material properties.

Uniaxial tensile testing of longitudinal (along-fiber) muscle
samples are the most common approach for evaluating tensile
stiffness (Calvo et al., 2010; Sato et al., 2014; Lieber and Fridén,
2019). Other efforts to characterize the anisotropy of passive
muscle have employed uniaxial stretch in both the longitudinal
and transverse (cross-fiber) directions (Morrow et al., 2010;
Takaza et al., 2012; Mohammadkhah et al., 2016; Wheatley et al.,
2016b). However, during contraction and passive stretch, force
is transmitted laterally both within skeletal muscle and between
muscles (Huijing, 1999; Ramaswamy et al., 2011; Maas, 2019;
Csapo et al., 2020), suggesting that muscle tissue is subject to a
multi-axial stress state in vivo. This is further supported by the
structure of the ECM, which consists of collagen fibrils that are
dispersed around the transverse plane (Purslow, 1989; Purslow
and Trotter, 1994; Gillies and Lieber, 2011). These observations
raise the question as to whether uniaxial stretch is thus the
most appropriate in vitro experimental technique to evaluate the
stiffness of passively stretched muscle, or if multi-axial materials
testing may provide certain benefits.

We propose the use of a biaxial tensile deformation as a
method to elucidate the passive stiffness of skeletal muscle
and have developed and employed both experimental and
computational efforts to this end. This method tensions both
the longitudinal (along-fiber) and transverse (cross-fiber)
orientations simultaneously, which may enact mechanisms
that are not observable with uniaxial stretch. Finally, we
have previously shown the importance of stress relaxation
in modeling passive muscle stiffness (Wheatley et al.,
2016a,b), thus time dependence may also provide further

insight into muscle stiffness and load sharing between muscle
fibers and the ECM.

We also propose the use of computational modeling –
in particular finite element analysis (FEA) – to study the
passive response of skeletal muscle under both uniaxial and
biaxial stretch. We aim to use a continuum-level constitutive
model that accounts for stiffness of muscle fibers and the
ECM and can capture the variability of stress-stretch behavior
that has been observed experimentally (Mohammadkhah et al.,
2016). FEA provides a scalable, robust computational tool to
simulate skeletal muscle behavior (Jenkyn et al., 2002; Oomens
et al., 2003; Blemker et al., 2005; Böl and Reese, 2008).
Previous studies include models of muscle at the tissue level
(Takaza et al., 2013; Wheatley et al., 2017b), whole muscle
level (Blemker et al., 2005; Böl, 2010; Wheatley et al., 2018),
with idealized geometries (Jenkyn et al., 2002; Lemos et al.,
2008; Chi et al., 2010), and may incorporate the observed
anisotropic (Van Loocke et al., 2006; Böl et al., 2014; Pietsch
et al., 2014; Mohammadkhah et al., 2016; Wheatley et al.,
2016b), hyperelastic (Meyer and Lieber, 2011; Gras et al.,
2012; Simms et al., 2012; Wheatley et al., 2016a), and time
dependent (Van Loocke et al., 2008; Gras et al., 2013; Wheatley
et al., 2016a,c) characteristics of passive skeletal muscle. Thus,
FEA is well-suited as a method to explore the tissue-level
mechanics of muscle tissue across experimental data sets and
loading conditions.

Comprehensively, we aim to explore if experimental and
computational efforts to characterize passive muscle stiffness
may be enhanced by biaxial stretch by (1) performing
planar biaxial materials testing on passive skeletal muscle, (2)
developing and employing a robust continuum-level constitutive
model of muscle that captures uniaxial and biaxial stress-
stretch behavior, and (3) using such a model to explore the
similarities and differences between uniaxially and biaxially
stretched muscle.

MATERIALS AND METHODS

Experimental Planar Biaxial Testing
Porcine hind limbs were acquired from a local abattoir on the
day of sacrifice for testing. Tissue was cooled and stored at 0◦C
prior to testing. No live animal handling was performed by any
participants in this study. A total of four animals, seven muscles,
and n = 16 total samples were used for testing. The biceps femoris
muscle was harvested using standard dissection scalpels. Muscles
were sliced along the orientation of fibers with a custom tool that
provides 10 mm spacing between the dissection top and a high-
profile histology blade (Labus and Puttlitz, 2016). Each ∼10 mm
thick sample was then cut into a cruciform shape with a custom
cruciform press, aligning the muscle fibers with one cruciform
arm (Figure 1). Sample thickness was measured with a caliper
mounted on a test stand that was zeroed to the stand platform.
Thickness values were recorded in five locations on each sample –
in the center of the sample and toward each cruciform arm – and
averaged. Mean sample thickness was 8.90 mm with a standard
error of 0.29 mm across the five measurements.
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FIGURE 1 | Planar biaxial materials testing overview, with (A) cruciform geometry, (B) representative planar biaxial sample, where the white arrow denotes the

longitudinal direction and the white dashed square denotes approximate DIC region of interest (ROI), and (C) experimental stress-relaxation loading protocol

schematic (note that axes are not to scale).

All materials testing was performed on a planar biaxial
material testing system with 50 lb (∼220 N) load cells. Samples
were gripped with 25 mm pyramid grips with an initial spacing
of 30 mm between grips. Samples were subject to ten equibiaxial
preconditioning cycles of 10% grip-to-grip strain (3 mm) and
back to zero at 0.5 Hz prior to testing (Van Ee et al., 2000).
A 0.02 N equibiaxial pre-load was then applied immediately prior
to testing. The testing protocol included an equibiaxial ramp of
20% nominal (grip-to-grip) strain (6 mm) at 10%/s followed by
a hold until 400 s to allow for tissue stress relaxation. Samples
were then subject to equibiaxial constant rate stretch at 0.1%/s
nominal (grip-to-grip) strain (0.03 mm/s) until failure. Failure
was manually identified post hoc in stress-time curves where
significant (>∼10%) decreases in stress were observed.

Digital image correlation software (Correlated Solutions, Inc.)
was used to track strain during the constant rate ramp pull in
a ∼10 × 10 mm region of interest (ROI) in the center of the
sample. A solid in a reference configuration X that undergoes
a deformation under an external load is placed into a deformed
configuration x, which is described by the deformation gradient
F (Eq. 1). For a 2D problem such as a single camera digital
image correlation system, F is a 2 × 2 matrix of the deformations
relative to orthogonal axes (Eq. 1). From F, 2D muscle ROI
stretch λ (Eq. 2) can be calculated for the longitudinal and
transverse orientations (Szczesny et al., 2012). Nominal (grip-
to-grip) stretch was measured directly from grip displacement.
Nominal stress S was determined by dividing load cell force by
the product of sample arm length (30 mm) and mean sample
thickness. A linearized modulus E = 1S

1λ
was calculated from

the initial and final points of the constant ramp pull data. For
comparative purposes between orientations, we used nominal
stress and implemented a finite element model to determine ROI
Cauchy (true) stress and material properties. All stress-stretch
data were averaged either over time (for stress-relaxation data)
or over stretch (for constant ramp pull data) for model fitting.

F =
∂x

∂X
=

[

F11 F12
F21 F22

]

(1)

λ1 =
|∂x1|

|∂X1|
(2)

Constitutive Modeling
For a 3D solid subject to an external load, the governing linear
momentum balance (Newton’s second law) can be written as
Eq. 3 and the governing angular momentum balance can be
written as Eq. 4, where σ is the Cauchy (true) stress, ρ is the
density of the solid, b is the body force vector, and a is the
acceleration vector. Assuming equilibrium with negligible body
force, Eq. 3 reduces to ∇ · σ = 0. For full derivations and further
reading, the reader is directed towardHolzapfel’sNon-linear Solid
Mechanics (Holzapfel, 2000).

∇ · σ + ρb = ρa (3)

σji = σij (4)

The mechanical properties of musculoskeletal soft tissues such as
skeletal muscle are often modeled with a strain energy density
function, including any specified intricacies such as non-linearity,
anisotropy, and nearly incompressibility. To characterize the
variable nature of passive muscle anisotropy and non-linearity
(Mohammadkhah et al., 2016), we have employed a continuum
model 9tot that includes contributions of an isotropic ground
matrix 9̄iso, muscle fibers 9̄fibers, the collagenous ECM 9̄ECM,
and a volumetric response 9vol (Eq. 5). As muscle exhibits nearly
incompressible behavior (Van Loocke et al., 2006; Takaza et al.,
2012), this formulation features a decoupled deviatoric response
9̄ = 9̄iso + 9̄fibers + 9̄ECM and a dilatational response 9vol.
Here deformation is characterized by the volume ratio J, the

deviatoric right Cauchy–Green deformation tensor C̄ = J−
2
3 F

T
F,

the first deviatoric invariant of C̄ denoted by Ī1, and the deviatoric
pseudo-invariant Ī4 = m · C̄ · m that measures the square of
muscle fiber stretch whose direction is defined by the unit vector
m (Holzapfel, 2000). The Cauchy (true) stress σ can then be
defined as a function of the constitutive model (Eq. 6, where
dev(−) is the deviatoric operator, p is hydrostatic pressure and I

is the identity matrix) (Holzapfel, 2000; Maas et al., 2012). While
further detail is provided below regarding specific constitutive
relations, the general model employed here is an uncoupled,
fiber-reinforced material with two families of fibers – aligned
muscle fibers and bimodal, continually distributed ECM collagen
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FIGURE 2 | Schematic of passive muscle model for extracellular matrix and

muscle fibers. A representative 2D square of muscle tissue shows the

longitudinal or muscle fiber direction (red) and two families of collagen fiber

dispersion (green) offset from the muscle fiber direction by an angle γ.

TABLE 1 | All model material parameters and units, with fixed values provided and

omitted values for parameters that were varied in this study.

Model component Parameters

Isotropic matrix 9̄iso c1 = 0.1 (kPa)

Muscle fibers 9̄fibers ξ (kPa) β (−)

Muscle ECM 9̄ECM µ (kPa) γ (deg) d (−)

Volumetric response 9vol κ = 10,000 (kPa)

Viscoelasticity gi (−) τi = 0.05, 1, 20, 400 (sec)

fibers (Figure 2; Yousefi et al., 2018; Bleiler et al., 2019). This
formulation attributes muscle fibers and the ECM as the main
load-bearing constituents in passively stretched muscle (Smith
et al., 2019).

9tot

(

C̄, J
)

= 9̄iso

(

Ī1
)

+ 9̄fibers

(

Ī4
)

+ 9̄ECM

(

C̄
)

+ 9vol (J)
(5)

σ = dev

(

2J−1
F̄

∂9̄

∂C̄
F̄
T
)

+ pI (6)

The isotropic ground matrix model was modeled with an
uncoupled neo-Hookean strain energy density formulation, and
the volumetric term with a logarithmic function (Eqs 7 and
8, where c1 is a shear-like modulus and k is a bulk-like
modulus). Due to the highly anisotropic, non-symmetric, and
nearly incompressible nature of skeletal muscle (Van Loocke
et al., 2006; Takaza et al., 2012; Mohammadkhah et al., 2016), c1
was selected as a low (but non-zero) constant value for this study
and k was selected to ensure near-incompressibility, as provided
in Table 1.

9̄iso

(

Ī1
)

= c1
(

Ī1 − 3
)

(7)

9vol (J) =
k

2

(

ln J
)2

(8)

The muscle fiber contribution term was defined as a power law
to model non-linear stress-stretch behavior of passive muscle
when stretched in the direction of muscle fibers (Eq. 9, where
ξ is a modulus-like parameter and β is the power parameter)
(Takaza et al., 2012; Wheatley et al., 2016b). The ECM strain
energy density function defines the behavior of a continually
dispersed, 3D bimodal von Mises distribution of tension-only

fibers (Ateshian et al., 2009). The formulation presented here
is modified from an ellipsoidal bivariate von Mises distribution
to describe the anisotropic and inhomogeneous collagen fiber
distribution in articular cartilage (Zimmerman and Ateshian,
2019). Due to the continually dispersed nature of the fibers,
the strain energy density function is an integration over a unit
sphere of volume V of the product of the distribution R (n)

(where n is the orientation of the ECM collagen fibers) and
the fiber constitutive law 9̄n (Eq. 10). The distribution R (n) is
further broken into two functions using spherical angle functions
P (θ) (where θ is the azimuth angle) and Q (ϕ) (where ϕ is
the declination angle) (Eq. 11). If one assumes that the ECM
fibers have no directional preference in the transverse plane
(perpendicular to muscle fibers), then P (θ) decomposes to the
circle equation (Eq. 12). The remaining dispersion term, Q (ϕ)

describes the ECM collagen fiber dispersion in the along-fiber
plane (Figure 2) with a bimodal von Mises function that includes
the primary ECM collagen fiber orientation angle γ (the angle of
offset frommuscle fibers to ECM collagen fibers) and a dispersion
term d that characterizes the degree of alignment of ECM
collagen fibers (Eq. 13). This equation also includes an integration
term q

(

d, γ
)

that enforces ∫ R (n) dV = 1. By varying the ECM
orientation angle γ and the dispersion term d, the relative density
of ECM collagen fibers can be continuously defined throughout
the solid. Finally, a neo-Hookean type fiber constitutive law was
used for the ECM collagen fibers (Eq. 14), with a modulus µ

that is a function of the square of the collagen fiber stretch Īn
(FEBio User Manual 2. 8, 2018). These formulations also assume
that fibers (both muscle fibers and ECM collagen fibers) can only
sustain tension, not compression (Weiss et al., 1996).

9̄fibers

(

Ī4
)

=
ξ

β

(

Ī4 − 1
)β

(9)

9̄ECM (C) = ∫ R (n) 9̄n

(

Īn
)

dV (10)

∫ R (n) dV = 1 = ∫ P (θ) Q (φ) dV (11)

P (θ) =
[(

cos2 θ + sin2 θ
)]−1/2

(12)

Q (φ) =
1

q
(

d, γ
)

{

exp
[

2d cos2 (φ + γ)
]

+ exp
[

2d cos2 (φ − γ)
]}

(13)

9̄n

(

Īn
)

=
µ

4

(

Īn − 1
)2

(14)

A quasi-linear Prony series viscoelastic formulation was used
to model stress-relaxation of passively stretched skeletal muscle
(Wheatley et al., 2016a). Briefly, the deviatoric stress σ̄ can be
defined as a function of a convolution integral (Eq. 15, where
G(t) is the relaxation function, t is time, and ζ is an integration
variable). A Prony series relaxation function (Eq. 16) enables the
use of viscoelastic coefficients gi and associated time constants τi
that characterize the amount and rate of relaxation, respectively.
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FIGURE 3 | (A) Representative color contour plot of longitudinal (horizontal) stretch from digital image correlation. (B) Deformed symmetric cruciform finite element

model with model ROI (black dashed line) symmetric boundary conditions (note that Z-symm is on the bottom, hidden face), and color contour plot of longitudinal

stretch. (C) Deformed symmetric cruciform finite element model, showing initial cross-sectional area and reaction force at the model boundary (grip locations) used

to determine model nominal stress. (D) Undeformed and deformed single element finite element model. Model Cauchy stress was directly output from the single

element.

For this study, we fixed τi terms as spaced parameters to ensure
a broad range of relaxation rates (Table 1) and varied gi terms
(Vaidya and Wheatley, 2019).

σ̄ (t) =
t
∫

−∞
G (t − ζ)

dσ̄

dζ
dζ (15)

G (t) = 1 +

4
∑

i=1

giexp

(

−
t

τi

)

(16)

Finite Element Modeling
All finite element modeling results presented here were
conducted using the open source finite element package FEBio
(Maas et al., 2012). A custom plugin was written to apply the
bivariate vonMises distribution of the ECM collagen fibers R (n).
To model biaxial stretch, a symmetric, eighth cruciform finite
elementmodel consisting of 2,184 linear hexahedral elements was
developed (Figure 3B). This model was chosen to represent a
cruciform 30 mm × 30 mm in width and height and a thickness
of 8.9 mm. In addition to symmetric boundary conditions
(Figure 3B), the face of each cruciform arm was fixed to a rigid
body and subject to displacements to mimic the experimental
protocol (Figure 3C). Reaction force divided by initial arm cross
sectional area was calculated as nominal stress and total model
length was divided by initial model length to determine nominal
stretch. By using the solid mixture capabilities in FEBio, separate
viscoelastic parameters were assigned to the stress contributions
from the muscle fibers and ECM.

Constitutive parameters were optimized to experimental data
by fitting model nominal stress to experimental nominal stress.

Model ROI stretch was calculated based on the position of
model ROI surface nodes similar to experimental stretch (Eqs
1 and 2), then used as a validation to experimental DIC stretch
(Figures 3A,B). Parameter optimization was completed in two
steps – first the viscoelastic Prony series parameters were fit
to normalized stress-relaxation data for both the longitudinal
and transverse directions, then hyperelastic parameters were fit
to the full set of longitudinal and transverse stress data. This
approach has the advantage of reducing the overall number
of parameters needed to be optimized at any given step in
the process by first determining stress relaxation behavior and
then hyperelastic stiffness (Vaidya and Wheatley, 2019). All
optimization was performed inMATLAB using constrained non-
linear optimization (lsqnonlin) by varying model parameters
and minimizing the sum of squared residuals between model
(σm) and experimental (σe) stresses as an objective function obj
across all experimental data points (total number npts) (Eq. 17).
Nominal stress was used for fitting of our cruciform finite
element model (Figure 3C) to planar biaxial experimental data
as Cauchy (true) stress cannot be estimated from experimental
planar biaxial tests without a correction factor, which is typically
determined from FEA.

obj =

npts
∑

i=1

(

σei − σmi
)2

(17)

For comparisons across previously published experimental
studies of uniaxial stretch of passive skeletal muscle, a simplified
approach of a single linear hexahedral finite element model
was implemented (Figure 3D). Three previously published
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TABLE 2 | Summary of data of passively stretched skeletal muscle

used in this study.

Study Species and muscle Direction tested

Biaxial data – this study Porcine biceps femoris Longitudinal and

transverse biaxial

Wheatley et al., 2016b Lapine tibialis anterior Longitudinal and

transverse

Mohammadkhah et al., 2016 Chicken pectoralis Longitudinal,

transverse, and 45◦

Takaza et al., 2012 Porcine longissimus dorsi Longitudinal,

transverse, and 45◦

studies of materials testing of skeletal muscle under uniaxial
tension were identified (Table 2). These studies provide a range
of data across species, muscles, and orientations for model
comparison and fitting. The finite element model was fit to
the experimental studies by comparing literature Cauchy (true)
stress to model Cauchy stress as a function of directional stretch.
Data from Wheatley et al. (2016b) were zeroed following an
initial stress-relaxation phase for consistency with other data.
Following all model fitting, optimized parameters for each data
set were used to simulate stress-stretch behavior under uniaxial
and equibiaxial stretch. Finally, a simple parameter study was
conducted to further highlight the differences in stress-stretch
behavior between uniaxial and biaxial stretch. Cauchy stress was
used for fitting to previously published uniaxial data and for
parametric studies as it requires fewer assumptions to estimate
than under biaxial conditions, Cauchy stress is reported in
the literature cited here, and the use of Cauchy stress allows
for a simplified single element finite element model. No stress
conversions were calculated directly from a push forward or pull
back operation in this work, as all planar biaxial model fitting
used nominal stress only, and all uniaxial and parametric studies
used Cauchy stress only.

To summarize, we fit the cruciform finite element model
to planar biaxial data, then used the optimized parameters
to simulate uniaxial stretch. Conversely, we fit the simplified
finite element model to uniaxial data from three different

previously published studies, then used the optimized parameters
to simulate biaxial stretch.

Statistics
Stress relaxation data were normalized to sample peak stress and
fit to a power law model (Eq. 18, where σn is normalized stress,
t is relaxation time, and a and b are power law coefficients)
to characterize the rate of relaxation between orientations. The
power law b coefficients (rate of relaxation), stress at three time
points – peak stress, end of relaxation, and end of ramp pull,
and linearized modulus from the pull phase were compared
between orientations using a paired t-test. A linear regression
was performed to investigate the potential effect of post-mortem
time on modulus for both directions. For all statistical tests,
significance was set at p < 0.05.

σn = atb (18)

Model fits to experimental data were evaluated with an average
percent error for each experimental data point, normalized root
mean square error (NRMSE, where 1 is a perfect fit and−∞ is the
worst possible fit), and root mean square error (RMSE, in kPa)
(Vaidya and Wheatley, 2019).

RESULTS

Experimental Planar Biaxial Data
Biaxial data showed that longitudinal direction nominal stress
was greater and decreased at a faster rate during stress
relaxation than transverse direction stress. This was supported
by both visual analysis of normalized relaxation (Figure 4A)
and statistical analysis (Figure 4B). Specifically, the paired
t-tests suggest that the power law b coefficient was greater
in the longitudinal orientation (p < 0.0001). Stress was
greater at the peak (p = 0.021), end of relaxation phase
(p = 0.037), and end of constant rate pull phase (p = 0.0063),
and the linearized modulus was greater in the longitudinal
direction versus the transverse direction (p = 0.028). The
power law fits provided excellent agreement to experimental

FIGURE 4 | (A) Normalized stress relaxation data (shown as dashed mean curves and standard error bars) and a power law fit to the mean data (shown as solid

curves). Note that power law fits and experimental data are visually overlapping and thus nearly indistinguishable. (B) Bar graphs for mean power law b coefficient,

stress data, and linearized modulus with standard error bars.
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FIGURE 5 | Experimental and model data of passive muscle subject to planar biaxial stretch. (A) Nominal stress relaxation step data (open circles with standard

error bars) and model fits (solid curves), with the first 10 s of these data for clarity shown at right, (B) longitudinal constant rate nominal stress-stretch curves for all

experimental samples (thin curves) and model (thick curve), (C) longitudinal constant rate ROI stretch-nominal stretch curves, (D) transverse constant rate nominal

stress-stretch curves, and (E) transverse constant rate ROI stretch-nominal stretch curves.

data visually (Figure 4A) and with mean R2 values of 0.985
and 0.974 for longitudinal and transverse data, respectively.
Linear regression results showed that modulus was not

correlated with post-mortem time (p > 0.6, R2 < 0.02 for
both directions).

Model Fitting
The use of constrained non-linear optimization produced a
strong fit of the biaxial finite element model to experimental
data, both for the stress relaxation phase as well as the constant
ramp pull phase. This is shown both visually (Figures 5A,B,D)
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TABLE 3 | Statistical fitting results between model and experimental stress-stretch

data.

Data Mean error (%) NRMSE (−) RMSE (kPa)

Biaxial data 0.960 0.959 1.35e-4

Biax stress relax 0.553 0.971 9.22e-5

Biax pull 2.09 0.910 3.91e-4

Wheatley 17.9 0.932 4.67

Takaza 10.7 0.852 4.73

Mohammadkhah 12.0 0.907 1.70

Data are given in mean percent error between model and experiment, normalized

root mean square error (NRMSE), and root mean square error (RMSE) for all data.

Biaxial data fits are provided for the overall data set as well as the stress relaxation

phase only and the constant rate pull phase only.

and through statistical analysis (NRMSE > 0.9, Table 3).
Measured experimental stretch in the sample ROI from digital
image correlation and predicted model ROI stretch are provided
for model validation (Figures 5C,D). The model showed
strong agreement to transverse stretch data, and overpredicted
longitudinal stretch somewhat.

The single element uniaxial model exhibited strong fitting
capabilities across all uniaxial stretch data sets as observed
visually (Figure 6) and by evaluating the statistical differences
between model outputs and experimental data (NRMSE > 0.85,
Table 3). Specifically, the model was able to match a wide
range of anisotropy and non-linearity between data sets,
including directions of greatest stiffness of the transverse
direction (Takaza et al., 2012; Wheatley et al., 2016b) and 45◦

(Mohammadkhah et al., 2016).
Optimized hyperelastic parameter values (Table 4)

demonstrate the variability of passive muscle material properties.
For the constitutive model used here, there was a particularly
wide range of muscle fiber stiffness ξ (4–110 kPa), ECMmodulus
µ (28–1,700 kPa), and ECM orientation angles γ (32–90◦). It
should be noted here that the Mohammadkhah et al. (2016)
chicken data best fit produced a negligible muscle fiber modulus,
hence the reported value of 0 kPa. Finally, to ensure a unique
set of parameters for each optimal fit, the ECM fiber dispersion
parameter d was fixed for some of the optimizations, as shown
in Table 4. Optimized viscoelastic parameter values (Table 5)
further highlight the differences in viscoelastic behavior between
orientations, as muscle fiber gi terms were larger than those
applied to the ECM term. This shows greater relaxation for the
muscle fiber term in comparison to the ECM term.

Modeling Biaxial and Uniaxial Stretch
Simulating both uniaxial stretch and biaxial stretch with each
optimized parameter set showed different effects of biaxial stretch
on model response (Figure 7 and Table 6). Specifically, stress-
stretch curves from Wheatley et al. (2016b). Parameters were
largely unaffected by biaxial versus uniaxial stretch, while biaxial
stretch greatly increased stiffness for the Mohammadkhah et al.
(2016). Parameter set. A parametric study of uniaxial and biaxial
stretch for two different parameter sets – one with Aligned fibers
and one with Dispersed fibers – shows the models exhibit nearly
identical stiffness behavior under uniaxial stretch (Figure 8A)

FIGURE 6 | Modeling fits to uniaxial tensile experimental data from the

previously published works of (A) Wheatley et al. (2016b), (B) Takaza et al.

(2012), and (C) Mohammadkhah et al. (2016). Experimental data are shown

as open circles and model data are solid curves.

but distinctly different behavior under biaxial stretch (up to
119% difference, Figure 8B). This was observed for both the
longitudinal and transverse directions, highlighting the role of the
dispersed ECM fibers and assumptions of anisotropy in altering
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TABLE 4 | Optimized parameter values from fits to various experimental data sets.

Data ξ (kPa) β (−) µ (kPa) γ (deg) d (−)

Biaxial Data 4.20 2.35 28.0 51.1 4*

Wheatley 5.66 2.79 223 90 4*

Takaza 34.7 3.78 1,680 64.3 3.83

Mohammadkhah 0 – 1,400 53.2 8.32

Asterisk denotes a fixed value of d = 4 due to lack of 45◦ experimental data.

TABLE 5 | Optimized viscoelastic parameters gi and associated time constants τi

from fits to planar biaxial experimental data.

gfiber
i

(−) gECM
i

(−) τi (sec)

12.9, 2.20, 0.832, 0.979 1.54, 0.634, 0.235, 0.263 0.05, 1, 20, 400

model behavior. Parameter values used (Table 7) fall within those
optimized to experimental data (Table 4).

DISCUSSION

Planar Biaxial Testing
We have presented here, to the best of our knowledge, the first set
of experimental data of passive skeletal muscle subject to planar
biaxial stretch. From these data, we determined that the porcine
hind limb tissue tested exhibited the following characteristics:
(1) faster relaxation for longitudinal samples (Figures 4A,B) and
(2) greater stiffness for the longitudinal direction (Figure 4B).
For the viscoelastic response, we previously measured greater
relaxation rate with greater longitudinal stiffness of muscle tissue
(Wheatley et al., 2016b), which agrees with the results seen here.
The differences in relaxation rate between orientations suggest
two mechanisms that support load in passively stretched skeletal
muscle. This observation is supported by ongoing efforts that
have shown that passive muscle stiffness in mammals is dictated
by both the collagenous ECM (Meyer and Lieber, 2011, 2018) and
muscle fibers themselves (Brynnel et al., 2018). Here we suggest
that both constituents may contribute to longitudinal stiffness,
and that measuring the anisotropic viscoelastic response may
further elucidate load sharing between constituents.

It is known that muscle exhibits stress relaxation at both the
muscle fiber level (Meyer et al., 2011; Rehorn et al., 2014) and
the whole muscle or tissue level (Best et al., 1994; Gras et al.,
2013;Wheatley et al., 2016a). Meyer et al. (2011) measured∼95%
stress relaxation when stretching muscle fibers at 2,000%/s and
∼80% stress relaxation at 20%/s, which exceeds stress relaxation
observed in highly collagenous tissues such as tendon (Atkinson
et al., 1999). Based on these findings and the observation
of less relaxation in the transverse direction from our data,
the ECM may exhibit less stress-relaxation than muscle fibers.
This requires further experimental efforts to confirm or deny,
however. To the best of our knowledge, there have been no
studies that have compared viscoelastic behavior between single
fiber and tissue level samples or have tried to measure the
viscoelastic properties of the ECM directly or indirectly. Such
a study would help contextualize tissue-level measurements of

FIGURE 7 | Stress-stretch curves for simulated uniaxial stretch (dashed) and

biaxial stretch (solid) for optimized parameters from (A) biaxial data presented

in this study, (B) Wheatley et al. (2016b), and (C) Mohammadkhah et al.

(2016). The increase in stress-stretch curve stiffness with biaxial stretch versus

uniaxial stretch is denoted with arrows. Note that some models predict a

negligible increase in stiffness (Wheatley) and others a major increase in

stiffness (Mohammadkhah).

longitudinal and transverse viscoelastic behavior in regards to the
contribution of muscle fibers and the ECM to tissue stiffness.

In comparison to previously published data, most studies of
passively stretched muscle have observed a greater stiffness in
the transverse direction in comparison to the longitudinal
direction, albeit to varying degrees (Takaza et al., 2012;
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TABLE 6 | Differences in Cauchy stress at λ = 1.3 between uniaxial and biaxial

stretch conditions for all optimized parameter sets.

Output Biaxial data Wheatley Takaza Mohammadkhah

Longitudinal – 18.5% 32.2% 92.2% 135%

kPa 3.69 3.42 89.8 135

Transverse – 100% 2.47% 24.8% 105%

kPa 4.45 1.68 86.8 166

Data are reported at a percent increase and absolute increase in kPa.

Mohammadkhah et al., 2016; Wheatley et al., 2016b). One
previous study observed greater stiffness in the longitudinal
direction (Morrow et al., 2010). These comprehensively suggest
that anisotropy may be variable in skeletal muscle and may
depend on a range of physiological factors. Exploring the link
between anisotropy and in vivo function was outside the scope of
this work but would be appropriate for future studies. We have
previously hypothesized that a greater longitudinal stiffness was
the result of rigor mortis (Wheatley et al., 2016b), however in this
work all testing in this study was completed within seven hours to
reduce this risk (Van Ee et al., 2000; Van Loocke et al., 2006) and
tissue stiffness was not correlated with post-mortem testing time
(p > 0.1, R2 < 0.2). It is thus unlikely that our data are driven
by rigor mortis alone. Use of a relaxing agent (Meyer and Lieber,
2018) could be used to further prevent the effects of post-mortem
stiffening. Nonetheless, the data presented here should not be
viewed as a comprehensive set of muscle material properties, but
as a validation of an experimental and computational technique
to investigate muscle stiffness.

Constitutive Modeling of Experimental
Data
Fitting results show the capability of our constitutive model
to accurately simulate the range of experimentally observed
anisotropic and non-linear stress-stretch behavior. This is shown
both visually (Figures 5, 6) and through statistical evaluation
(Table 3). We also used the experimental biaxial ROI stretch data

for model validation (Figure 5). These results comprehensively
suggest that our model is well-suited for studying the tissue-
level mechanics of passively stretched skeletal muscle. To
encourage a unique solution for each data set, the ECM
fiber dispersion parameter d was fixed based on a qualitative
comparison to muscle ECM fiber dispersion (Purslow and
Trotter, 1994). Additionally, dataset characteristics such as
viscoelasticity (biaxial data), data at 45◦ (Mohammadkhah and
Takaza), and non-linear longitudinal data (Wheatley) enforced a
unique solution for each optimization.

The constitutive model used in this study includes a non-
linear muscle fiber term 9̄fibers

(

Ī4
)

which is a function of
Ī4, the square of muscle fiber stretch. We chose to employ a
power law function for this term as it models the non-linear
stress-stretch response of muscle in the longitudinal orientation
(Mohammadkhah et al., 2016; Wheatley et al., 2016a) with
only two parameters. The optimized values for the modulus-like
parameter ξ (0–108 kPa) and for the power coefficient β (2.35–
3.78) are reasonable, although ξ = 0 for the Mohammadkhah
data is questionable. However, Mohammadkhah et al., 2016 data
was obtained from chicken pectoralis muscle tissue, which as
they note has a higher collagen content (Nishimura, 2010). This
may partially explain why our model optimization approach
identified a negligible muscle fiber modulus for this data set if
collagen is dominating the stress-stretch response. Our remaining
muscle fiber modulus-like values of 4.2–108 kPa compare
reasonably to experimental observations of ∼40 kPa in mice
(Meyer and Lieber, 2018).

Our model of muscle ECM 9̄ECM

(

C̄
)

describes the collagen
fibers with a neo-Hookean hyperelastic model (with a shear
modulus µ) and a bimodal von Mises distribution (with angle
γ and dispersion d). Our use of a single modulus term is
a simplification of a highly complex combination of ECM
collagen amount, type, crosslinking, and crimp. While these each
have been studied in regards to tissue stiffness through either
experimentation (Smith and Barton, 2014; Chapman et al., 2015;
Mohammadkhah et al., 2018; Lieber and Fridén, 2019; Smith
et al., 2019) or modeling (Gindre et al., 2013; Bleiler et al., 2019;

FIGURE 8 | Parametric study stress-stretch curves for (A) uniaxial stretch and (B) biaxial stretch. Note that for both models (Aligned – solid curves and Dispersed –

dashed curves) they exhibit nearly identical uniaxial behavior for both longitudinal (back curves) and transverse (blue curves), but distinctly different behavior when

subject to biaxial stretch, with percentage differences between Aligned and Dispersed shown at λ = 1.3.
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TABLE 7 | Parameter values for the models shown in Figure 8.

Model ξ (kPa) β (−) µ (kPa) γ (deg) d (−)

Aligned 130 2.25 275 90 8

Dispersed 0 – 475 60 3

Spyrou et al., 2019; Valentin and Simms, 2020), developing a
unique set of parameters from healthy tissue-level data that
incorporates each of these was outside of the scope of
this work. This also does not address the different layers
of ECM structure such as perimysium and endomysium.
We instead chose to use the approach of minimizing the
number of model parameters while ensuring a strong fit to
experimental data.

Purslow and Trotter (1994) measured muscle ECM collagen
fiber orientations under a range of physiological conditions
and found that the primary fiber alignment angle was
dependent on stretch, but ranged from ∼20–80◦. Qualitatively,
recent mammalian ECM scanning electron microscopy by
Sleboda et al. (2020) found that multilayered, collagen-rich
ECM was common between a range of species but that
microstructure was less consistent. These studies suggest that
ECM fiber angle and dispersion may vary with a range
of mechanical, anatomical, and physiological factors such
as animal size and muscle fiber type distributions. The
optimized ECM fiber angles we determined (32–90◦) thus
seem reasonable.

In considering specific modeling studies relevant to this
work, Yucesoy et al. (2002) modeled the muscle fibers and
ECM as distinct but linked constituents. Gindre et al. (2013)
developed a microstructural model of a muscle fiber wrapped
with a single family of dispersed ECM fibers to explore
titin and ECM contributions. Yousefi et al. (2018) showed
how a similar model of the ECM as the only load bearing
mechanism with two perfectly reinforcing fiber directions
can describe the observed anisotropy in passively stretched
bovine, porcine, and chicken muscle. Bleiler et al. (2019)
designed and formulated a passive constitutive model with
dispersed collagen fibers surrounding muscle fibers that could
be integrated into a finite element simulation. Teklemariam
et al. (2019) used a similar micromechanical approach with
distinct muscle fiber and ECM domains. Spyrou et al. (2019)
developed a multiscale model that employed homogenization
from a microstructurally derived model to a continuum-
level response.

While each of these studies present advantages for modeling
the passive response of skeletal muscle, we have chosen to use
a similar approach to Yousefi et al. (2018) with the extension
of the model to include ECM collagen dispersion and muscle
fiber stiffness. After applying assumptions for the low-stiffness
isotropic ground matrix (Wheatley et al., 2017a) and near-
incompressibility (Takaza et al., 2012), this model required five
parameters to describe the hyperelastic response – two for
the muscle fibers (stiffness and non-linearity) and three for
the ECM (stiffness, direction, and dispersion). The advantage
of this approach is a relatively low number of parameters

while still enabling model robustness. The use of a Prony
series viscoelastic model may increase the overall number of
parameters of the model, but as we have shown in this and
previous works (Vaidya and Wheatley, 2019), those parameters
can be optimized with a two-step fitting procedure. Based
on stress-stretch data alone, it would be unclear how load
is shared between the ECM and muscle fibers. However, the
stress-relaxation data shows distinct time dependent differences
between longitudinal and transverse stress relaxation rate
(Figure 4). This suggests load may be supported by both muscle
fibers and ECM, and perhaps more so the muscle fibers in the
longitudinal direction.

It should be noted that the model chosen here enables a wide
range of stress-stretch behavior and is generally informed by
muscle physiology, but is not derived from microstructure and
does not account for effects of interaction between the ECM
and muscle fibers. The parameters (such as ECM fiber angle and
dispersion) may be generally related to tissue microstructure,
but are not direct analogs. One must be careful not to
conclude concrete microstructural findings based on the fitting
results presented here.

Modeling Uniaxial Versus Biaxial Stretch
Expanding our modeling from fitting to simulations of
uniaxial versus biaxial stretch showed variability between
data sets (Figure 7 and Table 7). Generally speaking,
materials exhibit greater stiffness when stretched biaxially
versus uniaxially. However, for highly anisotropic materials
with multiple families of fibers, the effect may not be as
dramatic as expected, as shown in the uniaxial versus biaxial
comparisons of the Wheatley et al. (2016b) parameter set
(Figure 7B and Table 6). In this case, the model ECM fibers
are aligned perpendicular to muscle fibers and have low
dispersion and during biaxial stretch each set of fibers are
recruited independently. Conversely, the Mohammadkhah
et al. (2016) parameter set increased in excess of 100% in
both the longitudinal and transverse directions (Figure 7C

and Table 6). Here the ECM fibers are oriented between
directions and highly dispersed, which recruits these fibers
during both longitudinal and transverse stretch. Thus,
the biaxial deformation will stretch the ECM fibers to
a greater amount.

The potential physiological relevance of a case where
biaxial stretch and uniaxial stretch exhibit similar stress-
stretch behavior can be seen in Figure 8 and Table 7.
Here we have identified two sets of parameters that fall
within the previously optimized values that have nearly
indistinguishable uniaxial stress-stretch behavior in both the
longitudinal and transverse orientations (Figure 8A). When
subject to biaxial stretch however, Dispersed shows drastic
changes in stiffness while Aligned is largely unaffected
(113% difference in the longitudinal direction between
models). This presents a simplified case where two muscles
that may seem to have the same mechanical properties
when stretched uniaxially would in fact have quite different
mechanics when subject to a more complex deformation.
In effect, these differences are “hidden” by uniaxial stretch.
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This could partially explain that differences in longitudinal
stiffness between cerebral palsy and healthy muscle cannot be
explained by collagen content, quantity, and cross-linking
alone (Chapman et al., 2015; Lieber and Fridén, 2019;
Smith et al., 2019).

Smith et al. (2019) discuss these collagen content-passive
stiffness correlations and a relatively minor contribution
of collagen crosslinking that this observation “. . . suggests
the intriguingly possibility that higher-order structures may
determine tissue stiffness to a greater extent than molecular
components.” We suggest that ECM collagen fiber orientation
and dispersion may be these “higher-order structures” and
show with our model how differences in tissue stiffness could
be hidden by uniaxial stretch (Figure 8A). As noted above,
the technique employed here is a continuum-level hyperelastic
constitutive model. We do not imply that this model is a
direct prediction of tissue microstructure, only that our model
has shown robust and accurate stress-stretch behavior and that
similar mechanisms may be present.

Another consideration for uniaxial versus biaxial stretch is the
observation of transverse load transmission in contracting
muscle as well as laterally between individual muscles
(Huijing, 1999; Yucesoy et al., 2008). If load generated
longitudinally by muscle fibers is transmitted transversally
through the ECM, then muscle tissue must be subject to
a multi-axial stress state in vivo. Our parametric study
suggests that biaxial stretch could enact a stiffening effect
to longitudinal stress-stretch response in comparison to
uniaxial only (Figures 8A,B). For tissues that exhibit higher
load sharing of the ECM, this effect could be exaggerated,
and biaxial stretch would in effect increase the perceived
tissue stiffness, and thus perhaps increase the efficiency of
load transfer in vivo during contraction. However, further
experimental research is needed to confirm if this is the case
for biaxially stretched skeletal muscle. Nonetheless, we have
highlighted the importance of a biaxial deformation in passively
stretched skeletal muscle, and hope that this consideration
can drive future work to better understand load transmission
in vitro and in vivo.

Limitations and Future Directions
This work is not without limitations. Firstly, the geometry
selection of a simplified, idealized cruciform or single element
cuboid is clearly not a representation of the geometric/structural
complexities of whole, in vivo skeletal muscle. However, the
experimental data used in this study are generated from
tissue samples isolated from whole muscle, and thus do not
represent a full in vivo environment either. This isolation is
necessary to accurately determine tensile material properties.
While a more detailed set of geometric finite element models
could be developed to match average specimen geometry
from each uniaxial experiment, this may not necessarily
yield improvements in fit or different study conclusions. The
advantage of our geometric approach is in computational
efficiency and simplicity – as the optimization protocol
that fit the model to experimental stress-stretch curves
does not require significant computation time and is highly

stable. Nonetheless, as experimental and finite element
models of in vivo muscle deformation have shown complex
strains (Blemker and Delp, 2005; Böl et al., 2015), use and
validation of this model in such cases would be a significant
benefit to the field.

While our constitutive model exhibits robustness in
simulating tensile stress-stretch behavior (Figure 6), it does
not model microstructural and physiological characteristics
such as collagen crosslinking, multiple collagen types, or
muscle fiber-ECM interactions. Including such components
would likely yield increased robustness and physiological
accuracy of such a model. However, our model has
exhibited efficacy in simulating a wide range of passive
muscle stretch. We have shown that this model can inform
future studies of ECM structure – such as collagen fiber
orientation and dispersion – while fitting tissue-level
data and maintaining experimental observations such as
near-incompressibility.

It should be noted that model validation across uniaxial
and biaxial stretch would strengthen future applications of this
model. Additionally, experiments such as biaxial materials testing
coupled with decellularization or muscle fiber isolation would
provide necessary insight into the extent to which this model
or future improved models can accurately characterize load
sharing between muscle fibers and the ECM. This would greatly
strengthen this work, and provide strong efficacy for application
of this model to in vivo conditions of muscle impairment
such as cerebral palsy. We have also not explored the model
response under compression or during active contraction as those
are outside the scope of this work. Thus, this model should
be viewed not as a comprehensive model of passive skeletal
muscle, but as an effective tool in better understanding passive
muscle stiffness.

CONCLUSION

Based on section “Results and Discussion” of this work, we
have made the following observations, recommendations, and
conclusions:

(1) We performed biaxial stress-relaxation testing on passive
skeletal muscle and suggest that this approach can be used
to effectively characterize passive muscle mechanics.

(2) Our model of a dispersed ECM contribution and aligned
muscle fibers was able to exhibit broad variability in
simulating and fitting tensile stiffness, non-linearity, and
anisotropy of passive skeletal muscle.

(3) This model, in conjunction with experimental data,
exhibited the role of biaxial stretch in measuring passive
muscle stiffness and suggesting future work to explore
inconsistent correlations between muscle ECM collagen
measurements and passive stiffness.

Future validation, development, and employment of modeling
and biaxial experimentation would elucidate the role of the
ECM in in vivo muscle function, and help explain how

Frontiers in Physiology | www.frontiersin.org 12 August 2020 | Volume 11 | Article 1021

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


Wheatley Muscle Stiffness and Biaxial Stretch

detrimental changes to muscle stiffness – such as those observed
in cerebral palsy – may be explained by ECM structure.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

BW contributed to the study design, experimentation and
modeling, data processing, and manuscript development.

FUNDING

This material is based upon work supported by the National
Science Foundation under Grant No. 1828082.

ACKNOWLEDGMENTS

The author would like to acknowledge Brandon K.
Zimmerman for his assistance adapting his collagen fiber
dispersion model for this work. The author also would
like to acknowledge Kristen Fu for her work developing
biaxial protocols and assistance processing digital image
correlation images.

REFERENCES

Ateshian, G. A., Rajan, V., Chahine, N. O., Canal, C. E., and Hung, C. T. (2009).

Modeling the matrix of articular cartilage using a continuous fiber angular

distribution predicts many observed phenomena. J. Biomech. Eng. 131:061003.

doi: 10.1115/1.3118773

Atkinson, T. S., Ewers, B. J., andHaut, R. C. (1999). The tensile and stress relaxation

responses of human patellar tendon varies with specimen cross-sectional area.

J. Biomech. 32, 907–914. doi: 10.1016/S0021-9290(99)00089-5

Best, T. M., McElhaney, J., Garrett, W. E., andMyers, B. S. (1994). Characterization

of the passive responses of live skeletal muscle using the quasi-linear theory of

viscoelasticity. J. Biomech. 27, 413–419. doi: 10.1016/0021-9290(94)90017-5

Bleiler, C., Ponte Castañeda, P., and Röhrle, O. (2019). A microstructurally-based,

multi-scale, continuum-mechanical model for the passive behaviour of skeletal

muscle tissue. J. Mech. Behav. Biomed. Mater. 97, 171–186. doi: 10.1016/J.

JMBBM.2019.05.012

Blemker, S. S., and Delp, S. L. (2005). Three-dimensional representation of complex

muscle architectures and geometries. Ann. Biomed. Eng. 33, 661–673. doi: 10.

1007/s10439-005-1433-7

Blemker, S. S., Pinsky, P. M., and Delp, S. L. (2005). A 3D model of muscle reveals

the causes of nonuniform strains in the biceps brachii. J. Biomech. 38, 657–665.

doi: 10.1016/j.jbiomech.2004.04.009

Böl, M. (2010). Micromechanical modelling of skeletal muscles: from the single

fibre to the whole muscle. Arch. Appl. Mech. 80, 557–567. doi: 10.1007/s00419-

009-0378-y

Böl, M., Ehret, A. E., Leichsenring, K., Weichert, C., and Kruse, R. (2014). On

the anisotropy of skeletal muscle tissue under compression. Acta Biomater. 10,

3225–3234. doi: 10.1016/j.actbio.2014.03.003

Böl, M., Leichsenring, K., Ernst, M., Wick, C., Blickhan, R., and Siebert, T. (2015).

Novel microstructural findings in M. plantaris and their impact during active

and passive loading at themacro level. J. Mech. Behav. Biomed.Mater. 51, 25–39.

doi: 10.1016/j.jmbbm.2015.06.026

Böl, M., and Reese, S. (2008). Micromechanical modelling of skeletal muscles based

on the finite element method. Comput. Methods Biomech. Biomed. Engin. 11,

489–504. doi: 10.1080/10255840701771750

Brynnel, A., Hernandez, Y., Kiss, B., Lindqvist, J., Adler, M., Kolb, J., et al. (2018).

Downsizing the molecular spring of the giant protein titin reveals that skeletal

muscle titin determines passive stiffness and drives longitudinal hypertrophy.

eLife 7:e40532. doi: 10.7554/eLife.40532

Calvo, B., Ramírez, A., Alonso, A., Grasa, J., Soteras, F., Osta, R., et al. (2010).

Passive nonlinear elastic behaviour of skeletal muscle: experimental results

and model formulation. J. Biomech. 43, 318–325. doi: 10.1016/j.jbiomech.2009.

08.032

Chapman, M. A., Meza, R., and Lieber, R. L. (2016). Skeletal muscle fibroblasts in

health and disease. Differentiation 92, 108–115. doi: 10.1016/j.diff.2016.05.007

Chapman, M. A., Pichika, R., and Lieber, R. L. (2015). Collagen crosslinking does

not dictate stiffness in a transgenic mouse model of skeletal muscle fibrosis.

J. Biomech. 48, 375–378. doi: 10.1016/j.jbiomech.2014.12.005

Chi, S., Hodgson, J., Chen, J., Reggie Edgerton, V., Shin, D. D., Roiz, R. A.,

et al. (2010). Finite element modeling reveals complex strain mechanics in

the aponeuroses of contracting skeletal muscle. J. Biomech. 43, 1243–1250.

doi: 10.1016/j.jbiomech.2010.01.005

Csapo, R., Gumpenberger, M., and Wessner, B. (2020). Skeletal Muscle

Extracellular Matrix – What Do We Know About Its Composition, Regulation,

and Physiological Roles? A Narrative Review. Front. Physiol. 11:253. doi: 10.

3389/fphys.2020.00253

FEBio User Manual, 2. 8 (2018). Available online at: https://help.febio.org/FEBio/

FEBio_um_2_8/ (accessed January 16, 2020).

Gillies, A. R., and Lieber, R. L. (2011). Structure and function of the skeletal muscle

extracellular matrix.Muscle Nerve 44, 318–331. doi: 10.1002/mus.22094

Gindre, J., Takaza, M., Moerman, K. M., and Simms, C. K. (2013). A structural

model of passive skeletal muscle shows two reinforcement processes in resisting

deformation. J. Mech. Behav. Biomed. Mater. 22, 84–94. doi: 10.1016/j.jmbbm.

2013.02.007

Gras, L. L., Mitton, D., Viot, P., and Laporte, S. (2012). Hyper-elastic properties of

the human sternocleidomastoideus muscle in tension. J. Mech. Behav. Biomed.

Mater. 15, 131–140. doi: 10.1016/j.jmbbm.2012.06.013

Gras, L. L., Mitton, D., Viot, P., and Laporte, S. (2013). Viscoelastic properties of the

human sternocleidomastoideus muscle of aged women in relaxation. J. Mech.

Behav. Biomed. Mater. 27, 77–83. doi: 10.1016/j.jmbbm.2013.06.010

Holzapfel, G. A. (2000). Nonlinear Solid Mechanics. Chichester: Wiley.

Huijing, P. A. (1999). Muscle as a collagen fiber reinforced composite: a review

of force transmission in muscle and whole limb. J. Biomech. 32, 329–345.

doi: 10.1016/S0021-9290(98)00186-9

Jenkyn, T., Koopman, B., Huijing, P. A., Lieber, R. L., and Kaufman, K. R. (2002).

Finite element model of intramuscular pressure during isometric contraction

of skeletal muscle. Phys. Med. Biol. 47, 4043–4061. doi: 10.1088/0031-9155/47/

22/309

Labus, K. M., and Puttlitz, C. M. (2016). Viscoelasticity of brain corpus callosum

in biaxial tension. J. Mech. Phys. Solids 96, 591–604. doi: 10.1016/j.jmps.2016.

08.010

Lemos, R. R., Epstein, M., and Herzog, W. (2008). Modeling of skeletal muscle:

the influence of tendon and aponeuroses compliance on the force-length

relationship. Med. Biol. Eng. Comput. 46, 23–32. doi: 10.1007/s11517-007-

0259-x

Lieber, R. L. (2010). Skeletal Muscle Structure, Function, and Plasticity.

Philadelphia, PA: Lippincott Williams and Wilkins.

Lieber, R. L., and Fridén, J. (2019). Muscle contracture and passive mechanics in

cerebral palsy. J. Appl. Physiol. 126, 1492–1501. doi: 10.1152/japplphysiol.00278.

2018

Lieber, R. L., Roberts, T. J., Blemker, S. S., Lee, S. S. M., and Herzog, W. (2017).

Skeletal muscle mechanics, energetics and plasticity. J. Neuroeng. Rehabil.

14:108. doi: 10.1186/s12984-017-0318-y

Maas, H. (2019). Significance of epimuscular myofascial force transmission under

passive muscle conditions. J. Appl. Physiol. 126, 1465–1473. doi: 10.1152/

japplphysiol.00631.2018

Frontiers in Physiology | www.frontiersin.org 13 August 2020 | Volume 11 | Article 1021

https://doi.org/10.1115/1.3118773
https://doi.org/10.1016/S0021-9290(99)00089-5
https://doi.org/10.1016/0021-9290(94)90017-5
https://doi.org/10.1016/J.JMBBM.2019.05.012
https://doi.org/10.1016/J.JMBBM.2019.05.012
https://doi.org/10.1007/s10439-005-1433-7
https://doi.org/10.1007/s10439-005-1433-7
https://doi.org/10.1016/j.jbiomech.2004.04.009
https://doi.org/10.1007/s00419-009-0378-y
https://doi.org/10.1007/s00419-009-0378-y
https://doi.org/10.1016/j.actbio.2014.03.003
https://doi.org/10.1016/j.jmbbm.2015.06.026
https://doi.org/10.1080/10255840701771750
https://doi.org/10.7554/eLife.40532
https://doi.org/10.1016/j.jbiomech.2009.08.032
https://doi.org/10.1016/j.jbiomech.2009.08.032
https://doi.org/10.1016/j.diff.2016.05.007
https://doi.org/10.1016/j.jbiomech.2014.12.005
https://doi.org/10.1016/j.jbiomech.2010.01.005
https://doi.org/10.3389/fphys.2020.00253
https://doi.org/10.3389/fphys.2020.00253
https://help.febio.org/FEBio/FEBio_um_2_8/
https://help.febio.org/FEBio/FEBio_um_2_8/
https://doi.org/10.1002/mus.22094
https://doi.org/10.1016/j.jmbbm.2013.02.007
https://doi.org/10.1016/j.jmbbm.2013.02.007
https://doi.org/10.1016/j.jmbbm.2012.06.013
https://doi.org/10.1016/j.jmbbm.2013.06.010
https://doi.org/10.1016/S0021-9290(98)00186-9
https://doi.org/10.1088/0031-9155/47/22/309
https://doi.org/10.1088/0031-9155/47/22/309
https://doi.org/10.1016/j.jmps.2016.08.010
https://doi.org/10.1016/j.jmps.2016.08.010
https://doi.org/10.1007/s11517-007-0259-x
https://doi.org/10.1007/s11517-007-0259-x
https://doi.org/10.1152/japplphysiol.00278.2018
https://doi.org/10.1152/japplphysiol.00278.2018
https://doi.org/10.1186/s12984-017-0318-y
https://doi.org/10.1152/japplphysiol.00631.2018
https://doi.org/10.1152/japplphysiol.00631.2018
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


Wheatley Muscle Stiffness and Biaxial Stretch

Maas, S. A., Ellis, B. J., Ateshian, G. A., and Weiss, J. A. (2012). FEBio:

finite elements for biomechanics. J. Biomech. Eng. 134:011005. doi: 10.1115/1.

4005694

Meyer, G., and Lieber, R. L. (2018). Muscle fibers bear a larger fraction of passive

muscle tension in frogs compared with mice. J. Exp. Biol. 221:jeb.182089. doi:

10.1242/jeb.182089

Meyer, G. A., and Lieber, R. L. (2011). Elucidation of extracellularmatrixmechanics

from muscle fibers and fiber bundles. J. Biomech. 44, 771–773. doi: 10.1016/j.

jbiomech.2010.10.044

Meyer, G. A., McCulloch, A. D., and Lieber, R. L. (2011). A Nonlinear Model of

Passive Muscle Viscosity. J. Biomech. Eng. 133:091007. doi: 10.1115/1.4004993

Mohammadkhah, M., Murphy, P., and Simms, C. K. (2016). The in vitro passive

elastic response of chicken pectoralis muscle to applied tensile and compressive

deformation. J. Mech. Behav. Biomed. Mater. 62, 468–480. doi: 10.1016/j.

jmbbm.2016.05.021

Mohammadkhah, M., Murphy, P., and Simms, C. K. (2018). Collagen fibril

organization in chicken and porcine skeletal muscle perimysium under applied

tension and compression. J. Mech. Behav. Biomed. Mater. 77, 734–744. doi:

10.1016/j.jmbbm.2017.08.007

Morrow, D. A., Haut Donahue, T. L., Odegard, G. M., and Kaufman, K. R.

(2010). Transversely isotropic tensile material properties of skeletal muscle

tissue. J. Mech. Behav. Biomed. Mater. 3, 124–129. doi: 10.1016/j.jmbbm.2009.

03.004

Nishimura, T. (2010). The role of intramuscular connective tissue in

meat texture. Anim. Sci. J. 81, 21–27. doi: 10.1111/j.1740-0929.2009.

00696.x

Oomens, C. W. J., Maenhout, M., van Oijen, C. H., Drost, M. R., and Baaijens, F. P.

(2003). Finite element modelling of contracting skeletal muscle. Philos. Trans.

R. Soc. Lond. B. Biol. Sci. 358, 1453–1460. doi: 10.1098/rstb.2003.1345

Pietsch, R., Wheatley, B. B. B., Haut Donahue, T. L., Gilbrech, R., Prabhu, R., Liao,

J., et al. (2014). Anisotropic compressive properties of passive porcine muscle

tissue. J. Biomech. Eng. 136:111003. doi: 10.1115/1.4028088

Purslow, P. P. (1989). Strain-induced reorientation of an intramuscular connective

tissue network: implications for passive muscle elasticity. J. Biomech. 22, 21–31.

doi: 10.1016/0021-9290(89)90181-4

Purslow, P. P., and Trotter, J. A. (1994). The morphology and mechanical

properties of endomysium in series-fibred muscles: variations with muscle

length. J. Muscle Res. Cell Motil. 15, 299–308.

Ramaswamy, K. S., Palmer,M. L., van derMeulen, J. H., Renoux, A., Kostrominova,

T. Y., Michele, D. E., et al. (2011). Lateral transmission of force is impaired in

skeletal muscles of dystrophic mice and very old rats. J. Physiol. 589, 1195–1208.

doi: 10.1113/jphysiol.2010.201921

Rehorn, M. R., Schroer, A. K., and Blemker, S. S. (2014). The passive properties of

muscle fibers are velocity dependent. J. Biomech. 47, 687–693. doi: 10.1016/j.

jbiomech.2013.11.044

Sato, E. J., Killian, M. L., Choi, A. J., Lin, E., Esparza, M. C., Galatz, L. M., et al.

(2014). Skeletal muscle fibrosis and stiffness increase after rotator cuff tendon

injury and neuromuscular compromise in a rat model. J. Orthop. Res. 32,

1111–1116. doi: 10.1002/jor.22646

Simms, C. K., Van Loocke, M., and Lyons, C. G. (2012). Skeletal Muscle

in Compression: Modeling Approaches for the Passive Muscle Bulk. Int.

J. Multiscale Comput. Eng. 10, 143–154. doi: 10.1615/IntJMultCompEng.

2011002419

Sleboda, D. A., Stover, K. K., and Roberts, T. J. (2020). Diversity of extracellular

matrix morphology in vertebrate skeletal muscle. J. Morphol. 281, 160–169.

doi: 10.1002/jmor.21088

Smith, L. R., and Barton, E. R. (2014). Collagen content does not alter the passive

mechanical properties of fibrotic skeletal muscle in mdx mice. Am. J. Physiol.

Physiol. 306, C889–C898. doi: 10.1152/ajpcell.00383.2013

Smith, L. R., Pichika, R., Meza, R. C., Gillies, A. R., Baliki, M. N., Chambers, H. G.,

et al. (2019). Contribution of extracellular matrix components to the stiffness of

skeletal muscle contractures in patients with cerebral palsy. Connect. Tissue Res.

doi: 10.1080/03008207.2019.1694011 [Online ahead of print]

Spyrou, L. A., Brisard, S., and Danas, K. (2019). Multiscale modeling of

skeletal muscle tissues based on analytical and numerical homogenization.

J. Mech. Behav. Biomed. Mater. 92, 97–117. doi: 10.1016/j.jmbbm.2018.

12.030

Szczesny, S. E., Peloquin, J. M., Cortes, D. H., Kadlowec, J. A., Soslowsky, L. J.,

and Elliott, D. M. (2012). Biaxial tensile testing and constitutive modeling of

human supraspinatus tendon. J. Biomech. Eng. 134:021004. doi: 10.1115/1.400

5852

Takaza, M., Moerman, K. M., Gindre, J., Lyons, G., and Simms, C. K. (2012). The

anisotropic mechanical behaviour of passive skeletal muscle tissue subjected to

large tensile strain. J. Mech. Behav. Biomed. Mater. 17, 209–220. doi: 10.1016/j.

jmbbm.2012.09.001

Takaza, M., Moerman, K. M., and Simms, C. K. (2013). Passive skeletal muscle

response to impact loading: experimental testing and inverse modelling.

J. Mech. Behav. Biomed. Mater. 27, 214–225. doi: 10.1016/j.jmbbm.2013.04.016

Teklemariam, A., Hodson-Tole, E., Reeves, N. D., and Cooper, G. (2019). A

micromechanical muscle model for determining the impact of motor unit fiber

clustering on force transmission in aging skeletal muscle. Biomech. Model.

Mechanobiol. 18, 1401–1413. doi: 10.1007/s10237-019-01152-2

Vaidya, A. J., and Wheatley, B. B. (2019). An experimental and computational

investigation of the effects of volumetric boundary conditions on the

compressive mechanics of passive skeletal muscle. J. Mech. Behav. Biomed.

Mater. 2019:103526. doi: 10.1016/j.jmbbm.2019.103526

Valentin, T., and Simms, C. (2020). An inverse model of themechanical response of

passive skeletal muscle: implications for microstructure. J. Biomech. 99:109483.

doi: 10.1016/j.jbiomech.2019.109483

Van Ee, C. A., Chasse, A. L., and Myers, B. S. (2000). Quantifying skeletal

muscle properties in cadaveric test specimens: effects of mechanical loading,

postmortem time, and freezer storage. J. Biomech. Eng. 122, 9–14. doi: 10.1115/

1.429621

Van Loocke, M., Lyons, C. G., and Simms, C. K. (2006). A validated model

of passive muscle in compression. J. Biomech. 39, 2999–3009. doi: 10.1016/j.

jbiomech.2005.10.016

Van Loocke, M., Lyons, C. G., and Simms, C. K. (2008). Viscoelastic properties

of passive skeletal muscle in compression: stress-relaxation behaviour and

constitutive modelling. J. Biomech. 41, 1555–1566. doi: 10.1016/j.jbiomech.

2008.02.007

Weiss, J. A., Maker, B. N., and Govindjee, S. (1996). Finite element implementation

of incompressible, transversely isotropic hyperelasticity. Comput. Methods

Appl. Mech. Eng. 135, 107–128. doi: 10.1016/0045-7825(96)01035-1033

Wheatley, B. B., Odegard, G. M., Kaufman, K. R., and Haut Donahue, T. L. (2018).

Modeling skeletal muscle stress and intramuscular pressure: a whole muscle

active-passive approach. J. Biomech. Eng. 140:081006. doi: 10.1115/1.4040318

Wheatley, B. B, Morrow, D. A., Odegard, G. M. G. M., Kaufman, K. R. K. R., and

Haut Donahue, T. L. T. L. (2016a). Skeletal muscle tensile strain dependence:

hyperviscoelastic nonlinearity. J. Mech. Behav. Biomed. Mater. 53, 445–454.

doi: 10.1016/j.jmbbm.2015.08.041

Wheatley, B. B., Odegard, G. M., Kaufman, K. R., and Donahue, T. L. H.

(2016b). How does tissue preparation affect skeletal muscle transverse isotropy?

J. Biomech. 49, 3056–3060. doi: 10.1016/j.jbiomech.2016.06.034

Wheatley, B. B., Pietsch, R. B., Haut Donahue, T. L., and Williams, L. N.

(2016c). Fully non-linear hyper-viscoelastic modeling of skeletal muscle in

compression. Comput. Methods Biomech. Biomed. Engin. 19, 1181–1189. doi:

10.1080/10255842.2015.1118468

Wheatley, B. B., Odegard, G. M., Kaufman, K. R., and Haut Donahue, T. L. (2017a).

A validated model of passive skeletal muscle to predict force and intramuscular

pressure. Biomech. Model. Mechanobiol. 16, 1011–1022. doi: 10.1007/s10237-

016-0869-z

Wheatley, B. B., Odegard, G.M., Kaufman, K. R., and Haut Donahue, T. L. (2017b).

A case for poroelasticity in skeletal muscle finite element analysis: experiment

and modeling. Comput. Methods Biomech. Biomed. Engin. 20, 598–601. doi:

10.1080/10255842.2016.1268132

Yousefi, A.-A. A. K., Nazari, M. A., Perrier, P., Panahi, M. S., and Payan, Y. (2018).

A newmodel of passivemuscle tissue integrating Collagen Fibers: consequences

for muscle behavior analysis. J. Mech. Behav. Biomed. Mater. 88, 29–40. doi:

10.1016/j.jmbbm.2018.07.042

Yucesoy, C. A., Koopman, B. H. F. J. M., Grootenboer, H. J., and Huijing,

P. A. (2008). Extramuscular myofascial force transmission alters substantially

the acute effects of surgical aponeurotomy: assessment by finite element

modeling. Biomech. Model. Mechanobiol. 7, 175–189. doi: 10.1007/s10237-007-

0084-z

Frontiers in Physiology | www.frontiersin.org 14 August 2020 | Volume 11 | Article 1021

https://doi.org/10.1115/1.4005694
https://doi.org/10.1115/1.4005694
https://doi.org/10.1242/jeb.182089
https://doi.org/10.1242/jeb.182089
https://doi.org/10.1016/j.jbiomech.2010.10.044
https://doi.org/10.1016/j.jbiomech.2010.10.044
https://doi.org/10.1115/1.4004993
https://doi.org/10.1016/j.jmbbm.2016.05.021
https://doi.org/10.1016/j.jmbbm.2016.05.021
https://doi.org/10.1016/j.jmbbm.2017.08.007
https://doi.org/10.1016/j.jmbbm.2017.08.007
https://doi.org/10.1016/j.jmbbm.2009.03.004
https://doi.org/10.1016/j.jmbbm.2009.03.004
https://doi.org/10.1111/j.1740-0929.2009.00696.x
https://doi.org/10.1111/j.1740-0929.2009.00696.x
https://doi.org/10.1098/rstb.2003.1345
https://doi.org/10.1115/1.4028088
https://doi.org/10.1016/0021-9290(89)90181-4
https://doi.org/10.1113/jphysiol.2010.201921
https://doi.org/10.1016/j.jbiomech.2013.11.044
https://doi.org/10.1016/j.jbiomech.2013.11.044
https://doi.org/10.1002/jor.22646
https://doi.org/10.1615/IntJMultCompEng.2011002419
https://doi.org/10.1615/IntJMultCompEng.2011002419
https://doi.org/10.1002/jmor.21088
https://doi.org/10.1152/ajpcell.00383.2013
https://doi.org/10.1080/03008207.2019.1694011
https://doi.org/10.1016/j.jmbbm.2018.12.030
https://doi.org/10.1016/j.jmbbm.2018.12.030
https://doi.org/10.1115/1.4005852
https://doi.org/10.1115/1.4005852
https://doi.org/10.1016/j.jmbbm.2012.09.001
https://doi.org/10.1016/j.jmbbm.2012.09.001
https://doi.org/10.1016/j.jmbbm.2013.04.016
https://doi.org/10.1007/s10237-019-01152-2
https://doi.org/10.1016/j.jmbbm.2019.103526
https://doi.org/10.1016/j.jbiomech.2019.109483
https://doi.org/10.1115/1.429621
https://doi.org/10.1115/1.429621
https://doi.org/10.1016/j.jbiomech.2005.10.016
https://doi.org/10.1016/j.jbiomech.2005.10.016
https://doi.org/10.1016/j.jbiomech.2008.02.007
https://doi.org/10.1016/j.jbiomech.2008.02.007
https://doi.org/10.1016/0045-7825(96)01035-1033
https://doi.org/10.1115/1.4040318
https://doi.org/10.1016/j.jmbbm.2015.08.041
https://doi.org/10.1016/j.jbiomech.2016.06.034
https://doi.org/10.1080/10255842.2015.1118468
https://doi.org/10.1080/10255842.2015.1118468
https://doi.org/10.1007/s10237-016-0869-z
https://doi.org/10.1007/s10237-016-0869-z
https://doi.org/10.1080/10255842.2016.1268132
https://doi.org/10.1080/10255842.2016.1268132
https://doi.org/10.1016/j.jmbbm.2018.07.042
https://doi.org/10.1016/j.jmbbm.2018.07.042
https://doi.org/10.1007/s10237-007-0084-z
https://doi.org/10.1007/s10237-007-0084-z
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


Wheatley Muscle Stiffness and Biaxial Stretch

Yucesoy, C. A., Koopman, B. H. F. J. M. F. J. M., Huijing, P. A., and

Grootenboer, H. J. (2002). Three-dimensional finite element modeling

of skeletal muscle using a two-domain approach: linked fiber-matrix

mesh model. J. Biomech. 35, 1253–1262. doi: 10.1016/S0021-9290(02)00

069-6

Zimmerman, B. K., and Ateshian, G. A. (2019). “A three dimensional

rotationally nonsymmetric continuous fiber distribution for articular

cartilage,” in Proceedings of the 16th International Symposium on

Computer Methods in Biomechanics and Biomedical Engineering,

New York, NY.

Conflict of Interest: The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Wheatley. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org 15 August 2020 | Volume 11 | Article 1021

https://doi.org/10.1016/S0021-9290(02)00069-6
https://doi.org/10.1016/S0021-9290(02)00069-6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles

	Investigating Passive Muscle Mechanics With Biaxial Stretch
	Introduction
	Materials and Methods
	Experimental Planar Biaxial Testing
	Constitutive Modeling
	Finite Element Modeling
	Statistics

	Results
	Experimental Planar Biaxial Data
	Model Fitting
	Modeling Biaxial and Uniaxial Stretch

	Discussion
	Planar Biaxial Testing
	Constitutive Modeling of Experimental Data
	Modeling Uniaxial Versus Biaxial Stretch
	Limitations and Future Directions

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


