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Abstract Cardiotocography (CTG) is a standard tool for the

assessment of fetal well-being during pregnancy and delivery.

However, its interpretation is associated with high inter- and

intra-observer variability. Since its introduction there have been

numerous attempts to develop computerized systems assisting

the evaluation of the CTG recording. Nevertheless these sys-

tems are still hardly used in a delivery ward. Two main ap-

proaches to computerized evaluation are encountered in the

literature; the first one emulates existing guidelines, while the

second one is more of a data-driven approach using signal

processing and computational methods. The latter employs pre-

processing, feature extraction/selection and a classifier that dis-

criminates between two or more classes/conditions. These clas-

ses are often formed using the umbilical cord artery pH value

measured after delivery. In this work an approach to Fetal Heart

Rate (FHR) classification using pH is presented that could serve

as a benchmark for reporting results on the unique open-access

CTU-UHB CTG database, the largest and the only freely avail-

able database of this kind. The overall results using a very small

number of features and a Least Squares Support Vector

Machine (LS-SVM) classifier, are in accordance to the ones

encountered in the literature and outperform the results of a

baseline classification scheme proving the utility of using ad-

vanced data processingmethods. Therefore the achieved results

can be used as a benchmark for future research involving more

informative features and/or better classification algorithms.
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1 Introduction

The aim of Cardiotocography (CTG) is to screen for signs of

fetal distress thus allowing obstetricians to react in a timely fash-

ion in order to prevent potential adverse outcomes for the fetus.

CTG recordings, also referred to as Cardiotocograms, consist of

the recording of two signals; the fetal heart rate (FHR) signal,

measured in beats per minute (bpm) and the uterine contractions

(UCs) signal, measured either in mmHg or in arbitrary units, and

remain the only technique used world-wide that can provide

continuous information about the state of the fetus during deliv-

ery [1, 2]. One of the reasons for the adoption of CTG, is the

sense of Bsecurity^ that it offers to the clinicians by providing on-

line real time monitoring of the fetus. On the other hand, even

though continuous information of the Cardiotocogram is an im-

provement over the previously used intermittent auscultation

(IA), its evaluation is hindered by the large variance of the re-

sponses of individual fetuses to stress situations.

In the clinical practice the evaluation of Cardiotocograms

primarily relies on eye inspection and assessment following

guidelines, which usually stem from those issued by the

International Federation of Gynecology and Obstetrics (FIGO

guidelines [3]). Nevertheless, despite the existence of specific

guidelines, Cardiotocogram interpretation suffers from high
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inter- and intra-observer variability among clinicians [4, 5].

Moreover, CTG is cited as one of the reasons behind the in-

crease of the number of Caesarean sections [6]. On the other

hand, since there are currently no significantly new approaches

to fetal monitoring during delivery in the horizon, CTG is here

to stay regardless of its flaws. To mitigate the variability in the

evaluation of Cardiotocograms, two major ways have been

proposed [7]: i) extensive training of the clinical staff or ii)

use of computerized systems for decision support. In the latter

case, the evaluation problem is usually cast as a classification

one, where the classes for CTG evaluation are primarily based

on umbilical artery cord blood analysis. The most common

approach is to use the pH value with an apriori defined thresh-

old to distinguish between acidotic and non-acidotic fetuses.

It should be noted, that the idea of developing computer-

ized systems for Cardiotocogram evaluation is very old, even

preceding the release of general FIGO guidelines [8]. Since

these early works, many more approaches have been pro-

posed, ranging from systems that emulate FIGO guidelines

[9] to systems that rely on the extraction of features using

advanced signal processing techniques coupled with ad-

vanced classification algorithms. Many of these features are

based on the well-established adult Heart Rate Variability

(HRV) research [10]; others come from the statistical analysis

of the FHR [11], or from the nonlinear domain [12, 13]. Time-

scale descriptors [14], features based on Empirical Mode

Decomposition (EMD) [15] and even artificially generated

features have also been proposed [16] and tested.

Additionally, modeling of FHR and its behavior with relation

to contractions has also been investigated [17]. For the classi-

fication part, methods such as Support Vector Machines

(SVMs) [13, 14, 17–19], Artificial Neural Networks (ANNs)

[11, 20–22], Generative Models (GMs) [23], Fuzzy Systems

[24, 25], and HiddenMarkovModels (HMMs) [26] have been

tested among other computational systems.

Regarding the studies that use pH values to define the re-

spective classes, in [23] different GMs are trained using fea-

tures calculated over consecutive windows which are then

turned into symbolic sequences. The combination of a Naïve

Bayes GM with a first order Markov chain GM, outperforms

conventional discriminating approaches using SVMs and

crisp rules when a threshold of normality is set to pH equal

to 7.15, achieving a sensitivity of 60.9% and a specificity of

81.7%. The use of symbolic representation compensates for

the high computational cost related to GMs. In [19] a combi-

nation of a Genetic Algorithm (GA) for feature selection, with

three different classifiers is used for the discrimination of nor-

mal and pathological cases. Cases with pH < 7.05 are consid-

ered pathological while cases with 7.27 < pH < 7.33 are con-

sidered normal. The GA with an SVM classifier with Radial

Basis Function (RBF) kernels, regularized using the Bayesian

information criterion (BIC), outperforms all other combina-

tions achieving sensitivity equal to 83.02% and specificity

equal to 66.03%. An ensemble/committee of ANNs is trained

in [21] using normal and pathological cases that are defined

slightly different between training and testing data sets (train-

ing: pathological pH < 7.1, normal 7.27 < pH < 7 .33 – testing:

pathological pH < 7.1, normal 7.22 < pH < 7.27). Principal

Component Analysis (PCA) is applied to reduce the dimen-

sion from 47 to just six and increase computational efficiency.

A sensitivity of 60.3% and a specificity of 67.5% are reached.

It must be noted that that the aforementioned works use

different databases, which in turn differ in many parameters:

different size (40–500), different fraction of pathological

cases, varying time until delivery, and use of different parts

of the FHR signal for analysis (e.g. with or without the second

stage of labor). More importantly these works use different pH

thresholds while some of them use more than one threshold to

define the classes’ boundaries. In the present study a single

threshold is used. This threshold is set to 7.05, which is the

setup used in the majority of technical papers on CTG classi-

fication [1, 27–30], because it provides sufficient compromise

between the amount of pathological cases that are considered

and the amount of complications related to the health status of

the fetus [31–33].

More specifically, this study presents the results of FHR

classification on the unique open access intrapartum CTU-

UHB CTG database [33]. Both the involved set of features,

which covers different domains, and the classification algo-

rithm, which is based on a computational efficient variant of

SVMs, could be considered to be among the current state of the

art methods. A two stage feature selection procedure is used,

which significantly reduces the number of involved features,

further increasing the computational efficiency of the approach.

To the best of our knowledge this is the most extensive testing

performed on this data set and as such the achieved results can

be used as a benchmark for the evaluation of other features and/

or other classification algorithms, tested on this database. For

comparison reasons and in order to check whether the use of

the aforementioned advanced data processing methods offer an

advantage over simpler approaches, the proposed method is

also tested against a simpler classification scheme.

The rest of the paper is structured as follows: Section 2

describes briefly the methods employed in this work, from

signal preprocessing and feature extraction to classifica-

tion. Section 3 presents the results along with a discussion

about the effect of the number of selected features and

Section 4 concludes the paper with some directions for

possible future research.

2 Materials and methods

In this work the newly released CTU-UHBCTG database [33]

is used. The proposed method classifies all the recordings

using primarily the FHR signal and consists of the following
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steps: FHR preprocessing; Feature extraction; Feature ranking

/ selection and Classification. Matlab 2012b (TheMathworks,

Inc.) is used to analyze the data. In the rest of this section all

the involved steps are presented along with a description of

the CTU-UHB CTG dataset.

2.1 Data set

The open access CTU-UHB CTG database [33] consists of

552 records, which is a subset of 9164 intrapartum CTG re-

cordings acquired between the years 2009 and 2012 at the

obstetrics ward of the University Hospital in Brno,

Czech Republic. All women signed informed consent and

the study for the data collection was approved by the

Institutional Review Board of University Hospital Brno. All

CTG recordings and clinical data were anonymized. For this

study the last 30 min of the 1st stage of labor are selected.

Clinical parameters were used to achieve as consistent a

database as possible: Only fetuses with more than 37 complet-

ed weeks of gestation and singleton pregnancies were includ-

ed. All fetuses with known intrauterine growth restriction,

fetal infection and fetuses with congenital malformations were

excluded. Only recordings that ended less than 20 min (medi-

an 5 min) before delivery were selected for the database. The

gap between the time of end of the actual CTG signal and the

time of birth in the form of mean (min, max) was 2.70 min (0,

29); the length of the first stage of labor was 225 min (45,

648); and the length of the second stage of labor was

11.87 min (0, 30).

From the 552 recordings, 44 of them have a pH value lower

or equal to 7.05, which is the border line selected for defining

the two classes in this study. Therefore, these 44 cases consti-

tute the abnormal class while the rest 508 constitute the nor-

mal class, cf. Figure 1 for sample records. More details about

the database and its construction can be found in [33].

2.2 FHR preprocessing

The FHR signals were obtained either directly using a Doppler

ultrasound (US) probe placed on mother’s abdomen, or from

direct electrocardiogram (DECG) measured internally by a

scalp electrode attached to the fetal scalp. Due to the acquisi-

tion method, FHR can be Bcontaminated^ by spiky artifacts

(impulsive noise) or contain periods where the FHR is zeroed.

Spiky artifacts in the FHR as well as missing values can reflect

on the values of the extracted features. Therefore a simple

artifact rejection scheme is employed: first, extreme (not phys-

iological) values (> 200 bpm and <50 bpm) are removed as in

[9]; second, Hermite spline interpolation is applied to fill the

gap of missing values [34]. We must note that long gaps (>

15 s) are not included in the subsequent feature extraction

process. Despite its simplicity, this kind of artifact removal

scheme is an established preprocessing step before further

analysis can take place [35], even though more elaborate tech-

niques have been proposed over the past years [36, 37].

On average 13.85% of the total duration of the 30 min

segment consists of noisy data (artifacts including extreme

values and missing data in less than 15 s gaps) with a mini-

mum value of 0% and a maximum of 49%. Therefore, on

average, the data set could be considered relatively stable,

since in general noisy/missing data can amount to about

20%–40% of the total data length.

2.3 Feature extraction

Feature extraction is probably the most important step in any

classification problem, since an informative set of features

makes the subsequent classification stage a much easier pro-

cess. In this work a mixture of features is utilized. In total 54

features are used – coming from 21 basic features by varying

some internal parameters, which are presented in summary in

Table 1.

Different feature domains represent different points of view

of the CTG, ranging from FIGO-based features that try to

emulate the information extractable by eye, to time domain

features that are very understandable to clinicians yet impos-

sible to see by naked eye, to more complex feature domains,

which quantify the signal using frequency and nonlinear anal-

ysis tools. These latter approaches are well established for the

analysis of adult’s HRVand are expected to perform well also

in the case of FHR. All features are quite common in FHR

analysis studies and have been already described in other pub-

lications [13, 18, 49] and cover the following areas:

& FIGO-based features: baseline, number of acceleration/de-

celeration, and long term variability. In this work for the

extraction of the FIGO-based features, which describe the

Fig. 1 Typical FHR records for

normal and abnormal cases. As it

can be seen the FHR is a very

irregular signal, which requires

high degree of expertise to be

correctly interpreted
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macroscopic properties of the FHR, the algorithms pro-

posed in [50] are used.

& Time domain features: quantifying Short Term Variability

(STV) and Long Term Irregularity (LTI).

& Frequency domain: energy in different frequency bands.

These features are believed to capture the balance of be-

haviour of the two autonomic nervous system branches. A

non-parametricWelch periodogram was used for the pow-

er spectral density (PSD) estimation (parameters:

Gaussian-like window of size 1024 samples and 80%

overlap). The energy in frequency bands was computed

using [10, 41].

& Nonlinear domain: Fractal dimensions, Detrend

Fluctuations Analysis (DFA), Entropy measures,

Lempel-Ziv complexity, and Poincaré plot (embedding

of RRn intervals vs. RRn+1 (dimension m = 2, time delay

τ = 1). All these features try to quantify the complexity of

the signal under investigation.

2.4 Feature selection

Usually, the step of feature extraction creates a large number

of features. However as in almost all classification problems,

not all of the extracted features are necessary for the classifi-

cation task at hand. This happens because some of the features

may convey overlapping information or even not be as infor-

mative as expected. Therefore a feature selection stage, or a

dimensionality reduction stage, is usually involved before the

application of the final classification algorithm [51]. This

stage significantly decreases the time required for building/

training a classifier, increasing therefore computational effi-

ciency, while at the same it might improve the generalization

capability of the classifier [51].

To put it more formally, the task of feature selection, for

classification, can be described as follows: given an initial set

of NF features, select a subset of j features, where j < <NF,

retaining as much as possible of their class discriminatory

information. The choice of a suitable subset of the features

can allow the classifier to reach a near-optimal performance,

which is a key step for any machine learning algorithm.

Feature selection algorithms can be divided into three gen-

eral categories [52, 53]: filters, which do not require a learn-

ing algorithm, wrappers, which use a classification algorithm

as part of the selection procedure and embedded methods,

where the feature selection takes place at the same time of

the classifier building, with each one of these methods having

its pros and cons.

Table 1 Features used in

presented work Feature set Features Parameters

FIGO-based Baseline,

number of accelerations

number of decelerations

Δtotal

Mean, standard deviation

Time domain STV,

STV-HAAN [38],

STV-YEH [39],

Sonicaid [40],

SDNN, Δ [10],

LTI-HAA [38]

Frequency domain energy03 [10]

energy04 [41]

LF, MF, HF, LF/HF,

VLF, LF, MF, HF, LF/(MF + HF)

Non-linear domain FD_Variance [42],

FD_BoxCount,

FD_Sevcik [43]

FD_Higuchi [44],

DFA [45],

ApEn, [46]

SampEn [47]

r = {0.15, 0.2}, m = {2,3}

LZC [48]

Poincare SD1, SD2

Abbreviations as follows: STV Short Time Variability, LTI Long Term Irregularity,Δ delta value,Δtotal the total

value of Delta (long term variability defined in the FIGO guidelines), SDNN standard deviation of the NN

interval, LF Low Frequency, MF Movement Frequency, HF High Frequency, VLF Very Low Frequency,

ApEn Approximate Entropy, SampEn Sample Entropy, LZC Lempel - Ziv Complexity, FD Fractal Dimension,

DFA Detrend Fluctuations Analysis, SD1 and SD2 Standard Deviation from Poincaré plot
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In this work, a hybrid approach is used, consisting of a

filtering stage followed by a stage where eye-inspection

(based on Bexperts^ feedback) is used for the selection of the

number of features that is to be included in the subset. Both

steps of the feature selection process are described in the rest

of this section.

The first step involves a Bfiltering^ process during which, a

measure is used to evaluate the effectiveness of each individ-

ual feature in predicting the class of each sample/example.

The features are then ranked based on that measure: from

the most helpful to the least helpful one. This method is very

computational efficient and is preferred in conjunction with an

advanced classifier or with subsequent fine tuning selection

using e.g. a wrapper to further reduce the final set.

The feature selection process becomes more challeng-

ing for problems with class imbalance. One of the best

ways to tackle the feature selection under class imbalance

is to use the Receiver Operating Characteristic (ROC)

curve and the corresponding value of the Area Under

the ROC Curve (AUC) to rank the features, which is a

measure that is immune to class imbalance [54]. In [54]

the AUC was approximated using a small number of trap-

ezoids leading to a very fast implementation. In this work,

since the number of cases is relatively small, a more pre-

cise estimation is used relying on the Mann-Whitney-

Wilcoxon two-sample statistic [55, 56]:

U 1 ¼ n1n2 þ
n1 n1 þ 1ð Þ

2
−R1; ð1Þ

AUC ¼
U 1

n1n2
; ð2Þ

where n1 is the sample size of the examples belonging to class

1, n2 is the sample size of the examples belonging to class 2

and R1 is the sum of the ranks from the samples of class 1.

After the ranking stage, a visual inspection of the features’

ranking is performed. Features are plotted in descending order

based on the AUC value that is estimated by leaving out each

time a randomly selected positive example (a pathological

case with pH ≤ 7.05) and a dozen of randomly selected nega-

tive examples (normal cases with pH > 7.05). The resulting

pattern is consistent among the different trials having two

distinct Bclusters^ of features consisting of three and six fea-

tures. These clusters have much higher (individual) predictive

value compared to other features, cf. Figure 2. Based on these

observations, three different input feature sets are tested: a) the

three individually Bbest^ features (energy at the VLF [41],

energy at the LF [10], SD2 (Standard Deviation of points

along the line y = x of a Poincaré plot), b) the nine highest

ranked features (the first three plus next six (ApEn r = 0.2 ,

m = 2, ApEn r = 0.15 ,m = 2, ratio of energies in LF and High

Frequency (HF) bands (LF/HF) [10], SampEn, STV [38], en-

ergy at the LF band [41]) and c) all 54 features.

2.5 Classification using least squares support vector

machines (LS-SVMs)

As it was described in the previous section, an AUC based

filter selection scheme is applied to reduce the number of

features and select those having a noticeable impact from the

rest. However, by this setting the correlation between features

is not considered. Therefore SVMs, a classification paradigm

that is not affected so much from the presence of correlated

inputs, is selected [57] to perform the categorization/decision

task. More specifically the Least Squares version of the SVMs

(LS-SVMs) [58] is chosen due to the much faster training time

required when moderate size problems are tackled (the com-

putational complexity for a naïve implementation is O(N3)

where N is the size of the training set, but other faster ap-

proaches exist [59]).

SVM classifiers map the data into a higher dimensional

space and then an optimal separating hyper-plane is construct-

ed. Given a set of N training samples {(xi, yi), i = 1, … ,N},

where xi∈ℝ
N f (Nf being the dimension of the input space)

and the corresponding labels yi = {+1, −1}, the support vector

method aims to construct a classifier of the form:

wTφ xið Þ þ b≥ þ 1; if yi ¼ þ1 ð3Þ

wTφ xið Þ þ b≤−1; if yi ¼ −1 ð4Þ

or equivalently

yi w
Tφ xið Þ þ b

� �

≥1; i ¼ 1;…;N ; ð5Þ

Fig. 2 The AUC values of all 54 features for a random training sample.

Each one of the two Bclusters^ of features with higher AUC values are

marked with an ellipse. The first cluster contains, ranking from most

important to the least important: energy at the VLF, energy at the LF

[11], and SD2 of Poincaré plot. The second cluster contains, ranking

from most important to the least important: ApEn r = 0.2 ,m = 2, ApEn

r = 0.15 ,m = 2, LF/HF, SampEn, STV-HAAN, energy at the LF [41]
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where φ(⋅) is a nonlinear function which maps the input space

into a higher dimensional space, with b a scalar and w an

unknown vector with the same dimension as φ(⋅).

For the standard SVM algorithm the following optimiza-

tion problem is formulated:

minw;b;ξk F1 w; ξið Þ ¼
1

2
wT w þ C ∑

N

i¼1

ξi

Subject to : yi w
Tφ xið Þ þ b

� �

≥1−ξi; i ¼ 1;…;N

ξi≥ 0 ; i ¼ 1 ; … ; N

ð6Þ

where, ξi s are slack variables that allow misclassifications

in the set of inequalities (e.g., due to overlapping distribu-

tions). The positive real constant C is considered as a

tuning parameter in the algorithm. For the case of the LS-

SVM classifier, instead of Eq. (6), the optimization prob-

lem is formulated as in [58]:

minw;b;eF2 w; eð Þ ¼
1

2
wT w þ

1

2
γ ∑

N

i¼1

e2i

Subject to : yi w
Tφ xið Þ þ b

� �

¼ 1−ei; i ¼ 1;…;N ;

ð7Þ

where ei is an error variable and γ is a regularization parameter.

The above formulation leads to the construction of a deci-

sion function of the form:

y xð Þ ¼ sign ∑
N

i¼1

aiyiK xi; xð Þ þ b

� �

; ð8Þ

which implies that every training data point is a support vec-

tor. K(⋅, ⋅) is a kernel function that implicitly performs the

mapping form the input to the high dimensional feature space

and ai are the Lagrange multipliers.

In this work the RBF kernel is used:

K xi; x j
� �

¼ exp
− xi−x j
�

�

�

�

2

2

σ2

 !

; ð9Þ

where σ is the spread parameter of the RBF kernel.

The above formulation works fine in the case of well-

balanced classes. However for cases with imbalanced dis-

tribution between the two classes, a mechanism for com-

pensating for this is needed [60]. One of the simplest

methods relies on subsampling the majority class.

However this might discard some of the patterns that lie

on the decision boundary. To avoid this problem, a second

approach based on the calculation of unequal costs for the

two classes is used [18, 60]. In the case of LS-SVMs, the

formulation becomes.

minw;b;eF2 w; eð Þ ¼
1

2
wT w þ

1

2
γ ∑

N

i¼1

vie
2
i

Subject toyi w
Tφ xið Þ þ b

� �

¼ 1−ei; i ¼ 1;…;N ;

ð10Þ

where vi is given by [61]:

vi ¼

N

2Np

if yι ¼ þ1

N

2NΝ

if yι ¼ −1

8

>

>

<

>

>

:

9

>

>

=

>

>

;

; ð11Þ

with Np and NN representing the number of Bpositive^ and

Bnegative^ training samples respectively. In this work, a

fine tuning of the ratio between the two penalty factors is

sought during the parameter selection process.

For the LS-SVM implementation, the LS-SVMlab toolbox

is used (http://www.esat.kuleuven.be/sista/lssvmlab/).

3 Results

Due to the small number of abnormal cases (44 in total) a

44-fold stratified cross-validation is used for performance

estimation. The employed cross validation consists of an

outer and an inner loop. In the inner loop the LS-SVM

parameters are tuned while in the outer loop the perfor-

mance is estimated. The number of folds is set such that

the best exploitation of the limited number of Babnormal^

cases is achieved. More specifically for each fold, one

case belonging to the abnormal set and 12 (or 11) cases

belonging to the normal set are used for testing, leaving

43 abnormal and 496 (or 497) normal cases reserved for

training. The training set is normalized so that each fea-

ture has mean value equal to zero and standard deviation

equal to one. The learned transform is then applied to the

testing data.

Before testing the LS-SVM the involved parameters are

tuned (i.e. σ, C, and the imbalance factor) using the train-

ing data and a 43-fold stratified cross validation proce-

dure. This inner-loop procedure is repeated five times

and each time a reshuffling of the normal cases takes

place ensuring that for each one of the five repetitions

each abnormal case is never matched with the same 12

(or 11) normal cases. The whole evaluation procedure is

repeated 15 times, each time reshuffling the samples cor-

responding to the normal cases. Figure 3 depicts the

whole process.

The applied tuning process is used in order to select

good-near-optimal parameter values subject to a specific

criterion / performance measure. In general, all classifica-

tion measures can be estimated using the elements of the

confusion matrix (Table 2), with sensitivity and specificity

being among the most commonly reported values for

medical settings.

Some of the most common performance measures are:
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the overall accuracy:

Accuracy ¼
TP þ TN

TP þ TN þ FP þ FN
; ð12Þ

the True Positive Rate (TPrate) also known as Sensitivity

or Recall:

TPrate ¼
TP

TP þ FN
; ð13Þ

the True Negative Rate (TNrate) also known as Specificity:

TN rate ¼
TN

TN þ FP
; ð14Þ

and the Positive Predictive Value (PPV) also known as

Precision:

PPV ¼
TP

TP þ FP
: ð15Þ

Conventional overall accuracy, is not suitable for problems

with high imbalance between the classes, because with imbal-

anced datasets it leads to the adoption of classifiers that may

completely neglect the minority class [62] (in the current case

a classifier that assigns everything to the negative class would

have an accuracy value of 508/552 or 92.3% but would be

practically useless). In order to avoid that, four alternative

measures of classification performance are used, which ma-

nipulate differently the entries of the confusion matrix:

a) Balanced Error Rate (BER):

BER ¼
1

2

FP

FN þ TP
þ

FN

FP þ TN

� �

; ð16Þ

b) Geometric mean (g-mean):

g−mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPrate⋅TN rate

p

; ð17Þ

c) Harmonic mean (F-measure):

F−measure ¼
2

1

TPrate

þ
1

PPV

; ð18Þ

d) Matthews Correlation Coefficient (MCC):

MCC ¼
TP⋅TN−FP⋅FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þ
p :

ð19Þ

From the four measures, only the BER has an inverse

relationship to performance (smaller values correspond to

Fig. 3 The overall procedure

Table 2 A general confusion matrix for a binary problem

Predicted as positive Predicted as negative

Actual positive True positives (TP) False negatives (FN)

Actual negative False positive (FP) True negatives (TN)
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better performance). For all the others the higher the value

the better the classifier is. BER is a common measure of

performance in the case of imbalanced data sets [54]. g-

mean has also been used in the context of FHR classifica-

tion [18] and it is often employed in the case of imbalanced

data sets. In the case of the F-measure, the simplest form is

selected, which corresponds to estimating the harmonic

mean of precision (PPV) and recall (TPrate) which usually

leads to balanced values between precision and recall [63].

Finally, MCC is another measure not affected by the dif-

ferent size of the two classes [64].

The performance for the different input feature sets

and for the different measures are summarized in

Fig. 4, where instead of the BER, 1- BER is included

so that higher values correspond to better performance

as in the other three measures. It should be noted that

for each one of the reported measures, the same criterion

is used during the tuning process. In other words the g-

mean values shown in Fig. 4a correspond to an LS-SVM

whose parameters were selected using g-mean as the

tuning criterion etc.

The average values are reported in Table 3. From Fig. 4

it is evident that the best performance for all four different

measures is achieved using only the three individually best

features (highlighted in bold) and the performance shows a

decreasing trend with the addition of more features (Note: this

statement holds only for this specific ranking of the features

and the specific three feature levels (3–9-54)). Figure 5

shows the feature space for the three top ranked features,

highlighting the non-separable nature of pH based classes.

This is further supported by Fig. 6 showing the non-

separable nature of normal and abnormal cases for the

three top ranked features (VLF, LF, and SD2) (Note: The

difference in median between normal and abnormal cases

is statistically significant for all three features (p < 0.05,

Wilcoxon rank sum test)). While it is difficult to tight

these features to a precise underlying physiological mech-

anism, it is clear that VLF and SD2 correlates with fre-

quency of FHR decelerations and LF is associated with

neural sympathetic activity [10, 32, 41]. In terms of sen-

sitivity and specificity, the results are summarized in

Table 4, where each row corresponds to the results of

the application of LS-SVMs having as inputs three fea-

tures and tuned using the criterion listed in the first col-

umn. The aggregated confusion matrices for the case of

the input set with only 3 features are presented in the

appendix. From Table 4 it can be seen that F-measure

seems to lead to a different configuration of the LS-
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Fig. 4 Performance measures: g-mean, F-measure, MCC and 1-BER (a), (b), (c) and (d) respectively for the different number of input feature sets

248 Health Technol. (2017) 7:241–254



SVM while the other three criteria lead to classifiers with

similar performance.

As also explained in the next section, comparison of the

variety of methods found in the literature is not straightfor-

ward. Therefore in order to further validate the utility of the

proposed approach and more specifically the approach that

utilizes only the top three features, a comparison with a more

conventional classification scheme is performed. This scheme

involves a dimensionality reduction stage, ameans to compensate

for the class imbalance, and a simple classifier. However, this

time the dimensionality reduction stage is not performed through

feature selection but via the use of PCA [51], the imbalance

compensation is performed using the Synthetic Minority

Oversampling TEchnique (SMOTE) [65] and the classifier

is a linear one, the Minimum Mahalanobis Distance

Classifier (MMDC) [51].

PCA has been used regularly in classification approaches

involving the FHR [18, 21] and even though it is a linear

unsupervised technique, it can be very competitive to more

advanced schemes when it comes to applications of real life

data [66]. SMOTE is also a method that has been widely used

in FHR analysis, since in this field normal cases dominate

existing datasets. The MMDC is a linear method which de-

spite its simplicity can perform Bembarrassingly^ (for more

advanced schemes) well when applied to real life data [67].

Another appealing property of the MMDC is that it is a pa-

rameter free method. However even for this simple classifica-

tion scheme and despite the fact theMMDC does not have any

parameters to be tuned, the other two stages need tuning:

selection of the number of retained PCs and the amount of

oversampling of the abnormal class for SMOTE.

As in the case of the LS-SVM scheme, a grid search is

performed following the same procedure as described

above. The same four performance measures are involved

and the results are depicted in Fig. 7, against the results

achieved using the more elaborate classification scheme

using only thee input features. From Fig. 7, it is evident

Table 3 Average performance for the different input feature sets

#Features 1-BER g-mean F-measure MCC

3 0.7305 0.7294 0.2523 0.2850

9 0.6997 0.6949 0.2442 0.2318

54 0.6431 0.6388 0.2406 0.2025
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that the extra effort for developing the proposed classifica-

tion scheme is indeed beneficial.

4 Discussion

In this work, a large set of available (and commonly used)

features that are extracted from open access CTU-UHB CTG

database is examined for classification. These features originat-

ed from different domains in order to cover as much as possible

of the information contained in FHR that could be associated

with delivery outcomes. The delivery outcome is quantified

using umbilical artery pH. The analysis shows that the use of

only three features combined with a powerful, yet computa-

tional efficient classifier, can achieve sensitivity and specificity

values that are close or above 70%. The balanced nature of the

results is reached by taking into account the imbalanced nature

of the problem during the training phase of the LS-SVM (using

unequal costs for the two classes, Eq. (10)).

Even though comparison to other published works is al-

most impossible the proposed approach is comparable or even

outperforms the published literature. Compared to [34], where

a similar approach was pursued with a filter selection

(RELIEF algorithm) and a boosted mean prototype classifier,

the results are better (sensitivity equal to 64.1% and specificity

equal to 65.2%). Moreover the current approach reaches

higher performance values using a smaller number of features,

thus improving computational efficiency.

Compared to the results presented in [29], where a sensi-

tivity equal to 57% and a specificity of 97% is reported, the

current work achieves better sensitivity but worse specificity.

However, these findings should be viewed with caution, since

in [29] a different data set is involved. Regarding the compu-

tational complexity the system employed in [29] has a very

fast inference mechanism based on well-established medical

criteria [68]. Our method on the other hand, requires training,

but once trained the response of the model is very fast, espe-

cially since it requires the extraction of only three features.

Regarding other works that use the CTU-UHB CTG data-

base for pH based classification, as in [69, 70], direct compar-

ison is again not possible since higher a threshold is used (pH

threshold equal to 7.2) in combination with other criteria

(Note: pH is a logarithmic measure and different thresholds

can lead to dramatically different stratification of the data lead-

ing to completely different classification performance), while

in [69] the approach is more of an exploratory nature. Finally,

compared to the simpler scheme using linear methods and

SMOTE for compensating the data imbalance, the proposed

approach is much more effective. Table 5 summarizes the per-

formance of the aforementioned works alongwith the involved

feature space, which however should be treated with caution

since different criteria and different datasets are involved.

The performance of the proposed method seems to be in

agreement with the findings of [32], where a g-mean equal to

0.7 is anticipated for large datasets. However more research is

needed before a conclusion can be reached on the limitations

of an approach based solely on FHR processing and pH based

class formation. Moreover, Fig. 5 clearly shows quite an over-

lap between the two classes indicating that a perfect classifi-

cation, in the current setting, may be impossible. Therefore

new features, including also information coming from the

UC signal [71], and/or better algorithms for classification are

needed. This work can therefore act as a benchmark for the

Fig. 6 Visualization of the top

three ranked features VLF –

Energy at the VLF band [41], LF

- Energy at the LF band [10],

SD2. (A: Abnormal, N: Normal)

Table 4 Average sensitivity and specificity values, for the three best

input features, under different tuning criteria

Tuning criterion Sensitivity Specificity

BER 0.6848 0.7768

g-mean 0.6879 0.7735

F-measure 0.7212 0.6530

MCC 0.6848 0.7768
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input the aforementioned three features, against the case of the MMDC based approach

Table 5 Summary of recent approaches using pH as a means to class formation

Reference Feature space Sensitivity Specificity Criterion

Xu et al. 2014 [19] Baseline, STV, LTV, Acceleration duration,

Auto-mutual information, Approximate entropy,

Sample entropy, (STD/mean)2, Phase rectified

signal averaging

83.02% 66.03%. pH < 7.05

and

7.27 < pH < 7.33

Georgieva et al. 2013 [21] Signal quality, Baseline, Signal stability index,

Minimal expected FHR value, #decelerations,

Onset slope of the decelerations, Gestation (weeks),

Maternal temperature, Parity, Meconium staining,

Epidural/Spinal analgesia, Sex

60.3% 67.5% pH < 7.10

and

7.27 < pH < 7.33

Dash et al. 2014 [23] A single discrete valued feature that combines variability,

accelerations and decelerations

60.9% 81.7%. pH ≤ 7.15

Costa et al. 2009 [29] Reduced long-term variability, repetitive

decelerations, tachycardia, decelerations,

reduced STV, reduced variability, ST event

57% 97% pH ≤ 7.05

Spilka et al. 2013 [34] Baseline, STV, LTV, Accelerations, Decelerations,

Energy in frequency bands, Approximate

and sample entropy, fractal dimension, SD1, SD2

64.09% 65.2% pH ≤ 7.05

Rotariu et al. 2014a [69] MF/(LF + MF + HF), HF/(LF + MF + HF), MF⁄HFa 96% 87.6% pH < 7.2

and

BDecf >8 mmol/L

Rotariu et al. 2014b [70] Accelerations, Decelerations, Prolonged decelerations 73.2% 88.2% pH < 7.2

and

Apgar <6

Current work (MMC) VLF, LF, SD2 68.48% 77.68% pH ≤ 7.05

Current work (F-measure) VLF, LF, SD2 72.12% 65.30% pH ≤ 7.05

aLow frequency LF (0.03–0.07 Hz), mid-frequency MF (0.07–0.13 Hz), and high frequency HF (0.13-1 Hz)
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evaluation of new features and algorithms, since it only re-

quires the extraction of three features and the use of a compu-

tational method, the training of which can be done really fast.

5 Conclusion

In this work a method for the evaluation of FHR is pro-

posed and tested using the open access CTU-UHB CTG

database with promising results. For the specific setting, a

minimal set of three input features seems to produce the

best results in terms of performance measure developed for

imbalanced data sets. These results are comparable to those

achieved by other methods presented in the literature, and

outperform a simpler classification scheme, which is used

as a Bbase^ measure to validate the use of advanced data

processing techniques. However the lack of standardiza-

tion makes it impossible to have a more formal compari-

son. The proposed approach, being the most complete ex-

perimental study so far, could be used as a benchmark for

future studies involving the CTU-UHB CTG open access

database.

The results also seem to confirm the findings of [32] that

reported difficulties in obtaining high classification perfor-

mance using FHR recordings and pH based classes on large

datasets. Therefore, either other source of information should

be seek, such as the inclusion of the Maternal Heart Rate

(MHR) [72], ST analysis [29], or other clinical information

as part of the feature set, and/or alternative labeling process

should be considered, keeping also in mind that it is not

natural to have a simple separating line (pH based) between

the normal and abnormal (pathological) FHR groups.

Toward the latter, a model for aggregating experts’ opinion

has been recently proposed based on the Latent Class

Analysis (LCA) [73–75]. In future work we plan to investi-

gate a hybridization of both approaches in hope of develop-

ing more reliable decision support tools for the interpretation

of CTG recordings.
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Appendix

Table 6 Aggregated confusion matrix for the case of three features

and 1-BER criterion

Predicted as abnormal Predicted as normal

Actual abnormal 452 208

Actual normal 1706 5914

Table 7 Aggregated confusion matrix for the case of three features

and g-mean criterion

Predicted as abnormal Predicted as normal

Actual abnormal 454 206

Actual normal 1726 5894

Table 8 Aggregated confusion matrix for the case of three features

and F-measure criterion

Predicted as abnormal Predicted as normal

Actual abnormal 476 184

Actual normal 2641 4979

Table 9 Aggregated confusion matrix for the case of three features and

MCC criterion

Predicted as abnormal Predicted as normal

Actual abnormal 452 208

Actual normal 1701 5919
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