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ABSTRACT 

Poly(3,4-ethylenedioxythiophene) (PEDOT), a conducting polymer, has been used since 

the 1990s for the cathode of tantalum capacitors, which have a tantalum anode, and a layer of 

tantalum pentoxide as the dielectric. Such capacitors are referred to as Polymer Ta capacitors. 

The first method, an in situ polymerization technique, used to deposit the polymer resulted in 

capacitors with a significant leakage current and breakdown voltages near 50 V. The second 

method, a pre-polymerization (pre-poly) technique, resulted in capacitors that have a much lower 

leakage current and a higher breakdown voltage than the in situ capacitors. 

In this thesis, an accurate measurement technique for dielectric leakage current, also 

referred to as the pre-breakdown current, was established for capacitors. Current versus time 

measurements at constant voltage were performed at several voltages and the results were 

compiled to obtain the current-voltage (I-V) characteristics of both in situ and pre-poly types of 

capacitors. These characteristics were then modeled and analyzed, which led to the conclusion 

that the pre-breakdown current is controlled by the Poole-Frenkel mechanism in the in situ 

capacitors and by both the Poole-Frenkel and Schottky mechanisms in the pre-poly capacitors. 

Current versus time measurements were also performed at various temperatures to obtain the 

activation energy for the current in the capacitors and to verify the leakage mechanisms. Results 

suggest the presence of shallow 0.15 eV traps in the dielectric of the in situ capacitor and deeper 

0.75 eV traps in that of the pre-poly capacitor. Additionally, pre-poly capacitors also have a   

0.54 eV Schottky barrier that limits the electrons from being emitted into the dielectric from the 

electrode. Both the deep trap levels and the Schottky barrier explain the lower leakage current 

and higher breakdown voltage observed in the pre-poly capacitors as compared to the in situ 

capacitors. 



 

iii 

 

DEDICATION 

 

I dedicate this thesis to my parents, wife, and sister, for their constant support and 

encouragement. 



iv 

 

ACKNOWLEDGEMENTS 

 I would like to thank my advisor, Dr. William R. Harrell, for his guidance while 

conducting this research and writing this thesis. I would also like to thank Dr. Yuri Freeman for 

his assistance and KEMET Electronics Corporation for supporting this project financially for the 

past three years. Sincere gratitude also goes to Dr. Kelvin F. Poole for the valuable discussions I 

have had with him. I would also like to thank Dr. James E. Harriss for his help in the 

Microstructures Laboratory with device fabrication. I also express gratitude to Dr. Joel S. 

Greenstein who reviewed my thesis and served on my thesis committee. 

 I also appreciate the support during research from Dr. Philip Lessner, Dr. Erik Reed,   

Mr. Tony Kinard and Dr. James Chen of KEMET Electronics Corporation, and Dr. Igor Luzinov 

of Clemson. I am also grateful to Ms. Barbara Ramirez, Director of the writing center at the 

Class of 1941 Studio for Student Communications at Clemson, who has helped me to improve 

this thesis. I would also like to thank Mr. Kapil C. Madathil for authoring a software package 

that made data compilation easier for me, Mr. Sriram Ravindren for proof reading this thesis, and 

Mr. John Hicks for his help in the ECE shop. Thanks also go to Mr. Jesse Grant for his good 

company during the writing of this thesis. 

 

 

 

 A part of this thesis was presented in the conference paper: G.F. Alapatt, W. R. Harrell, 

Y. Freeman and P. Lessner, “Observation of the Poole-Frenkel Effect in Tantalum Polymer 

Capacitors” presented at IEEE SoutheastCon 2010, Charlotte, NC, USA. 



v 

 

TABLE OF CONTENTS 

Page 

TITLE PAGE ........................................................................................................................... i 

ABSTRACT ............................................................................................................................ ii 

DEDICATION ......................................................................................................................... iii 

ACKNOWLEDGMENTS ........................................................................................................ iv 

LIST OF TABLES ................................................................................................................... vii 

LIST OF FIGURES ................................................................................................................. viii 

CHAPTER 

1. INTRODUCTION .............................................................................................................. 1 

1.1.    Electrolytic Capacitors.............................................................................................. 1 

1.2.    Summary of Chapters ............................................................................................... 5 

2. EVOLUTION OF TANTALUM CAPACITORS ............................................................... 7 

3. POLYMER TANTALUM CAPACITORS ......................................................................... 13 

3.1.    Introduction .............................................................................................................. 13 

3.2.    Fabrication of Polymer Tantalum Capacitors ............................................................ 14 

3.3.    Primary Electrical Properties .................................................................................... 18 

3.4.    Modeling Polymer Tantalum Capacitors as MIS Devices.......................................... 25 

4. BREAKDOWN PHENOMENON IN TANTALUM CAPACITORS ................................. 27 

4.1.    Breakdown Phenomenon in Dielectrics..................................................................... 27 

4.2.    Dielectric Breakdown Phenomenon in Tantalum Capacitors ..................................... 32 

4.3.    Poole-Frenkel Mechanism ........................................................................................ 35 

4.4.    Schottky Effect ......................................................................................................... 36 

4.5.    Space Charge Limited Conduction Mechanism ......................................................... 37 

4.6.    Tunneling Mechanism .............................................................................................. 38 

4.7.    Fowler-Nordheim Tunneling Mechanism ................................................................. 40 

4.8.    Activation Energy of a Leakage Mechanism ............................................................. 41 

4.9.    Leakage Mechanisms Observed in Tantalum Pentoxide Structures ........................... 42 

5. ELECTRICAL CHARACTERIZATION TECHNIQUES FOR CAPACITORS ................. 45 

5.1.    I-V measurements ..................................................................................................... 45 

5.1.1    Limiting Noise in I-V Measurements ............................................................... 45 

5.1.2    Determining Time Delay required for I-V Measurements ................................. 50 

5.2.    C-V Measurements ................................................................................................... 60 

5.3.    Performing Measurements as a Function of Temperature .......................................... 63 

 



vi 

 

Table of contents (Continued) 

Page 

6. CHARACTERISTICS OF POLYMER TANTALUM CAPACITORS ............................... 65 

6.1.    In situ Capacitors ...................................................................................................... 66 

6.2.    Pre-poly Capacitors .................................................................................................. 72 

6.3.    Comparison of In situ and Pre-poly Capacitors ......................................................... 82 

6.4.    Reverse Polarity Characteristics of Tantalum Capacitors .......................................... 84 

7. SUMMARY AND CONCLUSIONS .................................................................................. 90 

APPENDIX ............................................................................................................................. 93 

REFERENCES ........................................................................................................................ 98 



 

vii 

 

LIST OF TABLES 

Page 

 

I. Leakage mechanisms observed in Ta2O5 devices.   ........................................................... 43 

II. Results from Series and Parallel mode measurements ........................................................... 62 



 

viii 

 

LIST OF FIGURES 

Page 

 

 

1.1.   Model of a real capacitor ............................................................................................. 4 

2.1.   ESR and Maximum WV in the tantalum D case capacitors ............................................ 9 

2.2.   Comparison of Technology Mix in a Laptop produced in 2003 and 2005 ......................... 12 

3.1.   Functional parts and materials of the polymer Ta capacitor ............................................... 13 

3.2.   Tantalum pellet before and after the pressing and sintering process................................... 14 

3.3.   Structure of the polymer Ta capacitor ................................................................................. 17 

3.4.   Tantalum capacitor in a chip-type package ......................................................................... 18 

3.5.   Variation of ESR with frequency ........................................................................................ 19 

3.6.   Distributed RC network model of the capacitor .................................................................. 20 

3.7.   Simplified distributed RC model......................................................................................... 20 

3.8.   Capacitance roll-off in MnO2 and polymer Ta capacitors ................................................... 21 

3.9.   Electrical Conditioning of the polymer Ta capacitor .......................................................... 22 

3.10. Variation of leakage current in In situ and Pre-poly capacitors........................................... 24 

3.11. Simplified capacitor structure for analysis .......................................................................... 25  

4.1.  Generation of traps leading to breakdown...................................................................... 30 

4.2.  Variation of BDV in SiO2 films with its thickness ............................................................... 32 

4.3.  Dependence of Breakdown voltage on dielectric thickness in Ta capacitors ...................... 34 

5.1.  I-time measurement result on an polymer Ta capacitor ....................................................... 46 

5.2.  Simplified schematic of the measurement system ............................................................... 47 

5.3.  I-time measurement result on polymer Ta capacitor with the series resistor ....................... 50 

5.4.  Current decay in an in-situ capacitor for the first 200 s. V0 = 15 V. .................................... 53 



 

ix 

 

List of Figures (Continued) 

Page 

5.5.  Current decay in an in-situ capacitor from t = 175 s to 17 ks. V0 = 15 V ............................ 55 

5.6.  I-time measurement results at 15 V on an in situ capacitor. ................................................ 56 

5.7.  Compiled I-V data of an in situ capacitor from I-time measurements ................................. 57 

5.8.  Results from incorrect I-V measurements on an in-situ capacitor ....................................... 59 

5.9.  Graphite probe attached to an alligator clip ......................................................................... 60 

6.1.  I-V characteristics of in situ capacitors ................................................................................ 67 

6.2. Schottky plot of the I-V characteristics of in situ capacitors ............................................ 69 

6.3. PF plot of the I-V characteristics of in situ capacitors....................................................... 70 

6.4.  Arrhenius plot for the in situ capacitors ............................................................................ 72 

6.5.  I-V characteristics of pre-poly capacitors ............................................................................ 74 

6.6.  Schottky plot of I-V characteristics of pre-poly capacitors .............................................. 75 

6.7.  Arrhenius plot for pre-poly capacitor (Sample 3) ............................................................. 77 

6.8.  PF plot of the I-V characteristics of pre-poly capacitors .................................................. 78 

6.9.  Variation of current with time in Sample 4 at 250 K. .......................................................... 80 

6.10. Arrhenius plot for pre-poly capacitor (Sample 4) ............................................................... 81 

6.11. Comparison of I-V characteristics of in situ and pre-poly capacitors ................................. 83 

6.12. I-V curve of discrete polymer capacitors from – 1 to 10 V. ................................................ 85 

6.13. I-V characteristics of the Ta-Ta2O5-Al MIM structure .................................................... 86 

6.14. Electronic band structure of Ta-Ta2O5-Al ........................................................................... 87 

A.1.  Results from fourteen continuous I-time runs on an in situ capacitor ........................... 94 

A.2.  Comparison of I-time results on all samples ............................................................... 95 

A.3.  Worst-case PF plot ..................................................................................................... 97 



1 

CHAPTER ONE 

INTRODUCTION 

1.1  Electrolytic Capacitors 

Electrolytic capacitors are a class of capacitors in which the anode is typically a 

metal and the cathode is either a conductive electrolyte or a conducting organic or 

inorganic material. A material with a high dielectric strength, a high dielectric constant, 

and good film forming properties is employed as the capacitor’s dielectric. This material 

is typically a natural oxide of the anodic metal because a high quality thin layer of it can 

be grown easily on the anode. The primary function of the dielectric is to maintain a fixed 

distance between the anode and the cathode to create a capacitance between them. It also 

acts as an insulator that blocks the flow of dc current between the electrodes. This 

dielectric is often fragile and uneven, requiring the cathode to be a soft material or a 

liquid. The liquid electrolyte also helps to reform the dielectric, meaning the electrolyte 

promotes the re-growth of the dielectric at a local hot spot when the capacitor has a dc 

bias applied across it. 

Given its structure, the electrolytic capacitor can be treated as a parallel plate 

device, the capacitance of which is given by 

 

 

where, A is the area of the capacitor, d the thickness of the dielectric, �� the permittivity 

of free space and �� the relative permittivity of the dielectric, also known as the dielectric 

 � �  ������   (1.1) 
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constant. In theory, the capacitor does not conduct dc current; however, because the 

capacitor is not perfect, some dc current always flows through the capacitor when a dc 

voltage is applied across it. This current is an important parameter of the capacitor, 

referred to as the capacitor’s leakage current. The magnitude of this current is dependent 

on factors such as the quality and type of dielectric, the anode and cathode material, and 

the dielectric thickness. When a sufficiently high dc voltage is applied across the 

capacitor, it breaks down because of the excessive leakage current, which damages the 

dielectric. This voltage, another important parameter of the capacitor, is referred to as the 

breakdown voltage (BDV) of the capacitor. Because it is unsafe to operate capacitors 

near their breakdown voltage, they are typically rated to work reliably up to 

approximately half of their breakdown voltage or even below. This maximum rated dc 

voltage below which the capacitor works reliably is referred to as its working voltage 

(WV). While the breakdown voltage is a parameter of the capacitor and is determined by 

the manufacturing process and technology, the working voltage is determined by the 

manufacturer based on reliability and life tests conducted on numerous capacitors. 

Another important parameter of a capacitor is its maximum reverse voltage, the 

maximum voltage that can be applied momentarily across the capacitor at reverse polarity 

without causing dielectric damage. It is typically about 10% of the rated working voltage 

at room temperature. This restriction is in place because the electrolytic capacitors 

typically exhibit polar characteristics, meaning they conduct heavily and breakdown even 

when a small reverse bias is applied across them. 
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The product of a capacitor’s capacitance and its working voltage (C�V) is roughly 

constant for a given electrode area, or the case size of the device. This is because, in order 

to increase the working voltage, the manufacturers increase the dielectric thickness 

resulting in a lower capacitance according to Eq. 1.1. This C�V product is important 

because the capacitor manufacturers fix the maximum leakage limit in terms of the 

current per C�V, equivalently, microamperes per microfarad volt 	� 
� · 	
�⁄ . Typically, 

this figure is in the range of 0.01 to 0.1 	� 
� · 	
�⁄ . The C�V accounts for the voltage 

existing across the capacitor and its capacitance; it is possible to calculate the electric 

field across the oxide from the capacitance, because the capacitance is directly related to 

the oxide thickness. In addition, � � � · �, so the charge on the capacitor is also known. 

Therefore, the number of microamperes per microfarad volt represents the minimum time 

constant for self-discharge, or the maximum leakage at constant field. For a uniform and 

perfect dielectric, the parameter 	� 
� · 	
�⁄  should be independent of the dielectric 

thickness.  

A manufactured capacitor can be modeled electrically using ideal capacitors, 

resistors, and inductors as shown in Fig.1.1. The ESL stands for Equivalent Series 

Inductance that exists because of the lead wire used inside the capacitor’s assembly. The 

ESL in most instances is a very small value and is negligible. The Equivalent Series 

Resistance (ESR) is the value of the resistance the capacitor offers to ac signals. Factors 

contributing to the ESR are the resistance of the lead wires and the capacitor’s electrodes. 

C in this figure stands for an ideal capacitive element that predomiantly contributes to the 

capacitance of the capacitor. RL is the capacitor leakage resistance which accounts for the 
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capacitor’s small dc leakage current. Its value is approximately 50 G� for tantalum 

capacitors and about 1000 G� for ceramic and film capacitors. Cd and R d represent a 

capacitor and a resistor that accounts for the capacitive and resistive losses due to 

dielectric absorption and molecular polarization [1]. 

  

Fig.1.1. Model of a real capacitor. (Adapted from [1]) 

 

Electrolytic capacitors have certain features that make the capacitor’s use 

attractive in military, space, and medical applications. Their most important feature is 

their high volumetric efficiency, meaning they can hold more charge per unit volume; 

this is because of their large surface area and extremely thin dielectric film. Historically, 

the biggest drawbacks of using the electrolytic capacitors are that they have a high ESR 

and they exhibit polar characteristics. They are typically used for bypassing, decoupling, 

and filtering applications where the ac component of the applied signal is comparatively 

lower than its dc component. This restriction exists because electrolytic capacitors are 

typically polarized. Further details on electrolytic capacitors are available in the literature 

[2-4].  



5 

 

Electrolytic capacitors have a long history and it is interesting to note that the first 

patent for an electrolytic capacitor was given to Charles Pollak in 1897, who designed a 

capacitor using aluminum. Tantalum and niobium electrolytic capacitors were 

investigated by G. Schulze in the early 1900s. The first tantalum electrolytic capacitor 

was manufactured by Fansteel Metallurgical Corporation in 1925 and the first miniature 

porous tantalum electrolytic capacitors were first sold in 1949 [5]. Tantalum capacitors 

manufactured since the 1950s use pressed and sintered particles of tantalum to form the 

anode because the particles help to increase the surface area of the anode and thus the 

volumetric efficiency. This research focuses primarily on the electrical properties of 

polymer based tantalum electrolytic capacitors and the current conduction in its 

dielectric, tantalum pentoxide, which is tantalum’s natural oxide. 

 

1.2  Summary of Chapters 

In Chapter 2, the evolution of tantalum capacitors is discussed and some of its 

properties are examined. 

In Chapter 3, the polymer tantalum capacitor is introduced and its fabrication and 

properties are reviewed in detail. The polymer capacitor is also compared to the standard 

Metal Insulator Semiconductor (MIS) device. 

In Chapter 4, the breakdown in polymer tantalum capacitors is reviewed in detail 

along with the basic theory of dielectric breakdown. The basic conduction mechanisms in 

dielectrics – Poole-Frenkel Effect, Schottky Effect, Space Charge Limited Current, and 

Tunneling are also examined. 
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In Chapter 5, the techniques that were devised for performing I-V and C-V 

measurements on the tantalum capacitors are presented. 

In Chapter 6, the major results from the current versus time measurements 

performed on the polymer tantalum capacitors are presented. The results include 

characteristic plots of leakage mechanisms, and Arrhenius plots. 

Finally, in Chapter 7, the previous chapters are summarized and conclusions are 

presented based on the results from this research. 
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CHAPTER TWO 

EVOLUTION OF TANTALUM CAPACITORS 

Tantalum capacitors were developed in order to address the poor electrical quality 

associated with the aluminum capacitor, which used aluminum as the anode material. 

Aluminum capacitors had two major shortcomings: they were bulky and had a limited 

shelf life. Replacing the aluminum at the anode with tantalum resulted in major 

improvements due to the following properties: high volumetric efficiency of tantalum, 

chemical stability of the tantalum metal and its oxide, the high dielectric constant of 

tantalum’s oxide, compatibility of tantalum’s oxide with electrolytes possessing a high 

conductivity and a low freezing point. Thus, this change resulted in a capacitor that was 

miniaturized, had an increased shelf life, had a wider range of operating temperature, and 

possessed a higher overall electrical quality. During the last fifty years, tantalum powder 

used to construct the anode was made even finer, increasing the capacitor’s area and, 

hence, its capacitance. It increased from 1000 CV/g in the 1960s to more than 150000 

CV/g in the 2000s [6, 7]. This increase is technically referred to as an increase in 

volumetric efficiency, which is the ability to achieve a larger capacitance per gram (or 

cm3) of tantalum powder and is measured in charge/unit weight or charge/unit volume.  

Tantalum capacitors are broadly divided in two types based on the nature of their 

cathode: wet or solid. The wet capacitor employs a conducting liquid electrolyte as the 

cathode, while a solid capacitor employs a solid conducting material as the cathode. The 

first tantalum capacitors were manufactured in the 1940s and were of the wet type. It had 

a sintered tantalum anode, a thin layer of Ta2O5 dielectric, and a liquid electrolyte such as 
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sulfuric acid as the cathode. The advantage of using a liquid electrolyte as the cathode is 

that it conforms to the dielectric’s surface and helps the dielectric to be reformed at a 

fault site during capacitor operation. Reformation refers to electric field assisted 

recreation of the dielectric at the point where it has been damaged. This capability is 

necessary because the initially created oxide might have defects due to impurities in the 

anode metal [1]. 

However, using a liquid electrolyte requires a hermetic seal to prevent it from 

evaporating or leaking. Leaks are potentially dangerous because of the acidic nature of 

the electrolyte. Another disadvantage of using the liquid electrolyte is that it freezes at 

low temperatures and prevents the capacitor from functioning [8]. Despite all these 

factors, wet tantalum capacitors work reliably up to approximately 150 V and are still 

used in applications that require high working voltages. 

To solve the problems associated with the liquid electrolyte, Bell Labs developed 

a solid electrolytic capacitor in 1950s [9]. It employed manganese dioxide (MnO2), a 

solid semiconducting material, as the counter electrode in place of the liquid electrolyte, 

thus avoiding the presence of any liquids in the system. In comparison to the wet 

tantalum capacitor, this new solid capacitor had a reduced capacitor volume, better high 

temperature characteristics, a lower power factor, and a longer shelf life. In addition, 

since the solid capacitor did not contain a liquid electrolyte, a hermetic seal was not 

required [9]. However, solid tantalum capacitors are limited to a lower maximum 

working voltage of approximately 75 V, compared to 150 V for the wet tantalum 

capacitors. This limitation was not seen as a serious problem because the industry was 
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beginning to manufacture transistorized circuits that required relatively small operating 

voltages. Similar to the wet tantalum capacitors, tantalum capacitors with MnO2 counter 

electrodes are still manufactured and used widely today. The ESR and working voltage of 

three types of capacitors are shown in Fig. 2.1. One of the Y-axes shows the ESR in m� 

and the other Y-axis shows the working voltage (WV) in volts. The X-axis shows a 

timeline from 1940 to 1990 and the cathode material/capacitor technology. In this figure, 

Polymer refers to a type of solid capacitor with a polymeric cathode, which will be 

discussed in this section later. From the figure, it is evident that the ESR and Working 

voltage have been decreasing over the last fifty years. 

 

Fig. 2.1. ESR and Maximum WV in the tantalum D case capacitors [10]. 

 

Another advantage of using MnO2 is that if a local hot spot is formed in the 

dielectric due to a defect and excessive current flows through it, the conductive material 

near the defect site becomes oxidized to Mn2O3, which has much lower conductivity than 

the initial MnO2. The defect becomes isolated since the resistivity around the hot-spot 
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falls significantly, ensuring that no further current flows through it. This self-healing, or 

electrical conditioning property, is what makes MnO2 – based capacitors useful. These 

capacitors also work well under thermo-mechanical loads and at high temperatures, and 

exhibit good DC bias and steady state reliability [11]. 

However, one disadvantage of MnO2 is that it is a poorly conducting material and 

cannot satisfy the ultra low Equivalent Series Resistance (ESR) requirements of the 

modern electronics industry. The conductivity of MnO2 is 0.1 S/cm, meaning it is not 

possible to manufacture ultra low ESR capacitors using this material [12]. A low ESR 

capacitor is useful in applications that require capacitors with a smaller RC delay and 

lesser I2R power being dissipated over the series resistance [13]. These are important 

characteristics of modern integrated and discrete circuit designs, which employ higher 

operating frequencies and lower supply voltages [14]. For example, the Intel 8086 

processor released in the late 1970s ran on a 5 V supply at 5 MHz, while the Intel Atom 

processor released in 2009 requires only a 1.2 V supply and operates at 2 GHz. In 

addition, overall power consumption per chip has increased over the last 40 years because 

of the increase in circuit functionality and performance. This increased power 

consumption coupled with the lower supply voltage results in a large current flowing in 

the circuit. These large currents in conjunction with the high frequency signals in the 

circuit make low ESR capacitors particularly important in today’s circuits. 

A second disadvantage of the tantalum MnO2 capacitor is that under certain 

conditions, it exhibits a catastrophic ignition failure when the extreme heat generated in 

the capacitor causes it to ignite [1]. MnO2, which is a good source of oxygen, fuels an 
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exothermic process converting pure tantalum at the anode into crystalline tantalum 

pentoxide. This is extremely dangerous as the ignition of the capacitor can burn the 

circuitry around it and cause serious damage to the entire product. It is best for devices to 

fail, if at all, in a graceful mode. Finally, a third disadvantage is that the MnO2 deposition 

process involves the application of high temperatures which might cause cracks in the 

dielectric because of the stress created due to the mismatch in the coefficient of thermal 

expansion of the materials constituting the capacitor. Even the smallest crack can 

increase the leakage current, causing the capacitor to fail [15]. Because of these two 

disadvantages, the solid tantalum MnO2 capacitors have reliability issues. 

In the late 1980s, an intrinsically conducting polymer was proposed to replace 

MnO2 as the counter electrode in the tantalum capacitors because of its higher 

conductivity, higher reliability, and ease of synthesis [16-22]. Polyaniline, polypyrole and 

Poly(3,4-ethylenedioxythiophene) (PEDOT) were the conductive polymers initially 

investigated to replace MnO2 [12, 23, 24]. Tantalum capacitors manufactured using these 

polymer counter electrodes do not exhibit the catastrophic burning failure mechanism 

because they do not have sufficient oxygen to fuel the reaction [1]. They also have a 

lower ESR and better high frequency characteristics. In addition, polymer-based 

capacitors have the advantage of higher reliability because their deposition technique 

does not involve high temperatures, which can cause cracks in the dielectric [15].  

This change in the cathode material provided the advantage needed by the 

capacitors to be suitable for modern electronic battery-operated devices. The increased 

reliability and stability of polymer tantalum capacitors makes them attractive for military, 
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space, and medical applications [10]. For example, in a case study, it was found that in 

2003, 47% of the capacitors inside a typical laptop computer were of the tantalum-

polymer type and in 2005, this figure has jumped up to 70% [11]. The full details of the 

case study are represented numerically on the pie chart in Fig 2.2. 

 

Fig 2.2. Comparison of Technology Mix in a Laptop computer produced in (a) 2003 and 
(b) 2005. (Adapted from [11]) 

 

 

The evolution of tantalum electrolytic capacitors has been explored and the 

properties of the existing three types of tantalum capacitors were compared. To 

understand the characteristics of the polymer based tantalum capacitors, its fabrication, 

and properties need to be investigated. 
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CHAPTER THREE 

POLYMER TANTALUM CAPACITORS 

3.1  Introduction 

The structure of a polymer tantalum capacitor is similar to that of the earlier 

tantalum MnO2 capacitor, except that while forming the cathode, Poly(3,4-

ethylenedioxythiophene) (PEDOT) instead of MnO2 is deposited on the dielectric. During 

fabrication, the Ta anode is made first, then a layer of tantalum pentoxide is grown on the 

Ta, forming the dielectric. Finally, a layer of conductive polymer is deposited on the 

dielectric, which forms the cathode. This layered structure is shown in Fig 3.1 in which 

the capacitor’s functional parts and the materials are marked. Although this is not a 

complete packaged capacitor at this point, these are the primary material layers that form 

the capacitor. 

 

Fig. 3.1. Functional parts and materials of the polymer Ta capacitor.  

 

 

 



14 

 

3.2  Fabrication of Polymer Tantalum Capacitors 

The capacitor’s anode is fabricated using fine powdered tantalum in order to 

maximize the area of the anode and thus, the capacitance per unit gram of tantalum 

powder, thereby achieving a high volumetric efficiency. The powdered tantalum is first 

pressed into a pellet around a tantalum riser wire and then sintered in vacuum at 1350 °C 

for 10 minutes. This sintering process helps to establish good electrical connectivity 

between the individual particles of the powder. Fig 3.2 shows a pellet with a riser wire 

before and after the pressing and sintering process. The tantalum riser wire serves as an 

external common contact to all the tantalum particles in the pellet as is evident in the 

figure. To enhance the morphology of tantalum, necessary for good performance, 

deoxidizing and decarbonizing steps are performed [25]. 

 

Fig. 3.2. Ta pellet before (left) and after (right) pressing and sintering [1]. 
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The dielectric is formed through an electrochemical anodization process, during 

which the anode structure is placed in an electrolytic bath containing an aqueous solution 

of 0.01 mol% phosphoric acid at 80 °C. A dc voltage, referred to as the formation 

voltage, is subsequently applied at the anode with respect to the bath. The power supply 

applying the formation voltage is set to a maximum current of 1 mA/cm2, an optimal 

value based on experiments conducted at KEMET, which showed that increasing the 

current density promotes quicker oxide formation; however, the oxide also tends to 

crystallize, resulting in hot spots when it is grown using a high current density. With this 

formation voltage applied, an oxide film of Ta2O5 begins to grow on the Ta metal, 

forming the dielectric. The chemical equations pertaining to this process are:  

 

At Anode:  2 Ta→ 2 Ta5+ + 10 e- 

   2 Ta5+ + 10 OH- → Ta2O5 + 5 H2O 

At Cathode:  10 H2O + 10 e-
→ 5H2↑ + 10 OH- 

 

The Ta ions created at the anode combine with the OH ions created from the 

aqueous phosphoric acid and result in the formation of Ta2O5 and hydrogen. Ta2O5 is 

deposited at the Ta anode, while hydrogen escapes from the solution forming bubbles. 

The thickness of the oxide grown varies with the applied formation voltage and can be 

determined from the relationship, Tox = 2 nm/V at 80 °C [5]. 

This electrochemical setup initially works as a current limited circuit with the 

current level continuously decreasing and the voltage across the oxide increasing as the 
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oxide grows in thickness. When the pre-determined thickness of oxide is formed on the 

anode, the voltage ceases to increase and the setup becomes voltage limited. This 

electrochemical process of growing the dielectric layer, which takes approximately three 

hours, results in a layer of amorphous Ta2O5 on the surface of the anode. Strictly 

speaking, the oxide not only forms on the surface of the metal, but also consumes some 

of the metal, growing down into the anode. This general method of oxide growth is 

referred to as oxide formation at constant potential process. Additional annealing steps 

are also conducted to enhance the quality of the grown oxide. 

The cathode of the capacitor is formed using one of the two commercial methods 

of depositing the conducting polymer. The first method involves the in situ oxidative 

polymerization of ethylenedioxythiophene (EDOT) (Clevios™ M from H.C. Starck) with 

iron (III) toluenesulfonate and capacitors formed by this method are referred to as in situ 

type polymer Ta capacitors. The second method involves the application of pre-

polymerized PEDOT particles (Clevios™ K from H.C. Starck) onto the dielectric through 

a dip and dry process. These are referred to as pre-poly or slurry type polymer Ta 

capacitors because of the pre-polymerized slurry applied to the dielectric to create the 

cathode. For both processes, a conductive layer of PEDOT is formed on the surface of the 

capacitor during this cathode formation process.  

Although a capacitor is functional when the anode, dielectric, and cathode are 

formed, the exposed PEDOT needs to be covered with a more robust material to establish 

an external contact. This is achieved by first coating the PEDOT surface with a 

conductive graphite powder in order to enhance the conductivity at the interface, and then 
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covering the graphite with silver paint to create a low resistance connection. The initial 

graphite coating helps to prevent the formation of silver oxide between the silver paint 

and the PEDOT [26].  

The capacitor structure formed at this stage is illustrated in Fig 3.3. This capacitor 

is then cured and conductive epoxy is subsequently used to connect the silver surface 

with a lead frame [1]. The Ta riser wire at the anode is welded to a second lead frame 

element. This entire structure is packaged in plastic with the lead frames protruding from 

opposite sides as illustrated in Fig.3.4. The particular type of packaging shown in Fig 3.4 

is known as a chip-type package, approximately 3mm x 8mm x 5mm.  

 

 

Fig 3.3. Structure of the Polymer Ta capacitor. (Adapted from [26]) 
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Fig. 3.4. Tantalum capacitor in a chip-type package [27]. 

 

3.3  Primary Electrical Properties 

The attractive features of the polymer Ta capacitor giving it a competitive edge 

over other types are its low ESR, its self-healing mechanism, and its high stability and 

reliability.  

The polymer Ta capacitor has a lower ESR than its MnO2 counterpart throughout 

the entire frequency spectrum as can be seen in the plot in Fig. 3.5. In this figure, the ESR 

is plotted against signal frequency. At low frequencies near 10 kHz, the ESR of the Low 

ESR MnO2 and the Commercial MnO2 capacitor is greater than twice that of the polymer 

capacitor, while at higher frequencies, the ESR of all capacitors reduces to a low value 

because inner resistive components of the capacitor become unresponsive and no longer 

contribute to the total series resistance. 
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Fig. 3.5. Variation of ESR with frequency. (Adapted from [28]) 

 

One benefit of this low ESR is that the polymer Ta capacitor has an improved 

capacitance roll-off with frequency because of the reduction in the Resistance-

Capacitance (RC) ladder effect. This RC ladder, as illustrated in Fig 3.6, is created within 

the capacitor because of the use of powdered tantalum particles at the anode. This 

distributed network RC model of the capacitor is made up of individual, but connected, 

particles of tantalum covered by the dielectric and the cathode [26]. Ignoring the 

resistivity of tantalum at the anode, the structure in Fig 3.6 can be simplified to the RC 

network as shown in Fig. 3.7, which accounts only for the resistance created due to the 

resistivity of the cathode material. For an individual capacitive element, C1, situated 

away from the cathode, the RC time constant is high due to the cumulative effect of all 

the resistors R1, R2 and so on until Rn, in its path. This high time constant will prevent 

C1 from responding to high frequency signals. Because of the low ESR in polymer Ta 
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capacitors, the values of individual resistors are low and hence the RC ladder effect is 

small. 

 

Fig. 3.6. Distributed RC network model of the capacitor [26]. 

 

Fig. 3.7. Simplified distributed RC model. (Adapted from [26]) 

 

This RC ladder effect causes the capacitance to roll off at higher frequencies as 

shown in Fig. 3.8. As the RC ladder effect in polymer Ta capacitors is low, the 

capacitance roll-off begins at a higher frequency in comparison to the tantalum MnO2 

capacitors, making the tantalum-polymer capacitor more suitable for high frequency 

applications. 
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Fig. 3.8. Capacitance roll-off in MnO2 and Polymer Ta capacitors [26]. 

 

Another attractive feature of the polymer Ta capacitor is its self-healing or 

electrical conditioning mechanism by which it heals any macroscopic defects that were 

created during its formation. This self-healing mechanism is explained by two theories. 

The first one attributes it to the evaporation of the PEDOT due to the excessive heat 

generated from the large fault current flowing through the dielectric at a defect site, 

which is illustrated in Fig. 3.9. This evaporation isolates the defect site from the capacitor 

system and prevents further current flow. Another explanation is that the polymer’s 

resistivity is proportional to the oxygen level within it, which increases due to the 

movement of oxygen from the dielectric into the PEDOT, owing to the excess heat that is 

generated by the fault current. This high resistivity of the PEDOT adjacent to the defect 

site effectively limits the current flow through the defect [28]. Both these theories predict 
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that the self-healing mechanism increases the reliability of capacitors and makes it 

possible to manufacture reliable capacitors using simple processing techniques. 

 

Fig. 3.9. Electrical Conditioning of the polymer Ta capacitor [10]. 

 

Other factors that improve the polymer Ta capacitor’s reliability are lower 

process-induced stresses and the absence of the burning failure mechanism. There are 

lower process-induced stresses because PEDOT is a soft and flexible material and can 

thus adjust to physical forces that are created during the capacitor fabrication without 

cracking. Moreover, the polymer deposition process involves drying only at room 

temperatures, which further decreases the possibility of creating crack like faults [13]. 

Additionally, PEDOT does not contain enough oxygen to fuel the ignition failure 

mechanism that is common in MnO2 based capacitors, so that the polymer capacitors can 

be safely used in sensitive environments where an ignition needs to be avoided at all 

costs [13].  

To evaluate the possibility of an ignited failure, tests were conducted on identical 

polymer and MnO2 based capacitors during which they were all biased at reverse polarity 
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with twice their rated voltage using a power supply that could deliver up to 20 Amps. 

Biasing at such a high reverse polarity is a sure way to significantly increase the leakage 

current in the capacitor and cause it to fail immediately. The results showed that all MnO2 

based capacitors failed and ignited while none of the polymer parts ignited, although they 

were damaged by the reverse polarity applied [26]. In terms of the cost involved, 

although the polymer as a raw material is more expensive than MnO2, the polymer 

deposition process is cheaper than that of MnO2 [1].  

The biggest single drawback of using the polymer cathode was a reduction in the 

working voltage of the tantalum-polymer capacitor in comparison to that of the tantalum-

MnO2 capacitor. Until 2008, manufactured polymer Ta capacitors were of the in situ type 

and it was not possible to obtain a working voltage higher than 20 V. Using the pre-

polymerized method of polymer deposition, it is now possible to manufacture tantalum-

polymer capacitors with higher working voltages [28, 29]. The in situ capacitor and the 

pre-poly capacitor are essentially the same, with the exception that their polymeric 

cathode is deposited with a different method; however, this increased the maximum 

working voltage that could be obtained with a polymer capacitor. It has been observed 

that the in situ capacitor has a significantly higher leakage current than the pre-poly 

capacitor [30]. In Fig. 3.9, the leakage current in the in situ and the pre-poly capacitors is 

shown as a function of the applied dc voltage. At 25 V, the in situ capacitor conducts 

approximately 2 nA/cm2, while the pre-poly capacitor conducts only 20 fA/cm2. From 

Fig. 3.10, diode like I-V characteristics can be observed in the pre-poly capacitor. At 

normal bias, i.e., a positive bias applied to its anode with respect to its cathode, the 
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current is low; but when reverse biased, the current increases drastically. This high 

leakage current, at a negative bias, makes Ta capacitors unsuitable for operation in the 

negative bias regime; it is thus referred to as a polar capacitor. 

 

Fig. 3.10. Variation of leakage current in In situ and Pre-poly capacitors [30]. 

 

It is theorized that the lower leakage current in the pre-poly capacitors gives rise 

to its high breakdown voltage. Because of this, they are able to work reliably at higher 

voltages when compared to the in situ type [31]. Hence, the pre-polymerized polymer 

deposition technique is used to manufacture high voltage polymer Ta capacitors. In early 

2009, the first polymer Ta capacitor was manufactured which had a working voltage of 

35 V, and capacitors with a working voltage up to 75 V are undergoing reliability and life 

testing. Increasing the capacitor’s maximum working voltage is necessary to enable their 
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use in applications that require capacitors with both high working voltage and low ESR, 

this requires a good understanding of the leakage and the breakdown mechanism in the 

capacitor. To analyze these complicated capacitors, it is often helpful to consider them as 

classical Metal-Insulator-Semiconductor (MIS) devices because of the inherent 

similarities between them [30].  

 

3.4  Modeling Polymer Tantalum Capacitors as MIS Devices 

The polymer Ta capacitor is composed of numerous spherical particles of 

tantalum covered with a layer of Ta2O5 and subsequently with a conducting polymer. 

This complicated structure can be represented as a network of interconnected metal-

insulator-polymer structures as shown in Fig 3.11(a). To keep the device geometry 

simple, and to have similarity with standard microelectronic MIS devices, the capacitor’s 

metal-insulator-polymer structure is assumed to be flat, even though in reality it is 

spherical, and the polymer is treated as a moderately doped semiconducting material [27]. 

This geometrical simplification is shown in Fig 3.11(b) and (c). The spherical structure of 

individual particles inside the capacitor is shown to enhance the existing electric field and 

preliminary results indicate that there is a change in the magnitude of leakage current 

because of the curvature of the structure [32]. However, these are second-order effects 

and can be safely ignored because they do not change the fundamental leakage 

mechanism that causes the capacitor to break down. 
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Fig. 3.11. Simplified capacitor structure for analysis 

 

Many characteristics of standard MIS structures, such as capacitance as a function 

of an applied voltage (C-V) curves, and electronic band diagram based models are 

already well documented. In this research, we will treat the polymer Ta capacitor as a 

single flat MIS structure with capacitance, oxide thickness, and area equivalent to that of 

the actual fabricated capacitor.  

Out of the three functional parts of the capacitor, the dielectric and the interface 

between the dielectric and the electrodes play the most important role in limiting the 

leakage current because the dielectric is the only insulator in the capacitor system. Hence, 

the leakage current, and consequently the breakdown voltage of the capacitor is 

fundamentally dependent on the dielectric and its interaction with the electrodes.  
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CHAPTER FOUR 

BREAKDOWN PHENOMENON AND LEAKAGE MECHANISMS 

4.1  Breakdown Phenomenon in Dielectrics 

Dielectric breakdown phenomenon is the common cause of capacitor breakdown 

at high voltages, during which a conducting path is formed throughout the dielectric, 

resulting in a sudden increase in the current flowing through it. This breakdown often 

damages the dielectric, effectively changing it from an insulator into a conductor. 

Until the 1950s, this breakdown was theorized to be initiated due to a variety of 

causes. A dominant cause is thermal runaway, during which the dielectric leakage 

produces heat, causing a further increase in the leakage, resulting in further heating. This 

cycle results because of the inability of the material system to remove heat at a 

sufficiently high rate. Another dominant cause is the Avalanche effect, during which 

electrons acquire enough energy from the field to ionize atoms, resulting in the creation 

of more electrons, thus increasing the current; this cycle continues until the dielectric 

breaks down. This effect is predominant in crystalline structures in which the probability 

of electrons losing energy by interacting with lattice imperfections is low. Other causes 

for breakdown include material flaws in the dielectric such as cracks, pinholes, or 

excessive surface roughness; the electromechanical collapse of the dielectric due to the 

Coulombic attraction between the electrodes; and the formation of a conductive gaseous 

channel in the dielectric [5, 33, 34]. 

 However, since the 1960s, modern physics has attributed dielectric breakdown to 

a continuous wear-out process by which the dielectric is slowly degraded by applied 
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voltage stresses due to the generation of traps. These traps, a type of defect, are created 

either by the injection of electrons and holes from the electrodes or during dielectric film 

growth when impurities find their way into the material. The rate of trap generation is 

shown to be dependent on the electric field in the dielectric. Other possible factors that 

influence trap generation are hydrogen ions, free holes and electrons, and oxide currents, 

which cause internal bonds to break producing a trap [35-38]. No matter how the traps 

are generated, they degrade the dielectric by creating Stress Induced Leakage Currents 

(SILCs), which result from electrons tunneling in and out of the traps, a phenomenon 

referred to as a Trap Assisted Tunneling. Increasing SILCs raise the heat dissipated in the 

oxide, ultimately leading to breakdown. 

These traps in the dielectric increase the local current density and the local heat 

generation, triggering thermal runaways and dielectric breakdowns [39]. These 

breakdowns may be destructive or non-destructive depending on the energy, given by 

1 2� ���, stored in the dielectric system, which is essentially a capacitor, and the rate of 

discharge of this energy [40]. The energy stored in the capacitor depends on the oxide 

thickness, its surface area, and the applied voltage, while the rate of the energy discharge 

depends on the impedance of the complete measurement system through which the 

energy discharges. Prior to a destructive breakdown, many non-destructive ones, referred 

to as soft-breakdowns, can be observed, primarily in thin dielectric devices, because the 

energy stored in them is low. During a soft breakdown, the dielectric at the local hot spot 

melts and evaporates, causing the defect site to be open-circuited preventing further 

current flow. The dielectric layer is then recharged through the power supply and it 



29 

 

regains its dissipated energy [41]. On the other hand, a destructive breakdown results in 

the establishment of a permanent conducting path between the two electrodes, resulting 

in permanent damage. Research suggests that the magnitude of current flowing in the 

dielectric prior to breakdown is a strong indication of the probability to break down, this 

current being referred to as a pre-breakdown current. As this pre-breakdown current 

increases, the chance of dielectric breakdown and thus damage increases [31]. However, 

the underlying reason for the pre-breakdown current is the presence of traps in the 

dielectric. 

The formation of these traps leading to a conductive path in the oxide is illustrated 

in Fig. 4.1; this conductive path carries the electrons from one electrode to the other, thus 

generating heat and resulting in breakdown. In this figure, the oxide region is sandwiched 

between the two electrodes, a necessity for making electrical measurements on the oxide. 

Part (a) of the figure illustrates the oxide layer containing intrinsic traps just after it is 

grown and (b) illustrates the oxide after the generation of traps due to the device being 

stressed by the application of a voltage. In Part (c), the number of defects has further 

increased, forming a conducting path between the electrodes resulting in a non-

destructive breakdown that causes the existing defect path to be open circuited as shown 

in (d). As the device is stressed further, another conductive path is formed as shown in 

Part (e), leading to break down as shown in Part (f). This process continues until a final 

destructive breakdown occurs. 



30 

 

 

Fig. 4.1. Generation of traps leading to breakdown. (Adapted from [39]) 

 

The trap generation and subsequent breakdown have been modeled using a 

percolation theory suggesting that defects are generated at random locations, a 

breakdown occurring when they form a complete path through the oxide [42, 43]. 

Although this theory suggests the oxide breakdown occurs due to the traps generated 
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during high voltage stresses, it applies only to near perfect dielectrics, those free of macro 

defects. In these near-perfect dielectrics, the breakdown generally occurs near a particular 

electric field strength, referred to as the material’s dielectric strength. Because the 

breakdown is a result of randomly generated defects, a material’s dielectric strength is not 

a fixed value, but rather an approximated one [44]. 

The dielectric strength for Ta2O5, the dielectric used in all Ta capacitors, is 

estimated to be between 8 MV/cm and 10 MV/cm, which means that applying 

approximately 80 V causes the breakdown of a 100 nm thick layer of this oxide [31]. 

Dielectric strength is expressed as the amount of voltage per unit thickness, implying a 

higher theoretical breakdown voltage for a dielectric film of greater thickness. However, 

this relationship is not always accurate in practice because of such imperfections in the 

dielectrics as inclusions, sharp points, manufacturing defects, and the presence of 

impurities, all of which increase the pre-breakdown current and thus the probability of 

breakdown at a lower voltage [45, 46]. In ideal dielectrics, the breakdown voltage varies 

linearly with dielectric thickness, however, for practical dielectrics, the breakdown 

strength is found to decrease with an increase in dielectric thickness [47]. For high 

quality oxides used in the microelectronics industry in the past four decades, the 

breakdown voltage has been found to vary linearly with thickness over a limited range as 

shown in Fig. 4.2, suggesting the possibility of achieving a high breakdown voltage using 

a sufficiently thick dielectric of high quality [39]. For example, a breakdown voltage of 

300 V was estimated for a 700 nm thick oxide of aluminum sandwiched between 

aluminum electrodes [39]. Since the dielectric layer is the key insulating component in 
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the capacitor affecting its BDV, the thicker the layer, the higher is the BDV. A high 

breakdown voltage is important in high voltage capacitors, which are expected to work 

reliably in the range of 100-200 V.  

 

Fig. 4.2. Variation of BDV in SiO2 films with its thickness. (Adapted from [39]) 

 

 

4.2  Dielectric Breakdown Phenomenon in Tantalum Capacitors 

Once the dielectric layer breaks down, the tantalum capacitor then begins to 

conduct dc current, losing its capacitive property, and behaving more like a resistor. 

Growing a thicker layer of dielectric helps to achieve a higher BDV; however, this 

method works only up to a certain point. For wet tantalum capacitor, past research has 
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found that it is possible to obtain a maximum BDV of 210 V using a dielectric layer of 

thickness 510 nm. For improving the capacitor’s electrical performance, when the 

cathode material was changed to MnO2 in the 1950s, the maximum BDV of the Ta 

capacitor reduced to 150 V. In the 1990s, the maximum BDV decreased further to 50 V, 

when the cathode material was replaced with a polymer in the in situ polymer Ta 

capacitors. In the late 2000s, changing the method of polymer deposition to a pre-

polymerized method resulted in a pre-poly capacitor with a BDV of 225 V. This 

significant increase in BDV led to the development of high voltage polymer Ta 

capacitors; however, the reason for this increase is not fully understood. 

The comparison of the relationship between the dielectric thickness and the BDV 

for the ideal case and for the case of real Ta capacitors can be seen in Fig. 4.3. From this 

figure, it can be observed that the BDV of all tantalum capacitors initially increases 

significantly with increasing dielectric thickness until at a particular thickness, after 

which the BDV begins to roll-off. Its culmination, the point at which increasing thickness 

does not increase the BDV, is referred to as the saturation of the BDV. The BDV of in 

situ type and MnO2 type capacitors clearly saturates; however, the BDV for the capacitor 

employing pre-polymerized cathodes is not yet saturated even with a 700 nm thick oxide. 

Although, the BDV versus thickness curve is increasing, it has deviated from the ideal 

linear curve. Since pre-poly capacitors with dielectrics of thicknesses greater than 700 nm 

have not yet been fabricated, their ultimate BDV is unknown.  
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Fig. 4.3. Dependence of Breakdown voltage on dielectric thickness in Ta capacitors [48]. 

 

The early saturation of BDV in in situ capacitors in comparison to the pre-poly 

capacitors may be a result of the higher pre-breakdown current measured in in situ 

devices [30]. By examining and modeling this pre-breakdown current, it is possible to 

understand the fundamental dielectric leakage mechanisms that give rise to the current 

leading to the early breakdown in the in situ capacitors. 

A dielectric leakage mechanism, or a combination of several, provides a physical 

explanation of the origin of the current that flows through the dielectric, even though it is 

typically considered an insulator. Common dielectric leakage mechanisms are the Poole-

Frenkel Effect, Schottky Effect, Space Charge Limited Conduction, Tunneling, and 

Fowler-Nordheim Tunneling. 

 

 

 



35 

 

4.3  Poole-Frenkel Mechanism 

The Poole-Frenkel (PF) Effect involves thermal emission of charge carriers out of 

coulombic traps in the bulk of a dielectric or a semiconductor, enhanced by the 

application of an external field, which aids the electron to escape from the trap. For the 

field-enhanced thermal emission of electrons to occur, coulombic traps must be neutral 

when filled with an electron, and positively charged when the electron is emitted [49]. 

This effect is generally observed in amorphous materials and it is a consequence of the 

existing traps in the dielectric [50]. Because the PF Effect depends on the availability of 

traps in the bulk of the dielectric, it is referred to as a bulk-limited mechanism. When an 

electric field is applied, the potential barrier on one side of the coulombic trap is reduced 

increasing the thermal emission rate of electrons from the trap. The Poole-Frenkel current 

density is given by, 

 

 � � �ε exp �� � � �  ��ε !" #   (4.1) 

 

where C is a proportionality constant, ε  the electric field, qΦ the ionization potential of 

the trap, �, referred to as the PF constant, is a material constant defined as � �  $ %&'()(*, 

ξ  the slope factor of the PF Effect, T the absolute temperature, and k is the Boltzmann’s 

constant. By rearranging Eq. 4.1 and taking the natural logarithm on both sides, Eq. 4.1 

can be written as, 
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A plot of  +, - J

ε
. versus �ε , known as the PF Plot, should be linear if the PF 

Effect is the dominant conduction mechanism. The slope of a PF plot, M, is given 

by β
kTξ

/ ; ξ can vary between 1 and 2 to account for acceptor compensation in the 

material [49]. ξ=1 corresponds to heavy acceptor compensation and ξ=2 corresponding to 

no compensation. The linearity of Eq. 4.2 is the first test used to determine whether the 

dominant conduction mechanism could be due to the PF Effect. [51, 52]. The other 

criteria needing to be satisfied will be discussed in Chapter 6. 

 

 
4.4  Schottky Effect 

The Schottky Effect is the image force induced lowering of the potential energy 

for charge carrier emission when an electric field is applied [53]. Although it closely 

resembles the Poole-Frenkel Effect, it differs in two important aspects: it depends on the 

mobile image charge created by an electron escaping from a metal surface, and it is 

controlled by the interface barriers between a metal electrode and the dielectric, meaning 

the Schottky Effect is an electrode limited process. The current density due to the 

Schottky Effect is given by the Richardson-Dushman Equation, which is given by, 

 

 +, - J

ε
. �  
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β
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$ε 0 - ln
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kTξ

Φ
− . (4.2) 
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where �1 is the Richardson constant that depends on the effective mass of the electrons in 

the material, T the absolute temperature, Φ  the barrier height, k is the Boltzmann’s 

constant and �, a material constant given as � �  $ %&'()(*. This value of � is equal to the � 

mentioned previously as the PF constant. Rearranging this equation and taking the natural 

logarithm on both sides, yields, 

 

A plot of ln
�� versus �ε , known as a Schottky Plot, will be linear if the 

Schottky Effect is the dominant conduction mechanism, the slope of the linear fit 

being 4 �56. The slope of this characteristic plot will be same as the PF effect characteristic 

plot, if the value of ξ = 2 in the PF equation. As a result, other methods to determine the 

precise current conduction mechanisms such as evaluating its dependence on temperature 

are needed [54]. 

 

4.5  Space-Charge-Limited Conduction Mechanism 

Space-Charge-Limited Conduction (SCLC) is a mechanism in which the current 

is carried by electrons and holes injected into the insulator from the electrodes. If there 

 � � �1"�789 :�  �Φ �  12 ��ε!" ; (4.3) 

 ln
�� �  12!" �$ε 0  -ln
�1"�� � �Φ!" . (4.3) 
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are compensating charges present in the insulator, the injected carrier combines with 

them; otherwise, it remains as a free carrier. At low voltages and high temperatures, the 

current is carried by electrons hopping from one state to the other [53]. In the absence of 

traps in the dielectric, the current is expressed by the Mott-Gurney Law, 

 

where 	 is the free carrier mobility, �� and �� the permittivity of free space and the 

relative permittivity of the material respectively, V is the applied voltage and L is the 

thickness of the dielectric. The presence of traps modifies this equation depending on 

their distribution and nature. However, under all conditions, the current is proportional 

to �<, where n is an integer or fraction, its value determined by the distribution of the 

traps. Plotting the current versus voltage on a log-log plot, results in a linear curve of 

slope n, showing the probability of the conduction mechanism being dominated by SCLC 

[55]. 

 

4.6  Tunneling Mechanism 

Tunneling occurs when the field ionizes trapped electrons into the insulator’s 

conduction band or when electrons tunnel through a trapezoidal electronic barrier 

between the electrodes. In the second case, when a sufficiently high voltage is applied 

across a dielectric, there is a finite probability that an electron can quantum mechanically 

tunnel through the oxide. This probability can be written as, [53]  

 � �  98 	���� ��?@  

 

(4.4) 
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where AB is a fraction that approaches 1 when the electron’s effective mass in the 

insulator equals the free electron mass, �B is the barrier height between the insulator and 

the electrode in volts, and d is the thickness of the insulator in Å. This tunneling 

probability is insignificant when the insulator thickness is greater than a few nanometers 

for typical barrier heights. The tunneling current due to field ionization can be expressed 

as, 

 

where C is a proportionality constant, ε is the electric field, m* is the effective mass, 

�Cis the barrier height, and ℏ is the reduced Plank’s constant. This current is strongly 

dependent on the applied voltage; however, it is independent of the temperature [53]. 

According to Eq. 4.6,  ln :�
ε �/ ; versus 1

ε�  should result in a linear plot if the 

dominant conduction mechanism is due to the tunneling or field emission. 

 

 

 

 " E exp
� AB�B�.G�� (4.5) 

 � � � ε � exp H� 4√2K1
��C�@�3ℏ�ε M 

 

(4.6) 
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4.7  Fowler-Nordheim Tunneling Mechanism 

Fowler-Nordheim (FN) tunneling is similar to the direct tunneling process, except 

that the electrons tunnel through a triangular electronic barrier between the electrodes. 

The triangular barrier is the result of the application of a high voltage across the dielectric 

and is thinner than the classical trapezoidal barrier. The tunneling probability is higher 

because of the decreased barrier width. The equation governing FN tunneling is similar to 

that governing the field assisted tunneling, which can be empirically written as,  

 

where  

� �  KK1 �@8NO�C 

P �  8N3 Q2K1O� R�.G �C�.G
�  

 

h, the Plank’s constant, m the electron mass, and all other symbols have their usual 

meanings [56].  

From Eq. 4.7 it can be observed that if FN tunneling is the dominating 

mechanism, then a plot of ln :�
ε �/ ; versus 1

ε�  should be linear; this is the same 

criterion used to test for the presence of the field ionization tunneling process, which 

occurs majorly in ultra thin oxides [57].  

 � � �ε � exp -� P
ε

. (4.7) 
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4.8  Activation Energy of a Leakage Mechanism 

Certain dielectric leakage mechanisms, such as the PF effect and the Schottky 

Effect, which are dependent on the sample’s temperature, are thermally activated 

processes, which are represented by a general equation of the form: 

 

where Ea is referred to as the activation energy of the process, Y is the process rate, Y0 

the pre-exponential factor, T the absolute temperature, and k the Boltzmann’s constant. 

Taking the natural logarithm of Eq. 4.8, the following equation is obtained, 

 

 

For a thermal process, a plot of +,
S� versus 1 "⁄ , referred to as an Arrhenius 

plot, results in a linear fit, the slope of which is � TU !⁄  . From the slope, it is possible to 

determine the value of the activation energy, as the value of k is known. This activation 

energy of the process controls the rate of change of Y with temperature. By measuring 

the current at a constant voltage at different temperatures, it is possible to extract the 

activation energy of the leakage mechanism. This extracted value represents the depth of 

traps in the Poole-Frenkel Effect or the interface barrier height in the Schottky Effect. 

 S �  S� exp Q� TU!"R 

 

(4.8) 

 +,
S� � � TU!" 0  +,
S�� (4.9) 
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Lower activation energy signifies a lower barrier to current conduction in the insulator 

and an increased chance of breakdown. 

 

4.9  Leakage Mechanisms Observed in Tantalum Pentoxide Structures 

The mechanism that causes current leakage through a dielectric not only depends 

on the nature of the material; the mechanism is also dependent on the electrodes, 

dielectric thickness, and the device fabrication process. The leakage current also depends 

on other factors such as the device annealing process and environmental conditions such 

as temperature and humidity affecting the measurement. These parameters and conditions 

should be taken into consideration while comparing the experimental results of the 

measurements on the Ta2O5, tabulated in Table I. Structures listed in this table are 

MIM/MIS based ones and they do not necessarily represent the complexities of a 

manufactured discrete capacitor. In Table, “Structure” refers to the layers of materials in 

the device. “Thickness” refers to the thickness of Ta2O5 in the structure and “Mechanism” 

refers to the dominant leakage mechanism and the electric field range it is applicable as 

determined by the authors mentioned in the “Ref.” column. Other details about the 

structure or measurements, which may be influence the leakage mechanism, are 

mentioned in the column titled “Deposition Process, Other Comments”. In the column 

titled “Mechanism”, PF stands for Poole-Frenkel mechanism, SE for Schottky Emission 

and FN for Fowler-Nordheim tunneling. 

 

 



43 

 

Table I. Leakage mechanisms observed in Ta2O5 devices. 
 

 Structure Thickness 
(nm) 

Deposition Process 
/ Other Comments Mechanism Ref. 

1 TiN/Ta2O5/TiN 20-90 MOCVD  PF (1-4 MV/cm) [58] 

2 TiN/Ta2O5/SiO
2/p-Si 20-90 SiO2 thickness = 

2nm, MOCVD PF (1-4 MV/cm) [58] 

3 TiN/Ta2O5/SiN
/Si 10-20 MOCVD FN (positive E) 

PF/SE (negative E) [59] 

4 TiN/Ta2O5/TiN 45 MOCVD  PF (6-20 MV/cm) [60] 

5 Al/Ta2O5/Si 26 RF Sputtering, 
Annealing 

PF (0.4-1.2 MV/cm for 
as-deposited) 
SE (0.8-1.3 MV/cm 
after annealing) 

[45] 

6 TaNx/Ta2O5/W
-Al 10-450 Anodization PF (1-5MV/cm) [61] 

7 Al/Ta2O5/Au 35 RF Sputtering PF (0.8-2 MV/cm) [62] 
 

As Table I shows, the dominant leakage mechanisms commonly observed in 

Ta2O5-based structures are due to the Poole-Frenkel Effect, the Schottky Effect, or the 

Fowler Nordheim tunneling. The associated thermal activation energy for a leakage 

mechanism in this dielectric is found to be between 0.2 and 0.8 eV [63-65]. If the leakage 

mechanism is dominated by the Poole-Frenkel Effect, the activation energy of the 

mechanism represents the shallowest defect or trap depth; however, if it is dominated by 

the Schottky Effect, this activation energy corresponds to the barrier height between the 

dielectric and one of the electrode [63, 64]. Leakage mechanisms controlled by a 

Tunneling mechanism are independent of temperature, apparent only when considering 

second order effects. To compare the leakage mechanism between in situ capacitors and 

pre-poly ones, the pre-breakdown currents in both need to be carefully measured and 
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modeled. The understanding of the leakage mechanism can also lead to reason for the 

earlier breakdown of the in situ capacitors than the pre-poly capacitors. 
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CHAPTER FIVE 

ELECTRICAL CHARACTERIZATION TECHNIQUES FOR CAPACITORS 

Capacitors can be electrically characterized by measuring their current versus 

voltage (I-V) and capacitance versus voltage (C-V) characteristics. I-V measurements, 

which are more frequently used in this research, were conducted on two types of 

capacitors – polymer Ta capacitors and flat MIM structures. In comparison to the discrete 

polymer Ta capacitors, flat MIM structures are simple, requiring minimal deviation from 

standard electrical characterization techniques; however, characterizing discrete polymer 

Ta capacitors requires special techniques that will be discussed in this section. 

 

5.1   I-V Measurements 

All current measurements at room temperature (300 ˚K) were conducted using a 

Keithley 4200 Semiconductor Characterization System. While the polymer Ta capacitors 

were held in the Keithley 8101 PIV Component Test Fixture, the flat samples were 

measured by placing them on a chuck in a probe station manufactured by 

Micromanipulator Co., Inc. (Carson City, NV). 

 

5.1.1   Limiting Noise in I-V Measurements 

The polymer Ta capacitors tested here have capacitances in the range of 10s of 

microfarads, which is larger than the maximum load capacitance specification of the 

Keithley measurement system, which is only 10 nF; hence, the measured results are filled 

with noise, resulting in oscillations. Fig 5.1 illustrates the results from an I-time 
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measurement performed using the Keithley SCS 4200 on the device under test (DUT). 

The resulting oscillations are due to the amplification of noise, which can be directly 

observed. In this figure, the highest current value is 1 �A, which is the current 

compliance level set during the measurement.  

 

Fig. 5.1. I-time measurement result on a Ta polymer capacitor. 
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The reason for the large noise content that was observed in Fig 5.1 is illustrated in 

Fig. 5.2, which shows a simplified schematic of the measurement system, a feedback 

ammeter with its op-amp configured in the inverting mode [66]. 

 

Fig. 5.2. Simplified schematic of the measurement system [66]. 

 

The output noise of this system obtained at VO can be expressed as, 

 

 VWX9WX �YZ[\] � ^,9WX �YZ[\] Q _`_\ R 

_` �  a`�
2Nba`�`�� 0  1 

_\ �  a\�
2Nba\�\�� 0  1 

 

(5.1) 
 

(5.2) 

 

(5.3) 

ZS: Source impedance  

CS: Source capacitance 

RS: Source resistance 

VS: Source voltage  

ZF: Feedback impedance  

CF: Feedback capacitance 

RF: Feedback resistance  

VNOISE: Internal noise source 

VO: Output voltage  
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As CS in Eq. 5.3 increases, ZS decreases, and the noise gain of the op-amp increases. This 

increase is the reason that measuring capacitors with a capacitance larger than that 

specified by the measurement equipment is problematic. To reduce noise gain, the source 

impedance, ZS, needs to be increased. One method of achieving the increase is by adding 

a resistor Rd in series with the capacitor.  

When introducing an external resistance into the measurement system, certain 

factors should be considered. Most importantly, adding this noise-limiting resistor, RN, in 

series increases the voltage burden by a factor Vf  �  Ihijklmin x Rd, meaning that the 

actual voltage across the DUT will be the applied voltage minus VB. In this research, 

typical values of Ihijklmin are between 1 nA and 250 nA when 25 V is applied across 

the capacitor. Assuming Rd to be 1 M� results in a voltage correction factor, VB, of 0.25 

V at the maximum, a value which is negligible compared to the applied 25 V. However 

negligible this voltage correction factor may be, it should be subtracted from the applied 

voltage in determining the actual voltage across the DUT.  

Secondly, adding a series resistance also decreases the chance of device 

breakdown because the series resistance limits the current and thus, the energy that can 

be discharged during a possible breakdown. However, the capacitors being measured in 

this research were already aged and tested for breakdown by applying a voltage higher 

than their working voltage for 1-2 hours without the series resistor. If they were to break 

down, they would have been damaged during the aging process. Thus, because the 

voltage burden’s effects can be accounted for and the capacitors were tested for 
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breakdown, no undesirable changes are assumed to be introduced into the measurement 

setup by adding the 1 M� noise-limiting resistor. 

To choose an appropriate resistor for this research, different values of resistance, 

1 k�, 10 k�, 100 k�, and 1 M�, were investigated. The 1 M� resistor was found to be 

optimal for reducing the noise while keeping the voltage burden sufficiently low. The 

noise exhibited while using the other three smaller resistors was significant enough to 

affect the accuracy of the measured results. When the noise-limiting resistor was added in 

series with the capacitor, noise was minimal, and the oscillations observed in Fig. 5.1 

were absent. This is illustrated in Fig. 5.3, which shows the result from an I-time 

measurement on a Ta polymer capacitor with the 1 M� noise-limiting resistor. During 

this measurement, 15 V was applied across the capacitor and the resistor, which are in 

series and the current flowing in the circuit was sampled every second for approximately 

25 minutes. The current can be observed to decay smoothly over time, after the voltage 

was applied. 
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Fig. 5.3. I-time measurement result on polymer Ta capacitor with the series resistor. 

 

5.1.2   Determining Time Delay required for I-V Measurements 

With the measurement system set up to perform the I-V measurements, the next 

step is to examine the method to perform them. An I-V measurement involves the 

application of a voltage across a capacitor and measuring the resultant steady state 

current. This process needs to be repeated at different voltages to obtain the complete I-V 
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curve over a certain voltage range. To perform this measurement, a voltage sweep test is 

used to vary the voltage applied across the DUT in steps from the starting voltage to the 

ending voltage. The measured current is affected by the test parameters, the most 

important ones being the step size and the time delay between the steps. The step size is 

determined based on the I-V data resolution required. The delay should be experimentally 

determined using an I-time measurement, during which a constant voltage is applied 

across the capacitor while the leakage current is sampled continuously for several hours. 

When the current stops decaying significantly with time, the capacitor system is assumed 

to have reached steady state; the current measured at this state is referred to as the steady 

state current. If the current flowing through a capacitor at a constant voltage is observed 

to be increasing with time, rather than decaying, the dielectric is being progressively 

degraded by the applied voltage and the possibility of breakdown is high. 

This current decay is a two stage process. Initially, when a voltage is applied 

across the capacitor, it creates a displacement current, ideally expressed as, 

 

 

where C is the capacitance and �o �X�  the time rate of change of voltage across the 

capacitor. In practice, this current is lower because of the resistance in the capacitor-

charging path. This displacement current decays over time as the capacitor becomes 

 p � � �o�X  (5.4) 
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charged to a voltage equal to the applied voltage, resulting in the term  
qrqB in Eq. 5.4 

reducing to zero. This transient current can be expressed as a function of time by 

 

 

where V0 is the voltage applied across the capacitor, t the time after the voltage has been 

applied, and R is the series resistance in the capacitor charging circuit. In this research, 

the approximate values of C and R are 10 �F and 1 M�, the R being the noise-limiting 

resistor. Assuming the initial applied voltage, V0, to be 15 V, the displacement currents 

after 10, 100 and 175 seconds are 5.6 �A, 680 pA, and 0.4 pA respectively. Since the 

current measured is in the range of nanoamperes, it is desirable to wait for sufficient time 

after the application of the voltage until the displacement current decays three orders of 

magnitude lower than the nanoamperes range. This delay is approximately 175 seconds 

in the research reported here. The current decay measured and the current decay as 

calculated using Eq. 5.5 during the first 200 seconds after applying a voltage across the 

capacitor are shown in Fig. 5.4. The measured current can be seen to be in good 

agreement with the value of current calculated until about 100 seconds, after which the 

measured current decays towards a non-zero finite value, while the calculated current 

decays towards zero. 

 

 p
X� �  ��a 7sB tu⁄  (5.5) 
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Fig. 5.4. Current decay in an in situ capacitor for the first 200 s. V0 = 15 V. 

 

After the displacement current has decayed away, the current flowing between the 

electrodes is due to electrons leaking through the dielectric from one electrode to the 

other and charge carriers moving along the surface of the capacitor which is in contact 

with the electrodes. The second component is generally negligible and to keep it so, the 
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capacitor’s surface must be kept clean by handling the capacitor using tweezers. After the 

displacement current decays to zero, the first component, the leakage current dominates 

the measured current. This leakage current also decays to a non-zero finite value slowly, 

during which the capacitor reaches steady state. This is demonstrated in Fig. 5.5, which is 

an I-time measurement showing the current decay for about 5 hours from the 175th 

second. Even after 17000 seconds (4 h and 45 min) subsequent to applying the voltage, 

the dielectric leakage current continues to decrease; however, during the last 8000 

seconds (2 h and 10 min), the current changes only from 2.6 nA to 2.4 nA, this difference 

is less than 10% of the final current, 2.4 nA, as illustrated in this Fig. 5.5. It would be 

ideal to wait for 5 hours between each voltage step, but obtaining an I-V curve from 2 V 

to 26 V using a wait time of 5 hours between each 2 V step will require 216000 seconds 

(60 h) of measurement time. To strike a balance between the measurement time required 

and the accuracy of the steady state current, a delay of 9000 seconds was selected while 

conducting most measurements. In addition, another factor to consider while applying 

voltages for long intervals across the capacitor is that stressing it at voltages near its 

breakdown voltage for long periods may expedite the breakdown process due to the 

creation of Stress Induced Leakage Currents [39]. 
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Fig. 5.5. Current decay in an in situ capacitor from t = 175 s to 17 ks. V0 = 15 V. 

 

Thus, from these I-time measurements, an optimal delay of 9000 seconds was 

chosen between voltage steps that range from 1 – 3 V, depending on the resolution 

required. However, the maximum delay allowed by the measurement equipment during a 

voltage sweep is only 1000 seconds; this requires performing I-time measurements at the 

required voltages and compiling the final value of current from each measurement into 

one I-V curve. This technique has already been reported in the literature [58, 62]. In this 
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research, the final value of current from each I-time measurement was obtained by 

averaging the last 5-10 % of the measured current readings in order to reduce chances of 

an error. A complete I-time measurement result at 15 V is shown in Fig. 5.6; the first 25 

points, which would otherwise change the graph’s scale, are not shown. During this 

experiment, current was sampled for 9000 seconds at every fourth second. Such I-time 

measurements conducted at 5 V, 6.5 V and so on up to 25 V resulted in the I-V curve 

shown in Fig. 5.7.  

 

Fig. 5.6. I-time measurement results at 15 V on an in situ capacitor. 
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Fig. 5.7. Compiled I-V data of an in situ capacitor from I-time measurements. 

 

To demonstrate the importance of including the right time delay, it is helpful to 

observe the I-V characteristics resulting from I-time measurements without sufficient 

delay. This result in an I-V characteristic with a higher current than the actual value 

because the current was measured before it could decay to a steady state value. 



58 

 

Performing I-V measurements directly, without using the I-time technique described 

earlier will also result in a higher value of current than the actual value at the applied 

voltage. Fig. 5.8 shows the results from a direct I-V measurement performed using a step 

size of 500 mV and a step delay of 60 seconds along with I-V data compiled by 

performing I-time measurements using only a 600 second delay between applying the 

voltage and measuring the final current. This step size of 500 mV and step delay of 60 s 

was chosen to obtain the direct I-V data close to the data compiled from I-time 

measurements. If either of these parameters are varied, the results obtained will also vary 

significantly. This variation is because the time required for the current to reach steady 

state depends on the magnitude of the change in voltage applied across the capacitor. The 

measurements described above were performed using the HP 4156B on the same 

capacitor type that was used before without adding the 1 M� noise-limiting resistor in 

series to the capacitor. The current level in this figure is in the range of hundreds of 

nanoamperes while the current level in Fig. 5.7 is only in tens of nanoamperes. Thus, the 

utmost care should be taken when deciding the time delay used to obtain the I-V data; 

however, this problem might not be prominent in regular MOS structures used in the 

microelectronics industry because of their smaller area, smaller thickness and the 

presence of alternative slightly conductive paths between the electrodes. 
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Fig. 5.8. Results from incorrect I-V measurements on an in situ capacitor. 

 

During one phase of the research, soft probes were needed to make contact to a 

fragile layer of PEDOT that was deposited on to certain flat samples. This was achieved 

by using a graphite lead taken from a good quality dark pencil. A contact to this graphite 

lead was achieved by taping a soft copper foil around it, the foil itself being connected to 

the measurement system using alligator clips, as shown in Fig. 5.9. This probe only had a 
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resistance of 40 �, which is sufficiently low to make an I-V measurement; however, the 

PEDOT did not adhere well on the tantalum pentoxide surface and the measurements did 

not result in useful data for this research. Although the probe could not be put to 

significant use during this research, it will be useful for future research that may involve 

probing organic materials. 

 

Fig. 5.9. Graphite probe attached to an alligator clip. 

 

5.2   C-V Measurements 

Another method to characterize capacitors is a C-V measurement. To perform 

this, an Agilent E4980A Precision LCR meter was used with the sample held inside the 

cage of the cryostat, manufactured by SULA Technologies, Inc. (Ashland, OR). 

However, these C-V measurements resulted in data that was less insightful than the data 

obtained from I-V measurements; hence, this thesis does not present an analysis of the  
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C-V data. In a research conducted earlier, C-V results were used to show that polymer Ta 

capacitors exhibit typical characteristics of MIS devices, suggesting that polymer Ta 

capacitors can be considered as MIS devices for analysis purposes [30]. 

The discrete capacitors measured in this research, being non-ideal, have parasitic 

resistances associated with them. The LCR meter used to make the capacitance 

measurements reports the DUT’s characteristics as either a capacitor in series with a 

resistor or a capacitor in parallel with a resistor, depending on the mode chosen. This 

meter technically measures only the complex impedance of the DUT; with this 

information, the meter calculates the capacitance and the resistance of the DUT, 

depending on the series or the parallel mode chosen. To achieve optimal results, the LCR 

meter manufacturer suggests that the parallel mode be used while measuring a capacitor 

with an impedance greater than 10 k� and the series mode while measuring a capacitor 

with an impedance less than 10 � [67]. At standard testing frequencies of both 120 Hz 

and 1 kHz, the 10 �F capacitor’s impedance is 132 � and 16 � respectively, both of 

which do not fall directly in any of the two specified ranges. For this situation, the 

instrument manufacturer does not suggest any particular mode for measurement; 

experiments were performed to determine the correct mode. In these experiments, several 

capacitors were measured using both modes and the results are tabulated in Table II. Cs 

and Rs are the measured values in the series mode, while Cp and Rp are the measured 

values in the parallel mode. R-X is the measured resistance and reactance, which does not 

depend on the mode of measurement. |X|SS is the calculated value of reactance from Cs 
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and Rs, and |X|PP the calculated value of reactance using Cp and Rp. The values of |X|PP 

and |X|SS were calculated using the following equations, 

 

Table II. Results from Series and Parallel mode measurements. 
 

Series Mode Parallel Mode  
R-X Measured 

(�) 

 
|X|SS 
(�) 

 

 
|X|PP  
(�) 

 

Cs  
(�F) 

 

Rs 
(�) 

Cp 
(�F) 

 

Rp 
(�) 

36.8 1.6 36.7 807 1.6, -36.31 36.03 36.15 
450 3.8 167 6.1 3.98, -2.84 2.94 7.94 
502 0.5 474 12 0.670, -2.6 2.64 2.79 
126 0.47 126.5 235 0.462, -10 10.53 10.48 
127 1.8 122.9 62.5 1.78, -10.4 10.44 10.79 
404 2.2 277.2 7.0 2.2, -3.28 3.28 4.78 
414 1.95 296.7 7.18 1.93, -3.20 3.20 4.47 
459 0.97 412 9.6 0.970, -2.9 2.89 3.22 
11.7 0.24 11.67 656 0.284, -13.6 13.64 13.64 
11.8 0.27 11.78 682 0.267, -13.5 13.51 13.51 
11.9 0.13 11.96 1.4k 0.128, -13.2 13.31 13.31 
11.9 0.13 11.98 1.3k 0.130, -13.2 13.38 13.29 

 
 

From Table II, it can be observed that the calculated value of |X|SS is closer to the 

measured reactance, X, in all cases. Hence, for this research, the correct mode to measure 

the capacitance and resistance is the series mode. This result was also confirmed by the 

 |w|\\ �  ��x� 0  ax� (5.6) 

 |w|yy �  ��9� 0 a9� (5.7) 
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capacitor manufacturer. The value of Rs physically represents the ESR of the capacitor 

plus uncompensated resistances of the cable leading to the DUT and the contact 

resistance between the probe and the capacitor’s electrodes.  

Another problem that occurs while measuring the characteristics of a capacitor 

with a large ac impedance and with a dc bias voltage applied across it is that if the 

capacitor’s dc leakage is significant, it interferes with the impedance measurement by 

flooding the current sensors of the LCR meter. Under this condition, the meter displays 

“Overload” to warn the experimenter of the problem, this can be corrected by enabling 

the DC Isolation Feature on the LCR meter. With this feature turned on, the maximum dc 

leakage current that the Agilent 4980A can accept is 100 mA, which is large enough to 

account for dc leakages in typical capacitors. 

 

5.3   Performing Measurement as a Function of Temperature 

Performing either current or capacitance measurements at low and high 

temperatures require placing the DUT in the cryostat, which is connected to a liquid 

nitrogen Dewar. To cool the sample, a rotary pump is first used for roughing the cryostat, 

creating a vacuum, and then an electromagnetic pump is used to circulate liquid nitrogen 

around the cryostat’s sample holder. The cryostat also has a built-in heating element to 

heat the DUT. The temperature range is controlled between 77 and 400 ˚K by a 

Lakeshore 331 Temperature Controller. 

While performing measurements on discrete capacitors as a function of 

temperature, ample time should be allowed for the capacitor to cool down or warm up, 
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because it is often hermetically sealed. In addition, the temperature should be varied 

slowly to prevent thermal stresses from damaging the dielectric. 

 

 

Thus, in this research I-time measurements were performed to obtain the I-V 

characteristics of the polymer tantalum capacitors by using a 1 M� noise-limiting resistor 

in series with the capacitors. Moreover, while measuring the capacitance, the series mode 

on the LCR meter was used and the DC isolation feature was turned ON whenever 

required. 
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CHAPTER SIX 

CHARACTERISTICS OF POLYMER TANTALUM CAPACITORS 

The in situ and pre-poly capacitors to be characterized were fabricated using the 

method described in Chapter 3, the oxide being grown with a formation voltage of 93 V, 

resulting in an oxide of thickness 186 nm and a capacitance of 35 �F. The capacitors 

fabricated at this formation voltage had a maximum rated/working voltage of 25 V at 

room temperature, and the area calculated using the ideal capacitor equation is 

approximately 350 cm2. These capacitors were enclosed in a chip-type package with 

electrodes protruding from both sides. Prior to the actual measurement, all capacitors 

were aged and tested for breakdown by applying a dc voltage of 1.3 times their rated 

voltage for at least two hours. 

Additionally, to study the dielectric without the effects of anode geometry and    

of the polymer, flat MIM capacitors were fabricated using a Ta foil on which the oxide 

was grown by applying a formation voltage of 110 V, resulting in an oxide of thickness 

200 nm. The counter electrode was then deposited by evaporating small aluminum dots 

on the oxide using a shadow mask in a physical vapor deposition chamber. This process 

resulted in a flat structure of Ta–Ta2O5–Al having an area of approximately 2 mm2. 

The primary goal of this research was to identify the major leakage mechanism 

that causes a higher leakage current in in situ capacitors than in pre-poly capacitors of 

identical dielectric thickness, grown using a similar process. The I-V characteristics of in 

situ capacitors will be examined first, followed by that of the pre-poly capacitors.  
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6.1   In situ Capacitors 

The current in five in situ capacitors was measured between a range of 0–25 V, 

the compiled results being shown in Fig. 6.1. This data was compiled from the result of 

individual I-time measurements as described in the Chapter 5. The highest current 

measured in these samples at 25 V was 280 nA, while the lowest current at 25 V was 20 

nA. Although the measured current is not identical in the five capacitors, the general 

trend is similar. These variations could possibly be due to minor variations in the process 

involved in the capacitor manufacturing and/or degradation due to previous 

measurements performed on them, both of which can change the dielectric’s defect 

density and distribution. 
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Fig. 6.1. I-V characteristics of in situ capacitors. 
 

To investigate the dominant leakage mechanism, the I-V data for Sample 1 and 4, 

the two curves with the highest and lowest leakage current, were first presented on the 

characteristic plot of the Schottky Effect, a common leakage mechanisms observed in 

Ta2O5 structures. The equation pertaining to this characteristic plot was derived in 

Chapter 4. 
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To create the Schottky plot, the current density was calculated and its natural 

logarithm computed, the result being plotted against the square root of the electric     

field. The resulting plot is shown in Fig. 6.2, which shows good linear fits for Sample 1 

in the 8–25 V range, and Sample 4 in the 5–25 V range. The correlation coefficient of 

these linear fits is greater than 0.99 and is consistent with the Schottky Effect. The 

equation for the linear fit obtained from Sample 1 is  y �  �29.2 0 0.0069x, implying a 

slope of 0.0069. In the case of Sample 4, the equation is  } � �32.2 0 0.0072x, 

implying a slope of 0.0072. The theoretical slope,  4 �56, of both Samples 1 and 4 is 

calculated to be 0.0029. Such a large difference between the calculated and measured 

slope suggests that the Schottky Effect is not the dominant leakage mechanism even 

though the data appears to fit the characteristic plot over a significant voltage range. Such 

situations, where the I-V data shows a good fit on the characteristic plot are common; 

however, the parameters determined from the fit should be compared with their 

theoretical values to identify the dominant presence of any leakage mechanism. 
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Fig. 6.2. Schottky plot of the I-V characteristics of in situ capacitors. 

 

Since the Schottky Effect is inconsistent with the measurements, the data was 

plotted on a Poole-Frenkel characteristic plot, a common mechanism often observed in 

high k dielectrics [70]. The I-V data from Samples 1 and 4 are presented on a Poole-

Frenkel characteristic plot and shown in Fig. 6.3. Linear fits with correlation coefficients 

greater than 0.99 were obtained in the range 12-25 V for Sample 1, and7-25 V for Sample 

4, consistent with Poole-Frenkel emission. For Sample 1, the equation is } �  �37.8 0
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 0.0058, implying a slope of 0.005, and for Sample 4, the equation for the fit is 

determined to be } �  �41.9 0 0.0057x, implying a slope of 0.0057. These measured 

slopes are in good agreement with the theoretical calculated slope, 
4�56, which ranges 

between 0.0029 and 0.0058 when ξ varies from 2 to 1. To fit the measured current to the 

Poole-Frenkel current equation, the value of the Poole-Frenkel slope parameter, ξ, should 

be equal to 1.16 for Sample 1 and 1.01 for Sample 4. Both these values of ξ indicate 

heavy acceptor compensation in the dielectric. 

 

Fig. 6.3. PF plot of the I-V characteristics of in situ capacitors. 
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To further verify the presence of the Poole-Frenkel effect, the current was 

monitored at a constant voltage as a function of temperature. The capacitor was placed in 

the cryostat while its temperature was varied thrice between 250 ˚K and 325 ˚K. This 

capacitor was biased at 22 V, a reasonable voltage that is within its working range and 

the resulting current measured. When the temperature is varied, the current is expected to 

change as predicted by the Poole-Frenkel current equation, which can be rearranged and 

expressed as, 

 

 ln
�� � ln
�ε � �  1" ��� �  ��ε ! # (6.1) 

 

The resulting Arrhenius plot of ln
�� versus 1/" is shown in Fig. 6.4. The linear region 

for both Sample 1 and 4 on the plot suggests that their leakage mechanism is a thermally 

activated process. For Sample 1, the equation for the linear fit is } �  �9.892 �
1740.58, yielding a slope of -1740.5. The theoretical slope of the Poole-Frenkel equation 

as a function of temperature in Eq. 6.1 is – %�s 4√� �5 . Substituting the values of the known 

quantities and constants, the value of Φ, which is effectively the activation energy of this 

thermal process, was found to be 0.151 eV. Similarly, for Sample 4, the equation of the 

linear fit is } � �18.568 � 1487.28, yielding a slope of –1487.2. The extracted 

activation energy was determined to be 0.148 eV, which is close to the extracted 

activation energy of Sample 1, 0.151 eV. Since the Poole-Frenkel Effect is thermally 

activated, these activation energy values represent the ionization potential, Φ, of the traps 
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that contribute to this effect. This evidence suggests that the Poole-Frenkel Effect is 

indeed the dominant leakage mechanism in the in situ capacitor.  

 

Fig. 6.4. Arrhenius plot for the in situ capacitors. 

 

6.2   Pre-poly Capacitors 

Similar experiments were performed on the pre-poly capacitors to investigate 

their leakage mechanisms. I-time measurements were performed on four samples and 

their compiled I-V curves are shown in Fig. 6.5. The results show that the maximum 
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current at 25 V in two samples is approximately 300 pA, while the current in the other 

two samples is approximately 700 pA. All samples show similar behavior up to 

approximately 15 V, after which the current in Sample 4 increases significantly. Samples 

1, 2, and 3 remain similar even after 15 V until the current in Sample 2 increases 

significantly near 25 V. Similar to the results observed for the in situ capacitors, the 

current measured in similar samples of pre-poly capacitors varied, possibly due to minor 

variations in the manufacturing process. Two trends can be seen in the measured data, if 

the last data point in Sample 2 is not included: one trend that is representative of Samples 

1, 2, and 3 and the other representative of Sample 4. To investigate the leakage 

mechanism behind these trends, both will be examined by analyzing the I-V data of 

Samples 3 and 4, those exhibiting the lowest and highest average current. 

To investigate the pre-poly leakage mechanism, the I-V data of Samples 3 and 4 

were analyzed on the characteristic Schottky plot, as shown in Fig. 6.6. A good linear fit 

was obtained in both cases from ~16–26 V, consistent with the Schottky Effect. The 

correlation coefficients were both greater than 0.99. The equations of these linear fits are 

} �  �33.25 0  0.00528 for Sample 4, implying a slope of 0.0052, and } �
 �31.406 0  0.00298  for Sample 3, implying a slope of 0.0029. The theoretical slope is 

0.0029, which is identical to the measured value in Sample 3, suggesting the presence of 

Schottky Effect in Sample 3. However, in Sample 4, the measured and calculated values 

of the slope disagree, suggesting the absence of Schottky Effect in it. 
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Fig. 6.5. I-V characteristics of pre-poly capacitors. 
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Fig. 6.6. Schottky plot of I-V characteristics of pre-poly capacitors. 

 

To further investigate the validity of the Schottky mechanism in Sample 3, a 

current versus temperature measurement was performed. The current is expected to vary 

according to the Schottky Effect equation, which can be rearranged and expressed as, 
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 ln Q �"�R � ln
�1� �  1" :�� �  12 ��ε! ; (6.2) 

 

The resulting Arrhenius plot of ln 
� "��⁄  versus 1/" is shown in Fig. 6.7. The linear fit 

obtained suggests that the leakage mechanism is a thermally activated process. According 

to Eq. 6.2, the slope of this fit is � :%�s ��4$ε
5 ;. Equating this slope to the one measured 

from the Fig. 6.7, which is – 6290, and then substituting all the known values and 

constants into the theoretical slope, the value of � obtained is 0.54 eV. This activation 

energy of the thermal process represents the Schottky barrier height. Since these results 

are consistent with the Schottky Effect, and because Samples 1, 2, and 3 exhibit similar  

I-V characteristics, we conclude that the leakage is dominated by the Schottky Effect in 

these three devices. 
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Fig. 6.7. Arrhenius plot for pre-poly capacitor (Sample 3). 

 

Since the current in Sample 4 is not consistent with the Schottky Effect, its I-V 

measurements were plotted on the Poole-Frenkel characteristics plot and is shown in Fig. 

6.8. The I-V data of Sample 3 is plotted alongside the data of Sample 4 to allow 

comparison.  
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Fig. 6.8. PF plot of the I-V characteristics of pre-poly capacitors. 

 

As this plot shows, the I-V data of Sample 4 exhibits a good linear fit from 18 to 26 V, 

with a correlation coefficient greater than 0.99; however, Sample 3 does not exhibit a 

good linear fit in the same voltage interval, as its correlation coefficient is only 0.97. The 

good linear fit in the case of Sample 4 is consistent with the Poole-Frenkel Effect, 
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although the fit with a correlation coefficient lower than 0.99 in the case of Sample 3 

does not rule out the presence of Poole-Frenkel Effect. To investigate these observations, 

the equations for the two fits were calculated. For Sample 3, the extracted equation is 

 } �  �43.372 0  0.00118, implying a slope of 0.0011, while for Sample 4, the 

extracted equation is    } �  �45.696 0  0.00388, implying a slope of 0.0038. 

Comparing these extracted slopes to the theoretical PF slope range of 0.0029 to 0.0058 

suggests that for a value of ξ = 1.53, the I-V data obtained for Sample 4 can be modeled 

by the PF current equation. However, the slope of the linear fit of the I-V data of Sample 

3 is not close to the theoretical PF slope for any possible value of ξ, indicating that the 

Poole-Frenkel mechanism is not dominant in Sample 3. This further verifies the presence 

of the Schottky Effect in Sample 3. 

To further verify the presence of the Poole-Frenkel Effect in Sample 4, its current 

versus temperature characteristics were measured. During this experiment, the current in 

this sample exhibited anomalous behavior, resulting in negative currents at a voltage bias 

of 22 V, a phenomenon more prominent at temperatures below 300 ˚K which results in a 

current in the range of a few picoamps. Fig. 6.9 shows the leakage current in Sample 4 at 

22 V, hours after the temperature was lowered from 350 to 275 K. Even after eleven 

hours, the current failed to stabilize. The current can even be observed to flow in the 

opposite direction of the applied voltage at some point on the curve. Although this 

behavior was also observed in Sample 3, it was not as dominant as in Sample 4. Because 

of this problem, current versus temperature measurements could only be performed 

across a limited temperature range. Possible reasons for this behavior could be the 
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presence of deep traps in the dielectric that become filled at high temperatures, creating 

an internal electric field within the dielectric. This internal field then forces the electrons 

to flow in a direction opposite to the externally applied field, resulting in a negative 

current at an externally applied positive voltage. This negative current flow is also 

supported by the lower barrier to electron flow in the reverse direction than in the 

forward direction, a property that makes currently manufactured tantalum capacitors 

polar in nature [30].  

 

Fig. 6.9. Variation of current with time in Sample 4 at 250 K. 
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The current versus temperature data for Sample 4 was plotted on the Arrhenius plot 

shown in Fig. 6.10. A good linear fit was obtained, suggesting that the leakage 

mechanism is thermally activated. The equation of the fit is } �  �8.8948 �  5663.48, 

implying a slope of –5663.4. Comparing and analyzing this measured slope with the 

slope of Eq. 6.1 results in an activation energy of 0.75 eV for the process. This extracted 

activation energy represents the ionization potential of the traps in the dielectric, which 

gives rise to the Poole-Frenkel Effect. 

 

Fig. 6.10. Arrhenius plot for pre-poly capacitor (Sample 4). 
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Since, the I-V data for one pre-poly sample fits the Schottky Effect and I-V data 

for another pre-poly sample fits the Poole-Frenkel Effect, one single mechanism cannot 

explain the leakage in these pre-poly capacitors. However, the Schottky barrier height of 

Sample 3 and the ionization potential of the traps in Sample 4 are moderately high to 

prevent excessive leakage current flowing through the dielectric.  

 

6.3   Comparison of In situ and Pre-poly Capacitors 

To compare the I-V characteristics of in situ and pre-poly capacitors, all the data 

were plotted together on the graph as shown in Fig. 6.11. It is clear that the current at    

25 V in the in situ capacitor is significantly higher than that in the pre-poly capacitors. 

Numerically, the current in the in situ capacitor at 25 V is in the range of 20-300 nA, 

while the current in the pre-poly capacitor is in the range of 0.25-0.7 nA. Although the 

figure shows the data for only a few capacitors, these measurements agree with the values 

reported by KEMET Electronics Corp. based on its measurements of numerous in situ 

and pre-poly capacitors. Thus, statistically, the in situ capacitors have significantly higher 

leakage currents than the pre-poly capacitors. This higher leakage current is the probable 

cause of the lower breakdown voltage of in situ capacitors as compared to the pre-poly 

capacitors. Because of this low breakdown voltage exhibited in in situ capacitors, 

KEMET has phased out manufacturing of high voltage polymer Ta capacitors using the 

in situ polymerization. 
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Fig. 6.11. Comparison of I-V characteristics of in situ and pre-poly capacitors. 

 

The results obtained here also imply the presence of shallow traps in the dielectric 

of the in situ capacitor that contribute to current conduction through the dielectric 

resulting in its lower breakdown voltage. This defect-initiated breakdown has been 

observed in other dielectrics such as the SiO2 [39]. In addition, according to Allers, the 

reliability of a dielectric can be predicted from its I-V characteristics by a √T model, 

because the current density of the Poole-Frenkel Effect varies as √T [68]. This means 
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that a dielectric with a lower leakage current density has a higher reliability and thus a 

decreased probability of breakdown in comparison with one that has a higher leakage 

current density. Thus, pre-poly capacitors are more reliable than their in situ counterparts 

are. 

 

6.4   Reverse Polarity Characteristics of Tantalum Capacitors 

Thus far, this research has investigated only the forward biased operation of the 

capacitors, because they tend to breakdown readily with the application of a small reverse 

voltage. To observe the reverse characteristics of discrete polymer Ta capacitors, further 

measurements were performed, and the current densities measured at positive and 

negative biases are shown in Fig. 6.12. The current density was plotted to facilitate 

comparison with data reported later. Since applying a reverse bias causes the capacitors 

to breakdown more readily, only one measurement for each type of capacitor was 

conducted. As Fig. 6.12 shows, the leakage current increases rapidly as the applied 

reverse voltage is increased in both the in situ and the pre-poly capacitors. 

To explore the fundamental conduction mechanism in the dielectric that prevents 

it from operating in reverse bias, measurements were conducted on a flat MIM             

Ta-Ta2O5-Al structure. The results are shown in Fig. 6.13. Two major observations that 

can be made are: the current density at 15 V in the MIM structure is approximately        

50 nA/cm2, which is five orders of magnitude greater than the value for the discrete 

capacitors at the same voltage. 
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Fig. 6.12. I-V curve of discrete polymer capacitors from – 1 to 10 V. 

 

The cause of this high current is probably because the MIM structures do not have self-

healing capabilities, meaning the defects formed during fabrication are not healed during 

operation. In addition, the Ta foil used to fabricate these MIM structures contained 

surface impurities, giving them a lower purity than the Ta powder used to manufacture 

the polymer Ta capacitor. These surface impurities were created because of the process 
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used to fabricate the Ta foils [69]. Moreover, the oxide in the MIM structures was not 

annealed after growth, so this oxide had a higher defect density than the oxide in the 

discrete polymer Ta capacitors. In addition, unlike the discrete capacitors, the MIM 

structure was exposed to the atmosphere during testing, since they were not sealed in a 

package. 

 

Fig. 6.13. I-V characteristics of the Ta-Ta2O5-Al MIM structure. 
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The second major observation is that the current densities at positive and negative 

voltages are reasonably symmetrical in the voltage range of ±10 V, unlike the discrete 

capacitors in which the I-V characteristics are severely asymmetrical. Numerically, the 

current density in the discrete capacitor at –1 V is in the region of  5 nA/cm2, while that 

in the MIM structure is only 1 pA/cm2, a difference of three orders of magnitude. This 

suggests that it is possible to make Ta based discrete capacitors with a lower reverse 

polarity leakage current than in the existing Ta capacitors. The general current versus 

voltage behavior of these MIM capacitors is qualitatively explained based on the 

electronic band diagram of the MIM structure illustrated in Fig. 6.14.  

 

 
Fig. 6.14. Electronic band structure of Ta-Ta2O5-Al 

 

E0 = Vacuum level 

EF = Fermi level 

EC = Conduction band edge 

EV = Valence band edge 
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As this figure shows, the work function of Ta and Al are both approximately equal to   

4.2 eV, meaning that the barrier for electron flow through the structure in either direction 

is essentially the same. Since the current at both forward and reverse polarity is 

comparable, there is no fundamental reason why Ta2O5 cannot be used as a dielectric in 

at least low voltage non-polar capacitors. To fabricate high voltage non-polar capacitors, 

which operate equally well, both at high forward and at high reverse polarity, Ta is 

probably not a good choice. This is because the maximum barrier to electron flow 

between the Ta and the dielectric at reverse polarity is only 1 eV, which may not be high 

enough to prevent electrons hopping across the barrier and causing leakage. However, 

this low barrier will not prevent the capacitor from operating at a high forward polarity, 

during which the barrier between the cathode and the dielectric plays an important role. 

 

 

The measurements on the polymer Ta capacitors reveal the presence of the Poole-

Frenkel mechanism in all the in situ capacitors and one pre-poly capacitor; however, the 

Schottky mechanism was observed in the other pre-poly capacitors. In the capacitors that 

exhibited the Poole-Frenkel Effect, the trap depth was determined to be 0.15 eV for the in 

situ type and 0.75 eV for the pre-poly type. The other pre-poly capacitors, which 

exhibited the Schottky mechanism, were found to have a barrier of 0.54 eV. From these 

results, we conclude that the primary reason for the higher current in the in situ capacitors 

as compared to the pre-poly capacitors is the presence of shallow traps in the in situ 

devices. This higher leakage current in the in situ capacitors causes their breakdown to 
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occur at approximately 50 V. On the other hand, pre-poly capacitors exhibit a lower 

leakage current because of the presence of either a sufficiently high electron-blocking 

barrier and/or only deep level traps. In addition, measurements on flat MIM samples 

suggest that no fundamental problems exist in the Ta2O5 dielectric that prevents it from 

being used in low voltage non-polar capacitors. 
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CHAPTER SEVEN 

SUMMARY AND CONCLUSIONS 

In this thesis, a technique to accurately measure the leakage current in polymer Ta 

capacitors was established. Using this technique, the pre-breakdown current in in situ and 

pre-poly polymer tantalum capacitors was measured. From the measurements, it is 

evident that the in situ capacitors exhibit a significantly higher leakage current than the 

pre-poly capacitors, even though the only difference between the two is the method used 

to deposit the PEDOT. To determine the leakage mechanism in both capacitors, their 

measured I-V characteristics were modeled and analyzed. Results from the analysis 

indicate the presence of the Poole-Frenkel mechanism in the in situ capacitors and the 

presence of both Poole-Frenkel and Schottky mechanisms in the pre-poly capacitors. 

Additional current versus temperature measurements were performed to verify the 

leakage mechanisms and to determine the activation energy of the mechanism. The 

results from these experiments were consistent with the leakage mechanisms deduced 

from the previously obtained results at room temperature. The activation energy was 

determined by creating Arrhenius plots of the leakage mechanism. For in situ capacitors, 

the activation energy obtained was 0.15 eV, while in the pre-poly capacitors, two 

activation energy values were obtained: 0.54 eV and 0.75 eV. Since the in situ capacitors 

exhibited the Poole-Frenkel mechanism, their activation energy represents the depth of 

the traps in the Ta2O5 dielectric. In the case of the pre-poly capacitors, their activation 

energy of 0.54 eV represents the Schottky barrier height, and the activation energy of 

0.75 eV represents the trap depth in the sample which exhibited the Poole-Frenkel Effect. 
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Both the Schottky barrier and the deep level traps assist in limiting the leakage current 

through the dielectric. 

In comparison with independent results, the extracted activation energy for the in 

situ capacitors is close to the 0.17 eV value that KEMET independently determined [10]. 

The calculated activation energy for the pre-poly capacitors, 0.54 eV and 0.75 eV, are 

close to the activation energy for wet type Ta capacitors, in which the activation energy is 

0.6 eV. This result suggests that pre-poly capacitors can operate at high voltages similar 

to the wet Ta capacitors [10]. KEMET has already fabricated polymer Ta capacitors with 

a working voltage of 125 V. This development is a significant improvement over existing 

polymer capacitors with a working voltage of only 25 V. This research suggests that the 

Poole-Frenkel and Schottky Effects are the prominent dielectric leakage mechanisms in 

Ta2O5 based devices; this conclusion is also supported by previous research [45, 58, 59, 

60, 61, 62]. 

In all cases, the measured I-V characteristics showed minor variations between 

samples of the same type. Although the limited number of capacitors available for 

characterization meant a statistical analysis of this data was not feasible, data from 

KEMET Electronics Corporation confirm that the in situ capacitors have a higher leakage 

and lower breakdown voltage than pre-poly capacitors. 

Measurements were also conducted on Ta-Ta2O5-Al flat samples to investigate 

the behavior of the dielectric at reverse polarity. The I-V curve obtained for the flat 

samples was symmetrical in magnitude at positive and negative applied voltages, 

suggesting that the dielectric by itself does not have a fundamental limitation that makes 
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it unsuitable for negative polarity operation. However, the electronic barrier between Ta-

Ta2O5 is only 1 eV at the maximum. 

Once high voltage Ta polymer capacitors are successfully manufactured, the next 

improvement that has the potential to revolutionize the capacitor industry is the 

development of non-polar Ta capacitors. However, the direct combination of Ta and 

Ta2O5 does not seem to be best for developing non-polar capacitors because of the low    

1 eV barrier between them. This value is not sufficiently high to keep the reverse polarity 

leakage current adequately low for the satisfactory performance of the capacitor. In other 

words, the low barrier does not preclude the possibility of a Ta capacitor withstanding a 

high reverse polarity across it; however, the low barrier suggests that it may not be 

possible to make Ta capacitors that perform equally well at both forward and reverse 

polarities. Other metal-insulator systems such as Al-Al2O3, which has a barrier height of 

approximately 3 eV between them, is more effective in blocking electron flow from the 

metal to the insulator during reverse operation. Currently, Ta is employed as the anode 

material because of its high volumetric efficiency and stability; however, other metals 

with these useful properties may be useful as the anode material for future devices. 
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APPENDIX 

An Analysis of Measured Data 

The following tests were performed to obtain the run-to-run variance and sample-

to-sample variance for three samples. Ideally, measurements need to be conducted on 

about 30-50 samples to perform statistical analysis with good confidence. However, this 

was not possible because only a small number of capacitors were fabricated for this 

research and the time required for conducting I-time tests on capacitors was exceedingly 

large.  

The first test involved conducting multiple I-time measurements at 10 V on one 

sample. The results from this test are shown in Fig. A.1, which shows the results from 14 

continuous I-time measurements on an in situ capacitor. In this figure, the current level is 

seen to be decreasing with each 2 hour long run. In the first run, the final value of current 

was ~2.5 nA, this value decreased to ~800 pA in the last run. This trend was also 

observed in other samples. Such a trend suggests that the applied voltage is causing slow 

changes within the dielectric and/or the polymer of the capacitor. To get accurate 

consistent results, the capacitors need to be treated to revert them to their known state. 
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Fig. A. 1. Results from fourteen continuous I-time runs on an in situ capacitor. 

 

To ensure the capacitors are in a known condition, the leads are shorted and the 

capacitor is placed in an oven at 85 ˚C for 6-8 hours. Using this approach, the I-time 

results shown in Fig. A.2 were obtained. During this test, first an I-time was performed 

on all the three capacitors at 10 V, after which they were treated as mentioned above. 

Another I-time was subsequently performed on all the three capacitors. The results in Fig. 

A.2 indicate that the current tracked within experimental error to the value that was 

observed in the first run. For example, R1P6 is the current observed in a sample during 
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the first run and HR1P6 is the current observed in the same sample after it was heat-

treated. 

 

Fig. A.2. Comparison of I-time results on all samples. 

 

From Fig. A.2, at 9000 s, the difference in current between the two runs is 0.1, 

0.2, and 0.1 in samples 1, 2, and 3 respectively. Hence, the worst-case run-to-run 

variation of current is approximately 8 %. Similarly, the worst-case sample-to-sample 

variation of current is 1.7 nA, which is approximately ±38 % of the average measured 

current. The obtained sample-to-sample variation is about four times higher than the run-
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to-run variation. Hence, the run-to-run variation can be ignored when the sample-to-

sample variations are taken into consideration. 

A ±38 % sample-to-sample variation is assumed throughout the 0-25 V range, and 

a Poole-Frenkel plot was constructed for Sample 3, which was previously characterized 

as shown in Fig. 6.1. This new Poole-Frenkel plot is shown in Fig. A.3. The worst case 

slopes of this plot are 0.0027 and 0.0062; however, the theoretical slope, 
4�56 , ranges only 

between 0.0029 and 0.0058. Thus, the obtained slopes indicate that for the given sample-

to-sample variation, the slope may not always fall within the range predicted by the 

Poole-Frenkel model. However, the obtained slopes are not significantly different from 

the theoretical slope range. This analysis shows the extreme theoretical limits and the 

limitation of the model used to explain the results. Possibly newer models can be 

developed to explain the out of range data. 
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Fig. A.3. Worst-case PF plot. 
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