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Abstract. In reversible computations one is interested in the development of mechanisms allow-6

ing to undo the effects of executed actions. The past research has been concerned mainly with7

reversing single actions. In this paper, we consider the problem of reversing the effect of the8

execution of groups of actions (steps).9
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Using Petri nets as a system model, we introduce concepts related to this new scenario, generalis-10

ing notions used in the single action case. We then present properties arising when reverse actions11

are allowed in place/transition nets (PT-nets). We obtain both positive and negative results, show-12

ing that allowing steps makes reversibility more problematic than in the interleaving/sequential13

case. In particular, we demonstrate that there is a crucial difference between reversing steps which14

are sets and those which are true multisets. Moreover, in contrast to sequential semantics, split-15

ting reverses does not lead to a general method for reversing bounded PT-nets. We then show that16

a suitable solution can be obtained by combining split reverses with weighted read arcs.17

Keywords: Petri net, reversible computation, step semantics, action splitting, net18

synthesis, direct reversibility, mixed reversibility, weighted activator arcs19

1. Introduction20

Reversibility of (partial) computations has been extensively studied during the past years, looking for21

mechanisms that allow to (partially) undo some actions executed during a computational process, that22

for some reason one needs to cancel. As a result, the execution can then continue from a consistent23

state as if that suppressed action had not been executed at all. In particular, these mechanisms allow24

for the correct implementation of transactions [9, 10], that are partial computations which either are25

totally executed or not executed at all. This includes updating in databases, so that one never commits26

an ‘incomplete’ set of related updates that might produce an inconsistent state (in which one could27

infer contradictory facts). Another example would be money transfers between banks, or modern28

e-commerce platforms, where the payments received should match the goods distributed [7].29

Within Formal Methods, reversibility has been investigated, for instance, in the framework of30

process calculi [24, 19], event structures [25], DNA-computing [6], category theory [11], and quan-31

tum computing [27]. In the latter case, it plays a central role due to the inherent reversibility of the32

mechanisms on which quantum computing is based. This paper is concerned with reversibility in33

place/transition nets (PT-nets), which are a fundamental class of Petri nets, operating according to the34

step semantics in which multisets of actions (steps) are executed simultaneously.35

In Petri nets, reversibility is usually understood as a global property resembling cyclicity. It was36

also considered in a manner closer to its process calculi meaning using symmetric nets [14] (sym-37

metric nets have later been used to study structural symmetries of state spaces [8]). Locally defined38

reversibility has not yet been extensively studied within the Petri net framework. This is rather sur-39

prising as the formalisation of an action by means of a pair of pre-places and post-places provides an40

immediate way of defining the reverse of the actions simply by interchanging these two sets of places.41

There are, however, some more recent works in which reversibility is understood as cyclicity (i.e., an42

ability to return to the initial state from any reachable state). They are usually based on the structure43

theory of Petri nets [17], or an algebraic study by means of invariants [22].44

From the operational point of view, one can distinguish three essential ways of reversing compu-45

tational processes: backtracking, causal reversibility, and out of causal reversibility. For concurrent46

systems, the backtracking mode was considered, for example, in [9], where the RCCS process alge-47

bra is introduced. An investigation of causal reversibility in the Petri net context can be found, for48
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example, in [20], where it was implemented using occurrence nets. All three ways of reversing com-49

putations were studied in [23], where biologically motivated reversing Petri nets were introduced. In50

all these works, one needs to enrich the original model by additional annotations or constructs. It is51

the memory of monitored processes for RCCS, the computation stack encoded through colours for52

folded occurrence nets, and atoms and bonds together with the history function for reversing Petri53

nets. In our approach, we are interested in studying the possibility of reversing computations in step54

semantics emphasizing reversing the effects, and avoiding the reachability of new states. The latter55

ensures that one can reach only states that are reachable by forward computations, which differentiates56

our approach from the out of causal reversibility discussed in [23]. We also do not equip our nets with57

additional external monitors which help to ensure causality. As a result, it may happen that reverses58

of actions that were not yet executed become enabled. This inconvenience can, however, be easily59

removed by suitably augmenting a PT-net being reversed to yield another net, as described in [4].60

The approach presented in this paper is closer to inverse nets presented in [5], and so more oper-61

ational. It extends the study of reversing (sequential) transition systems initiated in [4], where it was62

shown that the apparent simplicity of this approach is far from trivial, mainly due to the difficulty of63

avoiding situations where an added reverse action is executed in an inconsistent manner, e.g., before64

the action being reversed has been executed. Further investigation of this problem can be found in [21],65

while [3] considers bounded PT-nets, distinguishing between the strict reverses and effect reverses of66

actions. The latter deliver the effect of reversing the original actions, but possibly with a change in the67

way action enabling is carried out. It was shown that some transition systems which can be solved by68

bounded nets allow the reversal of their actions by means of single reverse actions, while in other cases69

the reversal is only possible if splitting of reverses is allowed (i.e., each action has a set of reverses70

which collectively provide means of reversing the original action).71

In [3] only the sequential (interleaving) semantics of nets was considered and, in fact, several72

of the presented examples were just (finite) linear transition systems, taking advantage of the results73

presented in [2, 13], where binary words representable by Petri net were characterised. The latter74

problem and its consequences for reversibility has been further investigated in [15].75

About this paper We consolidate and extend the results of [16], where the study of step reversing76

in PT-nets and (step) transition systems was initiated. We assume that the transition systems to be77

synthesized include information about the multisets of actions (steps) that should be executed in par-78

allel. Reversing of the actions should preserve this step information so that the simultaneous firing of79

several reverse actions should correspond to the original steps at the system represented by a PT-net.80

We introduce several concepts related to this new scenario, generalising notions used in the single81

action case. A number of straightforward definition which worked in the sequential case are no longer82

adequate. When looking for their adequate generalisations, we identify two ‘natural’ notions of step83

reversibility. The former (direct reversibility) only allows steps which comprise either the original84

actions, or the reverse actions. The latter (mixed reversibility) allows also mixing of the original and85

reverse actions. It turns out that these two ways of interpreting step reversibility are fundamentally86

different. Crucially, the direct reversibility cannot be implemented for steps which are true multisets,87

and so in such cases one has to look for mixed reversibility solutions. In this way, we identified a88

striking difference between reversing steps which are sets and those which are true multisets (when89
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autoconcurrency of actions in system executions is allowed). However, there is still a general positive90

result which basically applies whenever sequential reversing is possible and the original steps can be91

be satisfactorily represented.92

We also adapt split reverses introduced in [3]. Unfortunately, splitting is not enough to deal with93

all bounded PT-nets (also adding inhibitor arcs to the PT-net model does not always help). A general94

solution we propose uses weighted read arcs [18] (the further development of this model is out of the95

scope of this paper, and is left as a topic for the future work).96

The paper is organised as follows. Section 2 recalls notions and notations used throughout the97

paper. Moreover, some basic results concerning the step transition model are given. Section 3 in-98

troduces four different ways of defining reversibility in step transition systems, including direct step99

reversibility and mixed step reversibility, as well as set reversibility (where a true multiset of actions is100

reversed in stages) and split reversibility. Section 4 demonstrates that the direct reversibility cannot be101

achieved in the presence of autoconcurrency. Moreover, it characterises cases where mixed reversibil-102

ity can be replaced by (more desirable) direct reversibility or set reversibility. Section 5 provides result103

allowing one to deal with mixed reversibility and step reversibility in an effective way, by reducing104

the reversibility problem to the net synthesis problem. This approach is further continued Section 6,105

where lifting of sequential reversibility to step reversibility is discussed. Section 7 proposes a general106

solution to the step reversibility of bounded PT-nets which relies on the weighted read arcs. Finally,107

Section 8 contains concluding remarks.108

2. Preliminaries109

Vectors, multisets and actions An X-vector over a set X is a mapping α : X → Z, where Z is110

the set of all integers. For two X-vectors, α and β, the sum (α + β), difference (α − β), and less-111

than-or-equal relationship (α ≤ β) are defined component-wise. The support of an X-vector α is the112

set supp(α) = {x ∈ X | α(x) 6= 0}. The empty X-vector has the empty support and is denoted by113

∅X or simply by ∅, and −α denotes ∅X − α. The union of an X-vector α and a Y -vector β, where114

X ∩ Y = ∅, is the (X ∪ Y )-vector α t β such that α t β|X = α and α t β|Y = β.115

Multisets over X are X-vectors returning non-negative integers in N, the subsets of X can be116

identified with multisets returning 0 or 1, and the elements of X with singleton sets. The set of all117

multisets over X is denoted by mult(X). The size of α ∈ mult(X) is given by |α| =
∑

x∈X α(x).118

For x ∈ X , we denote x ∈ α whenever α(x) ≥ 1.119

In what follows, e.g., (xxz) denotes a multiset α with the support {x, z} satisfying α(x) = 2 and120

α(z) = 1. Moreover, xk denotes a multiset α with the support {x} satisfying α(x) = k.121

Throughout the paper, A denotes an infinite set actions, including the reverse actions and indexed122

reverse actions introduced in Section 3, used in step transition systems and PT-nets to model events123

occurring in concurrent behaviours. To simplify the presentation, we will treat a vector or multiset α124

over T ⊆ A as a vector or multiset over A, assuming that α|A\T = ∅A\T .125

Step transition systems A step transition system is a tuple STS = (S, T,→, s0) such that S is a126

nonempty set of states, T is a finite set of actions, →⊆ S × mult(T ) × S is the set of transitions,127

and s0 ∈ S is the initial state. The transition labels in mult(T ) represent simultaneous executions of128
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groups of actions, called steps. Rather than (s, α, r) ∈ →, we can denote s α−−→STS r. Moreover,129

s
α−−→STS means that there is some r such that s α−−→STS r. STS is:130

• a set transition system if α is a set, for every transition (s, α, r); and131

• state-finite if S is finite, step-finite if {α | s α−−→STS} is finite, and finite if it is both state-132

and step-finite (and so→ is finite).133

In the diagrams, step transition systems are depicted as labelled directed graphs. Arcs labelled by the134

empty multiset are omitted.135

A state r is reachable from state s if there are steps α1, . . . , αk (k ≥ 0) and states s1, . . . , sk+1136

such that (s =)s1
α1−−→STS s2 . . . sk

αk−−→STS sk+1(= r). We denote this by s
α1···αk−−−−−→STS r.137

The set of all states from which a state s is reachable is denoted by predSTS (s), s is a home state138

if predSTS (s) = S, and R ⊆ S is a home cover of STS if S =
⋃
s∈R predSTS (s).139

An (undirected) path from a source state s to target state r is a sequence π = τ1 . . . τk (k ≥ 0),140

where each τi is a pair ((si, αi, ri), ζi) ∈ (→ ×{+,−}) such that either k = 0 and s = r, or k ≥ 1 and141

s = ŝ1, r̂1 = ŝ2, . . . , r̂k−1 = ŝk, r̂k = r, assuming that ŝi = si and r̂i = ri if ζi = +, and otherwise142

ŝi = ri and r̂i = si, for every 1 ≤ i ≤ k. We denote this by π ∈ pathsSTS (s, r). The signature143

of π is the A-vector sign(π) = ∅Aζ1α1 . . . ζkαk, where the ζi’s are being treated as addition and144

subtraction operations. For example, if π = ((s′, α, s),−)((s′, β, s′′),+) ∈ pathsSTS (s, s′′), then145

sign(π) = ∅A − α+ β = β − α.146

Intuitively, sign(π) records the ‘net contribution (or effect)’ made by each action along the path147

π, with a ∈ αi making a ‘positive’ contribution if the transition (si, αi, ri) agrees with the direction148

of the path, and otherwise making a ‘negative’ contribution. Note that r is reachable from s iff there149

is π ∈ pathsSTS (s, r) with all the ζi’s being equal to +.150

In this paper, step transition systems are intended to capture (step) reachability graphs of PT-151

nets. We will now introduce a property of step transition systems which is motivated by the state152

equation which holds, in particular, for PT-nets. The basic idea is that the effect of executing an action153

is fixed, and so does not depend on the global state in which this happens (we will make this more154

precise later). Capturing such a constant effect is straightforward for PT-nets, but not for step transition155

systems. One can, however, approximate the concept of having ‘the same effect’ by considering as156

equivalent all undirected paths with the same source and target states.157

Let ./STS be the least equivalence relation on the set of all A-vectors such that: (i) sign(π) ./STS158

sign(π′), for all s, r ∈ S and π, π′ ∈ pathsSTS (s, r); and (ii) α ./STS β and α′ ./STS β′ imply159

α + α′ ./STS β + β′, for all A-vectors α, α′, β, and β′. Intuitively, α ./STS β means that executing160

α has the same effect as executing β. This leads to the following property of a step transition STS :161

CE sign(π) ./STS sign(π′) implies r = r′, for all s, r, r′ ∈ S, π ∈ pathsSTS (s, r), and162

π′ ∈ pathsSTS (s, r′). (constant effect)163

It is the case that α ./STS β implies −α ./STS −β since π ∈ pathsSTS (s, r) means that there is164

π′ ∈ pathsSTS (r, s) such that sign(π′) = − sign(π). Hence we also have the following ‘backward’165

version of the ‘forward’ constant effect property CE: sign(π) ./STS sign(π′) implies s = s′, for all166

s, s′, r ∈ S, π ∈ pathsSTS (s, r), and π′ ∈ pathsSTS (s′, r).167
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We are now in a position to introduce a class of step transition systems used throughout the rest168

of this paper. A step transition system STS = (S, T,→, s0) is a constant effect step transition system169

(or CEST-system) if it satisfies CE as well as the following three properties, for every s ∈ S:170

REA s0 ∈ predSTS (s). (reachability)171

EL s
∅−−→STS s. (empty loops)172

SEQ s
α+β−−−−→STS implies s

αβ−−→STS . (sequentialisability)173

We then obtain two immediate properties of CEST-systems.174

Proposition 2.1. Let STS be a CEST-system.175

1. r = r′ whenever s α−−→STS r and s α−−→STS r
′.176

2. s = r whenever s ∅−−→STS r.177

Proof:
Part (1) follows from CE, and part (2) follows from part (1) and EL. ut

Proposition 2.1(1) captures the property of forward determinism (FD) which allows one to unambigu-178

ously denote s⊕STS α, or s⊕α if STS is clear from the context, as the state r satisfying s α−−→STS r179

whenever s α−−→STS .180

Being a CEST-system still does not mean that it can be generated by a PT-net. A complete charac-181

terisation can be obtained using, e.g., theory of regions [1, 12].182

Proposition 2.2. Let s be a state of a CEST-system STS . If s ⊕ α is defined and β + γ ≤ α, then183

s⊕ β, s⊕ (β + γ) and (s⊕ β)⊕ γ are also defined, and (s⊕ β)⊕ γ = s⊕ (β + γ).184

Proof:
By s α−−→STS as well as SEQ and CE, we have s

β−−→STS s ⊕ β
γ−→STS (s ⊕ β) ⊕ γ as well as

s
β+γ−−−→STS s ⊕ (β + γ). We therefore have π = ((s, β, s ⊕ β),+)((s ⊕ β, γ, (s ⊕ β) ⊕ γ),+) ∈

pathsSTS (s, (s⊕β)⊕γ) and π′ = ((s, β+γ, s⊕(β+γ)),+) ∈ pathsSTS (s, s⊕(β+γ)). Moreover,
sign(π) = β + γ = sign(π′). Hence, by CE, (s⊕ β)⊕ γ = s⊕ (β + γ). ut

We use different ways of removing transitions from a step transition system STS = (S, T,→, s0):185

STS seq = (S, T, {(s, α, r) ∈ → | |α| ≤ 1}, s0)
STS set = (S, T, {(s, α, r) ∈ → | supp(α) = α}, s0)
STS spike = (S, T, {(s, α, r) ∈ → | | supp(α)| ≤ 1}, s0)
STS |T ′ = (S, T ′, {(s, α, r) ∈ → | α ∈ mult(T ′)}, s0) (for T ′ ⊆ T ) .

That is, STS seq is obtained by only retaining singleton steps and ∅-labelled steps, STS set by only186

retaining steps which are sets, and STS spike by removing all steps which use more than one action.187
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Moreover, STS is a sequential / set / spiking step transition system if respectively STS = STS seq /188

STS = STS set / STS = STS spike .1189

For step transition systems satisfying SEQ, checking the satisfaction of the constant effect property190

can be done by restricting oneself to the sequential steps.191

Proposition 2.3. Let STS be a step transition system satisfying SEQ. Then STS satisfies CE if and192

only if STS seq satisfies CE.193

Proof:194

We first observe that from SEQ for STS it follows that, for every π ∈ pathsSTS (s, r), there is π′ ∈195

pathsSTS seq (s, r) such that sign(π′) = sign(π) (*). Hence, we also have ./STS = ./STS seq (**).196

(=⇒) Follows from (**) and π ∈ pathsSTS seq (s, r) ⊆ π ∈ pathsSTS (s, r).197

(⇐=) Follows from (*) and (**). ut

The essence of the next result is that adding reverses of some transitions labelled by the same198

action in a sequential step transition system preserves the constant effect property.199

Proposition 2.4. Let STS = (S, T,→, s0) be a sequential step transition system satisfying CE and200

STS ′ = (S, T ∪ {ã},→ ∪ →′, s0), where→′⊆ {(r, ã, s) | (s, a, r) ∈→} for some a ∈ T and ã /∈ T .201

Then STS ′ satisfies CE.202

Proof:203

The result clearly holds when→′ is empty. Otherwise, we have a ./STS ′ −ã. For every A-vector α,204

let α̂ be the A-vector such that α̂|A\{a,ã} = α|A\{a,ã}, α̂(a) = α(a)− α(ã), and α̂(ã) = 0.205

We observe that, for all s, r ∈ S and π ∈ pathsSTS ′(s, r), there is π′ ∈ pathsSTS (s, r) such that
sign(π′) = ̂sign(π) (*). Hence, we also have that α ./STS ′ β iff α̂ ./STS β̂, for all A-vectors α and
β (**). The result then follows from CE for STS together with (*) and (**). ut

Let STS = (S, T,→, s0) and STS ′ = (S′, T ′,→′, s′0) be two step transition systems such that206

T ⊆ T ′. Then STS is included in STS ′ if there is a bijection ψ : S → S′ such that ψ(s0) = s′0 and207

{(ψ(s), α, ψ(s′)) | s α−−→STS s′} ⊆ →′.2 This is denoted by STS �ψ STS ′ or STS � STS ′, and208

if ψ is the identity on S, we denote STS J STS ′. Also, STS is isomorphic with STS ′ if there is ψ209

such that STS �ψ STS ′ and STS ′ �ψ−1 STS . This is denoted by STS 'ψ STS ′ or STS ' STS ′.210

PT-nets A PT-net (short for place/transition net [26]) is a tuple N = (P, T, F,M0), where P is a211

finite set of places, T ⊆ A is a disjoint finite set of actions,3 F is the flow function F : (P × T ) ∪212

(T × P ) → N specifying the arc weights between places and actions, and M0 is the initial marking213

(markings are multisets over P representing global states). It is assumed that, for every a ∈ T , there214

is p ∈ P such that F (p, a) > 0.215

1If STS is a CEST-system, then STS seq , STS set , and STS spike satisfy REA since STS satisfies REA and SEQ.
2If STS and STS ′ are CEST-systems, then ψ is unique due to REA and FD.
3We use the term ‘actions’ rather than ‘transitions’ when referring to the elements of T , in order to avoid confusion with the
triples (s, α, r) used in the definition of step transition systems.
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The triple (P, T, F ) is an unmarked PT-net, and N |T ′ = (P, T ′, F |(P×T ′)∪(T ′×P ),M0) is the216

subnet of N induced by T ′ ⊆ T .217

In the diagrams, PT-nets are depicted as labelled directed graphs, with circles representing places218

and boxes to representing actions. Markings are represented by black tokens or numbers drawn inside219

the circles, the arc weight of 1 is omitted, and the 0-weight arcs are not drawn.220

Multisets over T , again called steps, represent executions of groups of actions. The effect of a step221

α ∈ mult(T ) (and, in general, a T -vector α) is the P -vector effN (α) = postN (α)− preN (α), where222

preN (α) and postN (α) are multisets of places such that, for every p ∈ P :223

preN (α)(p) =
∑
a∈T

α(a) · F (p, a) and postN (α)(p) =
∑
a∈T

α(a) · F (a, p) .

A step α is enabled at a marking M if preN (α) ≤ M , and the firing of such a step leads to224

the marking M ′ = M + effN (α).4 This is respectively denoted by M [α〉N and M [α〉N M ′. Note225

that it is always the case that M [∅〉N M , and that M [α + β〉N implies M [α〉N M ′[β〉N , where226

M ′ = M + effN (α). These two facts motivated the inclusion of EL and SEQ in the definition of227

CEST-systems.228

The reachable markings of N are the smallest set of markings reachN such that M0 ∈ reachN229

and if M ∈ reachN and M [α〉N , then M + effN (α) ∈ reachN . N is bounded if the set reachN of230

all the reachable markings is finite.231

The overall behaviour of N can be captured by its concurrent reachability graph which is the step232

transition system CRGN = (reachN , T, {(M,α,M ′) | M ∈ reachN ∧M [α〉N M ′},M0). In what233

follows, M α−−→N M ′ denotes M α−−→CRGN
M ′. Note that the concurrent reachability graphs of234

bounded PT-nets are finite.235

The concept of marking equation can be explained in the following way. Suppose that a marking236

M ′ can be reached from marking M by firing a sequence of steps, e.g., M α1···αn−−−−−→CRGN
M ′. Then237

M ′ = M + effN (α) M = M ′ − effN (α) effN (α) = M ′ −M , (1)

where α = α1 + · · ·+ αn. This means that the effect of executing a multiset of actions α is constant,238

as it does not depend on the starting marking nor the ending marking nor any particular way in which239

the actions making up α were fired. Moreover, the effect of actions fired along any path from M to240

M ′ is constant. This motivated the inclusion of CE in the definition of CEST-systems.241

It is straightforward to see that CRGN is a CEST-system. In particular, by Eq.(1), we have242

effN (sign(π)) = M ′ −M , for every π ∈ pathsCRGN
(M,M ′). Hence, in particular, α ./CRGN

β243

implies effN (α) = effN (β). As a result, CE holds.244

Solving step transition systems A step transition system STS is solvable if there is a PT-net N245

such that STS ' CRGN . This is the standard definition used in several works concerned with the246

synthesis of Petri nets from transition systems. In this paper, we will also use a more general notion247

of solvability, defined for step transition systems with multiple initial states.248

4M ′ is a multiset due to preN (α) ≤M .
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c

3

Figure 1. A step transition system with multiple initial states STS (a); step transition system STS q2 (b); and
Petri net solving STS q1 (c).

A step transition system with multiple initial states is a tuple STS = (S, T,→, S0) such that the249

first three components are as in the definition of a step transition system, and S0 ⊆ S is a nonempty250

set of initial states. Moreover, for every r ∈ S0, STS r = (Sr, T,→r, r) is the step transition system251

such that Sr = {s ∈ S | r ∈ predSTS (s)} and→r =→ ∩ (Sr × mult(T ) × Sr). That is, STS r is252

STS restricted to those states which are reachable from r.253

A step transition system with multiple initial states STS is solvable if there is an unmarked PT-254

net (P, T, F ) and a mapping ψ : S → mult(P ) such that STS r 'ψ|Sr
CRG(P,T,F,ψ(r)), for every255

r ∈ S0. That is, a solution in this case is an unmarked PT-net which can be ‘started’ in different initial256

markings, each such initial marking solving one of the step transition systems which make up STS .257

Example 2.5. Let us consider STS = ({q1, . . . , q6}, {a, b, c},→, {q1, q2}), a step transition system258

with multiple initial states depicted in Figure 1(a) (for simplicity, all nonempty steps are singletons).259

The step transition system STS q2 , depicted on Figure 1(b), is obtained from STS by removing260

all the states which are not reachable from q2. STS q1 is constructed in similar way. The PT-net261

N = (P, T, F, (p1p4)) solving STS q1 is depicted on Figure 1(c). As N = (P, T, F, p42 + p4) is a262

solution for STS q2 , it follows that STS is solvable. ♦263

3. Reversing steps264

The reverse action of an action a in a step transition system STS or a PT-net N will be denoted by a.265

Intuitively, a cancels the effect of a which corresponds to a+ a ./STS ∅ and effN (a) + effN (a) = 0,266

respectively.267

We consider four ways of modifying step transition systems to capture the effect of reversing268

actions. In the first three, each action a has a unique reverse action a. Moreover, the reverse α269

of a multiset α of actions is obtained by replacing each action occurrence in α by its reverse. In270
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•s

•
s⊕ α

• s⊕ (α+ β)

•
s⊕ β

α+ β

α+ β

β α

βα

Figure 2. A mixed reverse transition s⊕ α α+β−−−−→mrev s⊕ β derived from s
α+β−−−−→STS .

the fourth one, an action a has possibly multiple unique indexed reverse actions a〈idx〉. The index-271

free version noidx(α) of a multiset α is obtained by replacing each a〈idx〉 in α by a. For example,272

noidx(( a〈7〉 b〈s,w〉 b a〈f〉)) = ( a b b a) = (abba).273

In the domain of step transition systems, reversing is introduced at the behavioural level. The274

direct / set / mixed reverse of a CEST-system STS = (S, T,→, s0) is respectively given by:275

STS rev = (S, T ] T ,→ ∪ →rev , s0) with →rev = {(s⊕ α, α, s) | s α−−→STS}
STS srev = (S, T ] T ,→ ∪ →srev , s0) with →srev = {(s⊕ α, α, s) | s α−−→STS ∧ supp(α) = α}
STSmrev = (S, T ] T ,→mrev , s0) with →mrev = {(s⊕ α, α+ β, s⊕ β) | s α+β−−−−→STS} .

That is,→rev reverses all the (original) steps,→srev only reverses the steps that are sets, and→mrev276

introduces partial reverses with mixed steps, including both the original and reverse actions. Figure 2277

illustrates mixed reversing. Note that s⊕ α and s⊕ β are states in STS due to SEQ and CE.278

A split reverse of STS is a step transition system STS split = (S, T ] T ′,→′, s0) satisfying279

SEQ and such that T ∩ noidx(T ′) = ∅ and noidx(STS split) = STS rev , where noidx(STS split) =280

(S, T ∪noidx(T ′), {(s, noidx(α), s′) | (s, α, s′) ∈→′}, s0) is the step transition system obtained from281

STS by replacing each occurrence of an indexed reverse action a〈idx〉 by a. That is, →′ introduces282

split reverses allowing one or more reverses of a step, possibly using different reverses of the same283

action when reversing a step that contains its multiple copies.284

In the domain of PT-nets, reversing is introduced structurally rather than behaviourally, by adding285

reverses at the level of actions:286

• A PT-net N with reverses is such that, for each original action a, there is a reverse action a287

such that effN (a) = − effN (a).288

• A PT-net N with strict reverses is such that, for each original action a, there is a reverse289

action a such that preN (a) = postN (a) and postN (a) = preN (a).290

• A PT-net N with split reverses is such that, for each original action a, there is at least one291

indexed reverse action a〈idx〉 such that effN (a〈idx〉) = − effN (a).292
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A key problem which then arises is that of characterising relationships between statically defined293

reversing of PT-nets and the behavioural reversing of their concurrent reachability graphs. In the rest294

of this paper, we will address this problem by providing both negative and positive results. First,295

however, we show basic properties of the reversed step transition systems. In particular, that all such296

step transition systems are CEST-systems, and that the solvability of a reversed step transition system297

implies the solvability of the original step transition system.298

Theorem 3.1. Let STS be a CEST-system, and STS split be any of its split reverses.299

1. STS J STS srev J STS rev J STSmrev and STS J STS split .300

2. STSmrev , STS srev , STS rev , and STS split are CEST-systems.301

3. If any step transition system among STSmrev , STS srev , STS rev , and STS split is solvable, then302

STS is also solvable.303

Proof:304

Let STS = (S, T,→, s0) and STS ′ be any step transition system among STSmrev , STS srev , STS rev ,305

and STS split . We start with an auxiliary result.306

Lemma 3.2. Let α, β, γ, δ ∈ mult(T ).307

1. s α−−→STSmrev s′ iff s α−−→STS rev s′ iff s α−−→STS split s′ iff s
α−−→STS s

′.308

2. s α−−→STSmrev s′ iff s α−−→STS rev s′.309

Proof:310

[Lemma 3.2] (1) The second and third equivalences are obvious, so we only show the first one.311

(=⇒) Suppose that s α−−→STSmrev s′. Then, by the definition of STSmrev , there is r ∈ S such that312

r
∅+α−−−−→STS and (s =)r ⊕ ∅ ∅+α−−−−→STSmrev r ⊕ α(= s′). By Proposition 2.1(2), s = r. Hence, by313

Proposition 2.1(2), r ⊕ α = s⊕ α = s′. As a result, s α−−→STS s
′.314

(⇐=) Suppose that s α−−→STS s′. Then s
∅+α−−−−→STS and so, by the definition of STSmrev ,315

s⊕∅ ∅+α−−−−→STSmrev s⊕α. By Proposition 2.1(1), s′ = s⊕α, and, by Proposition 2.1(2), s = s⊕∅.316

Hence s α−−→STSmrev s′.317

(2) (=⇒) Suppose that s α−−→STSmrev s′. Then, by the definition of STSmrev , there is r ∈ S such318

that (s =)r ⊕ α α+∅−−−−→STSmrev r ⊕∅(= s′) and r α+∅−−−−→STS . By Proposition 2.1(2), s′ = r. Hence319

s′
α−−→STS s. Thus, by the definition of STS rev , s α−−→STS rev s′.320

(⇐=) Suppose that s α−−→STS rev s′. Then, by the definition of STS rev , s′ α+∅−−−−→STS s. Hence,
by definition of STSmrev , s′ ⊕ α α+∅−−−−→STSmrev s′ ⊕ ∅. By Proposition 2.1(1), s = s′ ⊕ α, and, by
Proposition 2.1(2), s′ = s′ ⊕∅. Hence s α−−→STSmrev s′. [Lemma 3.2] ut

(1) Follows directly from the definitions and Lemma 3.2(1,2).321

(2) We discuss in turn the four properties defining CEST-systems.322
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(EL and REA) Follow directly from part (1) and the fact that STS satisfies EL and REA.323

(SEQ) For STS srev , STS rev , and STS split , SEQ holds directly from the definitions. To show SEQ324

for STSmrev , suppose that:325

s
α1+α2+β1+β2−−−−−−−−−−→STS and s⊕ (α1 + α2)

α1+α2+β1+β2−−−−−−−−−−→STSmrev s⊕ (β1 + β2) .

Then, by SEQ for STS , we have s⊕α2
α1+β1−−−−−→STS and s⊕β1

α2+β2−−−−−→STS . Hence, by the definition326

of STSmrev ,327

(s⊕ α2)⊕ α1
α1+β1−−−−−→STSmrev (s⊕ α2)⊕ β1

(s⊕ β1)⊕ α2
α2+β2−−−−−→STSmrev (s⊕ β1)⊕ β2 .

Moreover, by Proposition 2.2, we have:328

s⊕ (α2 + α1) = (s⊕ α2)⊕ α1

(s⊕ β1)⊕ β2 = s⊕ (β1 + β2)

(s⊕ α2)⊕ β1 = s⊕ (α2 + β1) = (s⊕ β1)⊕ α2 .

Hence, s⊕ (α1 + α2)
α1+β1−−−−−→STSmrev s⊕ (α2 + β1)

α2+β2−−−−−→STSmrev s⊕ (β1 + β2).329

(CE) We first observe that s a−→STSmrev s′ implies s′ a−→STSmrev s, by Lemma 3.2 and the330

definition of STS rev (*).331

We have already demonstrated that SEQ holds for STS ′. Hence, by Propositions 2.3, it suffices to332

show that CE holds for (STS ′)seq .333

By Propositions 2.3, we have that STS seq satisfies CE. Moreover, by Lemma 3.2(1) as well as the334

definition of STS ′ and (*), (STS ′)seq can be derived by a successive application of the construction335

from the formulation of Proposition 2.4 (once for each reverse action and indexed reverse action).336

Hence, by Propositions 2.4, (STS ′)seq satisfies CE.337

(3) Let N ′ = (P, T ′, F,M0) be a PT-net such that STS ′ 'ψ CRGN ′ . We will show that STS 'ψ338

CRGN , where N = N ′|T . Note that the enabling and firing of steps over T is exactly the same in339

both N and N ′ (*).340

We first observe that ψ(s0) = M0. Suppose then that s ∈ S and ψ(s) ∈ reachN . To show that the341

executions of steps are preserved by ψ in both directions, we consider two cases for α ∈ mult(T ).342

Case 1: s α−−→STS s′. Then, by part (1), s α−−→STS ′ s
′. Hence, by STS ′ 'ψ CRGN ′ , we have343

ψ(s)
α−−→N ′ ψ(s′). Thus, by (*), ψ(s)

α−−→N ψ(s′).344

Case 2: ψ(s)
α−−→N M . Then, by (*), ψ(s)

α−−→N ′ M . Hence, by STS ′ 'ψ CRGN ′ , we have
M ∈ ψ(S) and s α−−→STS ′ ψ

−1(M). Thus, by Lemma 3.2(1), s α−−→STS ψ
−1(M). ut

4. Multiset and set reversibility345

The investigation of different notions of step reversibility starts with a straightforward but important346

negative result stating that, in the domain of PT-nets, the concept of direct reversibility — which347

directly generalises sequential reversibility and should be considered as the preferred way of reversing348

step transition systems — cannot handle steps which are true multisets.349
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Figure 3. An illustration of the proof of Proposition 4.1 (a), and PT-net generating concurrent reachability
graph which is not step-finite (b).

Proposition 4.1. Let STS be a CEST-system which is not a set transition system. Then STS rev is not350

solvable.351

Proof:352

[Figure 3(a) illustrates the idea of the proof.] Let STS = (S, T,→, s0). Suppose that STS rev is353

solvable. Then there is a PT-net N such that STS rev 'ψ CRGN (*). As STS is not a set transition354

system, there are v ∈ S and α ∈ mult(T ) such that v α−−→STS and (aa) ≤ α, for some a ∈ T .355

By SEQ for STS and Theorem 3.1(1), there are w, q ∈ S such that v
(aa)−−−→STS rev w and356

v
a−→STS rev q (**). Hence, by the definition of STS rev , w

(aa)−−−→STS rev v (***).357

Let Ms = ψ(s), for s ∈ {v, w, q}. By the definition of STS rev and (*), the step β = (aa) is not358

enabled at Mq. Hence, there is a place p of N such that Mq(p) < preN (β)(p) (†). On the other hand,359

by (**) and (***), we have:360

preN (aa) ≤Mv preN (aa) ≤Mw Mw = Mv + effN (aa) Mq = Mv + effN (a) .

Thus preN (β)+preN (β) = preN (aaaa) ≤Mv+Mw = Mv+Mv+effN (aa) = Mq+Mq, yielding
a contradiction with (†). ut

In view of Proposition 4.1, when facing the problem of implementing a reverse of non-set step361

transition system STS using PT-nets, one may consider set reversibility based on STS srev , or mixed362

reversibility based on STSmrev .5363

Among these two options, one might prefer STS srev to STSmrev as the latter introduces steps364

containing both the original and reverse actions. However, as the next example shows, it not always365

possible to ‘replace’ a mixed reversibility solution by a set reversibility solution.366

Example 4.2. Let us consider a CEST-system STS = ({s0, s1, . . . }, {a, b},→, s0) such that:367

si
aj−−→STS si and si

b+aj−−−−→STS si+1 for all i ≥ 0 and j ≤ i .
5We will discuss split reversibility separately in Section 7.
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It is straightforward to see that STSmrev is solvable by the PT-net shown in Figure 3(b). However,368

STS srev is not solvable by any PT-net. If such a PT-netN existed, then it would have distinct reachable369

markings M0,M1, . . . satisfying, for every i ≥ 0:370

Mi
b−→N Mi+1 (*) Mi

ai−−→N Mi (**) Mi
a−→N Mi (***) ¬Mi

(aa)−−−→N (†) .

We now observe that M0 ≤ M1 ≤ · · · due to (*). Hence, there is a place p such that preN (aa)(p) >371

M0(p) = M1(p) = · · · (‡), due to (†) and the finiteness of N . On the other hand, preN (a)(p) ≤372

M0(p) = M1(p) = · · · due to (***), and preN (a)(p) = 0 due to (**) and (‡). As a result,373

preN (aa)(p) ≤M0(p), yielding a contradiction with (‡). ♦374

Example 4.2 demonstrated that there are step transition systems which can be treated using mixed375

reversibility, but not using set reversibility. What is more, the example worked because the step tran-376

sition system considered was not step-finite. As the next result shows, that was the only reason why377

set reversibility failed to hold.378

Theorem 4.3. Let STS be a CEST-system such that STSmrev is solvable. Then STS srev is solvable379

if and only if STS is step-finite.380

Proof:381

Let STS = (S, T,→, s0).382

(=⇒) Suppose that STS srev is solvable by a PT-net N = (P, T ∪ T , F,M0), and that STS is383

not step-finite. By the finiteness of P and T as well as SEQ for STS , there is a ∈ T and reachable384

markings M1 ≤ M2 ≤ . . . such that Mi
ai−−→N , for every i ≥ 1. Hence, by SEQ for CRGN , there385

is a marking M ′i such that Mi
a−→N M ′i and M ′i

ai−1

−−−−→N (∗), for every i ≥ 1. As a result, M ′i
a−→N386

and M ′i
a−→N (∗∗), for every i ≥ 2.387

We now observe that (M =)M ′m+2

(aa)−−−→N , where m = max{F (p, a) | p ∈ P}. Indeed,388

otherwise there is p ∈ P such that M(p) < F (p, a) + F (p, a) ≤ F (p, a) +m (†). On the other hand,389

by (∗∗), M(p) ≥ F (p, a) and M(p) ≥ F (p, a). Hence, it must be the case that F (p, a) > 0. Thus, by390

(∗), M(p) ≥ (m+ 1) · F (a, p) = m+ F (a, p), contradicting (†). As a result, M
(aa)−−−→N , yielding a391

contradiction with our initial assumption.392

(⇐=) If STS is step-finite, then there is k ≥ 1 such that |α| ≤ k, whenever s α−−→STS . Moreover,
since STSmrev is solvable, there exists a PT-net N = (P, T ∪ T , F,M0) such that STSmrev 'ψ
CRGN . We then modify N , by adding to P a set of fresh places P ′ = {pab | a ∈ T ∧ b ∈ T}.
Each pab is such that M0(pab) = k and has four non-zero connections, F (a, pab) = F (pab, a) = 1
and F (b, pab) = F (pab, b) = k. For the resulting PT-net N ′, we have STS srev 'ψ′ CRGN ′ , where
ψ′(s) = ψ(s) +

∑
p∈P ′ p

k, for every s ∈ S. ut

We have therefore obtained a full characterisation of step transition systems for which mixed393

reversibility solutions can be replaced by set reversibility solutions. In addition, the second part of the394

proof of Theorem 4.3 provides a straightforward construction achieving this.395

A direct corollary of the last result is that for a set step transition system it is always possible to396

replace a mixed reversibility solution by a set reversibility solution.397
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Theorem 4.4. Let STS be a set CEST-system. If STSmrev is solvable, then STS rev is also solvable.398

Proof:
As a set CEST-system, STS is step-finite and STS rev = STS srev . Hence the result follows from
Theorem 4.3. ut

A concluding observation is that all three versions of reversibility which do not involve splitting399

are worthy of investigation.400

5. Mixed reversibility401

In this section, we consider the problem of deciding whether the mixed reverse STSmrev of a solvable402

step transition system STS is also solvable. A specific concern we implicitly address is the size of403

STSmrev which (in the finite case) can be exponentially larger than that of STS . The aim is therefore404

to avoid dealing directly with STSmrev . As shown below, this is possible as the checking of feasibility405

of mixed reversing can be replaced by checking the solvability of the original transition system, and406

the solvability of its reverse.407

Throughout this section we make the following assumptions:408

• STS = (S, T,→, s0) is a CEST-system and R is a home cover of STS .409

• STS = (S, T , {(s′, α, s) | s α−−→STS s
′}, R) is a step transition system with multiple initial410

states.411

• STS r = (Sr, T ,→r, r) is a step transition system such that r ∈ R, Sr = {s ∈ S | r ∈412

predSTS (s)}, and→r =→ ∩ (Sr ×mult(T )× Sr).413

That is, STS is obtained by reversing each transition of STS , and considering all the states in the414

home cover R as the initial states.415

Proposition 5.1. Let r ∈ R.416

1. STS r is a CEST-system.417

2. s0 ∈
⋂
s∈Sr

predSTS (s).418

3. S =
⋃
r∈R Sr.419

Proof:420

(1) The only non-trivial property to show is CE. For every A-vector α with support T , let α̂ be the421

A-vector with support T such that α̂(a) = −α(a), for every a ∈ T .422

We first observe that, for every π ∈ pathsSTSr
(s, s′), there is π′ ∈ pathsSTS (s, s′) such that423

sign(π′) = ̂sign(π) (*). Hence, we also have that α ./STSr
β implies α̂ ./STS β̂, for all A-vectors α424

and β with support T (**). Thus, STS r satisfies CE by (*) and (**).425

(2) Follows from the fact that STS satisfies REA.426

(3) Follows from the fact that R is a home cover. ut



16 D. de Frutos Escrig, M. Koutny, and Ł. Mikulski / Investigating Reversibility of Steps in Petri Nets

Theorem 5.2. STSmrev is solvable if and only if both STS and STS are solvable.427

Proof:428

(=⇒) By Theorem 3.1(3), STS is solvable. To show that STS is solvable, suppose that N =429

(P, T, F,M0) is a PT-net such that STSmrev 'ψ CRGN . We will show that STS r 'ψ|Sr
CRGNr ,430

where, for every r ∈ R, Nr is the PT-net N |T with the initial marking set to ψ(r). Note that the431

enabling and firing of steps over T is exactly the same in both N and Nr (*).432

We first observe that the initial states of STS r and CRGNr are related by ψ. Suppose then that433

s ∈ Sr is such that ψ(s) ∈ reachNr . To show that the executions of steps are preserved by ψ in both434

directions, we consider two cases, where α ∈ mult(T ).435

Case 1.1: s α−−→STSr
s′. Then s α−−→STS rev s′ and so, by Lemma 3.2(2), s α−−→STSmrev s′. Hence,436

by STSmrev 'ψ CRGN , we have ψ(s)
α−−→N ψ(s′). Thus, by (*), ψ(s)

α−−→Nr ψ(s′).437

Case 1.2: ψ(s)
α−−→Nr M . Then, by (*), ψ(s)

α−−→N M . Hence, by STSmrev 'ψ CRGN , we438

have M ∈ ψ(S) and s α−−→STSmrev ψ−1(M). Thus, by Lemma 3.2(2), s α−−→STS rev ψ−1(M). Hence439

s
α−−→STSr

ψ−1(M).440

N ′

a

N ′′

a

N

k
k

m
m

Figure 4. An illustration of the second part of the proof of Theorem 5.2.

(⇐=) Since STS is solvable, there is a PT-net N ′ = (P ′, T, F ′,M ′0) such that STS 'ψ′ CRGN ′ .441

(Note that ψ′(s0) = M ′0.) Moreover, since STS is solvable, there is an umarked PT-net N ′′ =442

(P ′′, T , F ′′) and a mapping ψ′′ : S → mult(P ′′) such that STS r 'ψ′′|Sr
CRGNr , where Nr =443

(P ′′, T , F ′′,Mr) and Mr = ψ′′(r), for every r ∈ R. Clearly, we may assume that P ′ ∩ P ′′ = ∅ as444

the identities of places play no role in the solvability problems of STS and STS .445

Let N = (P ′ ∪ P ′′, T ∪ T , F,M0) be the PT-net with strict reverses (illustrated in Figure 4) such446

that M0 = M ′0 t ψ′′(s0) = ψ′(s0) t ψ′′(s0) and, for every a ∈ T :447

preN (a) = preN ′(a) t postN ′′(a) postN (a) = postN ′(a) t preN ′′(a)

preN (a) = preN ′′(a) t postN ′(a) postN (a) = postN ′′(a) t preN ′(a) .
(2)

Let ψ be a mapping with the domain S which, for every s ∈ S, returns ψ′(s) t ψ′′(s). Note that448

ψ is well-defined due to Lemma 5.1(3) and ψ(s0) = M0.449
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Lemma 5.3. Let STS ′ be CRGN with all the transitions labelled by steps of the form α + β, for450

α, β 6= ∅, deleted.451

1. STS rev 'ψ STS ′.452

2. STS ′ satisfies REA.453

3. ψ(s⊕ α) = ψ(s) + effN (α), for all s α−−→STS .454

Proof:455

[Lemma 5.3] (1) We observe that the initial states of STS rev and STS ′ are related by ψ. Suppose456

now that s ∈ S and ψ(s) ∈ reachN . To show that the executions of steps are preserved by ψ in both457

directions, we consider four cases, where α ∈ mult(T ).458

Case 2.1: s α−−→STS rev s′. Then, by STS 'ψ′ CRGN ′ , we have ψ′(s) α−−→N ′ ψ
′(s′) and ψ′(s) ≥459

preN ′(α). Moreover, s′ α−−→STS rev s. Hence, by Lemma 5.1(3), there is r ∈ R such that s′ α−−→STSr
s.460

Thus, by STS r 'ψ′′|Sr
CRGNr , we have ψ′′(s′) α−−→N ′′ ψ

′′(s) and ψ′′(s) ≥ postN ′′(α). Hence, by461

Eq.(2):462

ψ(s) = (ψ′(s) t ψ′′(s)) ≥ (preN ′(α) t postN ′′(α)) = preN (α) .

As a result, ψ(s)
α−−→N ψ(s) + effN (α). Hence ψ(s)

α−−→N ψ(s′) as we have, by Eq.(2):463

ψ(s) + effN (α) = (ψ′(s) t ψ′′(s)) + postN (α)− preN (α)

= (ψ′(s) t ψ′′(s)) + (postN ′(α) t preN ′′(α))− (preN ′(α) t postN ′′(α))

= (ψ′(s) + effN ′(α)) t (ψ′′(s)− effN ′′(α))

= ψ′(s′) t ψ′′(s′) = ψ(s′) .

Case 2.2: s α−−→STS rev s′. Then s′ α−−→STS rev s and so, by Case 2.1, ψ(s′)
α−−→N ψ(s). Hence,464

since N is a PT-net with strict reverses, ψ(s)
α−−→N ψ(s′).465

Case 2.3: ψ(s)
α−−→N M . Then, by Eq.(2), we have:466

ψ′(s) t ψ′′(s) = ψ(s) ≥ preN (α) = preN ′(α) t postN ′′(α)

M = ψ(s) + effN (α) = (ψ′(s) t ψ′′(s)) + (postN ′(α) t preN ′′(α))− (preN ′(α) t postN ′′(α)) .

Hence, by P ′ ∩ P ′′ = ∅, ψ′(s) ≥ preN ′(α) and ψ′′(s) ≥ postN ′′(α) as well as:467

M |P ′ = ψ′(s) + effN ′(α) and M |P ′′ = ψ′′(s)− effN ′′(α) .

Thus ψ′(s) α−−→N ′ M |P ′ . Hence, by STS 'ψ′ CRGN ′ , we obtain M |P ′ ∈ ψ′(S) and s α−−→STS rev s′,468

where ψ′(s′) = M |P ′ . We still need to show that ψ(s′) = M . This follows from ψ′′(s′) = M |P ′′ .469

Indeed, we have s′ α−−→STS rev s and so, by Lemma 5.1(3), there is r ∈ R such that s′ ∈ Sr. Now, by470

STS r 'ψ′′|Sr
CRGNr , ψ′′(s′) α−−→N ′′ ψ

′′(s), which means that ψ′′(s′) = ψ′′(s)−effN ′′(α) = M |P ′′ .471



18 D. de Frutos Escrig, M. Koutny, and Ł. Mikulski / Investigating Reversibility of Steps in Petri Nets

Case 2.4: ψ(s)
α−−→N M . Then, by Eq.(2), we have:472

ψ′(s) t ψ′′(s) = ψ(s) ≥ preN (α) = preN ′′(α) t postN ′(α)

M = (ψ′(s) t ψ′′(s)) + (postN ′′(α) t preN ′(α))− (preN ′′(α) t postN ′(α)) .

Hence, by P ′ ∩ P ′′ = ∅, ψ′(s) ≥ postN ′(α) and ψ′′(s) ≥ preN ′′(α) as well as:473

M |P ′ = ψ′(s)− effN ′(α) and M |P ′′ = ψ′′(s) + effN ′′(α) .

Thus ψ′′(s) α−−→N ′′ M |P ′′ . Hence, by Lemma 5.1(3), there is r ∈ R such that s ∈ Sr. Thus, by474

STS r 'ψ′′|Sr
CRGNr , M |P ′′ ∈ ψ′′(S) and s α−−→STS rev s′, where ψ′′(s′) = M |P ′′ . We still need to475

show that ψ(s) = M . This follows from ψ′(s′) = M |P ′ . Indeed, we have s′ α−−→STS rev s and so, by476

STS 'ψ′ CRGN ′ , we obtain ψ′(s′) α−−→N ′ ψ
′(s), which means that ψ′(s′) = ψ′(s) − effN ′(α) =477

M |P ′ .478

(2) The modification of CRGN does not produce unreachable states since CRGN satisfies SEQ.479

(3) Follows from part (1) and the forward determinism of STS and CRGN . [Lemma 5.3] ut

Returning to the proof of STSmrev 'ψ CRGN , suppose that s ∈ S is such that ψ(s) ∈ reachN480

and consider two cases, where α, β ∈ mult(T ).481

Case 3.1: s
α+β−−−−→STS and s⊕ α α+β−−−−→STSmrev s⊕ β. Then we have s

α+β−−−−→STS rev as well as:482

s
α−−→STS s⊕ α s

β−−→STS s⊕ β s
α−−→STS rev s⊕ α s

β−−→STS rev s⊕ β .

Hence, by Lemma 5.3(1,3), we have:483

ψ(s)
α+β−−−−→N ψ(s)

α−−→N ψ(s⊕α) = ψ(s)+effN (α) ψ(s)
β−−→N ψ(s⊕β) = ψ(s)+effN (β) .

Thus ψ(s) ≥ preN (α + β), and so ψ(s) + effN (α) ≥ preN (α + β) + effN (α) = preN (α + β) due484

to Eq.(2). Hence, again by Eq.(2):485

ψ(s⊕α) = ψ(s) + effN (α)
α+β−−−−→N ψ(s) + effN (α) + effN (α+β) = ψ(s) + effN (β) = ψ(s⊕β) .

Case 3.2: ψ(s)
α+β−−−−→N M . Then ψ(s)

α−−→N ψ(s) + effN (α)(= M ′). Hence, by Lemma 5.3(1),486

s
α−−→STS rev ψ−1(M ′)(= s′). Thus, by the definition of STS rev , s′ α−−→STS s = s′ ⊕ α. We then487

observe that, by Eq.(2):488

M ′ = ψ(s) + effN (α) ≥ preN (α+ β) + effN (α) = preN (α+ β) .

Hence M ′
α+β−−−−→N and so, by Lemma 5.3(1), s′

α+β−−−−→STS rev and, as a consequence, s′
α+β−−−−→STS489

and s′
β−−→STS . Hence, by the definition of STSmrev , s′ ⊕ α α+β−−−−→STSmrev s′ ⊕ β. Moreover,490

ψ(s′ ⊕ α) = ψ(s′) + effN (α) = M ′ + effN (α) = ψ(s) + effN (α) + effN (α) = ψ(s)

ψ(s′ ⊕ β) = ψ(s′) + effN (β) = M ′ + effN (β) = ψ(s) + effN (α) + effN (β) = M ,

by Lemma 5.3(3) and Eq.(2). ut
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(a)

•q0

•q1

a

(b)

•

•

a

(c)

•q0

•q1

a

(d)

••

a

Figure 5. Reversing a solution does not give a solution to reversing (Example 5.4).

As the next example shows, reversing a solution of STS may not lead to a solution of STS . Hence,491

in general, one needs to consider finding solutions to both STS and STS .492

Example 5.4. Let us consider STS , a step transition system depicted in Figure 5(a), and its only493

home state q1. The PT-net N depicted Figure 5(b) solves STS . However, the direct reverse of N494

with the initial marking corresponding to q1, depicted in Figure 5(d), does not solve the step transition495

system STS q1 shown in Figure 5(c). ♦496

As the set of all the states of a step transition system is a home set, Theorem 5.2 is fundamental as it497

provides a way of solving mixed reversibility using (much) simpler synthesis problems. In particular,498

if one is interested whether the mixed reverse CRGmrev
N of the concurrent reachability graph of a499

PT-net N is solvable when CRGN has a home state.500

Theorem 5.5. If r is a home state of STS , then STSmrev is solvable if and only if both STS and501

STS r are solvable.502

Proof:
Follows directly from Theorems 5.2. ut

The above result and the proof of Theorem 5.2 provide a method for constructing a PT-net im-503

plementing mixed step reversibility provided that one can synthesise PT-nets for two step transition504

systems using, e.g., theory of regions [1, 12].505

The method for checking the solvability of mixed reversibility easily extends to checking direct506

reversibility of set transition systems.507

Theorem 5.6. Let STS be a set transition system and r be a home state of STS . Then STS rev is508

solvable if and only if both STS and STS r are solvable.509

Proof:510

(=⇒) Let STS rev 'ψ CRGN . Then STS 'ψ CRGN |T and STS r 'ψ CRGN ′ , where N ′ is N |T511

with the initial marking set to ψ(r).512

(⇐=) Follows from Theorems 5.2 and 4.4. ut
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6. From sequential reversibility to step reversibility513

Checking the feasibility of step reversibility is, in general, a difficult task. The next result shows that in514

certain cases it is possible to proceed more effectively, if one is given a PT-net that solves the original515

step transition system, over-approximates its reverse containing only spikes, and under-approximates516

its mixed reverse.517

Theorem 6.1. Let STS = (S, T,→, s0) be a CEST-system and N = (P, T ∪ T , F,M0) be a PT-net518

such that:519

(STS spike)rev � CRGN � STSmrev and STS ' CRGN |T . (3)

Then STSmrev is solvable.520

Proof:521

The states as well as the initial states of (STS spike)rev , STSmrev , and STS are the same. More-522

over, ((STS spike)rev |T )seq = (STSmrev |T )seq = STS seq . Similarly, the initial states of CRGN and523

CRGN |T are the same and we have (CRGN )|T = CRGN |T . We also observe that all step transition524

systems in Eq.(3) are CEST-systems, and there is a unique bijection ψ such that:525

(STS spike)rev �ψ CRGN STSmrev �ψ CRGN STS 'ψ CRGN |T . (4)

By the first part of Eq.(3), SEQ, and the fact that we may assume that each action in T appears in the526

labels of the transitions of STS , we have:527

reachN = reachN |T and effN (a) = − effN (a) for every a ∈ T . (5)

Lemma 6.2. It can be assumed that preN (a) ≥ postN (a) and postN (a) ≥ preN (a), for every a ∈ T .528

Proof:529

[Lemma 6.2] Suppose that F (p, a) < F (a, p), and so also F (a, p) > F (p, a). We then modify F to530

become F ′ which is the same as F except that F ′(p, a) = F (a, p) and F ′(a, p) = F (p, a). Let N ′ be531

the resulting PT-net. Clearly, effN = effN ′ .532

After this modification, which does not affect actions in T , the second part of Eq.(3) is still satisfied533

after taking N ′ to play the role of N . However, the first part of Eq.(3) needs to be demonstrated.534

We observe that the modification can only restrict the enabling of steps involving a. Hence, if the535

first part of Eq.(3) does not hold with N ′ playing the role of N , then there is M ∈ reachN ′ ⊆ reachN536

and k ≥ 1 such that M ak−−→N M ′ (*) and ¬M ak−−→N ′ (**). By Eq.(5) and (*), we have M ′ ak−−→N537

M , and so M(p) ≥ postN (ak)(p) (***).538

By construction, (**) implies preN ′(a
k)(p) > M(p). Thus, by preN ′(a

k)(p) = postN (ak)(p),539

we obtain postN (ak)(p) > M(p), yielding a contradiction with (***).540

We can apply the above modification as many times as needed, finally concluding that the result
holds, as any modification does not invalidate the conditions captured in the formulation of this lemma
that were obtained by the previous modifications. [Lemma 6.2] ut

We will show that STSmrev is solvable by a PT-net Ñ = (P̃ , T ∪ T , F̃ , M̃0) constructed thus:541
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N

p

<

a

a

Ñ

p

pa

a

a

uw

F (a, p)
F (p, a)

F (p, a)

F (a, p)

F (a, p)
F (p, a)

F (a, p)

F (p, a)

F (p, a)

F (a, p)

x
−y

Figure 6. Introducing place pa in the proof of Theorem 6.1, where u represents any place in T ∪ T \ {a} for
which x = effN (u)(p) > 0, and w any place for which y = effN (w)(p) ≤ 0.

• P̃ =
⋃
p∈P Pp, where, for every p ∈ P ,6 Pp = {p}∪ {pa | a ∈ T ∧F (p, a) > F (a, p)} and542

M̃0(Pp) = {M0(p)}.543

• The connections in Ñ are set as follows, where p ∈ P and u ∈ T ∪ T \ {a}:544

– F̃ (p, a) = F (a, p) and F̃ (a, p) = F (p, a).545

– F̃ (pa, a) = F (p, a) and F̃ (a, pa) = F (a, p).546

– effN (u)(p) > 0 implies F̃ (pa, u) = 0 and F̃ (u, pa) = effN (u)(p).547

– effN (u)(p) ≤ 0 implies F̃ (u, pa) = 0 and F̃ (pa, u) = − effN (u)(p).548

– F̃ on (P × T ) ∪ (T × P ) is as F unless it has been set explicitly above.549

In what follows, for every marking M of N , we use φ(M) to denote the marking of Ñ such that550

φ(M)(Pp) = {M(p)}, for every p ∈ P . Hence φ(M0) = M̃0.551

We now present a number of straightforward properties of Ñ . We first observe that, by Lemma 6.2,552

for all a ∈ T , u ∈ T ∪ T , and p ∈ P ,553

pre
Ñ

(a) ≥ post
Ñ

(a) eff
Ñ

(a) = − eff
Ñ

(a)

post
Ñ

(a) ≥ pre
Ñ

(a) eff
Ñ

(u)(Pp) = {effN (u)(p)} .
(6)

Therefore, for every marking M of N and every κ ∈ mult(T ∪ T ) such that M + effN (κ) ≥ ∅,554

φ(M) + eff
Ñ

(κ) = φ(M + effN (κ)) . (7)

The construction does not affect the enabling of steps involving just one action as well as steps α over555

T since pa ∈ Pp cannot disable α if it is not also disabled by p. Hence, for all markings M of N ,556

u ∈ T ∪ T , k ≥ 1, and α ∈ mult(T ):557

M
uk−−→N ⇐⇒ φ(M)

uk−−→
Ñ

and M
α−−→N ⇐⇒ φ(M)

α−−→
Ñ
. (8)

6Intuitively, each pa ∈ Pp is a (suitably adjusted) copy of p.
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Thus, by Eqs.(4,7,8) and M̃0 = φ(M0),558

(STS spike)rev �φ◦ψ CRG
Ñ

and STS 'φ◦ψ CRG
Ñ |T 'φ−1 CRGN |T . (9)

Lemma 6.3. Let α, β ∈ mult(T ) and M̃ = φ(M), for some M ∈ mult(P ).559

1. M̃
α+β−−−−→

Ñ
implies M̃ − eff

Ñ
(α)

α+β−−−−→
Ñ
M̃ + eff

Ñ
(β).560

2. M̃
α+β−−−−→

Ñ
implies M̃ + eff

Ñ
(α)

α+β−−−−→
Ñ
M̃ + eff

Ñ
(β).561

Proof:562

[Lemma 6.3] (1) We first observe that, by SEQ, M̃ − eff
Ñ

(α) = M̃ + eff
Ñ

(α) ∈ reach
Ñ

. We then563

observe that, by M̃ ≥ pre
Ñ

(α+ β), the step α+ β is enabled at M̃ − eff
Ñ

(α), and so, by Eq.(6):564

M̃−eff
Ñ

(α) ≥ pre
Ñ

(α+β)−eff
Ñ

(α) = pre
Ñ

(α)+pre
Ñ

(β)−post
Ñ

(α)+pre
Ñ

(α) ≥ pre
Ñ

(α+β) .

Hence, the result holds, as M̃ − eff
Ñ

(α) + eff
Ñ

(α+ β) = M̃ + eff
Ñ

(β).565

(2) By SEQ, M̃ α−−→
Ñ
M̃ + eff

Ñ
(α)(= M ′). Suppose that M ′

α+β−−−−→
Ñ

does not hold. Then there566

is q ∈ P̃ such that pre
Ñ

(α+ β)(q) > M ′(q) (*). Moreover, M̃ ≥ pre
Ñ

(α+ β). Hence, we have:567

pre
Ñ

(α+β)(q) > M̃(q)+eff
Ñ

(α)(q) ≥ pre
Ñ

(α+β)(q)+eff
Ñ

(α)(q) = pre
Ñ

(β)(q)+post
Ñ

(α)(q) ,

and so pre
Ñ

(α)(q) > post
Ñ

(α)(q). Thus there is a ∈ α and such that F̃ (q, a) > F̃ (a, q) and so, by568

the definition of Ñ , q = pa, for some p ∈ P . Now, it follows from the construction of Ñ , that there569

are α0, α1, β0, β1 and k ≥ 1 such that α = ak + α0 + α1 and β = β0 + β1 and a 6∈ α0 + α1 and, for570

x = α, β, we have:571

post
Ñ

(x1)(pa) = pre
Ñ

(x0)(pa) = 0 = pre
Ñ

(x1)(pa) = post
Ñ

(x0)(pa)

pre
Ñ

(x0)(pa) = post
Ñ

(x0)(pa) pre
Ñ

(x1)(pa) = post
Ñ

(x1)(pa) .

By SEQ, M̃
α1+β1−−−−−→

Ñ
M̃ + eff

Ñ
(α1 + β1)

ak−−→
Ñ
M̃ + eff

Ñ
(α1 + β1 + ak). Thus, by Eq.(9),572

M̃ + eff
Ñ

(α1 + β1 + ak)
ak−−→

Ñ
M̃ + eff

Ñ
(α1 + β1), and so we have:573

M̃(pa) + eff
Ñ

(α1 + β1 + ak)(pa) = M̃(pa) + eff
Ñ

(ak)(pa) + eff
Ñ

(α1 + β1)(pa)

= M̃(pa) + eff
Ñ

(ak)(pa)− pre
Ñ

(α1 + β1)(pa)

≥ pre
Ñ

(ak)(pa) .

We therefore have:574

M ′(pa) = M(pa) + eff
Ñ

(ak)(pa)− pre
Ñ

(α1)(pa) + post
Ñ

(α0)(pa)

≥ pre
Ñ

(ak)(pa) + pre
Ñ

(β1)(pa) + post
Ñ

(α0)(pa)

= pre
Ñ

(ak)(pa) + pre
Ñ

(β1)(pa) + pre
Ñ

(α0)(pa)

= pre
Ñ

(α)(pa) + pre
Ñ

(β)(pa)

= pre
Ñ

(α+ β)(pa) ,



D. de Frutos Escrig, M. Koutny, and Ł. Mikulski / Investigating Reversibility of Steps in Petri Nets 23

yielding a contradiction with (*). Thus M ′
α+β−−−−→

Ñ
holds. Hence we obtain the result as we have

M ′ + eff
Ñ

(α+ β) = M̃ + eff
Ñ

(α) + eff
Ñ

(α+ β) = M̃ + eff
Ñ

(β). [Lemma 6.3] ut

We now conclude that STSmrev 'φ◦ψ CRG
Ñ

holds thanks to Eq.(9) and Lemma 6.3. ut

The last result leads to a simple sufficient condition for the solvability of direct reversibility in the575

case that proper multisets are not involved.576

Theorem 6.4. Let STS be a solvable set CEST-system such that (STS seq)rev is solvable. Then577

STS rev is solvable.578

Proof:579

Referring to the notation and proof of Theorem 6.1, we construct a new net Ñ ′, by adding to Ñ a fresh580

set of (mutex) places P ′ = {pab | a, b ∈ T}, where each pab is such that M̃0(pab) = 1 and has four581

non-zero connections: F̃ (a, pab) = F̃ (pab, a) = F̃ (b, pab) = F̃ (pab, b) = 1.582

Since all the steps in STS are sets P ′ ensure that each step enabled at a reachable marking of Ñ ′

is a subset of T or a subset of T . Moreover, the enabling of such steps is not affected by adding P ′, so
we obtain STS rev ' CRG

Ñ ′ as STSmrev ' CRG
Ñ

holds by Theorem 6.1. ut

m n

ka a b b

(a) (b)

m n

k

k

k

a a b b

Figure 7. PT-net Nn,m with k = max(m,n) and m,n ≥ 1 (a); and the same net after applying the construc-
tion from Theorem 6.1 (b).

As the next example shows, modifying the original PT-net in Theorem 6.1 is unavoidable.583

Example 6.5. Figure 7(a) depicts a family Nn,m of PT-nets which satisfy the assumptions of Theo-584

rem 6.1. We have CRGNn,m 6' STSmrev , where STS is the step reachability graph of the PT-net585

obtained from Nn,m after deleting actions a and b. However, the construction from the proof of The-586

orem 6.1 yields the PT-net CRG
Ñn,m

, shown in Figure 7(b), satisfying CRG
Ñn,m

' STSmrev . ♦587

It is not possible to drop Eq.(3) from the formulation of Theorem 6.1. The next example shows a588

CEST-system which has only one non-singleton step and is reversible in the sequential semantics, but589

cannot be reversed in step sequence semantics, even with mixed reverses.590

Example 6.6. Let us consider a step transition system STS together with a PT-net solving it, shown591

in Figure 8(a, b). If we erase the spike between the states v0 and v2, and add all the reverses (see592
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Figure 8(c)), then the resulting step transition system is solvable (see Figure 8(d)). However, STS593

cannot be reversed, as shown below.594

Suppose that there is a PT-net N solving STSmrev . Let Mi be the marking of N corresponding to595

the state vi, for i = 0, . . . , 4. Then the step (aa) is enabled at M2, and a is not be enabled at M3 (*).596

Let p be any place ofN . We first observe thatM4 is a marking, and so 0 ≤M4(p) = M2(p)+2k,597

where k = effN (b)(p). Hence 1
2 ·M2(p) + k ≥ 0. We then recall that (aa) is enabled at M2, and so598

M2(p) ≥ 2 · F (p, a). Hence 1
2 ·M2(p) ≥ F (p, a). We therefore have:599

M3(p) = M2(p) + k =
1

2
·M2(p) + k +

1

2
·M2(p) ≥ 0 + F (p, a) = F (p, a) .

This means that a is a step enabled at M3, yielding a contradiction with (*). ♦600

(a)

•v0

•v1

•
v2

•
v3

•
v4

a

a

b b

aa

••

••

a

b

2

2 (b)

(c)

•v0

•v1

•
v2

•
v3

•
v4

a

a

b b

a

a

b b

•••

••

a a

b

b

2 2

2

22

222

(d)

Figure 8. A step transition system STS with one spike (a), and a PT-net solving it (b). STS without the spike
between v0 and v2 can be reversed (c, d), but STS cannot.

One might expect that, as it was shown to be the case for bounded PT-nets executed under the601

sequential semantics [3], it is sufficient to use PT-nets with split reverses also for the reversing under602

the step semantics. This, however, is not the case as demonstrated in the following example.603
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Example 6.7. Let us consider a step transition system STS together with a PT-net solving it, shown604

in Figure 9(a, b). Suppose that there is a PT-netN with split reverses such that CRGN is a split reverse605

of STS . Moreover, let Mi be the marking of N corresponding to vi, for i = 1, . . . , 6.606

Let p be any place of N . We first observe that the effect of executing the sequences of actions aaa607

and bb on p is the same, when going from M1 to M6. Hence, 3 · effN (a)(p) = 2 · effN (b)(p), and so608

there is an integer k such that effN (a)(p) = 2k and effN (b)(p) = 3k. With this observation, and by609

considering different arrows in STS , we obtain:610

M2(p) = M1(p) + 2k M3(p) = M1(p) + 3k M4(p) = M1(p) + 5k

M5(p) = M1(p) + 4k M6(p) = M1(p) + 6k .

Hence, in particular, we have:611

M3(p) ≤M5(p) ≤M4(p) or M3(p) ≥M5(p) ≥M4(p) . (10)

Suppose now that (a〈i〉b〈j〉) is a step reversing (ab) at M4. Then, by SEQ and CE holding for the612

concurrent reachability graphs of PT-nets, b〈j〉 is also enabled at M3. On the other hand, b〈j〉 is not613

enabled at M5. Then there must be a place p of N such that M5(p) < preN (b〈j〉)(p). But we also614

have M3(p) ≥ preN (b〈j〉)(p) and M4(p) ≥ preN (b〈j〉)(p), as b〈j〉 is enabled at M3 and M4. This,615

however, produces a contradiction with Eq.(10). ♦616

(a)

•
v1

•v2 • v3

•
v4

•v5 • v6

a b

(ab)

b a

a

a

b

6
• •

a b

2 3

2 3

(b)

Figure 9. Splitting is not enough to guarantee reversing (Example 6.7). Note that v1 is the initial state.

Example 6.7 can be used further to show that even allowing inhibitor arcs in N would not help.7617

The reason is that due to the formulas Eq.(10) for the markings M3, M4, and M5, no inhibitor place p618

could be empty at M3 and M4, and contain a token at M5. It would therefore be useless to block b〈j〉619

at M5 and still allow the execution of b〈j〉 at M3 and M4. Thus, reversing using PT-nets with inhibitor620

arcs is also not going to work in the general case, when considering the step semantics. This justifies621

the need to use test arcs ‘stronger’ than inhibitor arcs in addition to the splitting of reverse actions.622

Indeed, a general solution can then be obtained using an extended model of PT-nets, as shown in the623

next section.624

7An inhibitor arc between a place p and action t means that if t is enabled at a marking M , then M(p) = 0.
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(a)

•
v1

•v2 • v3

•
v4

•v5 • v6

a〈1〉 b〈1〉

b〈2〉 a〈2〉
a〈2〉

a〈2〉

b〈2〉

6

a〈1〉a〈2〉 b〈1〉 b〈2〉

46
2

24
2

3 6
3

3 5
2

(b)

(c)

•
v1

•v2 • v3

•
v4

•v5 • v6

(a〈3〉b〈3〉)

b〈3〉 a〈3〉

6

a〈3〉 b〈3〉

1
2

2

1
3

3

(d)

Figure 10. Reversing with splitting: phase one (a, b), and phase two (c, d).

7. A solution combining splitting and weighted read arcs625

A PT-net with weighted read arcs (or PTR-net) is a tuple N = (P, T, F,R,M0) such that N ′ =626

(P, T, F,M0) is a PT-net, and R : P × T → N is a partial function defining read arcs. All the627

notations and concepts introduced for N ′ are applicable to N except that a step α of N is enabled at628

a marking M if it is enabled at marking M in N ′ and, in addition, R(p, t) = M(p), whenever a ∈ α629

and p ∈ P are such that R(p, a) is defined. Read arcs are depicted as arrows with square arrowheads630

and labelled by their weights.631

As the read arcs do not affect markings which result from firing steps of actions, the concurrent632

reachability graphs of PTR-nets satisfy CE. Although SEQ may fail to hold, it is the case that if α is633

an enabled step, then each step β ≤ α is also enabled.634

We first show that there is a PT-net with weighted read arcs reversing the reachability graph from635

Example 6.7.636

Example 7.1. Recall the step transition system and the PT-net from Example 6.7. The construction637

of a solution comes in two phases. In the first phase, splitting is used to reverse all singleton steps.638

The result, which uses two reverses for a and two reverses for b, is shown in Figure 10(b). Note639

that although all the singleton steps are indeed reversed, the only non-singleton step (ab) is not. The640

second phase of the construction adds reverses for a and b which are simultaneously executable at641

M4, as shown in Figure 10(d). A solution is then obtained by joining together Figures 9(b), 10(b)642
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and 10(d), by identifying the places with 6 tokens and the places with 0 tokens. ♦643

The solution presented in Example 7.1 inspired the development of a general construction which644

works for an arbitrary bounded PT-net.645

Let N = (P, T, F,M0) be a bounded PT-net, and let n be an upper limit on the sizes of steps646

enabled at its reachable markings (such an n always exists as the concurrent reachability graph of N647

is finite). Moreover, for every marking M ∈ reachN , the steps annotating actions incoming to M in648

the concurrent reachability graph are inN (M) = {α | ∃M ′ ∈ reachN : M ′
α−−→N M}. Since CRGN649

is a CEST-system, α ≤ β ∈ inN (M) implies α ∈ inN (M).650

We then construct a PTR-net N ′ = (P ] P ′, T ] T ′, F t F ′, R,M0 tM ′0). A key aspect of the651

construction is that for each reachable marking M of N , and for each maximal step8 α ∈ inN (M),652

we add a set of fresh actions Tα,M = {a〈α,M,i〉 | a ∈ α ∧ 1 ≤ i ≤ α(a)}. We then proceed thus:653

• For every new action a〈α,M,i〉 ∈ T ′:654

– preN ′(a〈α,M,i〉)|P = postN (a) and postN ′(a〈α,M,i〉)|P = preN (a).655

– For every b ∈ T , we add a fresh (mutex) place, as in Figure 11(a).656

– For every b〈β,M,j〉 ∈ T ′ with α 6= β, we add a fresh (mutex) place, as in Fig-657

ure 11(b).658

• P × T ′ is the domain of R and R(p, a〈α,M,i〉) = M(p), for all p ∈ P and a〈α,M,i〉 ∈ T ′.659

• M ′0 ∈ mult(P ′) is the marking of the places in P ′ as indicated in Figure 11.660

(a)

nb a〈α,M,i〉

n

n

•a〈α,M,i〉 b〈β,M,j〉

(b)

Figure 11. Places P ′ added in the construction of N ′.

We then obtain the desired result.661

Theorem 7.2. CRGN ′ is a split reverse of CRGN .662

Proof:663

Let STS = CRGN and STS ′ = CRGN ′ . We first gather together some immediate facts about N ′.664

Lemma 7.3.665

1. a〈α,M,i〉 is an indexed reverse of a, for all a〈α,M,i〉 ∈ T ′ and a ∈ T .666

2. effN ′(α) = effN (α) t∅P ′ , for every α ∈ mult(T ).667

8That is, α ≤ β ∈ inN (M) implies α = β.
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3. effN ′(γ) = − effN (α) t∅P ′ , for all γ ∈ mult(T ′) and α ∈ mult(T ) such that α = noidx(γ).668

4. M |P ′ = M ′0, for every M ∈ reachN ′ .669

5. If γ is a step enabled at M ∈ reachN ′ , then γ ∈ mult(T ), or there is α ∈ inN (M) such that γ670

is a set included in Tα,M ⊆ T ′.671

Proof:672

[Lemma 7.3] (1,2) Follow directly from the definition of N ′.673

(3) Follows from part (1).674

(4) Follows from parts (2) and (3).675

(5) By part (4), M |P ′ = M ′0. Hence the result follows from the presence of the weighted read arcs
R and the mutex places shown in Figure 11. [Lemma 7.3] ut

We will show that reachN ′ = {M tM ′0 | M ∈ reachN} and STS rev 'ψ noidx(STS ′), where676

ψ(M) = M tM ′0, for every M ∈ reachN .677

We first observe that ψ(M0) = M0 tM ′0 is the initial marking of N ′. Suppose that M ∈ reachN678

is such that ψ(M) = M tM ′0 ∈ reachN ′ . To show that the executions of steps are preserved by ψ in679

both directions, we consider four cases, after taking into account Lemma 7.3(5).680

Case 1: M α−−→STS M ′. Then, since n in Figure 11(a) is such that |α| ≤ n, the addition of681

the new places P ′ does not block α. Hence α is enabled at M tM ′0. Moreover, by Lemma 7.3(2),682

M tM ′0
α−−→STS ′ M

′ tM ′0.683

Case 2: M α−−→STS rev M ′. Then M ′ α−−→STS M and α ∈ inN (M). Let β be any maximal step684

in inN (M) such that α ≤ β (such a step exists since CRGN is finite). Then there is a subset γ of685

Tβ,M such that noidx(γ) = α. By construction, γ is enabled at M tM ′0. Hence, by Lemma 7.3(3),686

M tM ′0
γ−→STS ′ M

′ tM ′0.687

Case 3: M tM ′0
α−−→STS ′ M

′ and α ∈ mult(T ). Then, by construction and Lemma 7.3(2), α is688

enabled at M and M ′ = (M + effN (α)) tM ′0. Moreover, M α−−→STS rev M + effN (α).689

Case 4: M tM ′0
γ−→STS ′ M

′, where γ is a subset of Tα,M for some α ∈ inN (M). Let β =
noidx(γ) ≤ α. Then, by construction and Lemma 7.3(3), M ′ = (M − effN (β)) tM ′0, β is enabled

at M − effN (β), and M − effN (β)
β−−→STS M . Hence M

β−−→STS rev M − effN (β). ut

We have developed a general construction which brings us to the same level of reversibility as in690

the sequential case. However, we had to pay the (costly) price of using of a non-standard class of read691

arcs. The construction presented above is far from being optimal. Taking as an example the solution692

from Example 7.1, we observe that it would introduce 5 reverses of a, 4 reverses of b, and a total of693

31 additional places. One can easily see that a large number of them could be avoided, by considering694

the conditions that force the introduction of each split reversal and those requiring the addition of the695

new control places.696
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8. Concluding remarks697

In this paper, we continued a study of reversibility in PT-nets, when the step semantics based on698

executing steps (multisets) of actions rather than single actions is considered, thus capturing real699

parallelism. In a more abstract setting, the (partial) reversal of steps, thus generating mixed steps700

possibly containing both original and reverse action, has been studied in [25]. Here we discussed how701

such reversing can be done in a concrete operational framework of PT-nets.702

In the future work, we plan to develop an effective solution to the synthesis problem for the step703

transition systems with multiple initial states, and address the optimisation of the general solution704

based on PTR-nets presented in the last section.705
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