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ABSTRACT
Motivation: Many bioinformatics data resources not only
hold data in the form of sequences, but also as annotation.
In the majority of cases, annotation is written as scientific
natural language: this is suitable for humans, but not par-
ticularly useful for machine processing. Ontologies offer a
mechanism by which knowledge can be represented in a
form capable of such processing. In this paper we investi-
gate the use of ontological annotation to measure the sim-
ilarities in knowledge content or ‘semantic similarity’ be-
tween entries in a data resource. These allow a bioinfor-
matician to perform a similarity measure over annotation in
an analogous manner to those performed over sequences.
A measure of semantic similarity for the knowledge com-
ponent of bioinformatics resources should afford a biolo-
gist a new tool in their repetoire of analyses.
Results: We present the results from experiments that in-
vestigate the validity of using semantic similarity by com-
parison with sequence similarity. We show a simple exten-
sion that enables a semantic search of the knowledge held
within sequence databases.
Availability: Software available from http://www.russet.
org.uk
Contact: p.lord@russet.org.uk

1 INTRODUCTION
Bioinformatics resources are rich in knowledge. They
hold data, often in the form of sequences, which are
then annotated with the community’s understanding about
those entities. This annotation or knowledge component of
a resource is usually held in scientific natural language as
text. In this form, it is human readable and understandable,
but it is not easy to interpret computationally.

It is partly because of these problems that there has been
growing interest in ontologies within the bioinformatics
community (Stevenset al., 2000). Ontologies provide a

∗To whom correspondence should be addressed.

mechanism for capturing a community’s view of a domain
in a shareable form, that is both accessible by humans
and computationally amenable. An ontology provides a
set of vocabulary terms that label concepts in the domain.
These terms should have definitions and be placed within a
structure of relationships, the most important being the ‘is-
a’ relationship betweenparent andchild and the ‘part-of’
relationship betweenpart andwhole (Winstonet al., 1987;
Odell, 1998). By capturing knowledge about a domain in a
shareable and computationally accessible form, ontologies
can provide defined, accessible and computable semantics
about the domain knowledge they describe.

Currently, one of the most important ontologies within
the bioinformatics community is GO (The Gene Ontology
Consortium, 2001). GO comprises three orthogonal tax-
onomies or aspects, that hold terms that describe the at-
tributes ofmolecular function, biological process andcel-
lular component for a gene product. GO is a rapidly grow-
ing collection of about 11 000 phrases, representing terms
or concepts, held within a directed acyclic graph (DAG),
part of which is shown in Figure 1. Terms can have mul-
tiple parents, as well as multiple children along the ‘is-a’
relationships.

The terms held within this structure are used to anno-
tate database entries (http://www.geneontology.org/goa).
As they form a standard vocabulary across many biolog-
ical resources such as SWISS-PROT (Bairoch and Ap-
weiler, 2000), this shared understanding provides a valu-
able, computationally accessible form of the community’s
knowledge about these attributes. Information about the
evidence for this knowledge is also provided by GO in the
form of ‘Evidence Codes’ (http://www.geneontology.org/
doc/GO.Evidence.html). These codes are a simple con-
trolled vocabulary that describe the nature of the evidence
that is available to support a particular association.

One of the claims made for GO is that it should allow
improved querying of databases (The Gene Ontology
Consortium, 2001). Different resources queried with the
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same term should recover all and only entities conforming
to that notion. The shared understanding should improve
retrieval consistency across resources and the recall and
precision within resources. One obvious alternative way to
query a database would be to ask for proteinssemantically
similar to a query protein.

This notion of semantic similarity has been used in
other areas. For instance, articles within PubMed are
marked up with terms from the Medical Subject Headings
(MeSH) terminology (http://www.nlm.nih.gov/mesh/
meshhome.html), which is a taxonomy of biomedical
terms. The PubMed service (http://www.pubmed.gov)
offers a resource by which it is possible to retrieve related
articles to the one in question. In essence, this is semantic
similarity and is performed computationally via a series of
lexical techniques (Wilbur and Yang, 1996). Documents
are similar if they have a similar content. This is measured
by the words common to abstracts, words common to
titles and MeSH terms in common. Words are weighted to
indicate their importance in describing a document. This
technique only uses the lexical content of MeSH, rather
than any of its structure. Performing a search in Entrez,
the search interface for PubMed, using only a MeSH term
will, however, return documents marked-up with that
term and any child term. This gives a small degree of
semantic similarity, but uses no metric to judge the degree
of similarity.

Bioinformaticians have realised that the computational
use of the knowledge component is important. Similarity
between annotation and literature has been shown to
augment sequence similarity searches (Changet al., 2001;
MacCallumet al., 2000). These authors augmented PSI-
BLAST (Altschul et al., 1997) with similarity scores
calculated over the annotations and Medline references
cited by entries retrieved by the sequence similarity
search. These were used to prune the results retrieved by
each iteration to those most semantically similar to the
query sequence. Both of these augmented PSI-BLAST’s
used the same statistical lexical approach developed for
PubMed similarity.

In this paper we use aninformation content based mea-
sure of semantic similarity. This approach was originally
developed using WordNet (Fellbaum, 1998), which is a
computationally amenable dictionary/thesaurus, although
to our knowledge such measures have not been previously
applied to GO. Unlike lexical approaches used on MeSH
terms, this measure makes explicit use of the ontological
structure. We describe a series of investigations which ex-
plore the validity of this measure when applied to GO.

2 SEMANTIC SIMILARITY MEASURES
Clearly, if two proteins are both annotated as ‘transmem-
brane receptor’, (GO:0004888) they have a similar seman-

tic description of their function. If one were annotated, less
precisely, as just ‘receptor’, (GO:0004872) then they have
a slightly less similar function than before and are corre-
spondingly semantically less similar.

Various measures have been developed for quantifying
this notion of semantic similarity. Early techniques have
used path distances between terms (Radaet al., 1989).
One of the main difficulties with this approach is that it
assumes that all of the semantic links are of equal weight,
which appears to be a poor assumption. For example, the
pair ‘photoreceptor’, (GO:0009881) and ‘transmembrane
receptor’, (GO:0004888) are semantically more closely
related than ‘chaperone’, (GO:0003754) and ‘signal
transducer’, (GO:0004871). Inspection of Figure 1 reveals
these two pairs would have identical similarities as they
have an immediate common parent, but the former would
appear to be more closely related, than the latter.

There are a number of ways that edges could be
weighted. Generally, the greater the distance from the root
of the graph, the more specific the terms. However GO
varies widely in the distance of nodes from the root. So,
‘high-affinity tryptophan transporter’, (GO:0005300) is 14
terms deep, while ‘anticoagulant’, (GO:0008435) is only
three terms deep, and not significantly less semantically
precise. It would appear that the depth of GO reflects
mostly the vagaries of biological knowledge, rather than
anything intrinsic about the terms.

Instead of attempting to define similarity simply on the
basis of the structure of the ontology, it is also possible
to examine the usage of terms within the corpus (Resnik,
1999). This uses the notion of ‘information content’. For
instance, ‘chaperone’, (GO:0003754) is a more informa-
tive term than ‘signal transducer’, (GO:0004871), because
the former is used several hundred times, while the latter is
used several thousand times. This notion is familiar from
most internet search engines. Searching with ‘alpha mat-
ing factor’ may give information about yeast cells, while
‘sex pheromone’ is likely to reveal a very different sort of
biological information. The phrase ‘alpha mating factor’
is more informative, because it occurs less often. With GO
annotations, we can exploit the usage of terms in the cor-
pus to give a measure of information content.

In the case of GO we can also exploit the semantic
links in the calculation of the information content for
each concept. If the term ‘receptor’, (GO:0004872)
occurs, then implicitly, the concept ‘signal transducer’,
(GO:0004871) and ‘molecular function’, (GO:0003674)
have also occurred, as well as any other terms which
subsume it. Generally, for semantic similarity, only the
‘is-a’ links are considered (Resnik, 1999), although other
semantic links can also be used.

In Figure 1 these probabilities are shown diagrammati-
cally. In this case we have used the SWISS-PROT-Human
proteins, and counted the number of times each concept
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GO:0009881 p = 0.000433
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Fig. 1. Probabilities in the Gene Ontology. Each node is annotated
with its GO accession and the probability of this term occurring
in the SWISS-PROT-Human database. See Section 2 for details.
This figure was produced from GO, using the graphviz tools (http:
//www.graphviz.org).

occurs. A concept occurs if a term, or any of its children
occur. The probability,p(c), for each node is this value,
divided by the number of times any term occurs. We can
therefore guarantee that the probability for each node in-
creases as we move up the graph toward the root, and that
the probability for the root node occurring will be 1 (al-
though the existence of ‘orphan terms’ would invalidate
this, see Section 3.1).

Once we have calculated these probabilities, there are
a variety of different mechanisms for calculating the
semantic similarity between terms (Jiang and Conrath,
1998; Lin, 1998). In this paper we have used the simplest
of these measures (Resnik, 1999). This measure is based
on the information content of shared parents of the two
terms, as defined in Equation (1), whereS(c1, c2) is the
set of parental concepts shared by bothc1 andc2. As GO
allows multiple parents for each concept, two terms can
share parents by multiple paths. We take the minimum
p(c), where there is more than one shared parent. We call
this pms , for probability of the minimum subsumer,

pms(c1, c2) = min
c∈S(c1,c2)

{p(c)}. (1)

The similarity score between two terms is then given by
Equation (2).

sim(c1, c2) = − ln pms(c1, c2). (2)

3 VALIDATING SEMANTIC SIMILARITY
We can create a measure of semantic similarity, but how
do we validate such a measure? SWISS-PROT and other
resources now have conceptual annotations from GO and
thus we have the knowledge, together with the sequence it
describes. One of the tenets of biology is that a protein’s
sequence relates to its function.

So highly similar sequences should be highly semanti-
cally similar. Taking protein sequences in pairs and plot-

ting sequence similarity against semantic similarity should
show a relationship. We used this hypothesis to test our
measure. We next explored the other GO taxonomies of
biological process and cellular component. Later in our
experiments we looked at the use of evidence codes in an-
notations and aspects of the structure of GO and its influ-
ence on our scores.

3.1 Adapting the similarity measures to GO and
SWISS-PROT

One feature of GO is that when a term is ‘part-of’ another
term, it often has no ‘is-a’ link. This is deliberate: to
reduce the number of abstract terms, such as ‘ribosomal
component’ (which would subsume terms such as ‘small
ribosomal subunits’, (GO:0015359)), which were not
wanted for the annotation task for which GO was de-
signed (M.Ashburner pers.comm.). Logically, of course,
all terms must be a kind of another term. Theseorphan
terms within GO need to be provided with links for the
purposes of our investigation. We simply linked them
directly to the root of their taxonomy. This is perhaps
semantically impoverished (for example, a ‘granum’,
(GO:0009542) becomes a kind of ‘cellular component’,
(GO:0005575), rather than a kind of a ‘chloroplast com-
ponent’), but this ontological sleight of hand made our
semantic measurement possible.

It is also unclear how we should address the different
link types. Except where stated explicitly (see Sec-
tion 4.3), we consider the links equally. We took this
approach because in GO there is a bias in link type usage
between the different sub-ontologies (molecular function,
6207 is-a’s to 35 part-of’s, cellular component, 542 to
619, biological process, 5697 to 989). The semantic im-
poverishment would, therefore, have been very different
between these different ontologies, making meaningful
comparisons difficult. Conversely it reduces the problem
of orphan nodes, which only occur when is-a’s links alone
are considered.

In this paper, we are mostly interested in the semantic
similarity between proteins, rather than GO termsper se.
Wetherefore need a method for combining these measures
as proteins may be annotated with more than a single
term. In previous work, based on WordNet, a similar
problem has been found, as individual words have more
than one sense (Resnik, 1999). In this case, the semantic
similarity between words was calculated by simply taking
the maximum similarity between any word sense, as only
one sense of a word is used at a time. With GO annotated
gene products, this is not the case, rather the gene product
will have all of the roles attributed to it by annotators,
using GO, at the same time. We have therefore taken the
average similarity between all terms. In practise within
SWISS-PROT-Human, especially when considering only
‘traceable author statement’ associations (which, except
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where explicitly stated, has been the case in this paper),
most proteins have been annotated with only a single GO
term from each aspect (for ‘molecular function’, 2929
single annotations, compared to 863 with two or more).

All the analysis in this paper was performed using
a library generated for the purpose. This library is
freely downloadable, and full details are published
elsewhere (Lordet al., 2003).

4 INVESTIGATING SEMANTIC AND
SEQUENCE SIMILARITY

Previous work on semantic similarity had defined sim-
ilarity measures either with specific applications in
mind, such as malapropism detection, or word sense
disambiguation (see (Fellbaum, 1998) and references
therein), and had tested results against the expectations of
people (Resnik, 1999; Budanitsky and Hirst, 2001). The
difficulty in these cases is that such human generated test
sets are often very small, a problem which is exacerbated
in our case as biological experts are rarer than those with
a working knowledge of English.

In order to overcome this difficulty we wished to
validate our semantic similarity measures against some
other metric. We used the relationship between sequence
and annotated function as a means of validating our
measure.

We therefore wished to obtain a set of protein pairs
with varying degrees of sequence similarity. The standard
BLAST tool provides just this by returning a ranked set of
sequences similar to a query sequence. We have chosen to
use the ‘Bit Score’ as a mesure of sequence similarity, as
this is independent of database size.

4.1 Comparing semantic similarity across GO
aspects

The results, shown in Figure 2, show that there is a good
correlation between sequence similarity and semantic
similarity. This correlation is greater when measured
against the ‘molecular function’ aspect. There is still a
correlation with the other two aspects, particularly at
higher sequence and semantic similarity levels. This is
unsurprising. As sequence similarity increases, so does the
chance that these proteins are homologues, in which case
they are likely to be identically annotated for all aspects.

It therefore appears that the semantic similarity corre-
lates, as expected, when measured against a standard se-
quence similarity measure. This therefore serves as a good
validation of the semantic similarity measure: we find the
results predicted from our understanding of biology.

4.2 The relationship between semantic similarity
and evidence codes

Initially we were interested in the usage of evidence
codes within SWISS-PROT-Human, and in general, in
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Fig. 2. Comparing sequence and semantic similarity. BLAST
searches were performed for each SWISS-PROT-Human protein,
and all matches analysed for semantic similarity with the search
protein. For ‘function’n = 68 142, covariance = 0.58, ‘process’
n = 76 089, covariance = 0.28, ‘component’n = 39 394, covariance
= 0.36.

the database. These inform us as to how the annotation
was made: we would, for example, wish to exclude those
proteins whose annotation is based purely upon sequence
similarity. It appears that only three of the codes are
in common usage, at least within SWISS-PROT-Human.
Further analysis was therefore performed on data with
only these codes.

Of the three commonly used evidence codes, ‘Traceable
Author Statement’ (TAS) is generally regarded as the
highest standard of evidence. It is assigned where evidence
is found in primary literature. GO associations assigned
this evidence code might be expected to be the most
accurate. The high percentage of these associations (70%,
compared to 30% for the GO database as a whole),
was one of the more important reasons for the choice
of SWISS-PROT-Human within this work, and also the
reason why only TAS associations were used in other parts
of this work.

We therefore examined semantic similarity measure-
ments considering GO annotations assigned the various
evidence codes. This was limited to the functional aspect
of GO, as this showed the most marked correlation with
sequence similarity.

As shown in Figure 3 all the semantic similarity
measurements against the three GO aspects show a
correlation with sequence similarity. However when only
TAS GO annotations are considered, the correlation is
much greater.

Within the GO database as a whole, other evidence
codes, particularly ISS or ‘Inferred from Sequence Simi-
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Fig. 3. Semantic similarity over the molecular function aspect and
evidence codes. Semantic similarity scores were calculated on the
basis of associations with the shown Evidence Code. The probability
scores described in Figure 1 were calculated using only associations
with the given Evidence Code. For ‘TAS’,n = 68 142, covariance
= 0.58, ‘NAS’, n = 19 631, covariance = 0.26, ‘NR’n = 2601,
covariance = 0.49.

larity’ are much more widely used. Given the validity of
the relationship between semantic and sequence similar-
ity, we can consider this to be a measure of the quality
of the evidence. It would be of great interest, therefore,
to extend the analysis to the whole GO database, as this
might suggest which of the various evidence codes are
most reliable.

4.3 Effect of using semantic links in semantic
similarity

One of the main differences between GO and a simple
controlled vocabulary, such as the SWISS-PROT key-
words, are the existence of explicit relationships between
the different terms. The semantic similarity measures
described in this paper make explicit use of this informa-
tion. Does the inclusion of these semantic relationships
actually provide useful information?

With the semantic similarity measure described, we can
ignore all of this link information, effectively turning each
term into an orphan term (see Section 3.1). Ignoring links
changes the structure of GO from a heavily connected
graph, to a simpler one where each term inherits directly
and only from the root term: Essentially a set of terms akin
to SWISS-PROT keywords. Alternatively, we can consider
only links of a single type, either ‘is-a’ or ‘part-of’.

We investigated semantic measures either using all the
link information, just ‘is-a’ links, or no links at all.
The results for the ‘molecular function’ ontology are
shown in Figure 4. Very little difference can be seen
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Fig. 4. Semantic similarity over the molecular function aspect
and semantic relationships. BLAST searches were performed and
analysed as in Figure 2. Term probabilities and semantic similarities
were calculated using none, is-a or all semantic relationships. For
‘all’ n = 68 142, covariance= 0.58, for ‘subsumption’n = 68 142,
covariance= 0.58, for ‘none’n = 68 142, covariance= 0.38.

between graphs using all links, or just ‘is-a’ links. This
is to be expected, as for this aspect of GO almost all
links are of the ‘is-a’ type (6167 out of 6202). If no
links are included the semantic similarity drops markedly,
particularly in the middle part of this graph. At moderate
levels of sequence similarity, proteins will often share
similar, but not identical GO annotations. Consequently,
these terms will only contribute to our semantic similarity
measure if the links are included. Conversly, where
sequence similarity is very high, GO annotations may
well be identical, so ignoring links makes little difference.
It appears that our semantic similarity measures are
improved by the usage of the link information, which
therefore provides a significant advantage over the use of
apure controlled vocabulary.

4.4 Investigating outliers between semantic and
sequence similarity

Although we have shown a strong correlation between
semantic and sequence similarity, there were a number of
protein pairs which did not obey this trend. In particular
we were interested in those proteins which showed very
high semantic similarity but little sequence similarity. We
therefore analysed those protein pairs with low sequence
similarity and high semantic similarity.

There appear to be several categories of protein pairs in
this area:

• ‘polymorphic’ groups, where there are two or more
classes of protein involved in the same process. See
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Table 1. The table shows protein pairs which heterodimerise, or which have been identified as members of sub-families in one or more protein family databases
(data not shown)

Protein A (ID) Description Protein B (ID) Description Seq. Sim. Sem. Sim Notes

DFFA HUMAN DNA fragmentation factor
alpha subunit

DFFB HUMAN DNA fragmentation factor 40
kDa subunit

3.49 7.79 Heterodimers.

TKN1 HUMAN Protachykinin 1 [Precursor] TKNKHUMAN Neurokinin B [Precursor] 3.23 7.79 Sub-families.
LCFB HUMAN Long-chain-fatty-acid–CoA

ligase 2
VLCS HUMAN Very-long-chain acyl-CoA

synthetase
3.52 7.39 Sub-families.

Table 2. The table shows protein pairs which, although ‘outliers’ appear to have been annotated correctly, and therefore represent highly variable families

Protein A (ID) Description Protein B (ID) Description Seq. Sim. Sem. Sim Notes

AKA5 HUMAN A-kinase anchor protein 5 AKACHUMAN A-kinase anchor protein 12 3.74 7.10
CTR4 HUMAN Cationic amino acid

transporter-4 (CAT-4)
YLA1 HUMAN Y+L amino acid transporter 1 3.49 7.10

EGF HUMAN Pro-epidermal growth factor
precursor (EGF)

EREGHUMAN Epiregulin precursor 3.85 7.10

FABE HUMAN Fatty acid-binding protein,
epidermal (E-FABP)

FABI HUMAN Fatty acid-binding protein,
intestinal (I-FABP)

3.99 7.10

GBG3 HUMAN Guanine nucleotide-binding
protein

GBGB HUMAN Guanine nucleotide-binding
protein

3.85 7.39 G proteins.

HMGC HUMAN High mobility group protein
HMGI-C

HMGI HUMAN High mobility group protein
HMG-I/HMG-Y

3.35 7.79 AT binding.

IPKA HUMAN cAMP-dependent protein
kinase inhibitor, alpha form

IPKG HUMAN cAMP-dependent protein
kinase inhibitor, gamma form

3.82 7.79

PE21HUMAN Prostaglandin E2 receptor,
EP1 subtype

PE22HUMAN Prostaglandin E2 receptor,
EP2 subtype

3.78 7.10

Table 1. This group includes pairs, some of which
hetero-dimerize, or are identified as sub-families by
the various protein family databases.

• Hyper variable protein families. See Table 2. The
distinction between this and the last category is
somewhat arbitrary, but we have applied it where
sub-families are not refered to in the protein family
databases.

• Mis-annotations. About half of the proteins appear
to be incorrectly annotated (Table 3). In most cases
it is clear how this annotation has occurred. There
are several cases, which are annotated in SWISS-
PROT as being ‘x-like’ but have been annotated in
GO as ‘x ’. Others appear to be ‘spelling mistakes’.
So a spermine synthase is annotated as a ‘spermidine
synthase’, (GO:0004766). All of the mis-annotations
reported here stem from the dataset incorporated from
manual GO annotation by Proteome Inc., and extracted
via LocusLink (E. Camon. pers.comm.).

For all of those protein pairs which identified a mis-
annotation, the correction of these errors would lessen

the semantic similarity scores (data not shown), which
would, in turn, make them more reflective of the trend.
It would be predicted therefore that as the use of GO
improves and becomes more accurate, the correlation
should strengthen. It would also appear that semantic
similarity measurements could form a valuable tool for
those seeking to check the annotations of proteins with GO
terms.

Additionally we were interested in protein pairs with
very low semantic similarity, but very high sequence
similarity. In this section of the graph generally one or both
of the proteins are ‘under-annotated’. By this we mean
that a fairly general term has been used when a more
specific term would be better. There appear to be three
main reasons for this; the lack of biological knowledge,
the lack of a more specific GO term, or mis-annotations
(data not shown).

5 SEMANTIC SEARCHING OF GO
ANNOTATED RESOURCES

Although we have been using sequence similarity in an
attempt to validate semantic similarity, it also raises the
obvious question of whether it is possible and useful to
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Table 3. Incorrect GO annotations. The table shows SWISS-PROT-Human associations which appear to be incorrect. See further details in text

Protein A (ID) Description Protein B (ID) Description Seq. Sim. Sem. Sim Notes

SPEEHUMAN Spermidine synthase (EC
2.5.1.16)

SPSYHUMAN Spermine synthase (EC
2.5.1.22)

3.97 7.79 The latter is mis-annotated as a
spermidine synthase, when in fact
its spermine synthase.a

THI2 HUMAN Mitochondrial thioredoxin
precursor (MT-TRX).

TXNL HUMAN Thioredoxin-like protein 3.75 7.39 Annotated with an obsolete term.
TXNL HUMAN is only
thioreduxin.a

INL3 HUMAN Leydig insulin-like
peptide precursor

INS HUMAN Insulin precursor. 3.44 7.79 Annotated as insulin, although the
former is only ‘insulin-like’.a

DNM1 HUMAN DNA (cytosine-5)-
methyltransferase 1

DNM2 HUMAN DNA (cytosine-5)-
methyltransferase-like
protein 2

3.98 7.39 Annotated as methyltransferases,
although the latter is not.a

PTHR HUMAN Parathyroid
hormone-related protein
precursor

PTHY HUMAN Parathyroid hormone
precursor

3.50 7.79 Annotated as ‘cAMP generating’.
Problem with GO structureb.

ZO2 HUMAN Tight junction protein
ZO-2

CSKPHUMAN Peripheral plasma
membrane protein CASK

3.89 7.10 Annotated as
‘membrane-associated protein with
guanylate kinase activity’,
(GO:0004384). Problem with GO
structureb.

a These are confirmed to be incorrect annotations, that were incorporated into SWISS-PROT human GOA file using the manual GO annotation of Proteome
Inc. extracted via Locus Link. (E. Camon pers.comm. and Camonet al. (2002).
b These result from errors in the GO structure, as confirmed by the GO editors (M.Harris, M. Ashburner, pers. comm.)

provide a search tool analogous to BLAST, which directly
answers the question of whether there are any semantically
similar proteins to a query protein or other biological
entity annotated with GO terms.

We developed a search tool which tests a given query
protein against all the others in SWISS-PROT-Human,
and generates a ranked list of semantically similar pro-
teins. Results for a sample protein are shown in Table 4.
We have separated out lists from the different aspects of
GO.

In this case we have searched with the protein
‘OPSRHUMAN’ (Red sensitive Opsin) (accession no.
P04000). As might be expected from the molecular
function aspect, a number of similar and related proteins
are retrieved. As would be predicted from the results
described in Section 4.1, this list is similar to that which
would be retrieved using a BLAST search.

Results from the other aspects, however, are different.
The biological process aspect has retrieved a variety of dif-
ferent proteins, with very different sequences, which are
all however involved in vision, while the cellular compo-
nent aspect retrieves other integral membrane proteins.

This suggests that the semantic similarity measure
can be used to usefully retrieve related proteins from a
database. It offers alternative dimensions along which to
search. All three aspects of GO are useful for this task,
returning a different, but equally valuable view on the
protein.

These data also show one of the problems with this
sort of search tool. Many of the results returned have
identical similarity values, therefore requiring a second
ranking mechanism (the current search tool uses al-
phabetic ordering of the Swissprot ID, which is clearly
less than satisfactory). This problem stems from two
sources. Firstly, the relatively small size of GO. So all
the proteins in Table 4c have been retrieved through the
term ‘integral plasma membrane protein’, (GO:0005887).
Clearly this problem should lessen as GO increases
in size and coverage. Secondly, the similarity measure
used, which considers only the information content of
shared parents of the query terms,pms , as defined in
Equation (1) meaning that the semantic distance between
many different GO terms is identical. It may be that other
measures, which also use the information content of query
terms (Jiang and Conrath, 1998; Lin, 1998), may help to
ameliorate this problem. In conclusion, we believe that
even our primitive search tool is already useful.

6 DISCUSSION
In this paper we have investigated semantic similarity
measures, and their application to ontological annotations
of the SWISS-PROT database. Instead of sequence
similarity, we are asking ‘is what we know about these
proteins similar?’. In all cases semantic similarity is
correlated with sequence similarity, but this correlation is
more marked against the molecular function aspect, which

1281



P.W.Lord et al.

Table 4. The table shows the results of a search over SWISS-PROT-Human, using the ‘OPSRHUMAN’ (accession no. P04000) protein as a query. Semantic
similarities have been calculated for the three GO aspects using associations with any evidence code, and any semantic links. Results have been elided toshow
illustrative examples

Swissprot ID Description Similarity

(a) Molecular Function
OPSGHUMAN Green-sensitive opsin (Green cone photoreceptor pigment). 8.15
OPN4HUMAN Opsin 4 (Melanopsin). 7.23
OPSBHUMAN Blue-sensitive opsin (Blue cone photoreceptor pigment). 4.92
5H6 HUMAN 5-hydroxytryptamine 6 receptor (Serotonin receptor) 3.92
A1AA HUMAN Alpha-1A adrenergic receptor (Alpha 1A-adrenoceptor) 3.92
A1AB HUMAN Alpha-1B adrenergic receptor (Alpha 1B-adrenoceptor). 3.92

(b) Biological Process
AIPL HUMAN Aryl-hydrocarbon interacting protein-like 1. 2.89
CNCG HUMAN Retinal cone rhodopsin-sensitive cGMP 2.89
CNRA HUMAN Rod cGMP-specific 3′,5′-cyclic phosphodiesterase 2.89
CNRC HUMAN Cone cGMP-specific 3′,5′-cyclic phosphodiesterase 2.89
CNRD HUMAN Retinal rod rhodopsin-sensitive cGMP 2.89
CRB1 HUMAN Beta crystallin B1. 2.89

(c) Cellular Component
1A01 HUMAN HLA class I histocompatibility antigen 1.86
5H1A HUMAN 5-hydroxytryptamine 1A receptor (5-HT-1A) 1.86
A1A2 HUMAN Sodium/potassium-transporting ATPase alpha-2 chain 1.86
A1AA HUMAN Alpha- 1A adrenergic receptor 1.86
A33 HUMAN Cell surface A33 antigen precursor 1.86
ACHA HUMAN Acetylcholine receptor protein 1.86

we would predict from our understanding of biology.
Having provided initial validation of these similarity

measures, we have also investigated the use of evidence
codes within GO, and semantic similarity measures using
only associations with given evidence codes. This suggests
that on a large scale statistical basis the associations
with ‘Traceable Author Statement’ evidence are the most
informative.

We have also investigated the use of the ontological
structure and how this affects the similarity measure, by
‘flattening’ GO into a pure controlled vocabulary, and
shown that they provide important information. It should
be noted that as GO increases in size the relationships are
likely to get more important, as the chance that any two
proteins will share an identical GO term will decrease. The
semantic similarity measure should avoid a well known
problem with a controlled vocabulary; how large should
the vocabulary be? If it is too small its not expressive
enough, too large then it becomes free text or simply
unmanageable. Semantic similarity measurements across
GO should continue to work as GO expands, indeed, they
should improve.

Future work will explore the effects of the different
semantic links in ontologies. Currently, all links are treated
as ‘is-a’ links: throwing away semantic information,
and how they could contribute differently to semantic
similarity needs to be addressed.

Two direct applications of this measure have been
developed, checking for errors during the annotation
process, and a search tool. Although both tools need
further work before being useful as an end user tool,
they serve as a proof of concept. A large number of
potential uses for semantic similarity measures have been
considered. By allowing ranking of GO terms, they
should support the original intention of GO, to provide a
unifying force between different, and often heterogeneous,
databases. The current study has focused mainly on the
molecular function aspect of GO. It would be of great
interest to investigate the relationships between semantic
similarity and co-expression as revealed by microarray
experiments. It be expected that the biological process
aspect would be of great use in this context.

Resource annotation and the bio-medical literature have
been recognised as a valuable resource in performing se-
quence analyses (Changet al., 2001; MacCallumet al.,
2000). These approaches have used a statistical, lexical ap-
proach to comparisons of the knowledge component. This
paper has presented a metric for semantic similarity based
upon ontological annotation of resources. Such annota-
tions are likely to spread, offering a widespread, alterna-
tive mechanism for exploring and validating bioinformat-
ics knowledge, and providing the basis for valuable tools
for the Conceptual Biologist (Blagosklonny and Pardee,
2002).
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