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Investigating sources of inaccuracy in wearable optical heart

rate sensors
Brinnae Bent1, Benjamin A. Goldstein2, Warren A. Kibbe 2 and Jessilyn P. Dunn 1,2*

As wearable technologies are being increasingly used for clinical research and healthcare, it is critical to understand their accuracy
and determine how measurement errors may affect research conclusions and impact healthcare decision-making. Accuracy of
wearable technologies has been a hotly debated topic in both the research and popular science literature. Currently, wearable
technology companies are responsible for assessing and reporting the accuracy of their products, but little information about the
evaluation method is made publicly available. Heart rate measurements from wearables are derived from photoplethysmography
(PPG), an optical method for measuring changes in blood volume under the skin. Potential inaccuracies in PPG stem from three
major areas, includes (1) diverse skin types, (2) motion artifacts, and (3) signal crossover. To date, no study has systematically
explored the accuracy of wearables across the full range of skin tones. Here, we explored heart rate and PPG data from consumer-
and research-grade wearables under multiple circumstances to test whether and to what extent these inaccuracies exist. We saw no
statistically significant difference in accuracy across skin tones, but we saw significant differences between devices, and between
activity types, notably, that absolute error during activity was, on average, 30% higher than during rest. Our conclusions indicate
that different wearables are all reasonably accurate at resting and prolonged elevated heart rate, but that differences exist between
devices in responding to changes in activity. This has implications for researchers, clinicians, and consumers in drawing study
conclusions, combining study results, and making health-related decisions using these devices.
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INTRODUCTION

Wearable technology has the potential to transform healthcare
and healthcare research by enabling accessible, continuous, and
longitudinal health monitoring. With the number of chronically ill
patients and health system utilization in the US at an all-time
high,1,2 the development of low-cost, convenient, and accurate
health technologies is increasingly sought after to promote health
as well as improve research and healthcare capabilities. It is
expected that 121 million Americans will use wearable devices by
2021.3 The ubiquity of wearable technology provides an
opportunity to revolutionize health care, particularly in commu-
nities with traditionally limited healthcare access.
The growing interest in using wearable technologies for clinical

and research applications has accelerated the development of
research-grade wearables to meet the needs of biomedical
researchers for clinical research and digital biomarker develop-
ment.4 Consumer-grade wearables, in contrast to research-grade
wearables, are designed, developed, and marketed to consumers
for personal use. While research- and consumer-grade wearables
often contain the same sensors and are quite similar functionally,
their markets and use cases are different, which may influence
accuracy (Supplementary Table 1). Digital biomarkers are digitally
collected data that are transformed into indicators of health
outcomes. Digital biomarkers are expected to enable actionable
health insights in real time and outside of the clinic. Both
consumer- and research-grade wearables are frequently being
used in research, with the most common brands being Fitbit
(PubMed: 476 studies, ClinicalTrials.gov: 449 studies) for
consumer-grade wearables and Empatica (PubMed: 22 studies,
ClinicalTrials.gov: 22 studies) for research-grade wearables (Sup-
plementary Table 2).

It is, therefore, of critical importance to evaluate the accuracy of
the wearable technologies that are being used in clinical research,
digital biomarker development, and personal health. The lack of
clarity surrounding the verification and validation procedures and
the unknown reliability of the data generated by these wearable
technologies poses significant challenges for their adoption in
research and healthcare applications.4–6

Recently, the accuracy of wearable optical heart rate (HR)
measurements using photoplethysmography (PPG) has been
questioned extensively.7–13 Wearables manufacturers sometimes
report some expected sources of error, but the reporting and
evaluation methods are inconsistent14–22 (Table 1). Of particular
interest, previous research demonstrated that inaccurate PPG HR
measurements occur up to 15% more frequently in dark skin as
compared to light skin, likely because darker skin contains more
melanin which absorbs more green light than lighter skin.23–31

Interestingly, some manufacturers of wearable devices recom-
mend using their device only in light skin tones and/or at rest.17,32

Another suspected measurement error in wrist-worn devices is
motion artifact, which is typically caused by displacement of the
PPG sensor over the skin, changes in skin deformation, blood flow
dynamics, and ambient temperature.33,34 Motion artifacts may
manifest as missing or false beats which result in incorrect HR
calculations.35–37 Several studies have demonstrated that HR
measurements from wearable devices are often less accurate
during physical activity or cyclic wrist motions.8,11,35,38,39 Several
research groups and manufacturers have identified that cyclical
motion can affect accuracy of HR in wearable sensors.9,10,15 The
cyclical motion challenge has been described as a “signal
crossover” effect wherein the optical HR sensors on wearables
tend to lock on to the periodic signal stemming from the

1Department of Biomedical Engineering, Duke University, Durham, NC, USA. 2Department of Bioinformatics and Biostatistics, Duke University, Durham, NC, USA. *email: jessilyn.

dunn@duke.edu

www.nature.com/npjdigitalmed

Scripps Research Translational Institute

1
2
3
4
5
6
7
8
9
0
()
:,;

http://orcid.org/0000-0001-5622-7659
http://orcid.org/0000-0001-5622-7659
http://orcid.org/0000-0001-5622-7659
http://orcid.org/0000-0001-5622-7659
http://orcid.org/0000-0001-5622-7659
http://orcid.org/0000-0002-3241-8183
http://orcid.org/0000-0002-3241-8183
http://orcid.org/0000-0002-3241-8183
http://orcid.org/0000-0002-3241-8183
http://orcid.org/0000-0002-3241-8183
https://doi.org/10.1038/s41746-020-0226-6
mailto:jessilyn.dunn@duke.edu
mailto:jessilyn.dunn@duke.edu
www.nature.com/npjdigitalmed


repetitive motion (e.g., walking and jogging) and mistake that
motion as the cardiovascular cycle.40

To date, no studies have systematically validated wearables
under various movement conditions across the complete range of
skin tones, and particularly on skin tones at the darkest end of the
spectrum. Here, we present a comprehensive analysis of wear-
ables HR measurement accuracy during various activities in a
group of 53 individuals equally representing all skin tones. To our
knowledge, this is the first reported characterization of wearable
sensors across the complete range of skin tones. Validation of
wearable devices during activity and across all skin tones is critical
to enabling their equitable use in clinical and research
applications.

RESULTS

Study summary

A group of 53 individuals successfully completed the entire study
protocol (32 females, 21 males; ages 18–54; equal distribution
across the Fitzpatrick (FP) skin tone scale). This protocol was
designed to assess error and reliability in a total of six wearable
devices (four consumer-grade and two research-grade models)
over the course of approximately 1 h (Fig. 1). Each round of the
study protocol, included (1) seated rest to measure baseline
(4 min), (2) paced deep breathing41 (1 min), (3) physical activity
(walking to increase HR up to 50% of the recommended
maximum;42 5min), (4) seated rest (washout from physical
activity) (~2 min), and (5) a typing task (1 min). This protocol was
performed three times per study participant in order to test all
devices. In each round, the participant wore multiple devices
according to the following: Round 1: Empatica E4+ Apple Watch
4; Round 2: Fitbit Charge 2; Round 3: Garmin Vivosmart 3, Xiaomi
Miband, and Biovotion Everion. The electrocardiogram (ECG)
patch (Bittium Faros 180) was worn during all three rounds. The
ECG was used as the reference standard for this study.

Potential relationships between error in HR measurements and
(1) skin tone, (2) activity condition, (3) wearable device, and (4)
wearable device category were examined using mixed effects
statistical models. We developed comprehensive, individual, and
interaction mixed effects models for the independent variables
using mean HR measurement error as the dependent variable
(Table 2). We found that wearable device, wearable device
category, and activity condition all significantly correlated with
HR measurement error, but changes in skin tone did not impact
measurement error or wearable device accuracy.

Wearables accuracy across skin tones

Anecdotal evidence and incidental study findings supported the
hypothesis that PPG measurements may be less accurate on
darker skin tones than on lighter skin tones.8–13 To systematically
explore this hypothesis, we examined the mean directional error
(MDE) and the mean absolute error (MAE) of HR measurements
within each FP skin tone group at rest and during physical activity.
Among skin tone groups at rest, FP5 had the largest MDE across

all devices and FP1 had the lowest MDE (−4.25 bpm and −0.53
bpm, respectively) (Supplementary Figs 1a, 2a, Supplementary
Table 7a). In absolute error terms, the darkest skin tone (FP6) had
the highest MAE and the second darkest skin tone (FP5) had the
lowest MAE at rest (10.6 bpm and 8.6 bpm, respectively) (Fig. 2c, e,
Supplementary Table 6a). The average MDE and MAE across all
skin tone groups at rest were −2.99 bpm and 9.5 bpm,
respectively. Among skin tone groups during activity, FP5 had
the highest MDE and FP3 had the lowest MDE (9.21 bpm and 7.21
bpm, respectively; Fig. 2b, Supplementary Table 7b). FP4 had the
highest MAE and FP3 had the lowest MAE (14.8 bpm and 10.1
bpm, respectively; Fig. 2d, f, Supplementary Table 6b). Skin tone
appears to not be the driver of MAE or MDE.
In the comprehensive and marginal mixed effects models, we

found no significant correlation between skin tone and HR
measurement error (Table 2). While we found no overall effect of

Table 1. Reported accuracy, outliers, evaluation process, and factors that affect performance by each device manufacturer.

Company Reported accuracy/outliers Reported evaluation process Reported factors that affect
performance

APPLE For a small percentage of users, various factors
may make it impossible to get any heart rate
reading at all13

– Skin perfusion, tattoos, rhythmic
movements14

FITBIT – 5000+ hours of activity, exercise, and sleep to
iterate through their heart rate technology and
that they have over 50 prototype iterations since
201015

–

GARMIN Skin tone may affect heart rate accuracy but
“Garmin designs our watches to work on all
skin tones… the sensor may have to work
harder [when more melanin is present in the
skin] to find the pulse which can require
slightly more battery power”16

- Wearing a watch too tightly,
participating in activities that cause
flexing of the wrist, tattoos16,17

XIAOMI – – –

EMPATICA – Provides information about algorithms used to
calculate HR but not evaluation18

–

BIOVOTION HR is within ±5 bpm under motion. Mean
absolute difference (MAD)= 3 bpm and mean
absolute relative difference (MARD)= 3%
under motion20

The proprietary algorithms of the Everion are
constantly tested and evaluated in our
Algorithmics Lab. Biovotion is dedicated to
delivering high quality and accuracy data to
empower consumers to take control of their
health. At Biovotion everybody is testing the
devices under all kinds of conditions and we are
working hard to improve the algorithms19

Skin perfusion, tattoos, motion21

Device manufacturers sometimes report some expected sources of error, but the reporting and evaluation methods are inconsistent,14–22 as shown in

this table.
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skin tone, we tested whether the effect of skin tone differed based
on individual devices. We did find a significant interaction
between skin tone and device (Table 2). Upon further examina-
tion, this was shown to be based on the Biovotion device, which
showed a decrease in resting HR and increase active HR (Fig. 2).
During activity, the highest MDE occurs in FP5 and/or FP6 in all
devices except for the Xiaomi Miband 3 (Fig. 2b).
We also explored whether there were differences in data loss for

the different skin tone groups. Some measurement circumstances
may prevent data acquisition altogether, such as when a device is
not making contact with the skin. In other cases, wearables appear
to remove data that fails internal quality control, for example,
when there is a large motion artifact (indicated by high
accelerometry sensor values), the device internal quality system
may remove the data points potentially affected by the artifact.
Both of these scenarios can cause missingness in the data that is
reported by the wearable. Because the research-grade devices
used in this study use downsampling or interpolation to provide
data at exactly 1 Hz, they were inappropriate to include in the data
missingness analysis. Missingness was calculated as the percent of

values that are missing based on the expected sampling rate
(here, the average sampling rate over the course of the study). The
missingness analysis showed no significant difference between
skin tones (Supplementary Table 8).
In addition to HR, we examined HR variability (HRV), a clinically

relevant diagnostic metric that can be derived from PPG signals
and is a widely used metric of autonomic nervous system
function.43 The standard HRV metrics we examined, included the
time-domain metrics, included mean HRV, minimum HRV, max-
imum HRV, RMSSD, SDNN, and pNN50 (Supplementary Fig. 4). No
differences were seen in accuracy of the HRV metrics between the
different skin tone groups (two-sided, unpaired t test between
skin tones, Bonferroni-corrected p= 0.0033).

Wearables accuracy at rest and during physical activity

Consumer-grade wearables were found to be more accurate than
research-grade wearables at rest. During rest, the MAE (±standard
deviation (SD)) of consumer wearables was an average of 7.2 ± 5.4
bpm and the MAE of research-grade wearables was 13.9 ± 7.8
bpm (p < 0.0125). During physical activity, the MAE ± SD of
consumer wearables was 10.2 ± 7.5 bpm and the MAE of
research-grade wearables was 15.9 ± 8.1 bpm (p < 0.0125) (Fig.
3a; Supplementary Table 3). While these devices, separated by
either research- or consumer-grade categories, showed significant
differences in accuracy based on the mixed effects models, it is
important to note that the major drivers behind this significance
were the Apple Watch (consumer-grade device) and Biovotion
Everion (research-grade device).
Among the consumer wearables tested at rest, the Xiaomi

Miband 3 had the highest MAE and the Apple Watch 4 had the
lowest MAE (10.2 bpm vs. 4.4 bpm, respectively) (Fig. 3a). Among
the research wearables tested at rest, the Biovotion Everion had
the highest MAE and the Empatica E4 had the lowest MAE (16.5
bpm and 11.3 bpm, respectively) (Fig. 3a). Consistency in accuracy
for devices was evaluated by comparing the standard deviation of
the MAE among consumer-grade and research-grade devices at
rest. At rest, the standard deviation of the MAE was highest for the

Skin Tone and Body Profiles Rest, Deep Breathing, Activity, Typing Clinical Metrics (HRV)

HR

Consumer Wearables Research Grade Wearables
Heart Rate Compared to 

Electrocardiogram (ECG)

10 9 9 10 8 7

Affects HR Accuracy No change in Accuracy

Device Type Skin Tone

Average Accuracy     30%

Rest Activity

Xiaomi Miband 3

Apple Watch 4

Fitbit Charge 2 

Garmin Vivosmart 3

Empatica E4

Biovotion Everion

Fig. 1 Graphical abstract of research. Graphical abstract of research study presented. We present a full characterization of HR accuracy across
skin tones, clinical metrics of HRV accuracy across skin tones, and HR during activity, rest, deep breathing, and typing for six wearable devices
representing both consumer wearables and research-grade wearables. HR metrics are compared to the clinical-grade electrocardiogram (ECG)
as the standard for heart rate measurement.

Table 2. Results of mixed effects comprehensive and marginal

models.

Mixed effects model Mean error p value
(***<0.001)

Comprehensive model <2.20e−16***

Marginal model: skin tone 0.634

Marginal model: activity condition <2.20e−16***

Marginal model: device <2.20e−16***

Marginal model: type of device 3.44e−05***

Interaction model: skin tone and device 2.80e−05***

p Values show results of likelihood ratio tests between models and null

models and interaction models.
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Fitbit Charge 2 and lowest for Apple Watch 4 (7.3 and 2.7 bpm,
respectively). In research wearables at rest, the standard deviation
of the MAE was highest for the Empatica E4 and lowest for
Biovotion Everion (8.0 and 6.4 bpm, respectively).
This demonstrates that both the accuracy and the consistency

of HR measurements varies by device model (Fig. 3a, Supplemen-
tary Table 3), and that the measurements from the research-grade
wearables were less accurate than measurements from the
consumer-grade wearables.
During physical activity among consumer-grade devices, the

Xiaomi Miband 3 had the highest MAE and the Apple Watch 4 had
the lowest MAE (13.8 bpm and 4.6 bpm, respectively). The Garmin
had the highest standard deviation of MAE and the Apple Watch 4
had the lowest standard deviation of MAE among consumer-grade
devices (9.2 and 3.0, respectively). Among research-grade devices
during physical activity, the Biovotion had the highest MAE and
the Empatica E4 had the lowest MAE (19.8 bpm and 12.8 bpm,
respectively) and the Empatica E4 had the highest standard
deviation of MAE and the Biovotion Everion had the lowest
standard deviation of MAE (8.5 and 5.3, respectively). This further
demonstrates that the consistency and accuracy also vary
by device type during physical activity (Fig. 3a, Supplementary
Table 3).
Interestingly, at rest, the MDE of the research-grade devices was

negative, indicating that the reported HR from the research-grade
wearables was lower than the true HR (Fig. 3b, Supplementary
Table 4). The positive values of MDE during physical activity for
both consumer- and research-grade devices demonstrate that HR
values reported by wearables are higher than the true HR values
during physical activity (Fig. 3b). Overall, the MDE increased
significantly in the positive direction between rest and physical
activity for 5 out of 6 devices (Fig. 3b, Supplementary Table 4).
We also examined missingness for consumer-grade devices

during physical activity as compared with rest. Again, this analysis
was not relevant for research-grade devices based on their

downsampling/interpolation methods. At rest, missingness was
highest for the Fitbit Charge 2 and lowest for the Apple Watch 4
(18.7 and 2.7%, respectively). During physical activity, missingness
was highest for the Fitbit Charge 2 and lowest for the Xiaomi
Miband 3 (10.4 and −14.2%, respectively). Here, a negative value
for percent missingness occurs because the device samples at a
higher sampling rate than expected during certain time periods.
We found that both missingness and overall accuracy were mostly
unchanged between rest and activity for the Apple Watch. The
variability of missingness was highest for the Xiaomi Miband 3 and
lowest for the Apple Watch 4 during rest (SD of 42.7% and 9.0%,
respectively), and was highest for the Xiaomi Miband 3 and lowest
for the Fitbit Charge 2 during physical activity (SD of 43.5% and
13.7%, respectively). As shown in Fig. 3c, all devices except for the
Apple Watch 4 had lower missingness during physical activity,
indicating that they likely sample at higher sampling rates during
activity than at rest (Fig. 3c, Supplementary Table 5).

Wearables accuracy during rhythmic activity

Periodic, rhythmic movement has been cited as a source of error
in optical HR measurements in previous studies.8,44,45 This has
been described as a “signal crossover” effect wherein the optical
HR sensors on wearables tend to lock on to the periodic signal
stemming from the repetitive motion (e.g., walking and jogging)
and mistake that signal as the cardiovascular cycle.40 We show
that the rhythmic movement of walking has significantly higher
errors in all devices except the Apple Watch 4 (Fig. 3b). We also
explored repetitive wrist motion involved in typing (Supplemen-
tary Fig. 3) and found that MAE was higher during typing
compared with rest in all devices, and often nearly as high as
during walking, except for the Apple Watch and the Empatica E4
(Supplementary Fig. 3a). The MDE was higher during typing as
compared with rest in the Miband, Empatica, and Biovotion.
Interestingly, while both typing and walking had poor

Fig. 2 Error in heart rate across skin tones and devices at rest and during activity. Mean error in heart rate (bpm) across skin tones and
devices at a rest and b during physical activity. The green horizontal line represents no error (no difference from the true measurement of HR
from ECG). Mean absolute error in heart rate (bpm) across skin tones and devices at c rest and d during physical activity. Error is calculated as
the difference between the ECG and wearable reported heart rate at every simultaneous measurement. Fitzpatrick skin tones 1–6 are
represented with an approximately equal number of participants in each skin tone. Error bars represent the 95% confidence interval. Mean
absolute error across devices and across skin tones at rest (e) and during activity (f). Error bars represent the 95% confidence interval.
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performance overall, walking tended to cause reported HR to be
higher than true HR, whereas typing caused the reported HR to be
lower than the true HR (Supplementary Fig. 3b). Surprisingly, the
MAE and MDE were lower during deep breathing than at rest in all
devices except for the Apple Watch, in which the deep breathing
condition was the condition with the worst performance
(Supplementary Fig. 3). During deep breathing, reported HR was
generally lower than true HR (Supplementary Fig. 3).

Signal alignment

Lags between the ECG- and PPG-derived HR signals ranging
between 0 and 43 s were discovered during our preliminary
exploratory data analysis. These lags were inconsistent; in some
cases, the lag was fixed and in other cases the lag was dynamic
(Supplementary Fig. 5). The source of these lags could not be
pinned down with certainty and may possibly be attributed to (1)
misaligned time stamps (highly unlikely due to our time
synchronization protocol described in the methods as well as
the sometimes dynamic time lags observed), (2) data processing
artifacts (uneven or delayed sampling, compute, and/or data
reporting), (3) missed heart beats due to low frequency
measurements by the wearable, or (4) a delay between the actual
heart beat and the change in blood volume at wrist.
In order to remove lag as a factor that could contribute to error

calculated in the previous sections, we performed signal align-
ment using two different approaches (cross-correlation and
smoothing with a rolling window) and recalculated MAE and

MDE on the newly aligned signals (Supplementary Fig. 6). Using
the updated MAE and MDE at each window size from the
smoothing, we reanalyzed the relationships in the previous
sections and found no differences in conclusions from the
previous sections. Our model did show that window length is
related to HR measurement error (Supplementary Table 9). We
performed a sensitivity analysis to determine how smoothing
could affect improvements in accuracy, and we found that in most
cases, smoothing reduced HR measurement error as demon-
strated by the fact that the median optimal window size >0
(Supplementary Fig. 7). MAE and MDE were in general improved
the most by smaller window sizes (less smoothing) during activity
and wider window sizes (more smoothing) at rest, likely because
changes in activity intensity would not be captured by wider
smoothing windows. (Supplementary Fig. 7b). This did not hold
true for the Apple Watch 4 and Empatica E4 for MDE or the
Biovotion Everion for MAE.

Potential relationship between wearable device cost, market size,
release year, and error

Wearables vary widely in terms of release year, data accessibility,
and cost (Supplementary Table 1). We used devices across a wide
range of costs, market sizes, and release times at the time of this
study (Apple Watch 4, Fitbit Charge 2, Garmin Vivosmart 3, and
Xiaomi Miband 3; cost range= $432 USD, 2018 market size
range= 35.7 million; Supplementary Table 1). In general, we found
that devices with higher cost, a more recent release date, and a

** **

**

**
**

****

c

a b

Fig. 3 Error in heart rate across all devices and analysis of missing values across consumer devices. a Mean absolute error in heart rate
(bpm) across devices during rest (teal) and activity (orange). This shows the true difference in HR from the ECG but does not show the sign of
the difference. The green horizontal line represents no error (no difference from the true measurement of HR from ECG). Error bars show the
95% confidence interval. ** indicates significant difference in error between baseline and activity with a Bonferroni multiple hypothesis
corrected p value of 0.0042. b Mean relative error in heart rate (bpm) across devices during rest (teal) and during activity (orange) shows the
relative differences from the ECG. The green horizontal line represents no error (no difference from the true measurement of HR from ECG).
Error bars show the 95% confidence interval. ** indicates significant difference in error between baseline and activity with a Bonferroni
multiple hypothesis corrected p value of 0.0042. c Analysis of missing values across skin tones for rest and activity for consumer wearables.
Research-grade wearables (Empatica, Biovotion) down-sample and/or interpolate to have exactly 1 Hz sampling rate and thus we could not
calculate missingness values for those devices. Missingness is calculated from the expected sampling rate (reported sampling rate for Apple
Watch and Garmin and study average sampling rate for Garmin and Miband, which do not report sampling rate). Missingness that is positive
indicates percentage of values with missingness. Missingness that is negative indicates a greater than expected sampling rate (more values
than expected).
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larger market had higher accuracy. Because of the limited scope of
the devices used, we cannot tease apart the effects of each of
these three factors. While device release year is noted here, all
devices used in this study had software updates as of the
beginning of the study. Thus, while hardware differences may
exist, software is updated frequently on these devices to help
prevent obsolescence in the older technologies.

DISCUSSION

The rise in accessibility of consumer wearable devices that
generate health information provides an unprecedented oppor-
tunity to revolutionize health care by researchers, clinicians, and
consumers. In this study, we aimed to determine whether there
were differences in wearable device accuracy across (1) skin tones,
(2) activity conditions, and (3) devices, in order to analyze
potential measurement errors. This is the first time that skin tone
has been comprehensively explored as a potential factor affecting
HR accuracy. Anecdotal evidence and incidental study findings
previously indicated that wearable HR measurements may be less
accurate in darker skin tones due to higher absorption of light at
the typical wearable green light wavelength. Overall, we did not
find statistically significant differences in HR or HRV accuracy
across skin tones.
Our analyses reinforces the growing body of research demon-

strating that wearable devices have higher error during activity
than at rest.8,11,35,38,39 We further demonstrate that the direction-
ality of the HR error is dependent on the activity type. Reliable HR
data across all activity types and levels is key to enabling digital
biomarker development and to supporting clinical research
studies that involve physiologic monitoring during physical
activity or exercise interventions. It is also critically important to
many health consumers who use devices to ensure that they do
not exceed their maximum HR during exercise, which is a
circumstance that can spur adverse cardiac events.46

Here, we demonstrate an overall over-reporting of HR during
low-intensity physical activity, which could be a safety mechanism
engineered into the consumer devices to account for error so that
consumers do not exceed their maximum HR during exercise. This
is especially relevant for clinicians, who should be aware of these
biases in HR measurements during exercise when making clinical
assessments based on HR data from wearable devices. This could
affect exercise interventions that are based off HR feedback;
accordingly, clinicians may examine alternative ways of measuring
exercise intensity if measurement specificity is critical.
While the research-grade wearables are the only wearables that

provide users with raw data that can be used to visualize PPG
waveforms and calculate HRV, the HR measurements tended to be
less accurate than consumer-grade wearables. This is especially
important for researchers and clinicians to be aware of when
choosing devices for clinical research and clinical decision support.
It is our hope that this analysis framework can act as a guide for
researchers, clinicians, and health consumers to evaluate such
tradeoffs when exploring potential wearable devices for use in a
clinical study, digital biomarker development, clinical practice, or
in personal health monitoring.
Wearable technologies are expected to transform healthcare

through inexpensive and convenient health monitoring outside of
the clinic.4 This provides an opportunity to bring equitable
healthcare access to traditionally underserved communities which
can address socioeconomic and racial disparities that exist in the
US healthcare system.47 Here, we explored one important aspect
regarding the accuracy of wearables across the full range of skin
tones. We found no statistically significant differences in wearable
HR measurement accuracy across skin tones, however, we did find
other sources of measurement inaccuracies, including activity type
and type of device. Researchers, clinicians, and health consumers
must recognize that the information derived from different

wearables should not be weighted equally for drawing study
conclusions, combining study results, and making health-related
decisions. Algorithms that are used to calculate digital biomarkers
should consider error and measurement quality under the various
circumstances that we have shown in this study. Digital biomarker
interpretation must take this data quality into account when
making healthcare decisions.

METHODS

Study population
Totally, 56 participants (34 females, 22 males, 18–54 years of age, mean=
25.6, racial breakdown: 8 African American, 21 Asian, 8 Hispanic, and 19
Caucasian-White) were recruited for this study. Data from three
participants was excluded from the study due to incomplete ECG records.
The subjects all consented to the study and were compensated for their
participation. The study was approved by the Institutional Review Board at
Duke University and informed consent was obtained from all participants.
We enrolled an approximately equal distribution of skin tones (F1:7, F2:8,
F3:10, F4: 9. F5: 9, F6:10) on the FP skin tone scale, the standard skin tone
scale with six categories of pigmentation48,49 (one to six, one being the
lightest and six being the darkest). Participants were excluded if they had
skin conditions or sensitivities that would be exacerbated by wearing a
wearable device/sensor and/or electrode pads or if they were taking
medications/substances that affect HR (including, but not limited to
Adderall, performance enhancing drugs, human growth hormones, and
illegal substances). The demographics from this study are shown in
Supplementary Table 10.

Sample size
Based on our power analysis, we required ≥48 participants to achieve 80%
power to reject the null hypothesis that there is no difference in PPG
accuracy between skin tone groups (∝= 0.5). Effect size for the power
analysis was based on a pilot study examining differences in light
absorption across skin tones25 and was determined to be 0.3. Difference in
green light mean absorption for different skin tones during activity was
used to calculate effect size since optical HR measurements primarily
measure green light absorption.24,25 Based on the ANOVA power
calculation, we required eight participants per skin tone category (6 skin
tone categories on FP scale). We also performed a multiple regression
power calculation (f2= 0.15, power= 0.8, ∝= 0.5) and determined the
number of participants required was a total of 46 for the mixed
effects model.

Devices and data collection protocol
We tested four consumer wearable devices used frequently in research
studies, as shown in Fig. 1, including the Apple Watch 4 (Apple Inc.,
Cupertino, CA), Fitbit Charge 2 (Fitbit, Inc., San Francisco, CA), Garmin
Vivosmart 3 (Garmin Ltd., Olathe, Kansas), Xiaomi Miband 3 (Xiaomi Corp.,
Beijing, China) as well as two research-grade wearable devices Empatica E4
(Empatica Inc., Milano, Italy), and Biovotion Everion (Biovotion AG, Zurich,
Switzerland). Device release date and software version are summarized in
Supplementary Table 2. All devices were sampled using the highest
sampling rate possible (this was done by placing devices in “activity mode”
for the duration of the study, when applicable). All devices use PPG to
generate HR readings. The wearable device HR readings were compared
against HR values calculated from simultaneously measured electrocardio-
gram (ECG) (Fig. 1). ECG is a clinical-grade gold standard for HR
measurement which measures the electrical activity of the heart (Bittium
Faros 180, Bittium Inc., Oulu, Finland).
Measured factors included skin tone, gender, body fat percentage,

weight, height, waist circumference, and sun exposure habits, chosen
based on scientific literature and anecdotal evidence of their potential
effects on wrist-based optical HR sensing accuracy. Subjective analysis of
skin tone using the FP skin tone scale (1–6) and the von Luschan skin tone
scale (1–36) were taken in addition to an objective measurement of skin
tone on the wrist using a spectrophotometer (Linksquare, Stratio Inc., San
Jose, CA).
We followed the Consumer Technology Association wearable device

validation guidelines to measure PPG at rest (seated in upright position)
and with physical activity that increases HR to 50% of the maximum HR
(treadmill at 2.5–4 mph).50

B. Bent et al.

6

npj Digital Medicine (2020)    18 Scripps Research Translational Institute



Data were collected and downloaded directly from the Bittium Faros 180
and the Empatica E4. Wearable devices Garmin, Fitbit, and Biovotion were
connected to native apps for data access. Apple Watch and Xiaomi Miband
required non-native apps to allow for access to HR data.
The study followed three phases of: baseline, deep breathing, activity,

washout, and typing task. During baseline, participants were asked to
remain seated in a comfortable position for 4 min. This was followed
immediately by a deep breathing exercise, where participants breathed in
sync with a 1-min deep breathing video.51 Participants then participated in
a walking activity for 5 min. Participant HR was monitored during this time
to ensure that the participant reached 50% of their maximum HR and did
not exceed their maximum HR (220-age). A washout period of
approximately 2 min occurred before participants began the typing task
to ensure HR had returned to baseline. Participants typed on a mechanical
computer keyboard (Dell Model: SK-8115) for 1 min before switching
devices to begin the next phase.
In the first phase, the Empatica E4 was placed on the right wrist and the

Apple Watch 4 on the left wrist. In the second phase, the Fitbit Charge 2
was placed on the left wrist. During the third phase, the Garmin Vivosmart
3 was placed on the right wrist and the Xiaomi Miband 3 was placed on
the left wrist. Participants wore the Biovotion on the upper right arm for all
three phases but data from only the last phase (Phase 3) was used in
this study.

Time syncing and signal alignment
All wearable devices were connected to Wi-Fi-only enabled mobile device
(smart phone or laptop). In order to prevent desynchronization via internal
clock time drift, at the start of each study, each wearable device was
connected to a mobile device to synchronize the clock time following ISO
8601.52–55 Prior to the start of each study, each mobile device was
connected to the network to synchronize their internal clock time via the
Network Time Protocol (NTPv4).54 Once connected to the Wi-Fi and
synchronized, the NTP client updates the mobile device clock approxi-
mately every 10min.56

The Apple Watch, Fitbit, Garmin, and Biovotion were connected to the
iPhone SE (iOS), the Xiaomi Miband was connected to the Android
Samsung Galaxy 4 mobile device, and the Bittium Faros and Empatica E4
were connected to ThinkPad Laptop running Windows 10. iPhones
running iOS5 and above automatically syncs to the NTP, and the settings
in both Android and Windows 10 were set to ensure automatic NTP
syncing upon Wi-Fi connection. Because the wearable devices used in this
study were not precision instruments, processing lag times between
devices that occur during the NTP sync may affect the device clock time by
milliseconds.57

Mixed effects modeling
To assess the impact of various factors and account for repeated
measurements on participants we used a mixed-model approach. We first
fit a null model shown

Yij ¼ αi þ sþ c þ d þ εij ; (1)

where the observations (Y) is the Difference between ECG HR and
Wearable HR for each participant (i) at each timepoint (j). εij accounts for
the random noise. The random effect parameter αi accounts for
participant-specific differences.
Next, we fit univariable models accounting for skin tone (s), condition (c)

(rest, walking, deep breathing, and typing), and device (d), respectively

Yij ¼ αi þ sþ ϵ; (2)

Yij ¼ αi þ c þ ϵ; (3)

Yij ¼ αi þ d þ ϵ: (4)

We also examined an interaction model to examine whether there is an
interaction between skin tone and device factors as shown in Eq. (5)

Yij ¼ αi þ s � d þ ϵ: (5)

We assessed the added value of the factor via a likelihood ratio test,
comparing the larger model to the null model. A significant p value
indicates that the larger model provides a better fit. This is akin to repeated
measures ANOVA. We used a p value < 0.0125, based on a Bonferroni
correction to indicate significance (taking three factors—skin tone, device,
and activity condition into account).

Differences algorithm
Raw ECG was processed using the clinical standard, Kubios HRV Premium
(version 3.3) to extract RR intervals and HR. Differences between the ECG
and each wearable sensor were calculated at each matched timestamp for
each wearable sensor for each participant. Both relative and absolute
differences were calculated as shown in Eqs. (6) and (7).

Directional difference : HRECG � HRWearable: (6)

Absolute difference : jHRECG � HRWearablej: (7)

Calculations of error
We have defined error as the difference between HR from the ECG and the
wearable sensor. Thus, higher error indicates a larger difference between
the wearable sensor and the “true” value from the ECG. Error was
compared across skin tones using an unpaired, two-sided t test with Welch
approximation and Bonferroni multiple hypothesis correction of 0.00028
(considering 6 choose 2 skin tone comparisons—15 skin tone compar-
isons × 6 devices × 2 conditions—rest and activity).

Mean directional errorparticipant :

P

HRECG � HRWearable

Numbermatched timestamps
: (8)

Mean absolute errorparticipant :

P

HRECG � HRWearablej j

Numbermatched timestamps
: (9)

Calculations of Missingness
Missingness is calculated from the expected sampling rate (study average
sampling rate). The calculation used to determine Missingness (%) is
shown in Eq. (10). Statistical differences between missingness for activity
and baseline were calculated using paired, two-sided t tests with a
Bonferroni multiple hypothesis correction (taking into account four
devices, p value= 0.0125). Statistical differences between missingness for
skin tones were calculated using unpaired, two-sided t tests between a
skin tone and all other skin tones for each device with a Bonferroni
multiple hypothesis corrected p value of 0.001 (taking into account four
devices, six skin tones, and two conditions).

Missingness %ð Þ : 100�
Actual#Samples

Expected#Samples

� �

� 100: (10)

Calculations and analysis of HRV
Because HRV requires access to raw, sample-level data that is not currently
provided by most wearables, out of the six devices tested, we were limited
to using only the Empatica E4 for the HRV accuracy analysis. HRV time-
domain metrics from the Empatica device have been validated against ECG
in previous studies.58–60 Frequency domain metrics of HRV have not been
sufficiently validated on wearable optical HR sensors, thus are excluded
from this analysis.
HRV was only calculated during baseline due to motion artifacts

affecting the signal. Raw ECG was processed using the clinical standard,
Kubios HRV Premium (version 3.3) to extract RR intervals. PPG data from
the Empatica E4 device is supplied as both raw PPG (green LED light only)
and an inter beat interval (IBI) sequence. The IBI sequence provided by
Empatica is obtained from their wristband-integrated processing algorithm
that removes incorrect peaks due to noise in the raw PPG signal, which
they compute from the red and green LEDs on the device. Red LED PPG
signal is not saved or provided and is only used in the calculation of the
provided IBI sequence.
We matched raw PPG and IBI sequences and removed data that the

Empatica wristband- integrated processing algorithm removed
onboard. Our updated PPG signal could then be used to extract IBI
sequences for HRV calculations. A Kolmogorev–Zurbenko low pass
linear filter (Kolmogorev) and outlier removal was used to mitigate any
additional motion artifact not removed by the Empatica processing
algorithm. Following the process described by Empatica for determin-
ing their IBI sequence, local minima were detected using a rolling
minimum detector and the IBI values were calculated as the difference
between these local minima values. Outlier capping at 1.5*IQR was
performed for each downsampled signal.
All calculations for time-domain HRV were performed with user-defined

functions in Python (3.5.2) that were validated using Kubios HRV Premium
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(version 3.3). Error was calculated between the ECG HRV and the PPG HRV
for each participant. Paired, two-sided t tests were performed with a
significance threshold of Bonferroni-corrected p value of 0.0033 (consider-
ing 6 choose 2 skin tone comparisons—15 skin tone comparisons for each
HRV metric).

Lag time analysis using a rolling window approach
In order to examine the effect of lag time on our model, we iterated
through rolling windows of 5, 10, 20, 30, 40, 50, 60, 90, 120, 150, 180,
210, 240 s for each participant, each device, and each condition (rest or
activity). We found the optimal window length of MAE and MDE by
determining the window length that minimized the MAE and MDE,
respectively. We then repeated the mixed effects model, adding
window length as an effect.

Activity level disparity statistical testing
Mean relative error from ECG for both baseline and activity were recorded
for each participant. Mean relative errors across participants were used for
a paired, two-sided t test with Welch approximation and Bonferroni
multiple comparison correction with an initial significance threshold of
p < 0.05 and a Bonferroni-corrected p < 0.0042 (considering six devices and
two conditions—rest and activity).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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