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Introduction

Considerable attention has been given in the financial press to the increase in stock

market volatility during the late 1990s. The facts suggest, however, that this attention

has been misplaced. As shown first by Schwert (1989), no long-run uptrend is evident

for the volatility of the market as a whole. The volatility of the market during the late

1990s, while larger than it was earlier in the decade, was still considerably below the

volatility recorded during earlier periods of the century.

What has received far less attention is the behavior of the volatility of individual

stocks. The volatility of individual stocks can increase even when the volatility of the

market as a whole remains stable as long as correlations among stocks are declining.

In this study, we show, from a different perspective and using different measures from

those used by Campbell, Lettau, Malkiel, and Xu (2001), that volatilities of individual

stocks have indeed increased over the decades of the 1980s and 1990s. When the total

volatility of individual stocks is decomposed into systematic volatility and idiosyncratic

volatility, we present clear evidence that idiosyncratic volatility has trended up. We find

that our result is not solely attributable to the increasing prominence of the NASDAQ

market. Most importantly, we find from cross-sectional regressions that the volatility

of individual stocks may be related to the amount of institutional ownership and to

the firms’ objectives in pursuing high growth.

While idiosyncratic volatility can be eliminated in a well- diversified portfolio, in-

dividual investors may still care about the specific risk of the securities they hold.

Because of wealth constraints or by choice, many investors do not hold diversified

portfolios. Those investors might feel the risk of their portfolios has increased when

idiosyncratic volatility is rising. Moreover, high idiosyncratic volatility could increase

potential total transactions costs if investors with relatively limited means choose to

achieve adequate diversification. This is so because an increase in idiosyncratic volatil-
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ity will have an important effect on increasing the number of securities one must hold

to achieve reasonably “full” diversification. Idiosyncratic volatility is also important to

arbitrageurs and option traders where total profits depend on total volatility instead

of market volatility. Empirically, Malkiel and Xu (2000) have shown that idiosyncratic

volatility can explain cross-sectional differences in the returns from individual stocks.

This paper investigates the mechanisms behind the increase in idiosyncratic volatil-

ity during the 1980s and 1990s. Besides the increasing prominence of the NASDAQ

market, two important attributes of individual stocks–institutional ownership and high

growth–appear to be associated with idiosyncratic volatility. In this paper, we argue

why these variables should be related. We then present a cross-sectional study of the

relationship between institutional ownership, growth, and idiosyncratic volatility and

find strong evidence supporting our hypotheses.

Since idiosyncratic volatility is unobservable and model dependent, we also study

similarities and differences between the indirect approach of Campbell, Lettau, Malkiel,

and Xu (2001) and a direct approach utilizing Fama and French (1993) three-factor

model in decomposing total volatility. Furthermore, we extend the sample period to

cover the entire post war period by using monthly returns instead of daily returns, and

we estimate conditional volatility (see French, Schwert, and Stambaugh, 1987) rather

than realized volatility.1 Interest in understanding time varying conditional volatility

has encouraged a large literature based on ARCH and stochastic volatility models

(see Ghysels, Harvey, and Renault, 1997; Bollerslev, Engle, and Nelson, 1994; and

Bollerslev, Chou and Kroner, 1992). On the aggregate level, we know that conditional

volatility seems to be very persistent, i.e., a large volatility shock seems to persist. Here,

we focus on the level of volatility not only at the market level but also at the individual

firm level. In order to balance the efficiency in estimating volatility suggested by the

1Also related to our work is the article by Braun, Nelson, and Sunier (1995). Their emphasis is on
the predictive asymmetry in both conditional volatilities and conditional beta estimates.
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ARCH literature and by computational feasibility, we use a rolling regression method

in the spirit of Foster and Nelson (1996) to estimate volatility instead of the GARCH

approach. We will show that any differences with the GARCH approach are small.

There is growing interest in recent studies that focus on estimating volatility from

“ultra-high frequency” (i.e. transaction level) returns. Similar to what has been applied

in low frequency return studies, two approaches have been used in estimating the

latent volatility of returns. “Ultra-high frequency” data are fundamentally irregularly

spaced. Using an autoregressive conditional duration (ACD) model introduced by

Engle and Russell (1998) to estimate the arrival rates, Engle (2000) has estimated

“ultra-high frequency” GARCH models to measure the price volatility of IBM stock

using transactions data.2 Although this first approach depends on model specification,

it retains all the information in the data. The second approach has been proposed

by Andersen, Bollerslev, Diebold, and Ebens (2001) to estimate ex post realized daily

volatility of the component stocks of the Dow Jones Industrial Average by summing

squares and cross-products of “ultra-high frequency” returns. This approach is model

independent and computational efficient. Researchers have also tried to improve the

volatility estimate by modeling the microstructure variables simultaneously, such as the

cost of market making and intraday periodicity (see Hasbrouck, 1999; and Andersen

and Bollerslev, 1997). In all these studies, the emphasis has been on the persistence of

volatility.

This paper is organized as follows. In Section 1 we briefly discuss our methods

for decomposing total volatility into its systematic and idiosyncratic components, for

estimating conditional volatility, and for testing the volatility trend. Section 2 presents

our empirical results. The importance of NASDAQ stocks is discussed in Section 3. In

Section 4, we provide evidence that the volatility of individual stocks and the proportion

2Engle and Russell (1997) have also applied ACD modeling approach to foreign exchange data in
order to obtain estimates of the instantaneous intensity of price changes.
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of the stocks outstanding shares owned by institutions are related. Section 5 studies the

relationship between expected earning growth and idiosyncratic volatility. Concluding

comments are presented in Section 6.

4



1 The Data and Methodology

Most of the time series data used in this study are constructed from the 1998 version of

the CRSP (Center for Research in Security Prices) tape that includes NYSE/AMEX/

NASDAQ stocks. As is now common in the literature, we focus on the post WWII

sub-sample. Because of the change in the interest-rate regime following the Accord of

the Treasury and Federal Reserve in 1951, our post WWII sub-sample starts in January

1952 (see Campbell, 1991). In our analysis, both exchange traded stocks (New York

Stock Exchange (NYSE) and American Stock Exchange (AMEX)) and the NASDAQ

data file are used. The S&P 500 index portfolio studied here is approximated by a

so called simulated “S&P 500” portfolio, which is constructed by value weighting the

largest 500 stocks.3

1.1 Measuring Idiosyncratic Volatility

The idiosyncratic volatility of a stock is unobservable. Moreover, since it is estimated

relative to the systematic returns of the stock, it is model dependent. In this pa-

per, we study the behavior of idiosyncratic volatility constructed using two different

approaches.

1.1.1 An Indirect Decomposition Method

Denote the excess return for stock i relative to the risk-free rate as Ri,t and the market

excess return as RM
t . Campbell, Lettau, Malkiel, and Xu (2001) proposed an indirect

approach to estimate the realized idiosyncratic volatility. We show in the appendix that

a similar approach can be adopted to estimate the conditional aggregate idiosyncratic

3We use a simulated series because we did not have composition data for the S&P 500 in all periods.
We also took returns for the actual S&P 500 index series directly from CRSP data file. There are
hardly any differences between these two indices in terms of their calculated volatility, which is the
major concern of this study
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volatility in the following way,

v̂2
I,t = v̂2

A,t − v̂2
M,t, (1)

where v̂2
A,t =

∑N
i=1 wi

ˆV art(Ri,t) is the conditional aggregate volatility calculated from

the value weighting of estimates of each individual stock’s conditional variance, and

v̂M,t = ˆV art(R
M
t ) is the estimated conditional volatility of market returns. This ap-

proach is easy to implement and is less dependent on specific models. While the esti-

mates may be biased under certain models, such biases tend to be small empirically as

we show in the Appendix.

1.1.2 The Direct Decomposition Method

An alternative approach would be to simply estimate idiosyncratic volatility using

residuals from a factor model. As has been made popular by Fama and French (1993), a

three factor model which includes the market return, the return proxy for size (RSMB
t ),

and the book-to-market return proxy (RHML
t ) appears to be more effective in explaining

returns than the CAPM.4 Therefore, we will also fit the following model to individual

stocks:

Ri,t = βM
i RM

t + βSMB
i RSMB

t + βHML
i RHML

t + ri,t. (2)

In this case, the conditional aggregate idiosyncratic volatility can be estimated as,5

v̂2
I,t =

N
∑

i=1

wiV art(ri,t). (3)

As a practical matter, even if one accepts the factor model, it is difficult to estimate

an individual stock’s betas over a short period of time. Such beta estimates are critical

4Ferson and Harvey (1999) have argued that the three factor model may still fail in a conditioning
framework. However, for our purpose, this is a reasonable alternative for constructing an idiosyncratic
volatility series.

5We are grateful to Eugene Fama for making these data available to us.
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in computing idiosyncratic volatility. Therefore, both the indirect and direct methods

for constructing idiosyncratic volatility are applied in this study.

The conditional volatility for each underlying security (or for a market index) can

be estimated using the standard deviation of the stock’s periodic returns. However,

since volatilities are persistent, as we have learned from the ARCH literature, such

an estimator of volatility will be biased and inefficient, as shown by Chou (1988). In

principle, one should adopt a GARCH type of volatility estimator. Because of the

computational intensity of such an estimator, however, this strategy is not feasible in

our study where we focus on individual securities. Instead, we use rolling regression

estimators with window length τ , namely

ˆV art(R
M
t ) =

τ
∑

k=1

ωk(R
M
t+1−k − µM

t )
2, (4)

ˆV art(Ri,t) =
τ

∑

k=1

ωk(Ri,t+1−k − µi,t)
2, (5)

where µM
t =

∑τ
k=1 ωkR

M
t+1−k and µi,t =

∑τ
k=1 ωkRi,t+1−k. The weights ωk decline geo-

metrically with
∑τ

k=1 ωi = 1, and τ represents the window length6.

1.2 Rolling Methods of Estimating Volatility Compared with
GARCH Techniques

When using rolling methods to estimate volatility, Monte Carlo simulations are needed

to choose the window length or decay rate in order to best preserve the volatility

characteristics.7 Motivated by GARCH estimators, which are infinite rolling regres-

sion estimators, we investigated a finite rolling estimator with geometrically declining

weights of ρk. We denote this estimator as using the first type of geometric weights.

6Using these estimators of conditional volatility, equation (14) in the Appendix may not hold if
past RM helps to predict current ri and vice versa. Fortunately, this is not the case here since ri is
an idiosyncratic return.

7Since volatility is unobservable, statistical inferences based on estimated volatility may be biased
as suggested by Ghyseis and Perron (1993).
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In addition, we also studied a second type of geometrically declining weights (e−αk)

proposed by Foster and Nelson (1996).8 Foster and Nelson have also suggested that

optimal α and τ have a relationship of τ/α =
√
3.

We determined the choice of ρ and τ through Monte Carlo simulations by assuming

that the data generating process for volatility is a GARCH(1,1) process. In particular,

a GARCH(1,1) model of the form ht = κ + δht−1 + φ(rt−1 − µ)2 is fitted to the value

weighted monthly NYSE/AMEX/NASDAQ index return rt during the period 1952 to

1998. We obtained the following parameter values: κ = 0.9348 × 10−4, δ = 0.8586,

φ = 0.0880, and µ = .0107, which implies an unconditional monthly standard deviation

of 4.18%. Based on these estimates, we generated stock return data over the same time

horizon with an added time trend in the volatility, i.e.,

Rt = ut, (6)

ut =
√

htνt, (7)

where

νt ∼ N(0, 1) (8)

ht = κ+ γt+ δht−1 + φu2
t−1, (9)

specify the structure of conditional volatility. To be comparable with the average

trend found in our empirical study, we set γ = 2× 10−6. When ht is known, statistical

inference can be drawn on the γ estimate. However, there are two potential problems.

First, since equation (9) can be rewritten as,

ht = κ+ γt+ (δ + φ)ht−1 + ξt, (10)

ξt = φht−1(ν
2
t−1 − 1),

an OLS regression based on equation (10) is inefficient due to heteroscedastic residuals.

Therefore, a generalized least squares regression should be employed. Fortunately, the
8Two sided rolling regressions may be optimal in maintaining the persistence of volatility, but they

do poorly in detecting a time trend. Therefore, only a one sided rolling regression has been employed.
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residuals and the regressor are independent, and we can use weighted least squares

with weights of
√

ht−1. Second, as shown by Canjels and Watson (1997), the t− ratio

on the γ estimator will not have the right size when ht is very persistent. Further

investigation on the critical values and the bias involved is therefore warranted. In

a separate simulation, we studied the biases in the GLS estimators when the true

volatility is known. On the one hand, when the true persistence is high the slope

coefficient on the linear trend γ is biased upward even with a large sample.9 The bias

disappears, however, when persistence is less than .9 with a sample size of more than

2000. On the other hand, the persistence estimates are biased downwards and are

largely dependent on the sample size. In addition, the t values necessary for rejecting

the hypothesis of a zero trend are larger than the conventional t−ratios but they tend

to be very close for large samples.

Insert Table 1

Similar simulations were conducted in order to determine the best structure for the

rolling estimator. We used a sample size of 564 with ρ = .8, .85, .9, .95 and with window

lengths of 12 and 24, respectively, for the first type of geometric weights. We also tried

the second type of geometric weights with window lengths τ = 6, 12, 18, 24. An AR(1)

model with a trend similar to equation (8) is then fitted to each estimated volatility

series using a GLS procedure. We report the distributions for the γ̂ estimator and the θ̂

estimator in Table 1. Generally speaking, the γ̂ estimator can be biased either upward

or downward. At a high persistence level, the first type of weights with a window

length of 12 seems to induce more upward bias than that of window length 24 which

is more conservative at a low persistence level. We therefore chose a window length of

24 for the first type of weights. Furthermore, we used ρ = .90 since it produces almost

no bias at a high persistence level and is very conservative at a low persistence level.

9The problem is more severe if simple OLS estimators are used.
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However, it seems that the persistence estimator θ̂ is biased upwards most of the time.

Therefore, a second type of geometric weights with τ = 12 was used. This particular

weighting scheme worked best in terms of preserving persistency though it is biased

upward when the true volatility is highly persistent. In order to balance the two biases,

both types of weighting schemes were used in our empirical study.

Insert Table 2

Due to the persistence of volatility, the conventional critical value for a t−test

will not have the right size using GLS. Therefore, for our sample size (T=564), we

have computed critical values at different significance levels for volatility with different

persistence. Table 2 reports these critical values using the first type of weights with

ρ = 0.85 and ρ = 0.90 as well as using the second type of weights with τ = 12 and

τ = 18. In general, the critical values are larger using the second type of weights with

τ = 12 than the conventional level. The same is true under the first type of weights

with ρ = .9. It is also interesting to note that when volatilities are less persistent, the

critical value using first type of weights with ρ = .9 is a little smaller than that of

the conventional level. This may be due to the fact that this type of estimator is very

conservative.

1.3 Testing the volatility trend

As the discussion in the previous section suggests, a generalized least squares regression

should be applied when volatilities are generated from a GARCH(1,1) process with a

trend. We estimated the following model using GLS,10

vt = µ+ ρvt−1 + γt+ α1∆vt−1 + · · ·+ αp∆vt−p + ǫt , (11)

10This is in the spirit of an augmented Dickey-Fuller regression to allow for general structure of
correlations.
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where the vt are the volatility estimates. In this case, the null hypothesis is that

γ ≥ 0. Alternatively, under a general structure of volatility, we can examine if trends

exist in the framework of unit root tests with trend.11 However, it is well known that

the conventional t statistics are invalid on trend estimates. Instead, we will apply

Vogelsang’s (1998) Wald type of tests based on the following model,

log(vt) = µ+ ρlog(vt−1) + ut, (12)

ut = αut−1 + d(L)et,

together with some initial conditions and d(L) =
∑

∞

i=0 diL
i. These tests are robust to

both I(0) and I(1) errors. However, since we do not believe volatility should follow a

random walk (i.e., an I(1)) process as a prior, we use a t−PW1 test to preserve the

best power.12 In particular, we constructed a corresponding 90% confidence interval of

a linear trend on the logarithm of volatility. Stated another way, we can say that there

is positive growth in volatility if the confidence interval is on the positive orthoaxis.

11Due to the non-negativity of volatility, we will use a log volatility measure.
12Vogelsang (1998) provided a detailed discussion on the power of his test. We are indebted to him

for supplying the GAUSS code of the test.
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2 The Empirical Results

It is not uncommon on a single trading day to find that several stocks have changed in

price by 25% or more. Indeed, price changes of more than 50% in a single day for some

stocks (excluding new issues) are not at all uncommon. A natural starting point to

investigate the behavior of volatility of individual stocks is to examine the volatilities of

the most volatile stocks. Later, we study the volatility characteristics of idiosyncratic

risk using two different approaches.

2.1 The Volatility of Individual Stocks

There appear to be obvious patterns of increasing volatility for individual stocks. On

any specific day, the most volatile individual stocks move by extremely large percent-

ages. It appears that when earnings of companies are reported that differ slightly from

the forecasts of Wall Street analysts, or when companies warn the financial commu-

nity that earnings may not meet forecasted levels, the market reaction is immediate

and usually substantial as institutional investors seem likely to interpret the news in

a similar fashion. The question remains whether such impressions from casual empiri-

cism can be documented rigorously and, if so, whether these patterns of volatility for

individual stocks are different from those existing in earlier periods.

Insert Figure 1

Figure 1 measures the daily volatility (the standard deviation of daily returns)13

of the 20 stocks on the CRSP tape each month with the largest percentage price

fluctuations for that month during the period 1963 to 1998. To put the volatility

numbers in perspective, we plot at the bottom of the graph five times the daily volatility

13We adopt such a measure here simply because it corresponds to the way stock traders look at
volatility and provides a useful summary descriptive statistic.

12



of the Standard and Poor’s 500 Index computed in the same way. Similar pictures are

drawn for the 50 most volatile stocks as well as the top 10 and 27 percent of stocks in

terms of measured volatility. As shown by Lys and Sabino (1992), the power of certain

tests is maximized by comparing the mean values in the extreme-ranked groups when

each group contains 27% of the sample. As summarized in the first panel of Table 3,

the most volatile stocks display volatility many times that of the index. For example,

the average volatility of the top 20 most volatile stocks is 40 times that of the average

market index in the ′90s. Even the top 10% most volatile stocks fluctuated more than

the market index in the ′90s by a factor of 15. But what is striking about the analysis

is that when we plot the volatility of different groups of the most volatile stocks over

time, there does seem to be an upward drift not seen in the plot of volatility for the

market as a whole. The average volatility of the 20 (or 10%) most volatile stocks in

the ′90s is three (or two) times as volatile as it was in the ′60s. Furthermore, by

using a proportional measure (such as top 10% or top 27%) we can guard against the

possibility that when our findings show increasing volatility are simply the result of an

increased number of companies in the sample.14

Insert Table 3

It does appear that price changes for the most volatile stocks (which are typically

displayed in the financial pages of major newspapers) have increased in amplitude,

especially during the 1980s and 1990s. The upward trend in volatility for the most

volatile stocks is not due to the volatility persistency shown in our trend test, although

the autoregressive coefficients θ in Table 4 are all very large.15 In all four cases shown,

we reject the hypothesis of no deterministic trend in the volatility series at about the

14One might argue that if volatility is drawn from some fixed distribution and we increase the
number of draws over time, the upper tail will be more volatile for just this reason.

15In addition to AIC and BIC criteria, we use twelve lags in the times series model to account for
possible seasonality.
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1% significance level using our t-type test based on GLS estimates. The robust 90%

confidence intervals are well above zero. In particular, for the portfolio of 20 most

volatile stocks, the standard deviation in the returns of those stocks increases about

0.0215%(= .0047
√
21) a month, while the monthly growth rate of this volatility, using

Vogelsang’s (1998) model in equation (12), is about .0219% over the 1963-1997 period.16

Although these numbers decrease when we include more stocks, as shown in Table 4,

they remain statistically significant in both tests.

Insert Table 4

We have also looked at the other extreme and tested for any tendency for the

volatility of the least volatile stocks (measured either in number or in percentage) to

have increased or decreased over time. There has been no tendency for the most stable

stocks to exhibit either an upward or downward trend in volatility over time.

From a statistical point of view, when there are more firms with volatile returns in

the sample, the probability that we will observe large deviations from the mean will

increase. It might be conjectured, therefore, that our findings are simply an artifact of

the fact that over time our sample is likely to include an increasingly larger number

of small companies. The measured volatility of small-company stocks may be larger

either because of their small size or because of the larger bid-asked spreads associated

with such companies. We tested this hypothesis by examining our sample of most

volatile stocks to insure that the size characteristics of such stocks had not changed

over time. We found that the size of the “most volatile stocks,” however measured, has

not decreased over time. Moreover, the relative size of samples of various percentages

of the most volatile stocks, compared with the total market capitalization of all stocks,

16Vogelsang’s test is based on log standard deviations. In order to be comparable with our estimate,
it is converted according to

√
21∗ .00312 ∗ v̄(1− θ), where v̄ = µ+.5∗Tγ

1−θ
= .0052+.5∗432∗.000047

1−.923
= 19.93%

is the average mean estimate.

14



has actually increased during recent periods. Thus, companies of constant absolute

and relative size have actually become more volatile over time.

2.2 The Volatility Level in Each Decade

In the second panel of Table 3, we compute the average conditional volatility under

different weighting schemes for NYSE/AMEX/NASDAQ stocks. Despite the preceding

evidence on the most volatile stocks and despite popular perception, the remarkable

fact is that the average monthly market volatility in the ′90s is about 3.3%, which is not

much different from those in the ′50s or ′60s. Although the average market volatility in

the ′70s or ′80s seems to have increased from the ′50s or ′60s, a careful examine of the

dashed line in the top panel of Figure 2 suggests that the increase is largely due to the

oil shock and the 1987 stock market crash. Volatility then quickly receded after these

two events. There is no evidence that increased market volatility has accompanied the

growth of derivative market or the increased institutionalization of the stock market

during the decades of ′80s and ′90s.

Insert Figure 2

In contrast, the value weighted total volatility of individual stocks on the CRSP

tape has been around 8% in the two most recent decades compared with about 6%

in the earlier decades. This aggregate volatility is defined in equation (15) and can

be viewed as the overall volatility of a typical stock. It can be further demonstrated

by the solid line in the top panel of Figure 2. If we remove the two sharp spikes in

volatility during the oil shock and the 1987 stock market crash, there is an apparent

upward trend. Note also that the estimates based on different weighting schemes are

virtually the same.
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2.3 The Characteristics of Idiosyncratic Volatility

Volatility itself fluctuates greatly from time to time. Simple averages can not describe

the behavior of the entire volatility series. In this section, we focus on the persistence

and trend in volatility and examine the idiosyncratic volatility estimates using direct

and indirect methods.

The casual observation about market volatility can be further demonstrated by

estimating a trend. Table 5 shows that the trend coefficients γ are not close to being

significant for the market as a whole using the critical values in Table 2. Furthermore,

the robust confidence interval ranges from −.07% to .21% for NYSE/AMEX/NASDAQ

index volatility. The conclusion that a trend does not exist is therefore very robust

whether we use the first or second type of geometric weights. The series is fairly

persistent since the autoregressive coefficient θ tends to be large (above .9). Therefore,

we conclude that both volatility series appear to be stationary and the original findings

of Schwert continue to hold into the 1990s.

Insert Table 5

The low volatility numbers for the market as a whole seem at odds both with our

findings for the volatility of the most volatile stocks and the descriptive statistics for

the total volatility of a typical stock. Campbell, Lettau, Malkiel, and Xu (2001) have

argued that the difference could lie in the behavior of idiosyncratic volatility of the

individual component stocks. Although their conclusion of an upward trend in the

idiosyncratic volatility is based on realized volatilities, applying their indirect method

to compute conditional volatility, we find a similar trend. The indirect estimates of

idiosyncratic volatility have gone up from 4.7% in the ′50s to 7.2% in the ′90s–a more

than 50% increase. While the average idiosyncratic volatilities are comparable in the

′80s and ′90s, there are large increases in each of the preceding decades. As proposed in
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Section 1, we have also constructed idiosyncratic volatility directly from the residuals of

the Fama and French (1993) three-factor model. In particular, each month, we first fit

the three-factor model to each stock using current and previous 35-month return data.

We then apply the same rolling method to estimate the idiosyncratic volatility from

the estimated residuals for each of the stocks. Finally, we aggregate the idiosyncratic

volatility of individual stocks using value weighting. It is interesting to see that the

pattern remains although the direct estimate of idiosyncratic volatility is 10% lower

than that of the indirect estimate on average.

In the second half of Figure 2, we have plotted the aggregate idiosyncratic volatility

estimates for the NYSE/AMEX/NASDAQ composite index portfolio using the second

type of geometric weights. We see visually that the dotted line representing the indirect

estimates of idiosyncratic volatility is always above the direct estimates (the solid line).

If we accept the three-factor model, the indirect estimate of idiosyncratic volatility

seems to be upward biased. Fortunately, both volatility lines appear to increase over

time. Therefore, the basic conclusion of increasing idiosyncratic volatility remains. A

similar pattern emerges when using different weighting schemes.

The similarity between the direct and indirect estimates of idiosyncratic volatility

can be shown from our trend test. As Table 5 indicates, both γ̂ trend estimates are

significant at a 5% level using either the first or second types of geometric weights.

The robust confidence intervals are again above zero. Therefore, no matter how we

measure the idiosyncratic volatility, the basic findings of Campbell, Lettau, Malkiel,

and Xu (2001) are supported. At the same time, except for the persistence of the

conditional idiosyncratic volatilities, the indirect estimate seems to produce higher

mean (µ̂ = .17%) than that of the direct estimate (µ̂ = .13%). Moreover, the growth

rate in the indirect aggregate idiosyncratic volatility estimate (.00026%) is about 30%

larger than that of the direct estimate (.00020%). In both cases, the second type of

geometric weighting scheme tends to produce slightly less persistent but faster growing
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idiosyncratic volatility estimates. While the characteristics of idiosyncratic volatility

estimates may differ depending on the construction method, we conclude that these

tests provide further evidence of increasing idiosyncratic volatility over time.
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3 Trading NASDAQ Stocks

Given the empirical results in the previous section, it is natural to ask why the volatility

of individual stocks has increased. Campbell, Lettau, Malkiel, and Xu (2001) have

explored several explanations, including the break up of conglomerates, early listing of

companies in their life cycle, and a leverage effect. However, the increasing volatility

of individual stocks may simply reflect the increasing share of trading in the NASDAQ

market. The CRSP tape started recording NASDAQ stocks in December 1972. Since

then the total number of NASDAQ stocks has gone up from 1,700 stocks in 1975 to 3,200

stocks at the end of 1998. Meanwhile, listed stocks have increased from 2,400 stocks

to 3,800 stocks over the same time period. Moreover, NASDAQ trading volume now

regularly exceeds the volume traded on the NYSE and AMEX, although comparison

may not be exact since some NASDAQ volume may be double counted. Traditionally,

smaller stocks and those with high growth stocks such as technology companies are

traded on the NASDAQ market. Those stocks tend to be more volatile than the stocks

traded in the listed exchanges. In this section, we study the unique characteristics of

NASDAQ stocks.

Insert Figure 3

Since we need two years of monthly returns to compute conditional volatilities, our

idiosyncratic volatility estimates start from 1995. Using the same approaches as in the

previous section, we have constructed the direct and indirect estimates for idiosyncratic

volatilities. It appears that the direct approach produces more conservative estimates

than the indirect approach. We have plotted the direct idiosyncratic volatility estimates

for NASDAQ stocks in Figure 3 (the dotted line). Although they are value-weighted

estimates, the overall level is much higher than for listed stocks over the same time

period. For example, from Table 3 we see that average volatility is about 10% for
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NASDAQ stocks compared with 5.8% for listed stocks. The second observation from

Figure 3 is the apparent trend in idiosyncratic volatility line for NASDAQ stocks from

the ′70s to the ′90s. Table 3 confirms this observation with average volatility estimates

of 7.8% for the ′70s and 9% for the ′80s.

Insert Table 6

The same type of GLS test and Vogelsang test can be performed on these idiosyn-

cratic volatility estimates. In Panel C of Table 6, we report the test results. No matter

how we measure the idiosyncratic volatilities, they are much less persistent than the

volatility for the total market. At the same time, there exists a very large and sig-

nificant time trend in the idiosyncratic volatility for the NASDAQ sample. However,

the magnitude for the trend estimates is about 60% larger using the indirect approach

than the direct approach.

The interesting question is how the much larger idiosyncratic volatility of NASDAQ

stocks contributes to overall aggregate market idiosyncratic volatility. The dashed line

in Figure 3 indicates that the idiosyncratic volatilities for the listed stocks are fairly

stable after 1984. It is surprising to see that idiosyncratic volatility is not much higher

during the stock market crash of 1987 than any other period. Idiosyncratic volatilities

are especially high during the oil shock of 1975 and the first half of the ′80s when

there was a major restructuring movement in American industry. Therefore, it is

important to test for a trend in idiosyncratic volatility over our whole sample period

for NYSE/AMEX stocks only. Comparing the results reported in Panel B of Table 6

with the corresponding results in Table 5, we see that the persistence of idiosyncratic

volatility is virtually unchanged. The GLS test indicates that we are still able to reject

the hypothesis of no time trend at a 5% significance level even though the evidence

from the robust confidence interval is somewhat weak. However, the growth rate in
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idiosyncratic volatility is about 40% lower than before. Therefore, NASDAQ stocks do

have significant impact on the idiosyncratic volatility trend.

Of course, it is not justifiable to exclude NASDAQ stocks. There are many ex-

tremely large company stocks traded on NASDAQ market, such as Microsoft, Intel,

and Cisco Systems to name a few. These are companies that are leaders in their in-

dustries. Thus we need also to investigate the volatility of large companies alone. In

particular, we will examine the (simulated) S&P 500 portfolio that includes 500 of the

largest companies (in terms of their capitalization). As shown in Table 3, the volatility

of this index portfolio is very close to that of the NYSE/AMEX/NASDAQ compos-

ite index. But the aggregate idiosyncratic volatility estimates seem to be lower over

the same time period. The trend test results are summarized in Panel A of Table 6.

For both the direct and indirect estimates of idiosyncratic volatility series, the GLS

based t type of test shows that a deterministic time trend is significant at a 5% level

when using either the first type or the second type of geometric weights. At the same

time, both robust confidence intervals are above or almost above zero. Furthermore,

compared to the results for NYSE/AMEX stocks only in Panel B, we see that they

have the same persistence level. However, the growth rate for idiosyncratic volatility is

10% higher than that of the NYSE/AMEX stocks. Therefore, large stocks rather than

small stocks appear to play an important role in the trend of idiosyncratic volatility.
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4 Institutional Ownership

Here we examine our conjecture that the increased importance of institutional investors

in the market has influenced idiosyncratic volatility. The stock market today is no

longer a market of millions of individual investors whose buy and sell decisions are

often likely to be uncoordinated. Today’s market is dominated by institutions who get

their news from the same sources, and who are often likely to change their sentiment

simultaneously about both individual stocks and the market as a whole.17 volatility

The growing institutional presence in the stock market is apparent from Table 7.

The percentage of total equity held by institutions has increased eight-fold from 1950

to 1998, and the proportion of block trades (trades of more than 10,000 shares, which

are almost exclusively executed by institutional investors) has climbed to about half of

total volume. Periodic surveys on the composition of traders on the New York Stock

Exchange has indicated that on selected days as much as 90% of the trading has been

generated by institutions (pension funds, mutual funds, etc.).

Insert Table 7

Turnover on the exchange has more than quadrupled since 1970. Moreover, when

the 500 stocks in the S&P index were ranked by the percentage of institutional own-

ership as of December 1998, each of the 50 stocks in the top decile had 80% or more

of their shares held by institutional investors. Institutional ownership for the median

stock in the index was 62.5%. Consequently, buying and selling is more likely to be co-

ordinated across institutions, and market prices may be more volatile and more quickly

responsive to new information or to changes in risk perceptions. While institutional

trading can affect both market- and firm-level volatility, we suggest that institutional

17To the extent that individuals do still participate in trading, they tend to do so over the Internet
and they tend to receive the same news simultaneously through electronic channels.
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trading will have far greater impact on individual volatility since the arrival of infor-

mation on individual stocks is much more frequent.18

In order to investigate the role of institutions in influencing idiosyncratic volatility,

we obtained panel data on institutional ownership for each stock in the S&P 500 index

portfolio during an eight year period from 1989 to 1996. We then examined if the degree

of institutional ownership was related to the volatility of individual stocks by testing

for a positive cross-sectional relationship during each of the eight years between the

volatility of the stocks in the index and the percentage of institutional ownership.

Here idiosyncratic volatility is calculated as the mean of the squared residuals of

daily returns over the fourth quarter of the year (which corresponds to the available

institutional holding data) from the CAPM model fitted to each stock.19 Although

the logarithmic transformation of volatilities in the OLS regression reduces much of

the heteroscedasticity problem, residuals are still apparently positively skewed. Thus,

usual statistical inference will be invalid (see McDonald and Newey, 1988). We es-

timated all the models using a partially adaptive estimator developed in McDonald

and Xu (1995).20 Such an estimation technique not only nests the OLS method as a

special case but also allows skewed and leptokurtic residuals. The first eight equations

(Model I) in Table 8 show that, except for 1990, the logarithms of individual stocks’

idiosyncratic volatilities are positively and significantly (at 5% level or better) related

to the proportion of institutional ownership. The result is strongest for 1995.

Volatility is also likely to be negatively correlated with the size of the company.

Thus, our results may simply reflect a size effect. Therefore, we have also controlled

18A similar argument concerning coordinated trading may apply to individual investors engaged in
“day trading” over the Internet who have tended to focus their trades on Internet-related companies.

19Since we are interested in the idiosyncratic volatility of individual stocks, this measure is used
instead of the one suggested in Section 1. Furthermore, in order to obtain stable beta estimates, daily
returns over the whole year are used in the estimation of the CAPM.

20Essentially, it is a maximum likelihood estimator based on the exponentially generalized beta
distribution of type two (EGB2).
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for the size effect, where size is measured simply as the log of the total capitalized value

of each firm. The eight equations of Model II in Table 8 suggest that the institutional

ownership is still strongly related to the idiosyncratic volatilities even after controlling

for the size effect.

Insert Table 8

In order to provide a summary statistic for our panel data, we have also run a

pooling regression, where we pool all eight years of data together. As indicated in

Table 8, again we find strong evidence (now with zero p − values) that idiosyncratic

volatility is positively related to institutional ownership after controlling for the size

effect. The conclusion is further supported from evidence on pooled thirteen industry

portfolios according to Ferson and Harvey’s (1991) classification scheme shown in the

last equation in Table 7. The R2 for the regression is as high as 34%. When the size

variable is also included, the R2 only increase to 38%. In other words, it appears that

the greater is the percentage of a firm’s outstanding shares owned by institutions, the

more volatile is the firm’s stock returns relative to the market.

Gompers and Metrick (1999) find similar results between institutional ownership

and total volatility. Of course, such a contemporaneous relationship does not reveal

causality. Fortunately, we were able to investigate the direction of causality between

ownership and idiosyncratic volatility in the sense of Granger causality. There are

missing institutional ownership data in our sample. In other words, the number of

stocks for which we have ownership data out of the 500 stocks ranges from 391 to 467

from 1989 to 1996. Furthermore, the S&P500 portfolio changes from year to year. In

order to best use our sample, we constructed thirteen industry portfolios according to

the SIC classification scheme used by Ferson and Harvey (1991) using value weighting.

In particular, we estimated the following regression using the pooled industry portfolio
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data,

log(Vidio.,t) = −2.767 + .391log(Vidio.,t−1) + .010Ownershipt−1 + êt R2 = 0.481.

(0.455) (.097) (.003)

We rejected the hypothesis that the lagged institutional ownership variable has no

explanatory power with an F statistics of 14.08. This means that increases in institu-

tional ownership Granger cause increases in the idiosyncratic volatility. Similarly, we

can run the following regression,

Ownershipt = 17.04 + .861Ownershipt−1 + .0261log(Vidio.,t−1) + êt R2 = 0.900.

(7.158) (.042) (.015)

However, we fail to reject the hypothesis that the lagged volatility variable has no

explanatory power (F statistics of 2.93). In other words, Granger causality is not con-

firmed the other way around. Therefore, the evidence is consistent with our conjecture

that the institutionalization of the market may have played a role in increasing the

volatility of individual stocks.
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5 Earning Growth and Idiosyncratic Volatility

We further conjectured that companies who expect to enjoy high future growth rates are

likely to exhibit high idiosyncratic volatility. Consider a company making a standard

consumer product whose earnings may grow moderately with the growth of population

but whose investments, if any, are likely to be very small, scale-changing investments.

Thus, whatever investments are made are unlikely to involve new technologies. On

the other hand, consider a high-growth company operating in an industry with rapid

technological change, which is making substantial investments for future growth. Such

a company is likely to face considerable technological change over time and, conse-

quently, far greater risk. Indeed, from the firm’s perspective, in order to keep up

with the high growth expectations, the firm will need to reinvent itself from time to

time by investing in unique projects. By definition, those unique projects will likely

involve considerable idiosyncratic risk. Therefore, we believe that it is reasonable to

expect that companies for which high expected growth is forecasted will also be likely

to have high idiosyncratic volatility. We will test this hypothesis with cross- sectional

regressions.

In order to classify companies in terms of their expected growth, we use the growth

estimates of Wall Street security analysts who analyze corporations and their invest-

ment plans. Security analysts regularly publish long-run (specifically 5-year) growth

estimates. These estimates are collected by IBES, the institutional brokerage estimate

service.

The 1995 version of the IBES history tape on analysts’ earnings projection is used

in our empirical study. We examine the ten-year period from 1986 to 1995. In order

to obtain reliable forecasts on earnings growth, we only include stocks that at least

have two analysts making projections. For the same reason, wherever possible, we use
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the median of long-term forecasts on earnings growth.21 The idiosyncratic volatility

for a particular firm is computed by estimating the mean square residuals from Fama

and French’s (1993) three factor model using monthly returns one year before and two

years after the statistical date for any given year.22

In Table 9, we report the cross-sectional regressions of idiosyncratic volatility on

expected long-term growth for each year from 1986 to 1995. The logarithm of volatility

is used in actual regressions to reduce heteroscedasticity. It is evident that we can reject

a hypothesis of no positive relationship between idiosyncratic volatility and expected

growth rate at the 1% level or better. Moreover, R2s are moderate, ranging from

5% to 21%. For example, in 1995, a 1% increase in earning growth corresponds to a

percentage rise in the standard deviation of idiosyncratic risk. A pooling regression is

also performed on the whole sample period. The estimates are very significant, with

an R2 of 11%. As mentioned before, idiosyncratic volatility and firm size are highly

correlated. In order to control for the size effect, we have also run multivariate cross-

sectional regressions. Although the corresponding estimates are somewhat smaller than

before, they remain highly statistically significant. As expected, the R2s increase to

more than 40%.

Insert Table 9

It is also interesting to note that the relationship between idiosyncratic volatility

and earning growth is nonlinear as shown in Figure 4, where size adjusted idiosyncratic

volatility is used for 1995. It seems there is a turning point around a growth rate of 5%.

When the growth rate is above this point, a positive relationship between idiosyncratic

volatility and growth rates is observed as we discussed above. However, there appears

21These are annualized earning growth rates for the next three or five years.
22The statistical date is the date when summary statistics are computed by IBES. Usually, the

forecasts are made some time before the statistical date. Therefore, we use the three-year period to
compute idiosyncratic volatility
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to be a negative relationship for firms with low growth or negative growth. Such

patterns exist for every year except the first two years in our sample. This makes

perfect sense. Firms with very low or negative growth are most likely to be in some

degree of financial distress. Since the future of these firms is unclear, their stocks are

likely to exhibit greater idiosyncratic volatility. This suggests that we may have much

stronger results when the model is correctly specified.

Insert Figure 4

Applying a nonlinear least square technique, we have also estimated a “check shape”

piecewise linear model. The results shown in Table 9 are highly significant with much

steeper slope estimates than those from the simple OLS regressions. For example,

in 1995, a 1% increase in earning growth is associated with a 1.33% increase in the

standard deviation of idiosyncratic risk. The turning point is about 5%. When we only

use firms with growth rates that are higher than the turning point growth rate, which

is estimated endogenously, the last two columns of Table 9 show very similar results

with R2 ranging from 13% to 29%. Therefore, we conclude that the empirical evidence

strongly supports our hypothesis.
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6 Concluding Comments

In this study, we have considered several plausible reasons why idiosyncratic volatility

in the stock market should have increased over recent decades. The growth in the pro-

portion of trading done by institutional investors may have increased the responsiveness

of markets to changes in sentiment. Moreover, the focus on growth that dominated in-

stitutional investor preferences during the 1990s may have redirected firms’ preferences

in investment. By pursuing unique investment projects, firms are more vulnerable to

idiosyncratic risk. We found cross-sectional evidence supporting an association between

institutional ownership and the volatility of individual stocks as well as a positive re-

lationship between idiosyncratic volatility and expected earning growth. Furthermore,

the increasing prominence of NASDAQ market could also have contributed to high

overall volatility. By extracting the NASDAQ stocks, we find a less dramatic idio-

syncratic volatility trend, although it is still significant. However, high idiosyncratic

volatility does not appear to be caused by the increase numbers of small stocks in our

sample.

In this study, we have examined the similarities and differences in idiosyncratic

volatility estimates using direct and indirect approaches. The persistence of volatility is

very similar under both approaches. However, the indirect approach seems to overstate

the overall level of idiosyncratic volatility. Moreover, the growth rate in idiosyncratic

volatility tends to be higher using the indirect rather than the direct approach, although

both are significant.

Finally, we find that the most volatile stocks each month (those with the largest

percentage change in total return for the month) display an even more dramatic pattern

of increasing volatility over time during the 25-year period from the late 1960s through

the 1990s. This finding is not an artifact of some differential character of the most

volatile stocks over time, such as a size effect.
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Appendix

In general, the excess return for each stock Ri,t relative to the risk-free rate can be

written as the sum of its systematic excess return component Rs
i,t, and its idiosyncratic

return component ri,t. Its corresponding volatility can also be decomposed into two

components: systematic volatility and idiosyncratic volatility. Furthermore, we shall

define the market portfolio as a value weighted portfolio of N stocks, and its excess

return will be defined as RM
t =

∑N
i=1 wiRi,t, where the wi represents the weight of each

stock in the index, with
∑N

i=1 wi = 1. In the case where the systematic element of

a security’s excess return, Rs
i,t, is simply the market excess return, RM

t , we have the

following relationship:

V ar(Ri,t) = V ar(RM
t ) + V ar(ri,t) + 2Cov(RM

t , ri,t), (13)

and because by definition Cov(RM
t , ri,t) = 0, we obtain the following cross-sectional

weighted sum,
N

∑

i=1

wiV ar(Ri,t) = V ar(RM
t ) +

N
∑

i=1

wiV ar(ri,t). (14)

Equation (14) suggests that the value-weighted aggregate volatility of individual stocks

consists of the volatility imparted by movements in the broad market index and aggre-

gate idiosyncratic volatility. While all the volatilities we have used are unconditional

volatilities, under the common information assumption, the decomposition in equation

(14) also holds for conditional variances. This equation provides a simple and feasible

approach to calculate conditional aggregate idiosyncratic volatility as in equation (15),

and is restated in the following,

v̂2
I,t = v̂2

A,t − v̂2
M,t. (15)

Under the previous assumptions, equation (15) is an exact relationship. Therefore,

aggregate idiosyncratic volatility can be correctly estimated as long as v̂2
A,t and v̂2

M,t
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are unbiased. The decomposition is not exact for more complex models of systematic

return but is a good approximation for the cases considered. For example, in the case

where the systematic excess return Rs
i,t is a function of the market excess return RM

t ,

the Capital Asset Pricing Model (CAPM) holds. The systematic excess return can

then be expressed as βiR
M
t . Similar to equation (13), we have the following,

V ar(Ri,t) = β2
i V ar(RM

t ) + V ar(ri,t) + 2βiCov(RM
t , ri,t). (16)

Taking weighted sums across individual stocks yields:

N
∑

i=1

wiV ar(Ri,t) = β̂2V ar(RM
t ) +

N
∑

i=1

wiV ar(ri,t), (17)

where β̂2 =
∑N

i=1 wiβ
2
i . Here again one can replace unconditional second moments by

conditional ones if the common information restriction holds. However, as Campbell

(1991) has shown, past interest rates may help to predict RM and we do not take such

a relationship into account in the computation of conditional variances. Because the

predictability is weak, however, the problem of incorrect use of univariate information

sets is likely to be small.

When we use equation (15) to estimate aggregate idiosyncratic volatility, vI,t, the

volatility estimate will be biased by (β̂2 −1)v2
M,t. If, as an approximation, we treat the

weights wi as some probability measure, then β̂2 − 1 is the variance of βi. In this case,

the volatility measure will be biased upwards. However, the estimated bias is likely to

be small, in the neighborhood of 4% to 5% of the market volatility.23 Furthermore, if

the market volatility is stable, as we shall show it is, the bias will have little effect on

the magnitude of the trend over time since all the volatility estimates will suffer the

same degree of bias. Moreover, the empirical evidence of little correlation between v̂2
I,t

and v2
M,t also suggests that the bias is likely to be quite small.

24

23These bias estimates are based on the construction of 100 portfolios of the type used by Fama
and French (1992) over our sample period.

24Schwert and Seguin (1990) have shown that the cross-sectional dispersion in betas is correlated

31



References

[1] Andersen, T.G.; Bollerslev, T.; Diebold, F.X.; and Ebens, H. 2001. The distribu-

tion of realized stock return volatility. Journal of Financial Economics 61: 43-76.

[2] Andersen, T.G.; Bollerslev, T. 1997. Intraday periodicity and volatility persistence

in financial markets. Journal of Empirical Finance 4: 115-158.

[3] Bollerslev, T.; Chou, R.Y.; and Kroner, K.F. 1992. ARCH modeling in finance: a

review of the theory and empirical Evidence. Journal of Econometrics 52: 5-59.

[4] Bollerslev, T.; Engle, R.F.; and Nelson, D.B. 1994. ARCH models, in Handbook

of Econometrics. Vol. 4 (R.F. Engle and D. McFadden, eds.), Amsterdam: North

Holland Press.

[5] Braun, P.A.; Nelson, D.B.; and Sunier, A.M. 1995. Good news, bad news, volatil-

ity, and beta. Journal of Finance 50: 1575-1603.

[6] Campbell, J. Y. 1991. A variance decomposition for stock returns. The Economic

Journal 101 (405): 157-79.

[7] Campbell, J. Y.; Lettau, M.; Malkiel, B.G. and Xu, Y. 2001. Have individual

stocks become more volatile? an empirical exploration of idiosyncratic risk. The

Journal of Finance 56: 1-43.

[8] Canjels, E., and Watson, M. W. 1997. Estimating deterministic trends in the

presence of serially correlated errors. The Review of Economics and Statistics 79:

184-200.

with the level of market volatility. This conclusion is reached by comparing an equally weighted group
of small-stock portfolios with an equally weighted group of large-stock portfolios. In order to account
for this effect, we have used value weighting in this study since large dispersion in betas is much more
significant for small stocks than for large stocks.

32



[9] Chou, R.Y. 1988. Volatility persistence and stock valuations. Journal of Applied

Econometrics 3: 279-294.

[10] Engle, R.F. 2001. The econometrics of ultra-high- frequency data. Econometrica

68: 1-22.

[11] Engle, R.F., and Russell, J.R. 1997. Forecasting the frequency of changes in quoted

foreign exchange prices with the autoregressive conditional duration model. Jour-

nal of Empirical Finance 4: 187-212.

[12] Engle, R.F., and Russell, J.R. 1998. Autoregressive conditional duration: a new

model for irregularly spaced transaction data. Econometrica 66: 1127-1162.

[13] Fama, E.F., and French, K. R. 1988. Permanent and temporary components of

stock prices. Journal of Political Economy 96 (April): 246-73.

[14] 1992. The cross-section of expected stock returns. Journal of Finance 47:

427- 465.

[15] 1993. Common risk factors in the returns on stocks and bonds. Journal of

Financial Economics 33: 3-56.

[16] Ferson, W.E., and Harvey, C.R. 1991. The variation of economic risk premiums.

Journal of Political Economy 99: 385-415.

[17] French, K.R.; Schwert, G.W.; and Stambaugh, R.F. 1987. Expected stock returns

and volatility. Journal of Financial Economics 19: 3-29.

[18] Foster, D.P., and Nelson, D.B. 1996. Continuous record asymptotics for rolling

sample variance estimators. Econometrica 64: 139-174.

[19] Ghysels, E.; Harvey, A.; and Renault, E. 1997. Stochastic volatility, in Handbook

of Statistics, Vol. 14 (G.S. Maddala, eds.), Amsterdam: North Holland Press.

33



[20] Ghysels, E., and Perron, P. 1993. The effect of seasonal adjustment filters on tests

for a unit root. Journal of Econometrics 55: 57-98.

[21] Gompers, P.A., and Metrick, A. 2001. Institutional investors and equity prices.

Quarterly Journal of Economics 116: 229-59.

[22] Hasbrouck, J. 1999. The dynamics of discrete bid and ask quotes. Journal of

Finance 54: 2109-2142.

[23] Ibbotson Associates 1998. Stocks, Bonds, Bills, and Inflation: 1998 Yearbook,

Chicago.

[24] Lys, T., and Sabino, J.S. 1992. Research design issues in grouping-based tests.

Journal of Financial Economics 32: 355-387.

[25] Malkiel, B.G., and Xu, Y. 2000. Idiosyncratic risk and security returns. Working

Paper, School of Management, The University of Texas at Dallas.

[26] Malkiel, B.G., and Xu, Y. 1997. Risk and return revisited. Journal of Portfolio

Management 23 (3): 9-14.

[27] McDonald, J.B., and Newey, W.K. 1988. Partially ddaptive estimation of regres-

sion models via the generalized t- distribution. Econometric Theory 4: 428-457.

[28] McDonald, J.B., and Xu, Y. 1995 A generalization of the beta distribution with

applications. Journal of Econometrics 66: 133-152.

[29] Schwert, G.W. 1989. Why does stock market volatility change over time?’ Journal

of Finance 44: 1115-1153.

[30] Schwert, G.W., and Seguin, P.J. 1990 Heteroskedasticity in stock returns. Journal

of Finance 45: 1129-55.

34



[31] Vogelsang, T. 1998. Trend function hypothesis testing in the presence of serial

correlation. Econometrica 66: 123-148.

35



Table 1: Simulation Results for Window Lengths and Decay Rates
This table shows the results of simulations used to determine window lengths and decay rates. Rolling
regressions with different weighting schemes are used to estimate volatility on return data generated
according to equations (6) and (7). These volatility estimates are then fitted to the following model
using the GLS procedure described in Section 1.2,

vt = κ + γt + θvt−1 + ǫt.

True GARCH Type I Weights w/ 12 Lags Type I Weights w/ 24 Lags Type II Weights
Param. C.I. Volt. .8k .85k .9k .95k .8k .85k .9k .95k 6lags 12lags 18lags 24lags

γ̂ Estimates
κ = 2.592 Up90 2.89 2.54 2.05 1.66 1.36 2.45 1.88 1.33 .848 3.99 1.92 1.33 1.02
γ = 2.000 Mode 2.12 1.67 1.33 1.06 .866 1.61 1.21 .821 .493 2.41 1.24 .822 .606
θ = .8519 Lw10 1.53 .932 .758 .589 .475 .926 .691 .449 .253 1.17 .705 .448 .322
κ = 2.178 Up90 3.02 2.89 2.34 1.88 1.53 2.78 2.13 1.49 .939 4.61 2.19 1.48 1.14
γ = 2.000 Mode 2.16 1.89 1.51 1.20 .975 1.83 1.36 .914 .542 2.79 1.41 .914 .670
θ = .8756 Lw10 1.50 1.08 .861 .671 .535 1.05 .775 .497 .277 1.40 .800 .499 .352
κ = 1.763 Up90 3.19 3.39 2.75 2.20 1.78 3.26 2.48 1.70 1.06 5.43 2.57 1.70 1.30
γ = 2.000 Mode 2.20 2.21 1.76 1.39 1.12 2.12 1.56 1.03 .607 3.34 1.63 1.04 .753
θ = .8993 Lw10 1.47 1.27 .999 .783 .613 1.22 .883 .557 .309 1.70 .928 .563 .392
κ = 1.349 Up90 3.42 4.13 3.36 2.69 2.16 3.97 2.98 2.03 1.26 6.73 3.12 2.02 1.53
γ = 2.000 Mode 2.26 2.69 2.13 1.66 1.34 2.55 1.85 1.20 .697 4.18 1.97 1.22 .868
θ = .9229 Lw10 1.43 1.52 1.19 .920 .724 1.46 1.03 .637 .340 2.16 1.10 .654 .443
κ = .9348 Up90 3.83 5.46 4.41 3.49 2.80 5.19 3.86 2.61 1.58 8.92 4.08 2.62 1.91
γ = 2.000 Mode 2.39 3.50 2.74 2.13 1.70 3.26 2.33 1.48 .838 5.64 2.53 1.51 1.05
θ = .9466 Lw10 1.36 1.95 1.48 1.13 .900 1.81 1.25 .746 .385 2.89 1.36 .779 .507
κ = .5205 Up90 4.76 8.26 6.56 5.16 4.16 7.76 5.65 3.70 2.19 13.9 6.08 3.81 2.72
γ = 2.000 Mode 2.69 5.17 3.98 3.04 2.42 4.74 3.29 2.03 1.12 8.70 3.66 2.10 1.41
θ = .9703 Lw10 1.32 2.72 2.05 1.55 1.21 2.48 1.64 .942 .452 4.39 1.88 1.00 .612

θ̂ Estimates
κ = 2.592 Up90 .884 .898 .921 .939 .952 .904 .932 .957 .976 .837 .927 .956 .970
γ = 2.000 Mode .841 .857 .887 .912 .929 .863 .899 .933 .961 .769 .895 .933 .951
θ = .8519 Lw10 .786 .803 .842 .874 .897 .811 .857 .901 .937 .679 .852 .901 .924
κ = 2.178 Up90 .904 .904 .926 .943 .955 .910 .937 .961 .978 .843 .932 .960 .973
γ = 2.000 Mode .863 .862 .892 .916 .932 .869 .905 .938 .963 .776 .900 .937 .954
θ = .8756 Lw10 .813 .809 .847 .878 .901 .818 .862 .905 .941 .684 .858 .906 .928
κ = 1.763 Up90 .925 .912 .932 .948 .959 .917 .943 .965 .981 .850 .938 .964 .976
γ = 2.000 Mode .886 .869 .898 .921 .937 .876 .911 .942 .967 .782 .906 .942 .958
θ = .8993 Lw10 .839 .815 .852 .883 .906 .825 .868 .911 .945 .689 .863 .910 .933
κ = 1.349 Up90 .945 .920 .940 .954 .964 .926 .950 .970 .984 .860 .945 .969 .980
γ = 2.000 Mode .910 .877 .905 .926 .941 .885 .918 .948 .970 .791 .912 .947 .963
θ = .9229 Lw10 .865 .823 .859 .889 .912 .832 .876 .917 .950 .697 .869 .916 .938
κ = .9348 Up90 .963 .932 .948 .961 .970 .937 .959 .976 .989 .873 .953 .974 .984
γ = 2.000 Mode .933 .888 .913 .934 .948 .896 .927 .955 .975 .803 .921 .954 .968
θ = .9466 Lw10 .892 .832 .868 .898 .918 .842 .884 .924 .955 .708 .878 .923 .944
κ = .5205 Up90 .980 .947 .961 .972 .979 .953 .971 .984 .994 .893 .965 .983 .990
γ = 2.000 Mode .956 .902 .926 .944 .956 .911 .940 .964 .981 .820 .932 .962 .975
θ = .9703 Lw10 .922 .844 .879 .906 .926 .855 .896 .934 .962 .725 .888 .932 .952
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Table 2: Critical Values of a GLS Estimator of Volatility Trend
This table shows the critical values of a t type test on a GLS estimator of volatility trend described in
Section 1.2. The volatilities are estimated using rolling regressions with selected weighting schemes.

True Critical Value for γ

θ 99.5 99.0 97.5 95.0 5.0 2.5 1.0 0.5

Using Type I Weights (.85k) Over 24 Lags
0.85194 2.5439 2.3335 2.0491 1.7372 -1.7196 -2.0316 -2.4864 -2.8260
0.87561 2.5561 2.3268 2.0562 1.7487 -1.7331 -2.0532 -2.4674 -2.8401
0.89927 2.5969 2.3410 2.0887 1.7757 -1.7559 -2.0654 -2.4796 -2.9592
0.92293 2.6483 2.3883 2.1353 1.8307 -1.8280 -2.1037 -2.5449 -3.0367
0.94660 2.6927 2.5184 2.2346 1.9183 -1.9414 -2.2363 -2.6589 -3.1605
0.97026 2.9881 2.7778 2.4553 2.0425 -2.1008 -2.4664 -2.9495 -3.2086

Using Type I Weights (.90k) Over 24 Lags
0.85194 2.3971 2.1828 1.9225 1.6082 -1.5982 -1.8682 -2.3272 -2.7470
0.87561 2.3956 2.1645 1.9220 1.6144 -1.6083 -1.8800 -2.3029 -2.7126
0.89927 2.4281 2.1687 1.9311 1.6453 -1.6192 -1.8997 -2.2685 -2.6749
0.92293 2.4404 2.1906 1.9522 1.6750 -1.6455 -1.9253 -2.3039 -2.6340
0.94660 2.4910 2.2595 2.0085 1.7209 -1.6880 -1.9714 -2.3947 -2.6117
0.97026 2.6630 2.4294 2.1682 1.8045 -1.8464 -2.1313 -2.5162 -2.7224

Using Type II Weights (e−αk) Over 12 Lags
0.85194 2.4808 2.3814 1.9664 1.6293 -1.7274 -1.9605 -2.4676 -2.7844
0.87561 2.5239 2.4158 1.9736 1.6763 -1.7371 -1.9961 -2.4296 -2.8277
0.89927 2.5976 2.4571 2.0362 1.7294 -1.7606 -2.0530 -2.4999 -2.8947
0.92293 2.7271 2.5182 2.1418 1.7972 -1.8429 -2.1519 -2.5747 -3.0023
0.94660 2.9674 2.6159 2.2285 1.8956 -1.9505 -2.2896 -2.7529 -3.2339
0.97026 3.1743 2.8581 2.5169 2.1154 -2.2183 -2.5785 -2.9718 -3.4088

Using Type II Weights (e−αk) Over 18 Lags
0.85194 2.2804 2.1670 1.8559 1.5640 -1.5435 -1.8372 -2.2871 -2.6206
0.87561 2.2997 2.1485 1.8744 1.5730 -1.5458 -1.8412 -2.2606 -2.6711
0.89927 2.3061 2.1445 1.9042 1.5885 -1.5705 -1.8606 -2.2442 -2.6994
0.92293 2.3152 2.1593 1.9377 1.6299 -1.6016 -1.9030 -2.2579 -2.6740
0.94660 2.4853 2.2447 1.9954 1.6985 -1.6861 -1.9691 -2.3519 -2.6556
0.97026 2.7139 2.4221 2.1460 1.8072 -1.8647 -2.1292 -2.5546 -2.7448
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Table 3: Average Volatilities over Different Decade
This table shows the average of different measures of volatility for the ’50s, ’60s, ’70s, ’80s, and ’90s.
The volatilities for the most volatile stocks are calculated from daily returns, while other volatilities
are computed using rolling estimates discussed in Section 1.2. Note that the ’60s denotes the period
from 1963 to 1969 for the most volatile stocks; the ’70s denotes the period from 1975 to 1979 in the
NASDAQ sample; and the ’90s denotes the period from 1990 to 1998. “Idio I” is the idiosyncratic
volatility constructed by subtracting index volatility from the corresponding aggregate total volatility,
while “Idio II” is the idiosyncratic volatility calculated directly from the Fama and French (1993) three
factor model.

’50s ’60s ’70s ’80s ’90s ’50s ’60s ’70s ’80s ’90s

Panel A: The most volatile stocks
Market 0.48 0.75 0.82 0.70
Top20 10.6 13.2 19.4 28.2
Top50 8.63 11.1 16.1 24.3
Top10p 5.70 6.47 8.00 11.4
Top27p 4.25 4.86 5.75 8.09

using power weights using exponential weights
Panel B: NYSE/AMEX/NASDAQ sample

Market 3.05 3.24 4.28 4.47 3.30 2.95 3.17 4.19 4.33 3.25
Total 5.62 6.31 7.99 8.65 8.00 5.55 6.23 7.89 8.53 7.93
Idio I 4.70 5.35 6.71 7.34 7.22 4.66 5.28 6.64 7.27 7.16
Idio II 4.20 4.84 5.99 6.65 6.56 4.17 4.78 5.93 6.59 6.50

Panel C: S&P 500 sample
Market 2.96 3.08 4.01 4.23 3.23 3.05 3.15 4.10 4.35 3.28
Total 5.41 5.78 7.19 7.79 6.87 5.48 5.86 7.29 7.88 6.91
Idio I 4.49 4.82 5.91 6.44 5.98 4.52 4.88 5.98 6.50 6.02
Idio II 4.02 4.40 5.35 5.87 5.42 4.05 4.44 5.41 5.92 5.46

Panel D: NYSE/AMEX sample
Market 3.05 3.24 4.36 4.49 3.19 2.95 3.17 4.27 4.35 3.15
Total 5.62 6.31 7.86 8.24 7.18 5.55 6.23 7.75 8.12 7.13
Idio I 4.70 5.35 6.49 6.84 6.38 4.66 5.28 6.42 6.78 6.33
Idio II 4.20 4.84 5.75 6.18 5.81 4.17 4.78 5.69 6.13 5.77

Panel E: NASDAQ sample
Market 4.82 5.43 4.59 4.94 5.60 4.64
Total 9.06 10.8 11.8 9.25 10.9 12.0
Idio I 7.62 9.21 10.8 7.77 9.29 10.9
Idio II 7.79 8.98 10.0 7.93 9.07 10.1
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Table 4: Test Statistics for the Most Volatile Stocks from the
NYSE/AMEX/NASDAQ Markets
This table shows that the volatility of the most volatile stocks has increased over time. The t type
tests are based on the GLS estimate of the following model,

Vt = µ + θVt−1 + γt + α1∆Vt−1 + · · · + αp∆Vt−p + ǫt.

Twelve lags are used according to AIC and BIC criteria.The critical values on γ̂ estimates can be
found in Table 3. The robust Wald type tests of Vogelsang are based on estimates from equation (17)
in Section 1.4 using log volatility. Therefore, γ̂ is the growth rate of volatility. The corresponding
90% confidence intervals for γ̂ are reported here for convenience.

20 Most Volatile Stocks 50 Most Volatile Stocks
µ θ γ R2 µ θ γ R2

Vt .0052 0.923 .000047 0.821 .0038 0.931 .000037 0.858
t-Value 2.244 32.96 2.907 2.221 36.47 2.908
90% γ̂min .00225 .00242
Confidence γ̂ .00312 .00321
Interval γ̂max .00400 .00401

10% Most Volatile Stocks 27% Most Volatile Stocks
µ θ γ R2 µ θ γ R2

Vt .0038 0.915 .000015 0.755 .0036 0.900 .000011 0.685
t-Value 2.668 31.33 2.890 2.795 26.46 2.836
90% γ̂min .00121 .00106
Confidence γ̂ .00198 .00174
Interval γ̂max .00275 .00243
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Table 5: Test Statistics for NYSE/AMEX/NASDAQ Index Portfolio
This table presents tests rejecting the existence of time trends in the volatility of the indices, and
failing to reject time trends in the aggregated idiosyncratic volatility series. The t type tests are based
on the GLS estimates of the following model,

Vt = µ + θVt−1 + γt + α1∆Vt−1 + · · · + αp∆Vt−p + ǫt,

where the Vt series are standard deviations. Six lags are used according to AIC and BIC criteria. The
critical value on γ̂ estimates can be found in Table 1. The robust Wald type tests of Vogelsang are
based on estimates from equation (9) in Section 1.2 using log volatility. Therefore, γ̂ is the growth
rate of volatility. The corresponding 90% confidence intervals for γ̂ are reported here for convenience.
“Idiosyncratic Volatility I” is constructed by subtracting index volatility from the corresponding ag-
gregate total volatility, while “Idiosyncratic Volatility II” is calculated directly from the Fama and
French (1993) three factor model.

Type I Geometric Weights (.9k) Type II Geometric Weights (e−αk)
with Window Length of 24 with Window Length of 12

µ θ γ × 10−4 R2 µ θ γ × 10−4 R2

Index Volatility
Vt .0024 0.929 .0111 0.517 .0026 0.920 .0136 0.492
t-Value 3.198 46.9 0.920 3.386 44.70 1.020
90% γ̂min -.00069 -.00061
Confidence γ̂ .00071 .00072
Interval γ̂max .00212 .00204

Aggregate Volatility
Vt .0029 0.949 .0354 0.805 .0032 0.942 .0398 0.782
t-Value 3.367 64.83 2.758 3.631 61.30 2.899
90% γ̂min .00021 .00025
Confidence γ̂ .00108 .00108
Interval γ̂max .00196 .00191

Idiosyncratic Volatility I
Vt .0017 0.962 .0258 0.915 .0019 0.958 .0281 0.907
t-Value 3.337 88.20 3.071 3.618 85.97 3.249
90% γ̂min .00033 .00036
Confidence γ̂ .00120 .00120
Interval γ̂max .00208 .00205

Idiosyncratic Volatility II
Vt .0013 0.968 .0201 0.940 .0014 0.964 .0222 0.932
t-Value 3.094 96.15 2.979 3.341 91.83 3.156
90% γ̂min .00030 .00034
Confidence γ̂ .00121 .00121
Interval γ̂max .00211 .00207
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Table 6: Test Statistics for the Simulated S&P 500 Index Portfolio,
NYSE/AMEX Index Portfolio and NASDAQ Index Portfolio
This table presents tests rejecting the existence of time trends in the volatility of the indices, and
failing to reject time trends in the aggregated idiosyncratic volatility series. The t type tests are based
on the GLS estimates of the following model,

Vt = µ + θVt−1 + γt + α1∆Vt−1 + · · · + αp∆Vt−p + ǫt,

where the Vt series are standard deviations. Six lags are used according to AIC and BIC criteria. The
critical value on γ̂ estimates can be found in Table 1. The robust Wald type tests of Vogelsang are
based on estimates from equation (9) in Section 1.2 using log volatility. Therefore, γ̂ is the growth
rate of volatility. The corresponding 90% confidence intervals for γ̂ are reported here for convenience.
“Idiosyncratic Volatility I” is constructed by subtracting index volatility from the corresponding ag-
gregate total volatility, while “Idiosyncratic Volatility II” is calculated directly from the Fama and
French (1993) three factor model.

Type I Geometric Weights (.9k) Type II Geometric Weights (e−αk)
with Window Length of 24 with Window Length of 12

µ θ γ × 10−4 R2 µ θ γ × 10−4 R2

Panel A: S&P500 Idiosyncratic Volatility I
Vt .0016 0.965 .0165 0.879 .0017 0.960 .0183 0.869
t-Value 3.099 88.81 2.601 3.384 85.53 2.725
90% γ̂min .00003 .00007
Confidence γ̂ .00090 .00091
Interval γ̂max .00178 .00174

Idiosyncratic Volatility II
Vt .0012 0.970 .0131 0.891 .0013 0.966 .0146 0.877
t-Value 2.702 91.53 2.429 2.926 86.22 2.539
90% γ̂min -.00011 -.00004
Confidence γ̂ .00091 .00092
Interval γ̂max .00194 .00187
Panel B: NYSE/AMEX Idiosyncratic Volatility I
Vt .0014 0.970 .0148 0.904 .0016 0.966 .0163 0.898
t-Value 3.104 103.0 2.443 3.378 100.0 2.582
90% γ̂min -.00010 -.00004
Confidence γ̂ .00095 .00095
Interval γ̂max .00199 .00194

Idiosyncratic Volatility II
Vt .0011 0.974 .0119 0.928 .0012 0.971 .0132 0.921
t-Value 2.966 112.4 2.542 3.185 107.1 2.670
90% γ̂min -.00007 -.00002
Confidence γ̂ .00095 .00095
Interval γ̂max .00196 .00191
Panel C: NASDAQ Idiosyncratic Volatility I
Vt .0085 0.884 .2025 0.804 .0089 0.877 .2071 0.786
t-Value 3.845 29.55 3.520 4.028 28.82 3.525
90% γ̂min .00079 .00079
Confidence γ̂ .00163 .00163
Interval γ̂max .00247 .00248

Idiosyncratic Volatility II
Vt .0091 0.884 .1271 0.659 .0094 0.879 .1284 0.645
t-Value 3.363 25.72 2.791 3.607 26.12 2.795
90% γ̂min .00045 .00046
Confidence γ̂ .00101 .00102
Interval γ̂max .00157 .00157
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Table 7: Indices of Increased Institutional Investor Participation in U.S.
Equity Markets

This table shows the increase in institutional participation in the market from 1950 through 1998.

Year Percent of Total Equity Held NYSE Block Transaction as Turnover Rate NYSE

by Institutional Investors1 Percent of Total Reported Volume2 (Reported Share V olume
Shares Listed

)
1950 6.1 NA 23.0
1970 26.7 15.4 19.0
1990 44.1 49.6 46.0
1998 49.6 48.7 76.0
1Source: Federal Reserve Board “Flow of Funds.”

2Source: New York Stock Exchange Fact Book, Annual Editions

Table 8: Cross-Sectional Regressions of Idiosyncratic Volatility on Institu-
tional Ownership and Size
This table shows the relationship between volatility, institutional ownership, and the size (capitaliza-
tion) of individual stocks using partially adaptive estimators.

Dependent Model I Model II
Year Variable Ownership R2 Ownership log(Size) R2

log(Vidio.) .00228 0.012 .00189 -.284 0.224
1989 (Std.E) (.00091) (.00079) (.0238)

p− V alue 0.013 0.017 0.000
log(Vidio.) .00127 0.002 .00060 -.411 0.389

1990 (Std.E) (.00129) (.00103) (.0293)
p− V alue 0.326 0.559 0.000
log(Vidio.) .00353 0.021 .00206 -.361 0.349

1991 (Std.E) (.00109) (.00099) (.0256)
p− V alue 0.001 0.038 0.000
log(Vidio.) .00388 0.025 .00157 -.325 0.244

1992 (Std.E) (.00124) (.00107) (.0268)
p− V alue 0.018 0.144 0.000
log(Vidio.) .00323 0.023 .00241 -.209 0.151

1993 (Std.E) (.00038) (.00095) (.0284)
p− V alue 0.000 0.011 0.000
log(Vidio.) .00354 0.035 .00236 -.201 0.175

1994 (Std.E) (.00079) (.00084) (.0251)
p− V alue 0.000 0.005 0.000
log(Vidio.) .00610 0.070 .00558 -.111 0.098

1995 (Std.E) (.00087) (.00091) (.0336)
p− V alue 0.000 0.000 0.001
log(Vidio.) .00561 0.056 .00506 -.081 0.068

1996 (Std.E) (.0082) (.00082) (.0110)
p− V alue 0.000 0.000 0.000

Pooling individual stocks over the whole sample period
1989 log(Vidio.) .00359 0.023 .00240 -.261 0.189
to (Std.E) (.00037) (.00036) (.0104)

1996 p− V alue 0.000 0.000 0.000

Pooling industry portfolios over the whole sample period
1989 log(Vidio.) 1.596 0.336 1.387 -.093 0.383
to (Std.E) (0.232) (0.238) (0.035)

1996 p− V alue 0.000 0.000 0.000
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Table 9: Cross-Sectional Regressions of Idiosyncratic Volatility on Long-term
Growth and Size
This table shows the relationship between idiosyncratic volatility, forecasted long-term earning growth,
and size of individual stocks. A nonlinear least square method is used in estimating the two-segment
model where the turning point c is also estimated simultaneously. In partial sample regressions, only
sample observations that satisfy the condition of gi > c are used. “*” denotes the number of firms in
this subsample. Standard deviations of estimates are in the brackets

Number log(Vidio.,i) = α0 + γ0 gi + δ0 log(Size) log(Vidio.,i) =

{

α1 + γ1 gi gi ≤ c

α2 + γ2 gi gi > c

of Without Size With Size 2 Segment OLS Partial Sample
Year Firms γ0 R2 γ0 δ0 R2 γ1 γ2 c γ2 R2

1986 1595 .985 .214 .682 -.053 0.406 -0.673 1.005 .0051 1.005 .221
1591∗ (.047) (.043) (.0023) (2.730) (.047) (.0042) (.047)

1987 1655 .906 .162 .593 -.056 0.402 -4.033 0.971 .0071 .971 .181
1634∗ (.051) (.045) (.0022) (2.480) (.051) (.0045) (.051)

1988 1700 .724 .103 .532 -.066 0.420 -7.832 0.875 .0471 .875 .142
1505∗ (.052) (.042) (.0022) (.609) (.055) (.0049) (.055)

1989 1762 .723 .075 .513 -.069 0.419 -9.356 1.038 .0498 1.038 .135
1526∗ (.061) (.048) (.0022) (.633) (.068) (.0051) (.067)

1990 1804 .742 .074 .541 -.072 0.436 -11.16 1.037 .0465 1.037 .132
1569∗ (.062) (.049) (.0021) (.663) (.067) (.0054) (.067)

1991 1818 .589 .053 .531 -.074 0.458 -12.01 1.021 .0427 1.021 .161
1529∗ (.058) (.044) (.0020) (.707) (.063) (.0055) (.060)

1992 1812 .714 .076 .633 -.070 0.435 -11.55 1.186 .0447 1.186 .200
1514∗ (.059) (.046) (.0021) (.664) (.064) (.0055) (.061)

1993 1929 .797 .106 .648 -.068 0.467 -15.18 1.334 .0317 1.334 .258
1671∗ (.053) (.041) (.0019) (.904) (.056) (.0048) (.055)

1994 2039 .945 .151 .771 -.064 0.467 -7.748 1.350 .0549 1.350 .266
1735∗ (.050) (.040) (.0019) (.531) (.056) (.0001) (.054)

1995 2120 1.007 .196 .827 -.063 0.468 -8.656 1.327 .0543 1.327 .289
1789∗ (.044) (.036) (.0019) (.564) (.050) (.0001) (.049)

Pooling individual stocks over the whole sample period
1986 to 18234 0.806 .110 .627 -.067 0.435 -10.78 1.124 .0448 1.124 .196

1995 16005∗ (.017) (.014) (.0007) (.225) (.018) (.0001) (.018)
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Figure 1  The Volatility of Individual Stocks (1963-1998)

This figure shows the monthly volatility for the most volatile stocks in the market.
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