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Abstract The correlation structure imposed on multivariate time to event
data is often of a simple nature, such as in the shared frailty model where
pairwise correlations between event times in a cluster are all the same. In
modeling the infection times of the four udder quarters clustered within the
cow, more complex correlation structures are possibly required, and if so, such
more complex correlation structures give more insight in the infection process.
In this article, we will choose a marginal approach to study more complex
correlation structures, therefore leaving the modeling of marginal distributions
unaffected by the association parameters. The dependency of failure times will
be induced through copula functions. The methods are shown for (mixtures
of) the Clayton copula, but can be generalized to mixtures of Archimedean
copulas for which the nesting conditions are met (McNeil, 2008; Hofert, 2011).

Keywords Quadrivariate event times · Archimedean copula · Mastitis ·
correlation structures

1 Introduction

Time to event data are often clustered and different techniques have been
developed to cope with the clustering in the data. Most commonly used ap-
proaches only accommodate a simple association structure between the event
times in a cluster. For instance, the underlying assumption of the shared
frailty model is that the correlation between any two event times is the same
(Duchateau and Janssen, 2008). The correlated frailty model allows more com-
plex structures, but has mostly been used to model bivariate survival data
(Wienke, 2011), and the extension of the correlated frailty model based on
the gamma density function imposes quite a few restrictions on the correla-
tion structure. An alternative modeling technique is based on copula functions.

Address(es) of author(s) should be given
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Copulas have also been mostly used for bivariate survival data, and in the case
clusters were larger, the development was most often also restricted to simple
association structures. The data set studied here warrants the development
of more complex association structures. We investigate the appropriateness of
different association structures for the quadrivariate udder quarter infection
times clustered in the cow. It was shown in previous analyses using frailty mod-
els with a simple association structure that strong correlation exists between
the infection times within an udder (Goethals et al, 2009; Ampe et al, 2012).
The udder quarters, however, can be ranked in space, and special correlation
structures can therefore be proposed. For instance, it is biologically plausible
that infection times of left and right udder quarters in front are more corre-
lated than the right front and rear udder quarters. The method proposed here
provides the tools to test such biologically plausible hypotheses. The findings
have large impact on the prevention of infections in udder quarters, as large
correlations could signify that bacteria are spread from one udder quarter to
the next, which could be prevented with proper hygienic measures. In this
article, we will use hierarchical Archimedean copula models as it allows us to
impose the correlation structures with biological relevance to the quadrivariate
udder quarter infection times. One challenge in using these types of models in
multivariate survival data typically is that one needs to calculate all possible
first and higher order partial derivatives of the joint survival function, which
can get complicated if you allow for hierarchical structures.

In Section 2, we discuss the infection time data in cow udders and the
general construction of the likelihood function. In Section 3, we introduce
models with different correlation structures and also discuss the choice of the
baseline hazard function and the one- and two-stage approach to model fitting.
In Section 4, we describe the results of the different models and compare them
with each other. There is a higher level of association within the two front and
the two rear udder parts, than between pairs where one part is located front
and one is located rear. There is no difference in association between infection
times in multiparous and primiparous cows. Size and power calculations are
performed in Section 5.

2 Time to infection data and the general likelihood function for a
cow udder

We investigate the correlation structure between the times to infection of the
four udder quarters nested in a cow. In total, 1196 cows have been followed
up during the lactation period, which is roughly 300-350 days but different
for every cow. We define time to infection, expressed in trimesters, as the
midpoint between the sampling times of the last negative result and the first
positive result. We model the time until infection with any bacteria, with the
cow being the cluster and the quarter the experimental unit within the clus-
ter. Observations are right-censored if no infection occurs before the end of
the lactation period, or if the cow is lost to follow-up during the study. The
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censoring percentage is 61%. As a covariate, we consider the parity of the
cow, since several studies have shown that prevalence as well as incidence of
intramammary infections increase with parity (Weller et al, 1992). This co-
variate acts on the cow level. The parity is 0 for primiparous cows (cows that
had one calving) and is 1 for multiparous cows (cows that had more than one
calving). This data set is an example of a balanced design, since all clusters
have four components. We order the four parts in each cluster such that each
first component corresponds to the left-front udder quarter, each second com-
ponent to the right-front udder quarter, each third component to the left-rear
udder quarter and each fourth component to the right-rear part. Let K be
the number of cows (i = 1, . . . ,K). In each udder, we denote the lifetime for
the different parts by a positive random variable Tij , j = 1, . . . , 4. For each
cow, we assume that there is an independent random censoring variable Ci
such that under a right censoring scheme, the observed quantities are given
by Xij = min(Tij , Ci), δij = I(Tij ≤ Ci), i = 1, . . . ,K, j = 1, . . . , 4. The risk
of infection may also depend on a set of covariates Zij . As denoted in the
previous section, we will consider the parity as a covariate, writing Zi = 0
for primiparous cows and Zi = 1 for multiparous cows. We denote the (pos-
sibly unobserved) time until infection for the different udder quarters of cow
i by (ti1, ti2, ti3, ti4). The likelihood contribution of a cluster of size 4 is one
term out of 16 possibilities. If cow i has four infected udder parts, its con-
tribution to the likelihood is the joint density function of the infection times
f(ti2, ti2, ti3, ti4|Zi). If the cow has only one infected udder part, we need to
take the derivative of the joint survival function with respect to that event
time, and so on. A general expression for the full likelihood is given by (1).
Denote xi = (xi2, xi2, xi3, xi4).

K∏
i=1

(f(xi|Zi))δi1δi2δi3δi4

×
(
−∂S(xi|Zi)

∂xi1

)δi1(1−δi2)(1−δi3)(1−δi4)
. . .

×
(
∂2S(xi|Zi)
∂xi1∂xi2

)δi1δi2(1−δi3)(1−δi4)
. . .

×
(
− ∂3S(xi|Zi)
∂xi1∂xi2∂xi3

)δi1δi2δi3(1−δi4)
. . .

× S(xi|Zi))(1−δi1)(1−δi2)(1−δi3)(1−δi4) (1)

3 Different models for the association structure

In this section, we progress from models with simple correlation structure to
models with more complex correlation structure. As the models are nested,
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likelihood ratio testing can be used to test whether such more complex corre-
lation structures are required. Association structures are expressed in terms of
the copula function, i.e., correlation is introduced through the copula function
that links the marginal survival functions into the joint survival function.

We model covariate effects under the assumption of proportional hazards.
The hazard of infection at time t for udder quarter j with covariate information
Z is hj(t|Z) = h0j(t) exp(βZ). In this model, h0j(t) is the baseline hazard
function that describes the hazard for udder quarter j of primiparous cows
and exp(β) is the proportionate increase or reduction in hazard for multiparous
cows. The marginal survival function is Sj(t|Z) = S0j(t)

exp(βZ) where S0j(t) =
exp(−H0j(t)) is the baseline survival function of udder quarter j and H0j is the
cumulative hazard function. Different assumptions about the baseline survival
function (or hazard function) lead to different kinds of proportional hazards
models. One can assume a parametric form of the baseline survival, but Cox
(1972) observed that inference about the covariate effects is also possible when
there is no assumption at all on the baseline survival (or hazard) function. In
all models that will follow, both a parametric and semiparametric approach
will be considered. In the parametric approach, the baseline hazard is assumed
to be Weibull as this was shown to be an adequate choice by Goethals et al
(2009). The general likelihood function (1) can then be maximized in one stage,
i.e., maximizing the likelihood jointly for the parameter(s) of the marginal
survival functions and the parameter in the copula function, or in two stages,
first estimating the parameter(s) of the marginal survival functions, plugging
those in (1) and then maximizing only for the parameter in the copula function.
In the semiparametric approach, the baseline hazard is unspecified and only
a two-stage approach is feasible: partial likelihood maximization is used to
estimate the marginal survival functions, and only the association parameter
remains in (1), for which it needs to be maximized. The two-stage approach is
straightforward as the first stage, estimating the marginal survival functions,
is based on basic survival models without clustering, and only one parameter
remains in (1) for which it needs to be maximized.

3.1 No clustering (model 0)

In the case of independence between the udder quarter infection times in a
cow, the joint survival function is given by

S(t1, t2, t3, t4|Z) = S1(t1|Z)S2(t2|Z)S3(t3|Z)S4(t4|Z)

where S(t1, t2, t3, t4|Z) is the joint survival function and S1(t1|Z), . . . , S4(t4|Z)
are the marginal survival functions for the left front, right front, left rear and
right rear udder quarters respectively.
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3.2 One level of clustering (model 1)

If we assume that the association between each two different udder quar-
ters is the same, we model the joint survival function by a four-dimensional
Archimedean copula function with generator ϕ. The joint survival function is
represented as

S(t1, t2, t3, t4|Z) = Cθ0(S1(t1|Z), S2(t2|Z), S3(t3|Z), S4(t4|Z)),

or equivalently,

S(t1, t2, t3, t4|Z) = ϕ
[
ϕ−1(S1(t1|Z)) + ϕ−1(S2(t2|Z)) + ϕ−1(S3(t3|Z)) + ϕ−1(S4(t4|Z))

]
where ϕ : [0,∞[→ [0, 1] is a continuous, strictly decreasing function which
is completely monotonic and has ϕ(0) = 1 and ϕ(∞) = 0 (Nelsen, 2006).
The generator ϕ depends on the association parameter θ0. As an example, the
association structure is induced here through a Clayton copula with generator
ϕ(t) = (1 + θ0t)

−1/θ0 with θ0 > 0. Infection times are independent when
θ0 approaches zero. For the case of a parametric baseline hazard and using
the one-stage procedure, the contributions to the likelihood expression (1)
are derived in the Appendix. Prenen et al (2017) show that maximizing the

likelihood expression is equivalent to solving
d logL

dη
= 0 with

L =

K∏
i=1

 ni∏
j=1

[
fj(xij |Zi)

ϕ′(ϕ−1(Sj(xij |Zi)))

]δijϕ(di)

 ni∑
j=1

ϕ−1(Sj(xij |Zi))

 . (2)

where ni = 4, fj(xij |Zi) = −dSj(xij |Zi)
dxij

, di =

ni∑
j=1

δij and ϕ(di) is the deriva-

tive of order di of the generator ϕ. The parameter vector η contains the base-
line parameters from the four margins, the parity effect β and the association
parameter θ0. Optimization can be done through standard numerical algo-
rithms, e.g. using the R functions optim or nlm. Note that formula (2) is
not restricted to the Clayton copula, but that it is a generic formula for the
likelihood expression for any Archimedean copula with generator ϕ.

In the model above, it was not only assumed that all cows in the popu-
lation can be described by the same correlation structure, but also that the
correlations themselves are the same. As primiparous and multiparous cows
react quite differently with respect to udder quarter infections, it is worthwhile
to test whether primiparous and multiparous cows share the same values for
the correlations within the same correlation structure. To test whether the
association between infection times depends on the parity of the cow, we use
the following copula function ϕ(t) = (1 + θpt)

−1/θp for primiparous cows and
ϕ(t) = (1 + θmt)

−1/θm for multiparous cows and test the hypothesis

H0 : θm = θp versus H1 : θm 6= θp

which can then be tested through the likelihood ratio test.
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3.3 Multilevel clustering: parent copula with two identical child copulas
(Model 2)

We assume that the front udder quarters have the same association as the rear
udder quarters. Another type of association occurs between the front and rear
udder quarters. This type of association structure is captured by a partially
nested Archimedean copula function where the parent copula Cθ0 has two
identical child copulas Cθ1 and Cθ1 :

Cθ0 [Cθ1(S1(t1|Z), S2(t2|Z)), Cθ1(S3(t3|Z), S4(t4|Z))] ,

or equivalently,

S(t1, t2, t3, t4|Z) = ϕ0

[
ϕ−10 ◦ ϕ1

{
ϕ−11 (S1(t1|Z)) + ϕ−11 (S2(t2|Z))

}
+ ϕ−10 ◦ ϕ1

{
ϕ−11 (S3(t3|Z)) + ϕ−11 (S4(t4|Z))

}]
.

The generator ϕ0 describes the association between front and rear udder
quarters, while ϕ1 describes the association within front udder quarters and
within rear udder quarters. According to McNeil (2008), for a general nested
Archimedean structure to be a proper copula, it is sufficient that all appearing
nodes of the form ϕ−1k ◦ϕl have completely monotone derivatives. The sufficient
nesting condition is often easily verified if all generators appearing in the nested
structure come from the same parametric family. For the Archimedean families
of Ali-Mikhail-Haq, Clayton, Frank, Gumbel and Joe, two generators ϕk and ϕl
of the same family with corresponding parameters θk and θl fulfill the sufficient
nesting condition if θk ≤ θl (Hofert, 2011). Choosing parent copula Cθ0 and
child copulas Cθ1 to be Clayton copulas with generators ϕ0(t) = (1+θ0t)

−1/θ0

and ϕ1(t) = (1 + θ1t)
−1/θ1 leads to the joint survival function

S(t1, t2, t3, t4|Z) =
[
−1 +

(
−1 + S1(t1|Z)−θ1 + S2(t2|Z)−θ1

)θ0/θ1
+
(
−1 + S3(t3|Z)−θ1 + S4(t4|Z)−θ1

)θ0/θ1]−1/θ0
.

The nesting condition for this setting is θ0 ≤ θ1. This means that there must
be a stronger association of infection times within front and within rear udder
parts, than there is between front and rear udder parts. The contributions to
the likelihood expression (1) for the one-stage parametric approach are given
in the Appendix.

3.4 Multilevel clustering: parent copula with two different child copulas
(model 3)

We will now assume that the association within the front udder quarters is
different from the association within the rear udder quarters. A third type
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of association occurs between front and rear udder quarters. The hierarchical
Archimedean copula function that represents this situation is

Cθ0 [Cθ1(S1(t1|Z), S2(t2|Z)), Cθ2(S3(t3|Z), S4(t4|Z))] ,

or equivalently,

S(t1, t2, t3, t4|Z) = ϕ0

[
ϕ−10 ◦ ϕ1

{
ϕ−11 (S1(t1|Z)) + ϕ−11 (S2(t2|Z))

}
+ϕ−10 ◦ ϕ2

{
ϕ−12 (S3(t3|Z)) + ϕ−12 (S4(t4|Z))

}]
.

The generator ϕ0 describes the association between the front and rear udder
quarters, while generators ϕ1 and ϕ2 describe the association within the front
udder quarters and within the rear udder quarters, respectively. We will choose
ϕ0, ϕ1 and ϕ2 to be generators of Clayton copulas with association parameters
θ0, θ1 and θ2. In that case, the joint survival function is given by

S(t1, t2, t3, t4|Z) =
[
−1 +

(
−1 + S1(t1|Z)−θ1 + S2(t2|Z)−θ1

)θ0/θ1
+
(
−1 + S3(t3|Z)−θ2 + S4(t4|Z)−θ2

)θ0/θ2]−1/θ0
The nesting conditions are θ0 ≤ θ1 and θ0 ≤ θ2. The contributions to the
likelihood function are given in the Appendix. Note that when one rather
fits Models 2 and 3 with other nested Archimedean copulas, the expressions
in the Appendix no longer hold, i.e., all likelihood contributions need to be
recalculated.

4 Results

4.1 The marginal survival functions

When assuming a parametric form of the marginal survival functions, the
Weibull distribution is a popular choice. Under the Weibull assumption, the
marginal survival functions are

Sj(t|Z) = exp(−λjtρj exp(βZ)), j = 1, . . . , 4.

The parity Z is cow-specific and therefore we assume that the parity effect is
the same in each of the four quarters (β1 = β2 = β3 = β4 = β). In a model
without clustering, standard survival methods yield the parameter estimates
in Table 1 under Model 0. When no parametric baseline is assumed, a stratified
Cox proportional hazards model (Cox, 1972) can be used, where the baseline
hazard h0j(·) is left unspecified:

hj(t|Z) = h0j(t) exp(βZ)

and the Nelson-Aalen estimator (Nelson, 1972) is used for the survival function.
In this (semi-parametric) model, the estimated parity effect is 0.407(0.051).
Following either the parametric or semi-parametric approach, these parame-
ter estimates are consistent and are used in the second stage of the (semi-
)parametric two-stage estimation procedure of models 1, 2 and 3.
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Table 1 Parameter estimates for the udder quarter data based on model 0 (no correlation),
copula model 1 (all correlations the same), copula model 2 (different correlation between
pairs of udder quarters in front or at the rear compared to correlation between any front
and rear udder quarter) and copula model 3 (the same as copula model 2, but with different
correlation in front or at the rear). The first columns are based on one-stage estimation, the
last two columns refer to the two-stage estimation.

1-stage parametric estimation 2-stage estimation
parametric semiparametric

Weibull baseline parameters parity copula copula parameter(s)
j = 1 j = 2 j = 3 j = 4 effect β parameter(s)

Model 0 λj 0.111 0.117 0.095 0.103 0.418
(0.008) (0.009) (0.008) (0.008) (0.051)

ρj 1.321 1.270 1.325 1.280
(0.052) (0.050) (0.055) (0.053)

Model 1 λj 0.111 0.118 0.095 0.100 0.344 θ0 = 3.184 θ0 = 2.938 θ0 = 3.227
(0.009) (0.009) (0.008) (0.008) (0.068) (0.182) (0.201) (0.216)

ρj 1.297 1.262 1.310 1.266
(0.0483) (0.047) (0.052) (0.050)

Model 2 λj 0.112 0.118 0.095 0.101 0.340 θ0 = 3.050 θ0 = 2.825 θ0 = 3.110
(0.009) (0.010) (0.008) (0.008) (0.068) (0.184) (0.186) (0.215)

ρj 1.299 1.264 1.310 1.269(0.050) θ1 = 3.552 θ1 = 3.299 θ1 = 3.626
(0.048) (0.047) (0.052) (0.050) (0.221) (0.232) (0.263)

Model 3 λj 0.111 0.118 0.095 0.101 0.340 θ0 = 3.048 θ0 = 2.821 θ0 = 3.107
(0.009) (0.010) (0.008) (0.008) (0.068) (0.185) (0.187) (0.215)

ρj 1.299 1.264 1.311 1.270 θ1 = 3.589 θ1 = 3.363 θ1 = 3.674
(0.048) (0.047) (0.052) (0.050) (0.271) (0.282) (0.323)

θ2 = 3.513 θ2 = 3.231 θ2 = 3.575
(0.274) (0.278) (0.309)

4.2 Fitting a hierarchy of association structures

Models 0, 1, 2 and 3 are fitted and the parameter estimates are reported in
Table 1. Corresponding standard errors are in brackets. The standard errors
of the associaton parameters were determined using the grouped jackknife
procedure (Lipsitz et al, 1994; Lipsitz and Parzen, 1996). As pointed out in
the previous section, in two-stage estimation, the estimates of the baseline
and the parity effect are equal to the estimates arising from the independence
model. To investigate which association structure is most appropriate, we test
the hypotheses

HA
0 : θ0 = 0 versus HA

1 : θ0 > 0 in model 1
HB

0 : θ1 = θ0 versus HB
1 : θ1 > θ0 in model 2

HC
0 : θ2 = θ1 versus HC

1 : θ2 6= θ1 in model 3

In words, test A is used to detect the presence of clustering in the data. With
test B we determine whether it is necessary to account for front and rear
subclusters. Test C is used to detect a different level of association in the
front and rear subclusters. For testing HA

0 : θ = 0, we use a likelihood ratio
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test with a mixed chi-squared distribution, since the null hypothesis lies at
the boundary of the parameter space (Duchateau et al, 2002). In Section 5.1,
we take a closer look at this distribution. To test hypotheses HB

0 and HC
0 ,

the likelihood ratio statistic follows a χ2(1) distribution. The likelihood ratio
tests are performed for both one-stage and two-stage estimation procedures,
yielding similar p-values within each test. The 3 resulting p-values for test
A are all < 0.0001 which makes us conclude that there is in fact clustering
of infection times. Tests B and C result in p-values of < 0.0002 and > 0.6,
respectively, so the front and rear subclusters are detected, but there is no
need to set up a model which includes a different level of association within
each subcluster. The most appropriate model for the udder quarter infection
times, is therefore model 2.

4.3 The association structure as a function of the parity covariate

As mentioned at the end of Section 3.2, it is worthwhile to test the hypothesis
of homogeneity of association

HZ
0 : θm = θp versus HZ

1 : θm 6= θp

in model 1. None of the estimation procedures lead to a significant difference
between θm and θp. For example, the one-stage estimates are θ̂m = 3.055 and

θ̂p = 3.515 where the test for equality yields a p-value of 0.231. Consequently,
there is no need to model the association structure as a function of the parity
covariate.

4.4 Interpretation of the correlation structure

More insight can be gained in the correlation structure implied by the par-
ticular copula by investigating conditional survival probabilities. In this sec-
tion, we compare the independence model, i.e., Model 0, with the most ap-
propriate model, i.e., Model 2 and consider conditional survival probabilities
of the different quarters given that an event has taken place at time x in
the first quarter. For the independence model, the conditional survival prob-
ability at time t = x + u, with u the time since infection in quarter one,
is given by P (Tj > x + u|T1 = x, T2 > x, T3 > x, T4 > x,Z = z) =
exp(−λj((x+u)ρj −xρj ) exp(βz)) for j = 2, 3, 4 and when assuming marginal
Weibull baseline hazards. For model 2, different conditional survival probabil-
ities occur for quarter 2 as compared to quarter 3 and 4. For quarter 2, the
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conditional survival probability at time t = x+ u corresponds to

P (T2 > x+ u|T1 = x, T2 > x, T3 > x, T4 > x,Z = z)

=

[
−1 +

(
−1 + S1(x)−θ1 + S2(x+ u)−θ1

)θ0/θ1
+
(
−1 + S3(x)−θ1 + S4(x)−θ1

)θ0/θ1
−1 + (−1 + S1(x)−θ1 + S2(x)−θ1)

θ0/θ1 + (−1 + S3(x)−θ1 + S4(x)−θ1)
θ0/θ1

]−1/θ0−1

×
[
−1 + S1(x)−θ1 + S2(x+ u)−θ1

−1 + S1(x)−θ1 + S2(x)−θ1

] θ0
θ1
−1

(3)

with Sj(x) = exp(−λjxρj exp(βz)). This expression simplifies for the third (or
fourth) quarter to

P (T3 > x+ u|T1 = x, T2 > x, T3 > x, T4 > x)

=

[
−1 +

(
−1 + S1(x)−θ1 + S2(x)−θ1

)θ0/θ1
+
(
−1 + S3(x+ u)−θ1 + S4(x)−θ1

)θ0/θ1
−1 + (−1 + S1(x)−θ1 + S2(x)−θ1)

θ0/θ1 + (−1 + S3(x)−θ1 + S4(x)−θ1)
θ0/θ1

]−1/θ0−1
(4)

The derivations of the conditional survival probabilities are given in the Ap-
pendix.

In Figure 1, we note that the conditional survival probabilities for both
quarters 2 and 3 are much lower in copula model 2 as compared to the inde-
pendence model. This means that when a cow has an infected udder quarter,
it has a higher risk of getting an infection in a nearby udder quarter in copula
model 2 than under the independence model. Furthermore, we see that the
conditional survival probability for quarter 2 is always smaller than for quar-
ter 3. This is due to the fact that the association between quarter 1 and 2 is
larger than between quarter 1 and 3. These results are consistently shown for
both primiparous as multiparous cows, and when the first infection happens
one week into the lactation period or only after one trimester in the lactation
period.

5 Size and power analysis

We simulate survival data that resemble the udder infection data. All subjects
are sampled from the same marginal distribution, i.e., a Weibull distribution
with parameters comparable to the estimated parameters of the udder infec-
tion data set: λ = 0.11, ρ = 1.3, β = 0.4. The censoring variable is Weibull
distributed with ρC = 1.3 and λC = 0.21, yielding a censoring percentage
around 61%. The aim is to assess the size and the power of the likelihood
ratio tests when comparing the different association structures. We only in-
vestigate the performance of the two-stage parametric estimation procedure.
In the first simulation setting, we simulate four-dimensional survival data sets
with one level of clustering, and calculate the size and the power to detect
departures from the independence model. In the second simulation setting,
we simulate data from a two-level hierarchical copula model with two identi-
cal child copulas, and compute the size and power to detect the subclusters.
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Fig. 1 Conditional survival probabilities in the 2nd (full line) and 3th (dashed) quarters
of multiparous and heifer cows as a function of time since infection in the first quarter
takes place at either 1 week or 1 trimester in the lactation period. The bold lines are the
conditional probabilities under independence while the regular lines are obtained from model
2.

In the third simulation setting, data were simulated from a two-level hierar-
chical Archimedean copula model with two different child copulas, and the
size and the power to detect the difference between the two subclusters were
determined. In the last setting, we study the size and the power to detect a
covariate effect on the association parameter in the model with one level of
clustering.

5.1 Testing for independence versus one-level clustering

Let the true value of θ range from 0 to 0.5 by steps of size 0.05. We simulate
1000 data sets with 200 clusters of size 4 from a Clayton copula for each
specific value of the association parameter θ. Our aim is to pick up deviations
from independence. The power of the likelihood ratio test for independence is
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plotted versus the value of θ. At the boundary of the parameter space (θ = 0),
the likelihood ratio statistic follows a mixed chi-squared distribution

2 log
likelihood alternative model

likelihood null model
∼ 0.5χ2(0) + 0.5χ2(1).

A value of θ = 0.20, corresponding to a Kendall’s tau of 0.09, is detected with
a probability of 72.8%. In the model with one level of clustering, deviations
from independence are hence quickly detected. From θ = 0.35 onwards, the
power level approaches 1. At θ = 0, we approximately attain the size of the
test by a value of 0.043.

5.2 Testing for one-level clustering versus two-level clustering with one
parent and two identical child copulas

We let the true values of θ0 and θ1 range from 0.02 to 1 by steps of length
0.02, only considering those combinations of (θ0, θ1) for which the nesting
condition θ1 ≥ θ0 is met. We simulate 1000 data sets with 200 clusters of size
4 from a hierarchical Clayton copula with parent copula Cθ0 and 2 identical
child copulas Cθ1 for each eligible pair (θ0, θ1) and calculate the probability to
detect the subclusters. In order to make use of the χ2(1) distribution, however,
values of θ0 and θ1 close to the boundary, i.e., θ0 = θ1 = 0, should be excluded,
as demonstrated in the discussion section. Therefore, first, the independence
hypothesis is tested, and if not rejected, the simulated data set is discarded
and not used in the future testing of HB

0 : θ1 = θ0. In simulation settings
with θ1 and θ0 close to zero, a substantial number of the 1000 simulations
might be discarded. If less than 20% of the 1000 data sets remain, a triangle
symbol is used for plotting. As demonstrated in Section 5.1, this occurs only
for very small values of the association parameter (θ0 = θ1 ≤ 0.06). The size
of the test is shown in the top panel of Figure 2; most values are below 0.06
and thus quite acceptable. In the bottom panel of Figure 2, the line θ0 = θ1
indicates the null model, i.e., no subclusters. To obtain a power of 80%, values
must differ quite substantially, e.g., (0.2, 0.75) or (0.3, 0.9). In order to perform
these tests, a sufficient number of clusters should be available, otherwise the
size of the test will not be respected. The sample size used in our simulations,
i.e., 200 clusters, is at the border and with fewer clusters the proposed tests
should not be used.

5.3 Testing for two-level clustering with one parent and two identical child
copulas versus two-level clustering with one parent and two different child
copulas

We fix the value of θ0 at 0.5 and let θ1 and θ2 range from 0.5 to 2.0 by steps
of length 0.1. We simulate 1000 data sets with 200 clusters of size 4 from a
hierarchical Clayton copula with parent copula Cθ0 and 2 child copulas Cθ1
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Fig. 2 Size (top) and power (bottom) of the likelihood ratio test for HB
0 : θ0 = θ1 versus

HB
1 : θ0 < θ1.

and Cθ2 . For each combination of θ1 and θ2, we calculate the probability to
detect the different levels of association in the subclusters. In Figure 3, the
line θ1 = θ2 indicates the model with two identical child copulas. On this line,
we achieve the size of the test.
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0 : θ1 = θ2 versus

HC
1 : θ1 6= θ2.

5.4 Testing for differing association structures as a function of a covariate

We fix the true value of θp at 1.5 and let θm range from 0 to 3.5 by steps
of length 0.1. We simulate 1000 data sets with 200 clusters of size 4 from a
Clayton copula Cθm for a multiparous cow and from a Clayton copula Cθp for
a primiparous cow. We determine how many times the difference between the
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Fig. 4 The power of the likelihood ratio test for HZ
0 : θm = θp versus HZ

1 : θm 6= θp.

association parameters θm and θp is picked up. In Figure 4, when ∆θ = θm−θp
approaches −1.5, i.e., when Cθm approaches the independence copula, the
power increases quickly. On the right hand side of Figure 4, where ∆θ is
positive, the power to detect a covariate effect on the association parameter
increases more gradually.

5.5 Robustness of the Clayton copula

To study the robustness of the Clayton copula model assumption against mis-
specification, we simulated 1000 data sets with 1000 clusters of size 4 from
a Gumbel copula. To mimic the time to infection data, we generate survival
times from a Weibull distribution with λ = 0.11 and ρ = 1.3. The covariate
effect of a binary covariate (the parity) is set equal to β = 0.34. (These values
roughly correspond to the values in Table 1.) The distribution of the censor-
ing times is also Weibull with λC = 0.20 and ρC = 1.3, yielding a censoring
percentage of 60%. Data were first generated for the association structure of
Model 1, with only one level of association, and generator ϕθ(s) = exp(−sθ)
with 0 < θ < 1 where association gets stronger as θ approaches 0. We next fit-
ted a Clayton copula to these data using the two-stage parametric procedure.
In each data set, we estimate the Clayton copula parameter and calculate
Kendall’s tau using the formula τ = θ

θ+2 as derived in Duchateau and Janssen
(2008). If the Gumbel copula from which the data were generated, has an
association parameter equal to 0.35, corresponding to a Kendall’s tau of 0.65
(τ = 1− θ), the mean of the 1000 estimated Kendall’s taus using the Clayton
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copula, is 0.72 with a standard deviation of 0.015. With a Gumbel copula with
an association parameter equal to 0.65, corresponding to a Kendall’s tau of
0.35, the mean of the 1000 estimated Kendall’s taus using the Clayton copula,
is 0.43 with a standard deviation of 0.022. Next, we generated 1000 data sets
with 1000 clusters of size 4 from a hierarchical Gumbel copula with two iden-
tical Gumbel child copulas (Model 2, nesting condition for Gumbel copulas
is θ0 ≥ θ1), and we fitted a hierarchical Clayton copula (Model 2) to these
data. The theoretical values used for data generation in the Gumbel copula
corresponded to θ0 = 0.5 (τ0 = 0.5) for the parent copula and θ1 = 0.35
(τ1 = 0.65) for the child Gumbel copulas. The means of the 1000 estimated
Kendall’s taus using the hierarchical Clayton copula equal τ0 = 0.58 (sd =
0.024) and τ1 = 0.73 (sd = 0.019). Finally, we generated 1000 data sets with
1000 clusters of size 4 from a hierarchical Gumbel copula with two different
Gumbel child copulas (Model 3, nesting condition for Gumbel copulas). For
the Gumbel copula we used θ0 = 0.5 (τ0 = 0.5) for the parent copula, and
for the child Gumbel copulas θ1 = 0.35 (τ1 = 0.65) and θ2 = 0.4 (τ2 = 0.6).
The means of the 1000 estimated Kendall’s taus using the hierarchical Clayton
copula equal τ0 = 0.58 (sd = 0.031), τ1 = 0.73 (sd = 0.045) and τ2 = 0.68 (sd
= 0.049). We can conclude that the Kendall’s tau estimate is biased upwards
when data are generated from a Gumbel copula and analysed with a Clayton
copula. Importantly, even in the presence of this upward bias, associations
that are larger in the data generation based on Gumbel turn out to be larger
as well in the analysis based on the Clayton copula.

6 Discussion

We compared different hierarchical Archimedean copula models for the asso-
ciation between infection times of the four udder parts in dairy cows. The
most adequate model for the quadrivariate udder infection data is the nested
copula model where the association between front and rear udder quarters
is smaller than the association between two front, resp. rear, udder quarters.
The within-front association is not significantly different from the within-rear
association. According to the best fitting copula, i.e., Model 2, the association
parameter between two quarters either on the rear or on the front side corre-
sponds to 3.552, or a Kendall’s tau equal to 0.64. As expected the association
parameter between two quarters not on the same rear or front side is smaller
and equal to 3.050 with a corresponding Kendall’s tau equal to 0.60. Although
these two association parameters differ significantly from each other, it is not
important from a practical point of view as both are large. Note that the
constraints on the parameter space were fulfilled for this particular data set,
using standard R optimization algorithms. Whenever the constraints are not
fulfilled for a particular data set, the R function will issue a warning message
and propose a change to the nesting structure. The R function can be found
in the UdderQuarterInfectionData package available from CRAN.
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It is important to know for a dairy holder that noninfected udder quarters
are highly at risk whenever one of the udder quarters of a cow is infected. A
more straightforward approach to estimate correlations between udder quarter
infection times is based on non-parametric estimation of Kendall’s tau for
censured time to event data. We used Hougaard’s method (Hougaard, 2000,
p.132) to estimate pairwise correlations between the different udder quarters.
The average of all pairwise estimates equals 0.558, which is similar to the value
of 0.617, i.e., 3.227/(2 + 3.227), obtained from the semiparametric version of
Model 1. The average of Kendall’s tau values for the pairs of udder quarters
either in front or at the rear equals 0.591, whereas the average of Kendall’s tau
values for the pairs of udder quarters between any front and any rear quarter
equals 0.558. Therefore, the Clayton copula and the nonparametric estimate
of Kendall’s tau give relatively the same values for Kendall’s tau, but it seems
that Kendall’s tau values obtained from the Clayton copula are higher than
those from the non-parametric estimation. The reason to choose all apparent
copulas to be Clayton copulas is threefold. From a computational point of
view, Clayton copulas are convenient to work with, since there exists a closed
form expression for the derivatives of the copula generator ϕ. For a hierarchical
Clayton copula to be well-defined, a simple nesting condition has to be met,
i.e., θk ≤ θl for all appearing nodes of the form ϕ−1k ◦ ϕl. Additionally, the
Clayton copula has lower tail dependence. In a survival context, this translates
to a stronger association later in time. It’s therefore important to extend these
copulas to other members of the Archimedean copula family to investigate
when the correlation in time is strongest. If the data require the use of another
(nested) Archimedean copula, model 1 can be fitted directly through the use
of formula (2). For the nested models 2 and 3, one will need to recalculate
all likelihood contributions, using the appropriate combination of generators
ϕ0, ϕ1 and ϕ2.

In Section 5.1, the power of testing for the presence of simple clustering, i.e.,
the same pairwise correlation between all udder quarter, in four-dimensional
data was assessed using a likelihood ratio test with a mixed chi-squared distri-
bution (Self and Liang, 1987). The null hypothesis of no association lies on the
boundary of the parameter space, and thus the empirical cumulative distri-
bution function of the likelihood ratio statistic, calculated for 1000 simulated
datasets without clustering, agrees with the 0.5χ2(0) + 0.5χ2(1) distribution
function, as depicted in the top panel of Figure 5. In Section 5.2, we assessed
the power of testing for the presence of subclusters in four-dimensional data
using a likelihood ratio test with a χ2(1) distribution. The null hypothesis
HB

0 : θ0 = θ1 lies on the boundary of the nesting condition θ0 ≤ θ1, however,
since the nesting condition only is sufficient and not necessary, the mixed chi-
squared distribution does not apply unless θ0 = θ1 = 0. Before testing for
multiple levels of clustering, it is therefore necessary to test first for the pres-
ence of simple clustering. Omitting this preliminary test can lead to test sizes
much larger than the nominal significance level. We determined the size of
the likelihood ratio test for HB

0 : θ0 = θ1 versus HB
1 : θ0 < θ1 for 1000 data

sets with 200 clusters of size 4 that were simulated from a Clayton copula
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Fig. 5 Top: the empirical cumulative distribution function (ECDF) under HA
0 : θ = 0 (solid

line), ECDF of χ2(0), χ2(1) (dotted lines) and 0.5χ2(0) + 0.5χ2(1) (dashed line). Bottom:
ECDF under HB

0 : θ0 = θ1 = 1.2 (solid line), ECDF of χ2(0), χ2(1) (dotted lines) and
0.5χ2(0) + 0.5χ2(1) (dashed line).

with association parameter ranging from 0.02 to 1. For small values of θ, the
size deviates heavily from the desired 0.05 level. For θ = 0.02, the according
size was 0.14. This systematic overestimation of the test size occurred up to
θ = 0.12, as described in Figure 6. In the top panel of Figure 2 in Section 5.2,
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Fig. 6 The size of the likelihood ratio test for HB
0 : θ0 = θ1 versus HB

1 : θ0 < θ1, including
also the data sets for which no simple clustering was detected.

we remedy this problem by only looking at those data sets in which the pre-
liminary test detected the presence of simple clustering. The likelihood ratio
test for HB

0 : θ0 = θ1 versus HB
1 : θ0 < θ1 was performed on 1000 data sets

that were simulated from a unilevel Clayton copula model with association
parameter equal to 1.2. The empirical cumulative distribution function of the
likelihood ratio statistic nearly coincides with the χ2(1) distribution, as can
be seen in the bottom panel of Figure 5.

The Archimedean Clayton copula appears to be a useful tool to investigate
the association structure in quadrivariate udder infection times, and an ap-
pealing interpretation of the association structure follows from considering the
conditional survival probabilities. The studied models can be further extended
in different ways. First, Laplace transforms other than the one linked to the
Clayton copula, such as the inverse Gaussian or positive stable, could be con-
sidered. Alternative approaches such as vines (Barthel, 2015) or hierarchical
Kendall copulas (Brechmann, 2014) could also be applied to these quadrivari-
ate udder infection times. In future research, these alternative approaches will
be compared to validate the association structure estimated in our model.
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A Calculation of likelihood contributions

The contributions to the likelihood (1) for the different association structures are given in
this Appendix. For a sample of quadrivariate survival data

{(xi1, δi1), (xi2, δi2), (xi3, δi3), (xi4, δi4)}, i = 1, . . . ,K

the contribution Li of quadruple i to the likelihood depends on the censoring status of the
event times. In case of one-stage estimation, one needs to take derivatives with respect to
the event time, whereas for two-stage estimation, it is sufficient to take derivatives at the
level of the marginal survival functions. E.g., for one-stage estimation, the contributions to
the likelihood are:

– For a cluster with no events: Li = S(xi1, xi2, xi3, xi4|Zi)

– For a cluster with one event: Li =
∂S(xi1, xi2, xi3, xi4|Zi)

∂xij

– For a cluster with two events: Li =
∂2S(xi1, xi2, xi3, xi4|Zi)

∂xij∂xik

– For a cluster with three events: Li =
∂3S(xi1, xi2, xi3, xi4|Zi)

∂xij∂xik∂xil

– For a cluster with four events: Li =
∂4S(xi1, xi2, xi3, xi4|Zi)

∂xi1∂xi2∂xi3∂xi4

According to the association structure that is specific to Model 0, 1, 2 and 3, the joint
survival function S(xi1, xi2, xi3, xi4|Zi) takes on a different form.

We denote the joint survival function S = S(xi1, xi2, xi3, xi4|Zi) and the marginal

survival functions Sj = Sj(xij |Zi), j = 1, 2, 3, 4. Furthermore, S′j =
dSj

dxij
. In two-stage

estimation, the S′j can be omitted, since the marginal survival functions do not contain
information on the association parameter.

A.1 Model 0

In the independence model, the joint survival function of the quadrivariate lifetimes is

S = S1S2S3S4

with derivatives

∂S

∂xij
= S′jSkSlSm for {j, k, l,m} = {1, 2, 3, 4}

∂2S

∂xij∂xik
= S′jS

′
kSlSm

∂3S

∂xij∂xik∂xil
= S′jS

′
kS
′
lSm

∂4S

∂xi1∂xi2∂xi3∂xi4
= S′1S

′
2S
′
3S
′
4

A.2 Model 1

In the model with one level of clustering, the joint survival function of the quadrivariate
lifetimes is

S = ϕ
[
ϕ−1(S1) + ϕ−1(S2) + ϕ−1(S3) + ϕ−1(S4)

]
.
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For the Clayton copula, ϕ(t) = (1 + θt)−1/θ and ϕ−1(t) = t−θ−1
θ

, yielding

S =
[
S−θ1 + S−θ2 + S−θ3 + S−θ4 − 3

]−1/θ
. (5)

Now put

A =
[
S−θ1 + S−θ2 + S−θ3 + S−θ4 − 3

]
Cj = S−θ−1

j S′j j = 1, 2, 3, 4,

then
∂S

∂xij
= A−1/θ−1Cj

∂2S

∂xij∂xik
= (1 + θ)A−1/θ−2CjCk

∂3S

∂xij∂xik∂xil
= (1 + θ)(1 + 2θ)A−1/θ−3CjCkCl

∂4S

∂xi1∂xi2∂xi3∂xi4
= (1 + θ)(1 + 2θ)(1 + 3θ)A−1/θ−4C1C2C3C4

A.3 Model 2

In the model with a parent copula with two identical child copulas, the joint survival function
of the quadrivariate lifetimes is

S(t1, t2, t3, t4) = ϕ0

[
ϕ−1
0 ◦ ϕ1

{
ϕ−1
1 (S1(t1)) + ϕ−1

1 (S2(t2))
}

+ ϕ−1
0 ◦ ϕ1

{
ϕ−1
1 (S3(t3)) + ϕ−1

1 (S4(t4))
}]
.

For the Clayton copula, this becomes

S =

[
−1 +

(
−1 + S−θ11 + S−θ12

)θ0/θ1
+
(
−1 + S−θ13 + S−θ14

)θ0/θ1]−1/θ0

.

Now put

A =

[
−1 +

(
−1 + S−θ11 + S−θ12

)θ0/θ1
+
(
−1 + S−θ13 + S−θ14

)θ0/θ1]
B12 =

(
−1 + S−θ11 + S−θ12

)
B34 =

(
−1 + S−θ13 + S−θ14

)
Cj = S−θ1−1

j S′j j = 1, 2, 3, 4

then

∂S

∂xij
=

{
A−1/θ0−1B

θ0/θ1−1
12 Cj if j = 1, 2

A−1/θ0−1B
θ0/θ1−1
34 Cj if j = 3, 4

∂2S

∂xij∂xik
=


A−1/θ0−2B

θ0/θ1−2
ij CjCk

[
(1 + θ0)B

θ0/θ1
jk + (−θ0 + θ1)A

]
if (j, k) = (1, 2), (3, 4)

(1 + θ0)A−1/θ0−2B
θ0/θ1−1
12 B

θ0/θ1−1
34 CjCk else

∂3S

∂xij∂xik∂xil
=


(1 + θ0)A−1/θ0−3B

θ0/θ1−2
12 B

θ0/θ1−1
34 CjCkCl

[
(1 + 2θ0)B

θ0/θ1
12 + (−θ0 + θ1)A

]
if (j, k, l) = (1, 2, 3), (1, 2, 4)

(1 + θ0)A−1/θ0−3B
θ0/θ1−1
12 B

θ0/θ1−2
34 CjCkCl

[
(1 + 2θ0)B

θ0/θ1
34 + (−θ0 + θ1)A

]
if (j, k, l) = (1, 3, 4), (2, 3, 4)

∂4S

∂xi1∂xi2∂xi3∂xi4
= (1 + θ0)A−1/θ0−4B

θ0/θ1−2
12 B

θ0/θ1−2
34 C1C2C3C4

·
[
(1 + 2θ0)(1 + 3θ0)B

θ0/θ1
12 B

θ0/θ1
34 + (1 + 2θ0)(−θ0 + θ1)A(B

θ0/θ1
12 +B

θ0/θ1
34 )

+(−θ0 + θ1)2A2
]
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A.4 Model 3

In the model with a parent copula with two different child copulas, the joint survival function
of the quadrivariate lifetimes is, for the Clayton copula

S =

[
−1 +

(
−1 + S−θ11 + S−θ12

)θ0/θ1
+
(
−1 + S−θ23 + S−θ24

)θ0/θ2]−1/θ0

Now put

A =

[
−1 +

(
−1 + S−θ11 + S−θ12

)θ0/θ1
+
(
−1 + S−θ23 + S−θ24

)θ0/θ2]
B12 =

(
−1 + S−θ11 + S−θ12

)
B34 =

(
−1 + S−θ23 + S−θ24

)
Cj1 = S−θ1−1

j S′j j = 1, 2

Cj2 = S−θ2−1
j S′j j = 3, 4

then

∂S

∂xij
=

{
A−1/θ0−1B

θ0/θ1−1
12 Cj1 if j = 1, 2

A−1/θ0−1B
θ0/θ2−1
34 Cj2 if j = 3, 4

∂2S

∂xij∂xik
=


A−1/θ0−2B

θ0/θ1−2
12 C11C21

[
(1 + θ0)B

θ0/θ1
12 + (−θ0 + θ1)A

]
if (j, k) = (1, 2)

A−1/θ0−2B
θ0/θ2−2
34 C32C42

[
(1 + θ0)B

θ0/θ2
34 + (−θ0 + θ2)A

]
if (j, k) = (3, 4)

(1 + θ0)A−1/θ0−2B
θ0/θ1−1
12 B

θ0/θ2−1
34 Cj1Ck2 if j ∈ {1, 2} and k ∈ {3, 4}

∂3S

∂xij∂xik∂xil
=


(1 + θ0)A−1/θ0−3B

θ0/θ1−2
12 B

θ0/θ2−1
34 Cj1Ck1Cl2

[
(1 + 2θ0)B

θ0/θ1
12 + (−θ0 + θ1)A

]
if (j, k, l) = (1, 2, 3), (1, 2, 4)

(1 + θ0)A−1/θ0−3B
θ0/θ1−1
12 B

θ0/θ2−2
34 Cj1Ck2Cl2

[
(1 + 2θ0)B

θ0/θ2
34 + (−θ0 + θ2)A

]
if (j, k, l) = (1, 3, 4), (2, 3, 4)

∂4S

∂xi1∂xi2∂xi3∂xi4
= (1 + θ0)A−1/θ0−4B

θ0/θ1−2
12 B

θ0/θ2−2
34 C11C21C32C42

·
[
(1 + 2θ0)(1 + 3θ0)B

θ0/θ1
12 B

θ0/θ2
34

+(1 + 2θ0)A((−θ0 + θ2)B
θ0/θ1
12 + (−θ0 + θ1)B

θ0/θ2
34 )

+(−θ0 + θ1)(−θ0 + θ2)A2
]

B Derivation of the conditional probabilities

In the different models, we express the joint survival function as

S(t1, t2, t3, t4) = C(S1(t1), S2(t2), S3(t3), S4(t4))

in which the copula function C describes the association between the different udder quar-
ters. Based on this expression, we look for the conditional probabilities of udder quarter 2
and 3 to have no infection for at least a time u after an infection was seen in udder quarter
1 at time x. Hereby, we also assume that none of the other udder quarter had an infection.
The conditional probability for udder quarter 2 (T2) is given by



24

P (T2 > x+ u|T1 = x, T2 > x, T3 > x, T4 > x) =
P (T1 = x, T2 > x+ u, T3 > x, T4 > x)

P (T1 = x, T2 > x, T3 > x, T4 > x)

=
lim
h→0

1
h
{P (T1 > x− h, T2 > x+ u, T3 > x, T4 > x)− P (T1 > x, T2 > x+ u, T3 > x, T4 > x)}

lim
h→0

1
h
{P (T1 > x− h, T2 > x, T3 > x, T4 > x)− P (T1 > x, T2 > x, T3 > x, T4 > x)}

=
lim
h→0

1
h
{C(S1(x− h), S2(x+ u), S3(x), S4(x))− C(S1(x), S2(x+ u), S3(x), S4(x))}

lim
h→0

1
h
{C(S1(x− h), S2(x), S3(x), S4(x))− C(S1(x), S2(x), S3(x), S4(x))}

=
C(1,0,0,0)(S1(x), S2(x+ u), S3(x), S4(x))f1(x)

C(1,0,0,0)(S1(x), S2(x), S3(x), S4(x))f1(x)
=
C(1,0,0,0)(S1(x), S2(x+ u), S3(x), S4(x))

C(1,0,0,0)(S1(x), S2(x), S3(x), S4(x))

with C(1,0,0,0)(u1, u2, u3, u4) = ∂
∂u1

C(u1, u2, u3, u4). Similarly, the conditional probability

for udder quarter 3 (T3) is given by

P (T3 > x+ u|T1 = x, T2 > x, T3 > x, T4 > x) =
C(1,0,0,0)(S1(x), S2(x), S3(x+ u), S4(x))

C(1,0,0,0)(S1(x), S2(x), S3(x), S4(x))
.

By taking the copula function of Model 2, we get the expressions (3) and (4).


