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Road tra	c accidents are believed to be associated with not only road geometric feature and tra	c characteristic, but also weather
condition. To address these safety issues, it is of paramount importance to understand how these factors a
ect the occurrences of
the crashes. Existing studies have suggested that the mechanisms of single-vehicle (SV) accidents and multivehicle (MV) accidents
can be very di
erent. Few studies were conducted to examine the di
erence of SV and MV accident probability by addressing
unobserved heterogeneity at the same time. To investigate the di
erent contributing factors on SV and MV, a mixed logit model
is employed using disaggregated data with the response variable categorized as no accidents, SV accidents, and MV accidents. �e
results indicate that, in addition to speed gap, length of segment, and wet road surfaces which are signi�cant for both SV and
MV accidents, most of other variables are signi�cant only for MV accidents. Tra	c, road, and surface characteristics are main
in�uence factors of SV and MV accident possibility. Hourly tra	c volume, inside shoulder width, and wet road surface are found
to produce statistically signi�cant random parameters. �eir e
ects on the possibility of SV and MV accident vary across di
erent
road segments.

1. Introduction

Given the economic costs and human casualties motor vehi-
cle crashes continue to claim, tra	c safety remains a hot topic
among researchers across the world. Over the last decades,
tra	c safety researchers have spent tremendous e
ort and
time to gain a better understanding of the contributory fac-
tors towards motor vehicle crash [1–6]. Despite the progress,
there are many knowledge gaps yet to be �lled in safety-
related studies. One of these gaps pertains to the di
erences
between single-vehicle andmultivehicle crashes. As shown by
previous studies [7–9], themechanisms of single-vehicle (SV)
accidents and multivehicle (MV) accidents are inherently
di
erent. Knipling [8] pointed out that single-vehicle and
multivehicle crashes were related to di
erent kinds of driver
errors. Speci�cally, single-vehicle crashes usually resulted
from loss of vehicle control that is associated with driver
misbehavior. Multivehicle crashes, on the other hand, are
most o�en caused by driver errors when interacting with

other vehicles. It is therefore important to identify di
erent
contributing factors between single-vehicle and multivehicle
crashes, which further o
ers insights for countermeasures to
mitigate SV and MV crash risk, respectively. Along with this
line of research, separate models were developed at �rst for
SV and MV crashes to account for the di
erence between
them [7, 9–12]. However, those models largely ignored the
shared unobserved e
ects between SV and MV crashes,
which is problematic and leads to inconsistent estimates [13].
To account for these shared heterogeneities between SV and
MV crashes, researchers have proposed advanced models
such as bivariate Poisson-gamma/lognormal models to study
SV and MV accidents jointly [14–17]. �ese previous studies
mainly employed count data models and had undoubtedly
provided many useful �nding which contributed to the
overall understanding of the characteristics of SV and MV
accidents.

�ough many safety studies have already been con-
ducted, the investigations on the mechanism of SV and
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MV crashes especially those using disaggregate data are
still lacking. Besides, methods other than Poisson-based
frequency models are yet to be explored to bring a new
understanding on SV and MV crashes. �e objective of this
study is mainly to investigate the di
erence of contributing
factors between SV and MV accidents using disaggregate
data. To this end, a comprehensive database is �rst established
which includes road geometric features, tra	c status, and
environmental conditions that are processed on an hourly
basis.�en,mixed logitmodels where the response variable is
categorized as no accidents, SV accidents, and MV accidents
are employed to address unobserved heterogeneity. Unlike
previous aggregated studies that su
er from loss of time-
varying information [4], this paper adopts re�ned-scale panel
data to capture the time-varying information as well as to
make the short-term prediction. To the authors’ knowledge,
there is rarely reported study so far on using the mixed
logit model to analyze short-term SV and MV accidents risk.
By using mixed logit models to examine SV and MV crash
risk in short period, this study can address the unobserved
heterogeneity and potentially provide new insights regarding
the mechanisms of SV and MV crashes.

�e remainder of this paper is organized as follows.
Previous studies on SV and MV crashes and mixed logit
model are brie�y summarized in Section 2. In Section 3, a
description of data is presented, followed by Section 4, where
a detailed explanation of the mixed logit model structure
used in this study is outlined. Section 5 presents the model
results. Finally, Section 6 summarizes the conclusions and
future research directions.

2. Previous Research

2.1. Studies on SV and MV Crashes. SV and MV crashes
o�en refer to di
erent types of accidents. To be speci�c,
SV usually involves run-o
-road crash and hitting objects,
whileMVusually relates to accidents such as rear-end crashes
and sideswipes.�erefore, tra	c safety researchers have long
established that the etiologies of SV and MV crashes are
di
erent. Past studies have examined the di
erent features of
SV andMVcrashes. For example,Mensah andHauer [9]were
among the �rst to investigate single-vehicle and multivehicle
crashes. �ey developed separate models for SV and two-
vehicle crashes and concluded that two separate models for
SV and two-vehicle crashes outperformed the model that
aggregated SV and two-vehicle crashes together.

Shankar et al. [18] investigated the e
ects of road geomet-
ric design and environmental and seasonal characteristics on
SV and MV crashes. Di
erent types of accident data and the
various risk factors such as curve number and precipitation
froma 61-kmhighway sectionwere collected.�ey found that
the separatemodels for SV andMVcrashes can better explain
the data than the model that pools all the crash data together.

F. Chen and S. Chen [19] examined the injury sever-
ities of truck-involved crashes on rural highways based
on the distinct models for di
erent crash types. Mixed
logit models were used to investigate di
erent risk factors
including the driver, temporal, environmental, and roadway

characteristics. �eir results showed that SV andMVmodels
have their respective contributing factors. �e likelihood
ratio test was conducted to verify the signi�cance of separate
models over the combined model, and the results indicated
that separate models are superior.

�ese past studies have shown that it is bene�cial to
develop separate models for SV and MV crashes. However,
the models adopted in those studies failed to account for
the dependence between SV and MV crashes. By developing
separate models, possible unobserved e
ects shared by SV
andMV crashes were typically ignored [4]. To account for the
dependence between crash types, researchers have proposed
multivariate models to study SV and MV accidents jointly.
For instance, Yu and Abdel-Aty [17] employed Bayesian
bivariate Poisson-lognormal model and hierarchical Poisson
models to examine the di
erent characteristic of SV and MV
crashes.

Geedipally and Lord [15] investigated the di
erence of
con�dence intervals between disaggregated models and the
combined model of SV and MV crashes. Five-year crash
data on multilane undivided highways were used to develop
bivariate Poisson-gamma models for crash prediction. �ey
discovered that the univariate models provide narrower
con�dence intervals than the bivariate model.

Ma et al. [16] proposed a random e
ect bivariate Poisson-
lognormal model to investigate the e
ect of geometric fea-
tures, weather, and tra	c conditions on crash occurrence.
�eir results indicated that the proposedmodel could address
the di
erent levels of correlations between SV and MV
crashes.

�ese abovementioned studies have contributed to the
general understanding of SV and MV crashes. Most of
these studies adopted Poisson-basedmodels such as Poisson-
gamma and Poisson-lognormal models to predict crash
frequency. In this study, the di
erence of single-vehicle and
multivehicle crashes will be reexamined from a di
erent
perspective. Advanced discrete choice model, that is, mixed
logit model, is developed using real-time crash-related infor-
mation that is processed into hourly records.

2.2. Mixed Logit Model. Over the past two decades,
researchers have developed various methods to analyze the
risk factors related to tra	c crash frequency. Count data
models such as Poisson, Negative Binomial, and Poisson-
lognormal models are predominantly employed for such
purposes [4]. Discrete choice models, on the other hand, are
mainly used to investigate injury severity levels. For example,
Barua and Tay [20] developed an ordered logit model to
study the injury severities of bus crashes in Bangladesh. Xu
et al. [21] used spatial logit model to examine the impact of
possible risk factor on the injury severity of pedestrians in
the crashes which occurred at signalized intersections.

Among various discrete choice models, mixed logit
model, that is, the randomparameter logitmodel, has become
popular in injury severity studies [19, 22, 23]. It relaxes
the independence of irrelevant alternatives assumption for
multinomial logit model and o
ers great capability to capture
unobserved heterogeneity in crash data. For instance,Haleem
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and Gan [23] developed a mixed logit model to investigate
the injury severities of urban freeway crashes in Florida. �e
role of vehicle types, driver’s age, and sides of impact on each
injury severity are assessed to unfold their respective e
ects.
Based on the results, two major strategies were suggested to
reduce the impacts of adverse factor. Hao and Kamga [24]
use ten-year crash data which occurred at highway-rail grade
crossings to analyze the e
ect of lighting on driver injury
severities based on mixed logit models. �e authors estab-
lished separate models for lighted intersection and unlighted
intersection and found that there are common and di
erent
signi�cant attributes for the two situations and suggested
that it is necessary to focus more on how drivers react to
emergencies at unlighted highway-rail intersections. �ese
studies have all demonstrated the great potential of mixed
logit models in crash analyses. By allowing the parameters to
vary across observations, mixed logit models enable analysts
to discover complex relationships between injury severity and
its contributing factors.

2.3. Real-Time Crash Prediction. Despite the preponderance
of literature in safety research, most studies are focused on
crash predictions on aggregate levels based on yearly records
[1, 4, 14, 15, 18, 25].�ose studies employed highly aggregated
data, thus being unable to provide guidance for proactive
intervention. Real-time crash risk prediction which seeks to
identify crash precursor, on the other hand, shows a great
appeal for proactive tra	c management. It has become a hot
topic and been frequently examined by researchers in recent
years [17, 26, 27].

However, the literature on real-time crash estimation is
not without limitation. To begin with, the real-time safety
analysis o�en requires tra	c turbulence measures 5–10 min-
utes before the crash.�erefore, one key assumption for real-
time risk evaluation requires the error of reported crash time
to be small. Imprialou and Quddus [28] investigated in detail
the quality of police-reported crash data.�e results revealed
that the reported crash time which ended at zero or �ve min-
utes over the course of 1 hourwas unproportionally high, with
an even higher spike at the thirtieth minute. It is therefore
possible that some crashes occurred earlier than the reported
time. �ey concluded that such inaccuracy in reported crash
timemight signi�cantly compromise the validity of real-time
safety studies. Schlögl and Stütz [29] summarized important
issues associated with data uncertainty in road safety studies.
�ey pointed out that it is untenable to use time unit smaller
than 1 hour due to rounding errors in reported crash time and
called for more hourly based studies. Moreover, Roshandel et
al. [27] summarized the opportunities and challenges facing
real-time risk prediction. �ey reviewed real-time safety
literature and revealed problems such as inconsistent results
from di
erent studies and poor predictive performance.
Another shortcoming relates to the nature of matched case-
control design, which is a major tool for real-time crash
prediction. �e readers are referred to Roshandel et al. [27]
for a detailed discussion.

Given that the aggregatedmodels are incapable of guiding
proactive tra	c management and that the real-time safety

studies su
er from abovementioned shortcomings, this paper
tries to �nd a middle ground that can balance both sides.
By employing the crash-related data processed into hourly
records, this study can be far less sensitive to the inaccuracy in
reported crash time yet still being able to provide short-term
(1 hour) crash prediction for proactive tra	c management.

3. Data Description

�e selected highway stretch is a part of I-25 in Colorado,
which starts at Mile Marker 188.49 and ends at Mile Marker
221.03. �e overall length of this stretch is 55.93 miles. �e
data set used in this research mainly consists of the following
four sources: (1) one-year detailed crash data obtained from
Colorado State Patrol; (2) highway geometric characteristic
and pavement condition data obtained from Roadway Char-
acteristic Inventory; (3) re�ned-scale (in 20-minute intervals)
weather and surface condition data from Road Weather
Information System; (4) real-time (in 2-minute intervals)
tra	c data detected by the tra	c monitoring stations on I-
25.

In previous studies, crash data are usually processed into
relatively large time interval. Such aggregation su
ers from
loss of the time-varying information and leads to estimation
bias. To avoid these problems, the crash-related data are
processed into relatively short time intervals (one hour) in the
current study. �e road segments are divided based on the
location of tra	c stations and further segmented according
to the variation of geometric characteristics. For instance, if
one of the main characteristics, such as speed limit, changes,
this segment will be divided into two new segments. In this
way, this study developed 57 road segments, 29 of which
are northbound and the others are southbound. �e crash
data were mapped to roadway segments and processed into
hourly records. �en they were matched with the tra	c
and weather data. �e response variable resulted in four
possible outcomes: (1) no accident; (2) SV accident; (3) MV
accident; and (4) SVmixedwithMVaccident.However, there
were only �ve out of 328,398 total observations which ended
with the fourth outcome (SV mixed with MV). Due to its
scarcity, the fourth outcome does not warrant a standalone
category in the mixed logit model. Besides, the SV mixed
with MV accident resembles the MV accident more than SV
accident in terms of etiology. �e resulting response variable
is therefore de�ned as three categories, which are no accident,
SV accidents, and MV accidents.

�ere aremany detailed geometric variables in the dataset
including segment length (miles), number of lanes, number
of merging ramps per lane per mile, rutting condition,
curvature (degree), and inside shoulder width (feet). Some
important tra	c control information like speed limit is also
collected. �ere are �ve weather stations on the study stretch
of I-25, which can provide road surface and weather data at
a twenty-minute interval. �e weather data of each segment
are evaluated from the closest station. �ere are more than
20 monitoring stations that are almost evenly distributed
on the road section. �e tra	c speed and volume data
recorded by these stations at 2-minute interval are processed
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Table 1: Descriptive statistics of response and signi�cant explanatory variables.

Variable Mean Std. dev. Minimum Maximum

Crash type 0.008 0.121 0 2

Temporal characteristic

Night 0.431 na 0 1

Weekend 0.271 na 0 1

November 0.095 na 0 1

Time of sunset 0.062 na 0 1

4 a.m.-5 a.m. 0.040 na 0 1

Tra�c characteristic

Low speed limit indicator (1 if speed limit is less than 55 miles per hour, 0
otherwise)

0.369 na 0 1

Speed gap (speed limit minus tra	c speed) (mph) 2.642 5.533 0 69.18

Hourly tra	c volume (in thousands per hour) 2.916 2.101 0.03 14.988

Truck percentage (%) 6.215 1.922 2.8 10.7

Road characteristic

Number of entering ramps per lane per mile 0.252 0.215 0 0.926

Number of lanes 4.159 0.562 3 5

Curvature (degree) 0.947 0.681 0 2.260

length of segment (miles) 1.014 0.769 0.236 4.5

Long remaining service life of rutting (1 if the value of rut is higher than 99,
0 otherwise)

0.225 na 0 1

Inside shoulder width (in feet) 9.006 2.583 5 15

Environmental and road surface characteristic

Cross wind speed 4.146 3.906 0 31.98

Visibility 1.075 0.136 0 1.1

Wet road surface 0.082 na 0 1

Chemical wet road surface 0.037 na 0 1

into hourly record. More details about how the data were
processed can be found in a study by Chen et al. [30]. �e
descriptive statistics of response and explanatory variables are
summarized in Table 1.

4. Methodology

For traditional crash prediction model, the e
ects of all
the explanatory variables were assumed to be �xed across
observations.�erefore, the unobserved heterogeneities were
ignored. To address the problem, this study adopted mixed
logit models to examine the risk factors and their degree of
in�uence on the SV and MV accident. �e model structure
of mixed logit model is speci�ed in the following section.

Since the data set used in this study is processed to panel
data structure with multiple hourly observations from the
same roadway segment, the number of all the observations
is expressed as �:

� =
�
∑
�=1

�� =
�
∑
�=1

��, (1)

where �� means the total number of observations in the site
of �; �� means the total number of observations in the time

period of �; � and � mean the number of segments and
time periods, respectively. In contrast to previous studies
that used cross-sectional data [31], this study adopts panel
data structure and speci�es the random parameter on road
segment level.

Let ����(	) be the probability of crash category 
 (no

accident, single-vehicle accident, and multivehicle accident)
which occurred on observation ���:

���� (	) = � (
����� + ����� ≥ 
������ + ������)
∀	� ∈ 
, 	� ̸= 	,

(2)

where ��� = 1, . . . , �, which means the observation on the
�th road segment at the �th hour. 
 is the set of all the possible
crash categories which are mutually exclusive. 	 and 	� are
di
erent crash categories. 
� and 
�� mean the parameter
vectors of crash categories 	 and 	�.���� is the vector of all the
contribution variables for the observation ���, which have an

in�uence on the possibilities of crash categories 	 and 	�. �����
and ������ are random components (also called error terms)

that explain the unobserved e
ects on crash categories of the
�th road segment at �th hour.
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Assuming that ����� follows a type I extreme-value distri-

bution [32], this results in a multinomial logit model which
can be de�ned as

���� (	) = �	�
���
∑∀��∈
 �	��
���

, (3)

where the parameter 
� can be estimated using the maximum
likelihood method.

�e mixed logit model is introduced by relaxing the
parameters 
� of the multinomial logit model to be variable
across hours �. �e distribution of random parameter is
speci�ed as follows:


�� ∼ �(
��, �	��) if 
�� is a random parameter, (4)

where � is the index of explanatory variables for the crash
category of level i; 
�� is the �th parameter in 
� at crash
level 	;�(
��, �	��)means that
�� obeys a normal distribution

which varies across di
erent hours; 
�� and �	�� are the mean
and standard deviation of 
��. In this case, the mixed logit
model is speci�ed on a panel data structure where multiple
observations are nested within each segment under di
erent
hours. �e resulting mixed logit model is given as follows:

���� (	) = ∫ �	�
���
∑∀��∈
 �	�
���

� (
 | �) d
, (5)

where �(
 | �) is the density function of 
 with parameter
vector �. �e likelihood function of mixed logit model
was programmed using the NLMIXED procedure in SAS
so�ware. In previous studies [19, 22], the normal distribution
was found to best �t the data compared to other distributions,
including lognormal, triangular, and uniform distribution.
�erefore, only normal distribution is considered herein.

5. Results

In this study, the no accident category is chosen as the
base category. Hence, the estimated parameters of mixed
logit model indicate the di
erence between the base category
(no accident) and the corresponding category (SV accidents
or MV accidents). To examine whether it is reasonable to
divide the crash type into three categories, models with
three crash categories and four crash categories are both
established, respectively, for comparing. Detailed model esti-
mation results are summarized in Tables 2 and 3. Many
risk factors from di
erent aspects (road geometric, tra	c
status, and environment characteristics) are shown to have
signi�cant in�uence on the SV and MV crash risk.

AIC (Akaike information criterion) and BIC (Bayesian
information criterion), which weigh model �t against model
complexity, are used to compare the performance of the two
models. �e model of three crash categories has relatively
lower AIC and BIC than the model of four categories. �is
result somehow provides empirical evidence that three crash
categories are better than four crash categories.�erefore, the
following analysis is mainly based on the results shown in
Table 2.

Table 2:�e estimated results of mixed logit model with three crash
categories.

Variable
Estimated
parameter

�-statistic
Constant [SV] −7.255 −16.38
Constant [MV] −8.608 −9.9
Temporal characteristic

Weekend [MV] 0.135 2.07
November [MV] 0.322 3.43
4 a.m.-5 a.m. [MV] −1.698 −2.92
Tra�c characteristic

Low speed limit indicator [MV] 0.654 3.2
Speed gap [SV] 0.045 4.68
Speed gap [MV] 0.084 31.62
Hourly tra	c volume [MV] 0.823 12.61
Truck percentage [MV] −0.056 −1.94
Road characteristic

Number of entering ramps per lane per
mile [MV]

−1.138 −3.04
Curvature [MV] 0.360 2.43
Length of segment [SV] 0.787 6.01
Length of segment [MV] 0.823 5.5
Long remaining service life of rutting
[MV]

0.422 2.44
Environmental and road surface
characteristic

Visibility [SV] −0.821 −2.18
Wet road surface [SV] 0.676 2.56
Wet road surface [MV] −0.330 −2.04
Chemical wet road surface [MV] 0.429 3.01
Random parameters

Mean of log of hourly tra	c volume
[MV]

0.823 12.61
Std. dev. of log of hourly tra	c volume
(normal distribution)

0.160 2.29
Mean of inside shoulder width [MV] 0.032 0.95
Std. dev. of inside shoulder width
(normal distribution)

0.047 5.89
Mean of wet road surface [MV] −0.330 −2.04
Std. dev. of wet road surface
(normal distribution)

0.608 3.35
Fit statistics

−2 log likelihood 15476
AIC (smaller is better) 15532
BIC (smaller is better) 15589

According to model estimation results, three explanatory
variables are found to be better treated as random parameters
(signi�cant at the level of 95% with �-statistics 2.29, 5.89, and
3.35, respectively). From Table 2, the parameter associated
with the hourly tra	c volume of MV crash category is nor-
mally distributed with mean 0.8228 and standard deviation
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Table 3: �e estimated results of mixed logit model with four crash
categories.

Variable
Estimated
parameter

�-statistic
Constant [SV] −7.254 −16.38
Constant [MV] −8.587 −9.79
Constant [SV and MV] −12.398 −16.62
Temporal characteristic

Weekend [MV] 0.134 2.05
November [MV] 0.319 3.35
4 a.m.-5 a.m. [MV] −1.678 −2.89
Tra�c characteristic

Low speed limit indicator [MV] 0.653 3.17
Speed gap [SV] 0.045 4.68
Speed gap [MV] 0.083 31.29
Speed gap [SV and MV] 0.140 5.56
Hourly tra	c volume [MV] 0.822 10.92
Truck percentage [MV] −0.058 −2.01
Road characteristic

Number of entering ramps per lane per
mile [MV]

−1.140 −3.02
Curvature [MV] 0.363 2.43
Length of segment [SV] 0.786 6
Length of segment [MV] 0.812 5.39
Long remaining service life of rutting
[MV]

0.427 2.44
Environmental and road surface
characteristic

Visibility [SV] −0.822 −2.18
Wet road surface [SV] 0.674 2.55
Wet road surface [MV] −0.342 −2.1
Chemical wet road surface [MV] 0.419 2.91
Random parameters

Mean of log of hourly tra	c volume
[MV]

0.823 10.92
Std. dev. of log of hourly tra	c volume
(normal distribution)

0.162 2.3
Mean of inside shoulder width [MV] 0.032 0.91
Std. dev. of inside shoulder width
(normal distribution)

0.047 5.91
Mean of wet road surface [MV] −0.342 −2.10
Std. dev. of wet road surface
(normal distribution)

0.614 3.38
Fit statistics

−2 log likelihood 15536
AIC (smaller is better) 15598
BIC (smaller is better) 15661

0.1602.�e distribution of hourly tra	c volume of MV crash
is shown in Figure 1. �is indicates the increase of hourly
tra	c volume will raise the possibility of multivehicle crash
in nearly all (99.99%) of the road segments. �is result is
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Figure 1: Distribution of hourly tra	c volume associated with MV
crash.

consistent with people’s perceptions/experience and is in line
with previous studies [16, 33]. Besides, the random parameter
indicates that the impact of hourly tra	c volume on MV
crash possibility is di
erent across road segments. �e same
variable is not signi�cant in SV crash category, which means
hourly tra	c volume has no signi�cant e
ect on single-
vehicle crashes. �e di
erence of signi�cant parameters
reveals that some essential di
erences do exist between
single-vehicle crashes and multivehicle crashes.

Inside shoulder width is also found to have random e
ect
on di
erent road segments for MV accidents. According to
the results, the estimated mean of the parameter is not sta-
tistically signi�cant, which may be considered as a problem.
Nevertheless, a recent study by Behnood andMannering [34]
pointed out that when the standard deviation of a random
parameter is signi�cant, the mean of the random parameter
does not need to be signi�cant as well. From Table 2, the
parameter of the inside shoulder width of MV crash category
is normally distributed with mean 0.0318 and standard
deviation 0.0472.�e corresponding distribution is shown in
Figure 2, which shows that 75% of the distribution is greater
than zero and 25% is less than zero. �is means that wider
inside shoulder is associated with higher probability of MV
accidents in 75% of the road segments and lower probability
of MV accidents in the rest 25% of the road segments. �is
�nding can possibly be explained by the tradeo
 between
forgiving geometric design and risky driving. On the one
hand, wider inside shoulder tolerates more driver errors.
On the other hand, it is possible that when inside shoulder
exceeds a certain threshold, driversmay bemore likely to take
risky actions such as passing and speeding, according to risk
compensation theory [35].

�e parameter of the wet road surface of MV crash
category is normally distributed with mean −0.3303 and
standard deviation 0.6076. As shown in Figure 3, 29% of the
distribution is greater than zero and 71% is less than zero.
When the road surface gets wet, nearly three-quarters of the
hours are related to lower likelihood of MV accidents, while
the other hours are related to higher risk of MV accidents.
Moreover, wet road surface is positively correlated to SV
accidents, which means that wet road surface usually leads to
more SV accidents. Such phenomena may be caused by some
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Figure 2: Distribution of insider shoulder width associated with
MV crash.
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Figure 3: Distribution of wet road surface associated with MV
crash.

unobserved heterogeneity of driver behavior. On wet road
surface, the skid resistance decreases which increases crash
risks. At the same time, wet road surface is o�en concurrent
with rainy condition when drivers tend to maintain a longer
distance between vehicles. �e crash risk is therefore a result
of increased driver attentiveness and reduced skid resistance.
As a result, wet road surface leads to mixed e
ects on MV
crash.

5.1. Temporal Characteristics. It can be found from Table 2
that the temporal factors do not have a strong impact on
the possibility of SV accidents. As for MV accidents, the
results indicate that the MV crashes are more likely to
occur on weekends and less likely to occur during 4 a.m.
to 5 a.m. Compared to other months, the likelihood of MV
crashes is larger in November. �is may be associated with
some harmful impacts caused by the sudden storm and
temperature change in November, 2010 [30].

5.2. Tra�c Characteristic. Speed limit indicator is used to
evaluate the e
ect of speed limit on tra	c safety. �is study
uses a dummy indicator to express the speed limit. If the
legal speed limit is smaller than 55, then the value equals
1, otherwise equals 0. �e results show that low speed limit
will increase the possibility of multivehicle crashes. Some

researchers also found that low speed limit will increase crash
possibility [36], but they failed to reveal its di
erent e
ects on
SV and MV accidents.

�e speed gap variable denotes the di
erence between
the average speed and the speed limit, which can represent
the congestion level to some extent. As shown in Table 2,
the results indicate that both SV and MV vehicle crashes
are more likely to occur when the speed gap gets larger.
�is �nding is partially similar to those in some previous
studies [17]. In addition, the increase of truck ratio will
decrease the likelihood of multivehicle crashes, which is in
accordance with the conclusions drawn by Anastasopoulos
and Mannering [37].

5.3. Road and Pavement Characteristic. Several road char-
acteristics are found to have signi�cant in�uence on SV
and MV crash risks. �e length of road segment tends to
increase the likelihood of both SV and MV crash, which
is consistent with the research by Venkataraman et al. [38].
More merging ramps per lane per mile will decrease the
likelihood of multivehicle crashes, which may be attributed
to the careful driving behavior on roads consisting of more
merging ramps.�e same indicator has also been investigated
in previous studies. Pei et al. [39] also found that an increase
in the merging and diverging ramp number leads to fewer
accidents, while some other researchers [37] made opposite
conclusions. �e di
erence of their conclusion may be due
to their aggregate model structure, which does not consider
the di
erent mechanism between SV andMV accidents.�is
inconsistency among past �ndings points to the very need to
investigate SV and MV crashes separately and uncover their
respective risk factors.

A similar result is also found for the curvature variable.
In this study, the results imply that higher curvature will
cause highermultivehicle crash risks. Albeit some researchers
found that the degree of curvature can be bene�cial for tra	c
safety [17, 39], other researchers found it positively correlated
with the crash likelihood [36, 40].

As for pavement conditions, it can be found that the
possibility of multivehicle crashes will decrease on segments
with longer remaining service live of rut. �is is probably
because drivers have a tendency to drive carefully on the road
with deeper rut and is consistent with past studies [30].

5.4. Environmental and Surface Characteristic. Turning to
surface characteristic, wet road surface and chemical wet
road surface are both shown to be associated with increased
possibility of single-vehicle crash. Chemical wet road surface
leads to more multivehicle crashes, while the e
ect of wet
road surface will change across road segments because of its
random nature, which has been discussed above.

From Table 2, higher visibility is related to decreased
possibility of single-vehicle crashes. According to the results,
other environment characteristics, such as cross wind, tem-
perature, and humidity, are not signi�cant.�is phenomenon
is plausible because the selected stretch of I-25 is relatively
�at and spans across Denver metro. On highways located
at mountainous terrains subjected to complex weather, the
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environment characteristicsmay impose signi�cant in�uence
on tra	c safety.

6. Discussion and Conclusion

In this study, mixed logit models are developed to examine
the di
erence of SV and MV accident probability using
hourly based disaggregated crash data. One-year accident
data, detailed tra	c data, weather condition, road geometry,
and surface condition data on I-25 from the state of Col-
orado were collected to establish a re�ned-scale panel data
structure. �e re�ned-scale is used to capture the potential
information lost in aggregate data. Many risk factors are
found to have varying e
ects on SV and MV accident
probability.

�ese �ndings contribute to the literature on the risk
factors that are associated with the di
erent mechanisms
of SV and MV crash. Di
erent from the former researches
whichmodel the SV andMVaccidents frequencies separately
or jointly, this study uses mixed logit model to study the
risk of both SV and MV crashes. �erefore, the results of
this paper can provide guidance to develop more rational
and e
ective segment management measures and accident
prevention strategies. In addition, some �ndings are also
helpful for the evaluation and improvement of the designs of
existing transportation infrastructure.

�emain conclusions associated with the risk factors and
their di
erent e
ects on SV andMVaccident are summarized
as follows.

(1) Speed gap, length of segment, and wet road surface
are found to have signi�cant e
ects on both SV and MV
accident possibility. In addition to these indicators, most of
other variables including time of weekends, November, low
speed limit indicator, hourly tra	c volume, truck percentage,
and chemical wet road surface are signi�cant for only MV
accidents. Visibility indicator is signi�cant for only SV acci-
dents.

(2) For I-25, the main in�uence factors of SV and MV
accident possibility are tra	c, road, and surface character-
istics. Other temporal and environment characteristics like
weekends, special period, and visibility also have certain
e
ects on the possibility of SV and MV accidents, respec-
tively.

(3) �e model results indicate that hourly tra	c volume,
inside shoulder width, and wet road surface are random
parameters with normal distribution for multivehicle crash
probability. So the impacts of these variables onMV accident
are proved to be di
erent across road segments.
Without doubt, there are also some limitation existing in the
present study. �e conclusions conducted here are mainly
based on the data frompart of I-25, whichmay be not suitable
for other highways. In order to getmore precise and universal
rules on the possibility of SV and MV accidents, further
studies should be conducted on di
erent types of highways.
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