
17

Investigating the Effects of Fine-Grain
Three-Dimensional Integration
on Microarchitecture Design

YUCHUN MA

Tsinghua University

YONGXIANG LIU, EREN KURSUN, and GLENN REINMAN

University of California, Los Angeles

and

JASON CONG

University of California, Los Angeles
California Nanosystems Institute

In this article we propose techniques that enable efficient exploration of the 3D design space,
where each logical block can span more than one silicon layer. Fine-grain 3D integration provides
reduced intrablock wire delay as well as improved power consumption. However, the corresponding
power and performance advantage is usually underutilized, since various implementations of
multilayer blocks require novel physical design and microarchitecture infrastructure to explore
3D microarchitecture design space. We develop a cubic packing engine which can simultaneously
optimize physical and architectural design for efficient vertical integration. This technique
selects the individual unit designs from a set of single-layer or multilayer implementations
to get the best microarchitectural design in terms of performance, temperature, or both. Our
experimental results using a design driver of a high-performance superscalar processor show
a 36% performance improvement over traditional 2D for 2–4 layers and 14% over 3D with
single-layer unit implementations. Since thermal characteristics of 3D integrated circuits are
among the main challenges, thermal-aware floorplanning and thermal via insertion techniques
are employed to keep the peak temperatures below threshold.

This research is supported by the National Science Foundation under Grant CCR-0096383, CCF-
0430077, and CCF-0530261, the NSFC 60606007 and Tsinghua Basic Research Fund JC20070021.
Authors’ addresses: Y. Ma, Department of Computer Science and Technology, Tsinghua Univer-
sity, Beijing, 100084, P. R. China; email: myc@mail.tsinghua.edu.cn; Y. Liu, E. Kursun, Computer
Science Department, University of California at Los Angeles, 4732 Boelter Hall, Los Angeles, CA
90095; G. Reinman, J. Cong, Computer Science Department, University of California at Los Angeles,
4732 Boelter Hall, Los Angeles, CA 90095; email: {reinman,cong}@cs.ucla.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1550-4832/2008/10-ART17 $5.00. DOI 10.1145/1412587.1412590 http://doi.acm.org/
10.1145/1412587.1412590

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

17:2 • Y. Ma et al.

Categories and Subject Descriptors: B.7.0 [Integrated Circuits]: General; C.1.0 [Processor

Architectures]: General

General Terms: Design, Performance

Additional Key Words and Phrases: 3D integration, thermal, microarchitecture, 3D packing

ACM Reference Format:

Ma, Y., Liu, Y., Kursun, E., Reinman, G., and Cong, J. 2008. Investigating the effects of fine-grain
three-dimensional integration on microarchitecture design. ACM J. Emerg. Technol. Comput. Syst.
4, 4, Article 17 (October 2008), 30 pages. DOI = 10.1145/1412587.1412590 http://doi.acm.org/
10.1145/1412587.1412590

1. INTRODUCTION

3D integration technology has attracted significant interest in recent years due
to the improvement it provides for existing process technologies, such as re-
duced interconnect latency, improved packaging density, and heterogeneous
integration of disparate technologies. An extensive amount of research has
demonstrated the latency reduction through additional device layers [Das et al.
2003; Banerjee et al. 2001; Black et al. 2004; Puttaswamy and Loh 2006a; Loh
2008a, 2008b]; however, most prior arts on 3D [Cong et al. 2006, 2004; Das
et al. 2004; Hung et al. 2006] have been limited to stacking traditional 2D dies
or blocks. Such stacking offers reduction in interblock latency, yet does little
to help intrablock wire latency. Although further improvement in both power
and performance is possible from this type of fine-grain vertical integration, the
lack of modeling and tool infrastructure limits the availability of such benefits.

Recent studies have provided block models for various architectural struc-
tures, including 3D caches [Tsai et al. 2005; Reinman et al. 2000; Kleiner et
al. 1996; Ronnen et al. 2001], register files [Tremblay et al. 1995], 3D arith-
metic units [Puttaswamy and Loh 2007, 2006b], and instruction schedulers
[Puttaswamy and Loh 2006c], along with 2D-based placement tools such as
Xie et al. [2006]. However, most of these models are limited to folding blocks
by wordlines or bitlines. Other studies [Black et al. 2004; Xie et al. 2006] sim-
ply extended the 2D floorplan to multiple layers, which in turn caused heating
problems due to vertical stacking of hotspots. At the same time, the overall per-
formance impact of using a combination of 2D and 3D implementations of differ-
ent components in the same design remains largely unexplored. That is to say,
having a subset of the architectural units occupy a single device layer while oth-
ers are implemented on multiple strata with potentially different heights in the
z-dimension has not been explored at the architectural level. It is also important
to note that using a locally best implementation of an individual unit may not
necessarily lead to the best overall design at architecture level. Hence, the ap-
plicability of studies that focus on a single unit is limited, since such approaches
do not effectively explore the interaction among blocks and global design
constraints.

Another critical issue that has not been modeled in the prior art is the ther-
mal effects of multilayer 3D stacking. Although multilayer blocks can reduce
the area, delay, and power consumption for each individual block [Puttaswamy

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

Effects of Fine-Grain 3D Integration on Microarchitecture Design • 17:3

and Loh 2006c; Xie et al. 2006], the best configuration for each single block
may not lead to the best thermal design for the whole chip. In 3D design,
the co-optimization of microarchitectural and physical design is essential, as
most of the potential benefits are due to wirelength reduction. Recently, the
MEVA-3D [Cong et al. 2006] framework was proposed to bridge the gap be-
tween physical planning and architectural design. This framework iteratively
optimizes microarchitectural loop sensitivities in the floorplanning process to
guide block placement and reduce the loop latencies. However, MEVA-3D is
limited to single-layer blocks and does not enable multilayer block exploration,
where each block can span more than one silicon layer.

To enable exploration with multilayer blocks, we model the multilayer 3D
design as a cube packing problem. Although a number of 2D packing represen-
tations have been extended to handle the cube packing problem, such as ST
[Yamazaki et al. 2000] and 3D sub-TCG [Yuh et al. 2004], they merely optimize
the volume of cubic blocks based on simulated annealing using different repre-
sentations. Additional design optimization needs to target the intrablock wire
latency and the corresponding performance improvement beyond the improved
packaging volume.

In this article we explore fine-granularity vertical integration and its impact
on the micro-architecture design, where individual blocks are placed across
multiple layers. By exploring multilayer implementations, our physical engine
places blocks effectively within the given layer constraints, resulting in perfor-
mance improvement and reduced power dissipation. We analyze the thermal
characteristics in detail, while our thermal-aware floorplanning and via inser-
tion stages keep the hotspot temperature below the silicon thermal thresholds.
We make the following contributions.

—Multilayer Architectural Blocks and Architecture-Driven 3D Packing. We
model components in multiple silicon layers and analyze the effects of dif-
ferent partitioning approaches on various components with respect to area,
timing, and power, where individual blocks can occupy one or more strata.
In this scheme a combination of single/multilayer block implementations are
used in the same design. In addition to exploring the use of single-layer and
multilayer blocks, we also analyze the impact of scaling the sizes of different
architectural structures.

—Architecture-Driven Cube Packing Engine. During the packing optimization,
we introduce the process of alternative selection to choose the best config-
urations among a wide range of implementations. Some heuristic methods
are proposed to speed-up the convergence and reduce redundant searches on
infeasible solutions.

—Co-Optimization of Microarchitecture Design and Physical Design for 3D. We
extend the microarchitecture-physical codesign framework [Liu et al. 2007;
Cong et al. 2006] to handle fine-grain 3D exploration. Given a frequency tar-
get, architectural netlist, and a pool of alternative block implementations,
this framework finds the best solution in terms of performance (in BIPS),
temperature, or both. The thermal-aware packing engine with our state-of-
the-art temperature simulator tool is capable of optimizing the entire design

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

17:4 • Y. Ma et al.

by choosing from various alternative implementations of each block. We also
perform thermal via insertion to help mitigate the impact of increased tem-
peratures in 3D integration.

—Detailed Thermal Analysis of the Resulting 3D Design. Since one of the main
limitations of 3D integration is heat removal, we explore the thermal charac-
teristics of experimental cases in detail to ensure feasibility of the resulting
3D design. We also utilize thermal via insertion to keep temperatures below
the given thermal thresholds.

Our experimental analysis reveals that fine-grain 3D integration can provide
36% performance improvement over traditional 2D designs. Furthermore, peak
temperatures can be kept within operation limits for moderate 3D stacks
through the temperature-aware physical design-microarchitecture codesign
framework and thermal via insertion. The remainder of this article is orga-
nized as follows. Section 2 briefly presents background on 3D integration tech-
nology; Section 3 discusses alternative 3D implementations of components;
the physical exploration, along with details of the cube packing algorithms,
is in Section 4; Section 5 provides the experimental methodology and experi-
mental results. Finally, concluding remarks and future work are discussed in
Section 6.

2. 3D TECHNOLOGY: PRELIMINARIES

3D IC fabrication refers to a wide range of technologies, including stacked
multichip modules through wire bonding and similar MCM packaging [Tsui
et al. 2003], chip-to-chip, chip-to-wafer, or wafer-wafer, bonding [Banerjee et al.
2001; Black et al. 2004; Topol et al. 2005; Das et al. 2003], and solid-phase
recrystallization [Banerjee et al. 2001], each spanning a wide range of char-
acteristics in terms of circuit performance, manufacturing cost, and thermal
profile.

There has been an extensive amount of work on 3D integration; in this work
we will only focus on closely related studies. Banerjee et al. [2001], Xie et al.
2007, 2006], Burns et al. [2006, 2001], and Topol et al. [2006, 2005] provide
extensive discussion on current 3D research studies. We also use aggressive
wafer-bonding 3D IC technology parameters. However, it is important to note
that some 3D assumptions are more similar to sequential 3D technology with
silicon growth in terms of aggressive fine-grain via pitch and interlayer band-
width then to wafer-level integration; the analysis and results can be extended
to similar technologies. 3D integration commonly involves face-to-face (F2F)
and face-to-back (F2B) approaches, as illustrated in Figure 1. In Figure 1(a)
the top device layer is flipped upside down so that the device layers are facing
each other in F2F, and in Figure 1(b) the top device layer is oriented in the same
direction as the bottom device layer in an F2B manner. We assume the use of
F2B in this study, as shown in Figure 1(b).

3. DESIGN OF 3D ARCHITECTURAL BLOCKS

Traditional design space explored by architecture-level design includes differ-
ent component sizes and characteristics, along with various ways of connecting

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

Effects of Fine-Grain 3D Integration on Microarchitecture Design • 17:5

Fig. 1. 3D IC example with two device layers: (a) face-to-face (F2F); (b) face-to-back (F2B).

Fig. 2. Latency increase breakdown for increasing cache size.

the components. This design space is extended by vertical integration technol-
ogy to include aspects such as multilayer implementations for each component
and increased connectivity. For this purpose, we apply different partitioning
techniques to model critical components in multiple layers and we analyze
their area, delay, and power consumption. Even though the majority of perfor-
mance improvement is due to the interblock global wiring in 3D integration,
intrablock wiring latency is increasing as well. Figure 2 illustrates this increase
in the wiring latency within the block and the corresponding breakdown anal-
ysis. The figure also illustrates the data-cache latency improvement possible
through the use of 3D integration. However, it is important to note that this
improvement is an average, and different folding techniques yield significantly
different latency improvement depending on the size and characteristics of the
architectural unit.

3.1 Multilayer Block Implementation Alternatives

To reduce intrablock interconnect latency and power consumption, we in-
vestigate two main strategies for designing blocks in multiple silicon layers:
(i) block folding (BF) and (ii) port partitioning (PP). Block folding implies fold-
ing of the block in the x or y direction, potentially shortening the wirelength in

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

17:6 • Y. Ma et al.

Fig. 3. (a) Single issue-queue cell with four tag lines and four access ports; most of the area is
occupied by tags and access ports; (b) port partitioning: Tags and access ports are distributed into
two layers. Width and height of each bit are reduced by half, and area by 75%.

one direction; port partitioning places the access ports of a cache-like structure
in different layers. There are various architectural structures, including caches,
register files, and wakeup and select logic. In this section we briefly describe the
use of different partitioning strategies for issue queues and various cache-like
blocks in our design driver architecture.

3.1.1 Issue Queue. Recent research [Cong et al. 2006] has shown that ev-
ery additional pipeline stage of latency seen in the scheduling loop causes an
average 5% performance degradation. Studies such as Folegnani et al. [2001]
indicate that the average issue-queue power can comprise about 25% of a pro-
cessor’s total power consumption. For the purposes of this article, we study
an issue queue based on Palacharla’s implementations [Palacharla et al. 1997].
There are two main stages of issue-queue functionality: the wakeup stage where
tags from completing register values are compared against input register tags
stored in issue-queue entries, and a selection stage where ready instructions
(as determined by the wakeup stage) are selected for execution.

Each issue-queue entry must track and compare the input register tags re-
quired by a given instruction in that entry. Figure 3 shows a single CAM cell
used to store 1 bit of a register tag for an issue-queue entry. Assuming that at
most four register values can be written back each cycle, and at most four new
instructions can enter the issue queue each cycle, and an individual cell would
have four 1-bit tags to compare against and have four write ports. In a proces-
sor with a 128-entry physical register file, register tags are composed of 7 bits.
Therefore, each row would need 7 CAM cells for each operand, for a total of 14
CAM cells. In general, an N-entry issue queue has N such rows. In the wakeup
stage, the match lines for each issue-queue entry are precharged high, and the
tag lines are driven with the register tags of completed instructions. A match
line only remains high if the register tag stored at the issue-queue entry is the
same as a certain one of the register tags driven on the tag lines. If any match
line for a given input register remains high, the ready bit for that operand is
set in the issue queue. Once both ready bits are set, the operand is eligible

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

Effects of Fine-Grain 3D Integration on Microarchitecture Design • 17:7

for issue (i.e., has woken up). In this stage, most of the delay comes from tag
broadcasting and matching. In the selection stage, the select logic picks instruc-
tions to execute among all instructions that are eligible for issue [Palacharla
et al. 1997]. For example, a selection tree for a 32-entry issue queue consists of
three levels of arbiters. Each arbiter takes four input requests (i.e., four eligible
instructions) and grants one request (i.e., selects one eligible instruction). In
general, an N -entry issue queue needs a selection tree of level L = log4N . In
the issue queue, the delay due to wakeup logic contributes a large portion of the
overall delay. Our simulations show that wakeup takes about 60% of the delay
in a 32-entry issue queue with four incoming register tags to compare against,
and four access ports. A significant contributor to delay is the wire latency of the
tag bits and match lines. A 3D integrated issue queue can significantly reduce
the length of these wires.

Issue-queue folding (BF). One way to reduce tag-line wire delay is to fold
the issue-queue entries and place them on different layers. The issue queue is
folded into two sets, and they are stacked in two layers. This approach effectively
shortens the tag lines.

Issue-queue port partitioning (PP). For an issue queue with four tag compar-
ison ports and four read/write ports, as shown in Figure 3(a), most of the silicon
area is allocated to ports. The wire pitch is typically about five times the feature
size [Palacharla et al. 1997; Reinman et al. 2000; Shivakumar et al. 2001]. For
each extra port, the wirelength in both x and y directions is increased by twice
the wire pitch [Reinman et al. 2000; Shivakumar et al. 2001]. On the other
hand, the storage, which consists of four transistors, is twice the wire pitch
in height, and has a width equal to the wire pitch. Hence, in the cell shown
in Figure 3(a), the storage area is less than 1% of the total area, while tags
and access ports occupy over 99% of the total area. One strategy for attacking
the tag and port requirements is port partitioning, which places tag lines and
ports on multiple layers, thus reducing both the height and width of the issue
queue. The reduction in tag and match-line wirelength can help reduce both
power and delay. The selection logic also benefits from this, as the distance from
the farthest issue-queue entry to the arbiter is reduced. This will speed-up the
comparison and also reduce power consumption.

3.1.2 Caches. Caches are regular structures composed of a number of tag
and data arrays. Figure 4 shows a single memory cell for a 3-ported structure,
which consists of four transistors that form two inverters: each inverts the
output of the other. Each port contains bit, bitbar lines, a wordline, and two
transistors per bit. For each extra port, the wirelength in both x and y directions
is increased by twice the wire pitch. The wire pitch is five times the feature
size [Folegnani et al. 2001; Farkas et al. 1996] in most designs. On the other
hand, the storage, which consists of four transistors, is twice the wire pitch in
height, and has a width equal to the wire pitch. Hence, in general, an increased
number of ports in a cache-like structure corresponds to a larger port silicon
area. Figure 5(a) demonstrates a high-level view of a number of cache tags and

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

17:8 • Y. Ma et al.

Fig. 4. A 3-ported SRAM cell.

Fig. 5. 3D block alternatives for the cache: (a) a planar 2-ported cache, where the two lines denote
the input/output wires of two ports; (b) wordline folding, where only the y direction is reduced,
input/output ports duplicated; (c) port partitioning, where ports are placed on two layers, length in
both x and y direction is reduced.

data arrays connected via address and data buses. Each vertical and horizontal
line represents a 32-bit bus; we assume two ports on this cache, and therefore
the lines are paired. Each box of the figure is a tag or data array, which is
composed of a mesh of horizontal wordlines and vertical bitlines. Every port
must have a wordline for each cache set and a pair of bitlines for each bit in a
cache set. The regularity of caches means that their components can easily be
subdivided. For example, the tag and data arrays can easily be broken down
into subarrays. We make use of CACTI [Shivakumar et al. 2001] to explore the
design space of different subdivisions and find an optimal point for performance,
power, and area.

3D cache block folding (BF). We consider two options for block folding: word-
line folding and bitline folding. In the former approach the wordlines in a cache
subarray are divided and placed onto different silicon layers. The wordline
driver is also duplicated. The gain from wordline folding comes from the short-
ened routing distance from predecoder to decoder and from output drivers to
the edge of the cache. Similarly, bitline folding places bitlines into different
layers, but needs to duplicate the pass transistors. Our analysis shows that
wordline folding has a favorable access time and power dissipation in most
cases compared to a realistic implementation of bitline folding. Hence, in the
following sections we only present results using wordline folding.

3D cache port partitioning (PP). Partitioning the ports and placing them on
different layers provides advantages, as shown in Figure 5(c). Port partitioning

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

Effects of Fine-Grain 3D Integration on Microarchitecture Design • 17:9

allows reductions in both vertical and horizontal wirelengths. The width and
height are simultaneously reduced by a factor of two, and the area by a factor of
four. This reduces the total wirelength and capacitance, which translates into
savings in access time and power consumption. Port partitioning requires vias
to connect the memory cell to ports in other layers.

3.1.3 Cache-Like Architectural Blocks. We therefore adapt our CACTI to
model register files because of their regular cache-like structure. Register files
typically dissipate relatively large amounts of power due to their porting re-
quirements, and the size of the physical register file can constrain the size of
the instruction window in a dynamically scheduled superscalar processor. We
will consider the same folding schemes for the register files as those used for
caches. The register mapping units, load-store queue, and branch predictors
can be approximated using only the data array portion of the cache.

3.2 Block Modeling

Each block has different implementation alternatives, according to the num-
ber of layers and different partitioning strategies. We can evaluate various
alternatives using our block modeling approach. We assume a supply voltage
of 1.0V and a 70nm process technology. Transistor and wire scaling parame-
ters are derived from McFarland and Flynn [1995] and Tsai et al. [2005], and
we assume copper interconnect in our simulation. Further transistor parame-
ters are obtained from Cao et al. [2000]. 3D-CACTI [Tsai et al. 2005] is proposed
as a tool to enable 3D exploration of caches and cache-like structures. However,
it is restricted to wordline/bitline folding. We extended the 3D-CACTI frame-
work by adding the capability of exploring port partitioning and block folding.
Furthermore, we added an area estimation capability, including the area im-
pact of 3D vias on the device layer. 3D-CACTI provides dynamic and leakage
power models for caches and cache-like microarchitectural units. Via capaci-
tance and resistance models are identical to Tsai et al. [2005]. We validated our
modifications to 3D-CACTI with HSpice.

3.2.1 Impact of 3D Technology. In F2B designs, vias must pass through
the device layer; this implies that space must be explicitly allocated for these
vias to pass through. The insertion of vias will not only influence the area of the
components but also the performance and power consumption for each block.
In this study, the 3D via resistance is estimated to be 10−8cm2 [Tsai et al. 2005].

The height of the 3D vias is assumed to be 10µm per device layer. Current
academic implementations of 3D via sizes vary from 1µm × 1µm to 10µm ×

10µm [Tsai et al. 2005; Das et al. 2004]. As 3D bonding technology has advanced,
3D via size has rapidly scaled down. 3D via size has been reduced from 10µm
to 1.75µm in MIT Lincoln Laboratory’s 3D process technology [MIT 2006] at
180nm. Die-to-die via improvements have been announced in recent years [Li
et al. 2006]. We expect 3D via size to continue to scale at smaller feature sizes.
To demonstrate the impact of scaling via size, we plot the performance of the
register file for via sizes ranging from 2.5µm to 0.5µm in 70nm technology. Via
pitch is twice via size. The register file has four read ports and four write ports.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

17:10 • Y. Ma et al.

Fig. 6. Impact of via size: (a) impact of via size on timing using F2B port partitioning; (b) impact
of via size on power using F2B port partitioning.

A single cell size is approximately 5.6µm × 5.6µm. In F2B bonding technology,
3D vias occupy silicon area in all layers except the bottom layer. Taking two-
layer partitioning as an example, when via size is 2.5µm, the best solution is
to place seven ports in the bottom layer and one port in the top layer, which
only slightly reduces the wirelength. When via size is scaled to 0.5µm, the best
solution places four ports in each layer. The wirelength is almost cut in half
in both x and y directions. As shown in Figure 6, the reduction in wirelength
reduces both delay and power as via size is scaled from 2.5µm to 0.5µm. As
3D technology advances, the 3D via size will decrease even further, yet it is
important to note that even with the most aggressive TSV scaling trends such
small pitches may not be achievable through wafer- or chip-level integration.
Hence, sequential 3D integration based on silicon growth may be necessary for
submicron TSV technologies to be possible [Xue et al. 2001]. In this study, we
assume an aggressive via pitch of 1.4µm. An area of 0.7µm × 0.7µm is reserved
for each 3D via for the upper layers in F2B technology. We assume 7µm × 7µm
for power delivery vias and the thermal via infrastructure. We assume that the
power vias can be arranged in clusters such that the microarchitectural unit
layout and area are not impacted by the power delivery. Clock design for such
fine-grain 3D integration is another important challenge; we assume that the
signal vias are used for the clock distribution with minimum area overhead.
Also, we assume periodic use of redundant vertical vias to synchronize the clock
signal on multiple layers to minimize the skew.

3.2.2 Scaling Architecture Sizes. Increasing the microarchitectural unit
sizes may cause extra cycles on critical loops in the microprocessor, which in

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

Effects of Fine-Grain 3D Integration on Microarchitecture Design • 17:11

Fig. 7. Scaling the sizes of issue queue, register file, and data cache, and impact on latency for
single-layer and two-layer cases (in nsec).

Fig. 8. Scaling the sizes of issue queue, register file, and data cache, and impact on power dissi-
pation for single-layer and two-layer cases (in nW).

turn may even degrade the performance of the whole system. 3D implementa-
tion provides the possibility of reducing the delay for large-sized blocks. Figure 7
shows timing performance when three structures are scaled from default size
to up to 16 times larger. With 3D integration technology, the access latency of
increased-sized structures is still less than in that of 2D. The register file, and
data cache can even quadruple their sizes while still outperforming the default
blocks in 2D. Figure 8 shows the effect of issue queue, register file, and data
cache size on power dissipation for single-layer and two-layer cases. 3D integra-
tion can reduce power dissipation when compared to the original 2D designs,
while the larger 3D structures will dissipate more power than smaller-sized 3D
blocks.

The size of architecture structure influences not only the area, delay, and
power for individual blocks, but also the overall design of the microprocessors.
By reducing the areas of blocks using 3D integration, the lengths of global
wires that pass over these blocks may be reduced, thus providing useful timing
slacks for circuit paths within microprocessors. Therefore, the increased latency
in larger-sized structures may be tolerated within a given cycle of a critical loop,
and the overall performance of the system can be improved. A packing-related
analysis is necessary to investigate the effects of scaling architecture sizes for
microarchitecture designs.

3.2.3 Scaling to Multiple Silicon Layers. We analyzed 3D implementations
of various caches and other regular structures, including the instruction and
data caches, register file, load-store unit, branch predictor, and issue queue.
Further details of each unit are presented in Section 5, Table I. Among the
experimental components, the issue queue has quite different characteristics

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

17:12 • Y. Ma et al.

compared to the rest of the cache-like structures. To accurately model the issue-
queue performance, we used HSpice simulations with a model similar to that
in Palacharla et al. [1997]. The area is approximated by 3D-CACTI using a
similarly configured cache. For all the simulations the supply voltage is 1.0V
and the technology size is 70nm. Transistor and wire scaling parameters are
derived from Tsai et al. [2005], McFarland and Flynn [1995], Cao et al. [2000],
and we use copper interconnect in our simulations. Using these models, we
quantified the gain of using 3D blocks in terms of area, timing, and power, as
shown in Figure 9 for two, three, and four layers of silicon. All measurements
are normalized to the performance of a single-layer block. In general, we ob-
serve that the reduction of area, power, and delay is further increased as the
number of layers is increased. (Please note that the term “block area” refers
to microarchitectural unit footprint in this context). For the issue queue (IQ)
with PP, area reduction increases to 80% with three layers, and to 90% with
four layers. Reduction in issue-queue delay increases to 43% with three lay-
ers, and to 50% with four layers. For the issue queue with block folding, there
is less reduction in area and delay with additional layers. However, the im-
pact on match-line wirelength from stacking more layers increases the power
consumption for folding to 9% with four layers.

The following points were observed during our experimental analysis.

—Area Reduction. (Figure 9(a)) Port partitioning is consistently more effec-
tive for area reduction over all structures. This is because port partitioning
reduces lengths in both X and Y directions.

—Power and Timing Improvement. The power or timing improvement in port
partitioning does not increase with the number of layers when this number
is larger than the number of ports. At the same time, the transistor layer
must accommodate the size of vias for instruction cache, data cache, and RF.
Four-layer designs do not outperform three-layer designs in terms of power
or timing. On the other hand, with wordline folding, the trend continues,
with consistent improvement for greater numbers of layers for most of the
components. However, for IQs, the impact on match-line wirelength from
stacking more layers increases the power consumption for folding to 9% with
four layers.

—Block Folding. Block folding is more effective in reducing the block delay,
especially for components with fewer ports. The data cache achieves up to
30% reduction in delay with BF, and a 23% reduction in delay with PP.

—Multilayer Blocks. Although multilayer blocks have reduced delay and power
consumption compared to single-layer blocks, the worst-case power density
may increase substantially by stacking circuits. Therefore, the power reduc-
tion in individual blocks alone cannot guarantee the elimination of hotspots.
The thermal effect depends on not only the configuration of each block, but
also on the physical information of the layout.

The diversity in benefit from these two approaches demonstrates the need for
a tool to flexibly choose the appropriate implementation. The best 3D configu-
ration of each component may not lead to the best 3D implementation for the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

Effects of Fine-Grain 3D Integration on Microarchitecture Design • 17:13

Fig. 9. Improvements for multilayer F2B design.

whole system. Furthermore, to favor the thermal effect, the reduction in delay
of 3D blocks may provide the latency slack to allow a trade-off between tim-
ing and power. Therefore, fine-grain 3D integration needs to consist of more
than purely architectural design optimization or physical design optimization.
To enable the co-optimization between 3D microarchitectural and physical de-
sign, we need a 3D codesign engine that can choose the implementation while
executing the packing optimization.

4. PHYSICAL EXPLORATION FOR 3D MICROARCHITECTURE DESIGN

Evaluating 3D architectures is a complex process that involves optimizing sev-
eral parameters: frequency, die area, performance, white space for thermal via

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

17:14 • Y. Ma et al.

insertion, and the temperature itself. With the various implementations for
each critical component, the architecture design is partially defined. Without
the physical information, it is impossible to obtain optimal implementations for
components for the final chip. So the co-optimization of architecture design and
physical design should also be able to choose the configurations for components,
such as the number of layers, the partitioning approaches, etc.

As described in the previous section, each component is not restricted to
a rectangle, but is likely to have cubic blocks, which have heights in the
z-direction, in packing design. Therefore, a cube packing algorithm should
be developed to arrange the given rectangular boxes in a rectangular box of
minimum volume, without overlapping each other. And to evaluate a phys-
ical design for a processor, an efficient approach to estimate system perfor-
mance should be developed based on the architecture structure and the model of
components.

Therefore, our flow takes as input: (1) a microarchitecture description in
terms of the parameters of the blocks, including the available sizes of the struc-
tures and number of functional units; (2) a target frequency for evaluating the
microarchitecture; (3) a set of architecture-level critical paths whose latency
will impact the performance of the microarchitecture, and the description of
performance sensitivity for each critical path; and (4) estimated power density
numbers for the blocks in the processor. Notice that items (3) and (4) are esti-
mates of performance and power for those microarchitecture components that
can drive a subsequent physical planning process.

We propose an automated floorplanner that can be configured to optimize
the floorplan for die area, performance, and temperature while considering in-
terconnect pipelining. We extended the CBL floorplanner based on a simulated
annealing scheme [Hong et al. 2000; Ma et al. 2005] as the cube packing en-
gine. This engine is flexible enough to dynamically choose the configurations of
blocks while doing the packing, and allows one to configure the number of de-
vice layers for 3D integration. Thermal via insertion and global routing can be
employed to obtain the optimized thermal and routing profile. Recent studies
show that thermal via insertion can eliminate hotspots efficiently, which can
reduce the peak temperature by 60% for four-layer designs [Li et al. 2006; Cong
and Zhang 2005]. Once the exact block positions and wire latencies are known,
this information is fed to our validation flow. A detailed cycle-accurate simula-
tor that considers wire latency and power, and that is coupled with power and
thermal models, is used to validate the results from our evaluation flow. In the
sections that follow, we explain the components of our flow.

4.1 Performance Estimation

Our approach to calculating the performance of the processor during the floor-
planning process is similar to the method used in Cong et al. [2006] and
Jagannathan et al. [2005]. As the target frequency during floorplanning is
fixed, we want to calculate the IPC degradation caused by the extra latency
introduced by interconnect in the layout. Borch et al. [2002] showed that the
IPC depends on a set of critical processor loops, and extra latency along these

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

Effects of Fine-Grain 3D Integration on Microarchitecture Design • 17:15

loops can cause the IPC to degrade. For each critical path, we develop IPC per-
formance sensitivity models, similar to Sprangle et al. [2002], which provides
information about IPC degradation due to extra latency along the path. Re-
cently, this kind of exploration has been used for performance improvement
by Black et al. [2006]. However, that study was limited to single-layer blocks.
Though the pipelining of the processors might need complex design, to obtain
a high-level estimation of latency for the whole system , we assume inserting
flip-flops on critical paths to maintain clock frequency. During floorplanning, we
calculate the total latency of each critical path, including the blocks and wires,
and determine the total number of cycles at the target frequency required to
cover this path latency. Extra latency from the wires is used to compute the
new IPC, and hence the performance of the processor for that floorplan.

4.2 3D Packing Algorithm

In previous 3D packing algorithms for microarchitecture design, each compo-
nent can only occupy one layer, or the layer numbers for blocks are equal. Hence,
the floorplanning algorithms used are merely extended 2D packing algorithms,
not true 3D packing approaches. To enable the packing of 3D components which
may occupy more than one layer, we constructed an architecture-driven pack-
ing engine that is a true 3D packing engine such that the 3D components in our
design can be treated as cubic blocks to be packed in 3D space. The dimension
in the z direction represents the layer information. The 3D packing algorithm
is extended from the CBL floorplanner [Hong et al. 2000; Ma et al. 2005].

4.2.1 Floorplanning for 3D Microarchitecture. The floorplanning problem
that we investigate here considers several components in its objective function
that are important trade-offs in 3D architectures. Specifically, we consider the
die area (footprint), the performance of the microarchitecture in BIPS, the max-
imum on-chip temperature, and the wirelength so that the interconnect power
can be reduced. Formally, we define the problem as follows:

Given.

(1) target cycle time Tcycle;

(2) clocking overhead Toverhead;

(3) target layer number of the chip Z con;

(4) list of blocks in the microarchitecture. Suppose for block i, there are k differ-
ent implementations that are recorded in a candidate list as {ci

1, ci
2, . . . ci

k}.
And each candidate ci

2 has the width(wi
j), height(hi

j), layer number (zi
j),

delay(d i
j), and power(pi

j); and

(5) set of critical microarchitectural paths with performance-sensitivity models
for the paths.

Objective. Generate a floorplan that optimizes for the die area, performance,
and maximum on-chip temperature.

Figure 10 shows the optimization flow based on a simulated annealing ap-
proach. Different than the previous simulated annealing-based floorplanning

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

17:16 • Y. Ma et al.

Fig. 10. Cube floorplanning flow based on simulated annealing approach.

approach, we not only extend the floorplanner to consider the performance of
the design instead of a wirelength optimization objective, but also integrate the
dynamically choosing of the blocks’ configurations while doing the packing.

Our cost function uses a weighted combination of area, performance, and
temperature and can be represented by

cos t = w1 ∗
1

BIPS
+ w2 ∗ Area + w3 ∗ Temp + w4 ∗ Wire,

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

Effects of Fine-Grain 3D Integration on Microarchitecture Design • 17:17

Fig. 11. The process of creating a corner cubic block: (a) x,y,z directions; (b) corner cubic block is 3
and uncovered block list in the z direction is {1,2,3}; (c) corner cubic block is 4, which covers 3 blocks
in {1,2,3} since T4 = 1110; uncovered block list in the z direction becomes {4} and the corresponding
3D CBL: S = {1,2,3,4} L = {X, Y, Z} T = {10 10 1110}.

where BIPS corresponds to the performance of the microarchitecture. With this
floorplan of the blocks, Area is the total area of the floorplan. The performance
(BIPS) is calculated through the method presented in the previous section.
Temp corresponds to the maximum on-chip temperature based on the CFD
ACE+ temperature simulator [Wilkerson et al. 2004]. The coefficients of w1,
w2, w3, and w4 are used to control the different weight for each component.
In our test evaluation, the performance component is given a high weight and
will be optimized when the simulated annealing engine tries to minimize the
cost function.

4.2.2 3D CBL Representation. The 3D CBL representation records the
topological covering relations between cubic blocks in the sequence from the
lower-left front corner to the upper-right rear corner for a packing. The topol-
ogy of cube packing is a system of relative relations between pairs of 3D blocks
in such a way that block A is said to be left of block B when every point of A is
left of every point of B. Relations of “right of,” “above,” “below,” “front of,” and
“rear of” are analogously defined. Since we are representing the topological re-
lations between blocks, the representation is independent of the sizes of blocks.
The 3D floorplan divides the total packing region into cubic rooms with sides.
Each cubic room is assigned to no more than one block. Therefore, to represent
the topological relations in the packing, each cubic block is represented by a
cubic room and rooms cover each other in the x, y, or z direction. During the
packing process from the lower-left front corner to upper-right rear corner, if the
room of block A covers the room of block B, then the room of block A is totally
covered by a side and the side extension of the room of block B. As shown in
Figure 11, we define the direction for each room with the direction in which it
covers other rooms. Therefore, if we want to insert a new block 4 to the packing
in Figure 11(b), the room of block 4 can cover those packed blocks {1,2,3} in
x, y, or z direction. The new inserted block will be located at the upper-right
rear corner so that it is defined as the corner cubic block. For each direction,
not all the rooms of packed blocks are available to be covered, since some of
them may have already been covered by the previous packed rooms. As shown
in Figure 11(b), block 1 has already been covered by block 2 in the x direction;
the new room of block 4 can only cover the rooms for block 2, block 3, or both

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

17:18 • Y. Ma et al.

in the x direction. Therefore, we define the uncovered block list in a packing
sequence for each direction, which records the current available blocks to be
covered. In Figure 11(b), before block 4 is inserted, the uncovered block list in
the z direction is {1,2,3}, the uncovered block list in the y direction is {1,3}, and
the uncovered block list in the x direction is {2,3}.

With the covering direction and the uncovered block list in the corresponding
direction, we still need information concerning which block or blocks should
be covered to determine the position of the inserted block. Suppose that the
uncovered block list in a direction in the packing sequence is {B1, B2, . . . Bk}.
Since the rooms in the CBL representation have flexible dimensions, if the room
of B is placed to cover Bi, then B covers every room after Bi in the uncovered
blocks list, and the room for block B does not cover the rooms before Bi. As
shown in Figure 11(c), the uncovered block list in the z direction is {1,2,3}. If
the room of block 4 covers the room of block 1, the room of block 4 will cover the
rooms for blocks 2 and 3 at the same time. Therefore, to determine the position
of inserted blocks, we can record the number of blocks covered by the room of
this block in the uncovered block list. If m blocks will be covered by inserted
block B,then the last m blocks in the uncovered block list should be covered by
the room of B, so that the position of block B in the covering direction should
be larger than any block from {Bk−m+1, . . . Bk} in this direction. With the new
inserted block, the uncovered block list should be updated dynamically. The last
m blocks {Bk−m+1, . . . Bk} are no longer available to be covered in this direction;
hence, the updated uncovered block list after block B is inserted should be
{B1,. . . Bk−m, B}.

Therefore, the information related to the packing process of the inserted
corner block B should include the following: the block’s name, the covering
direction, and the number of blocks covered by B in the uncovered block list. To
favor the generation of new solutions during the optimization process, we use
a binary sequence Ti to record the number of blocks covered in the uncovered
block list, in which the number of “1”s corresponds to the number of covered
blocks. Each string of “1”s is ended with a 0 to separate it from the record of
the next block. Given a 3D packing, we can have a sequence S of block names,
a list L of orientations, and a list {T2,T3, . . . , Tn} of covering information. The
three-element triple (S,L,T) composes a 3D CBL (as shown in Figure 11(c)).

To construct a packing based on a given CBL, the blocks are packed from
the left-bottom front corner to the upper-right rear corner. For each insertion,
the new corner block is packed at the upper-right rear corner of the current
packing according to the corresponding direction in the 3D CBL, and all the
blocks packed before are at the left of, or below, or in front of the current corner
cubic block. Note that in a 3D CBL there are special cases where the number
of successive “1”s in list Ti is greater than the number of available uncovered
blocks in the corresponding direction. To amend this, we automatically insert
a “0” when the number of successive “1”s in list T is greater than the uncovered
blocks, so that the block will cover all the available uncovered blocks. Moreover,
we can construct the floorplan accordingly, based on an arbitrary 3D CBL list.
The transformation from a 3D CBL list to a cubic packing with n blocks can be
described in the following algorithm.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

Effects of Fine-Grain 3D Integration on Microarchitecture Design • 17:19

Algorithm 3D CBL Packing

Initialize the packing with cubic block S[1];
Initialize the uncovered lists in three directions;
T-pointer = 0;
For i = 2 to n :

Uncovered list = the uncovered list in L[i-1] direction;
k= the length of Uncovered list;
WhileT [T pointer] ==1 and k>0:

S[i] covers kth block and all blocks after kth block in uncovered list
from L[i] direction and the coordinates of S[i] is updated accordingly;

T pointer++;
k−;

Update uncovered lists in all three directions: The blocks covered by S[i] are
deleted in uncovered list in L[i-1] direction, S[i] is added to all three uncovered lists.
End.

Based on the given 3D CBL list, we can construct the cubic floorplan accord-
ingly in O(n) time, where n is the number of blocks. However, the complexities
of ST [Yamazaki et al. 2000] and 3D sub-TCG [Yuh et al. 2008] are O(n2)[Kohira
et al. 2006]. Therefore, 3D CBL can obtain good results in a shorter running
time. And the major advantage of CBL representation is that the transforma-
tion from lists to packing is incrementally processed from lower left to upper
right in linear time. Compared to graph-based representation, it is much easier
to handle constraints by fixing the violations dynamically. In multilayer design,
the z-dimension (height of the block) is given as a constraint. In the following
section we propose a heuristic based on CBL representation to fix violations
while doing the packing. This approach guarantees the feasibility of the final
results and improves the converge process.

4.2.3 Packing Optimization with Alternative 3D Block Implementations.

With the 3D modeling described in the previous section, the candidates vary
in dimensions, delay, power consumption, and layer numbers according to dif-
ferent partitioning approaches. In 3D microarchitecture design, the number of
chip layers is often given as a constraint. Our approach adopts a standard sim-
ulated annealing process. Therefore, to choose the best feasible configuration
for blocks, we define the new operation, Alternative Selection, to create a new
solution.

Operation: Alternative Selection.
Randomly choose a block i with multiple candidates;
Randomly choose a feasible candidatefrom the candidate list;

Update block i with the dimension of the chosen candidate.

The move used to generate a neighboring solution is based on any one of the
following operations:

(1) randomly exchange the order of blocks in S;
(2) randomly choose a position in L and change the orientation;
(3) randomly choose a position in T , change “1” to “0”, or change “0” to “1”; or

(4) alternative Selection.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

17:20 • Y. Ma et al.

The various candidates for components greatly enlarge the solution space.
Especially with some layer-number constraints, parts of the solutions are in-
feasible. Therefore, heuristic methods are devised to speed-up the searching
process.

4.2.4 Packing with Layer Constraints. During the packing process, the
stacked blocks may violate the layer-number constraints. The traditional
method penalizes the violations in the cost function. However, this method does
not guarantee the feasibility of the final results and may slow down the conver-
gence of the optimization. With 3D CBL representation, we pack the blocks in
sequence. Therefore, we can dynamically change the blocks or CBL list during
the packing. If some block exceeds the layer-number constraint, we can fix the
violation by either lowering the block or changing the direction of the block. We
take the following steps to fix the violation.

(i) To maintain the topology as much as possible, we first try to change
the implementation of the block by choosing a candidate with a lower
z-dimension.

(ii) If the violation cannot be fixed by changing the candidate, we try to modify
the 3D CBL list to achieve a feasible packing. If block B covers previous
blocks in the z direction, which means that block B will be placed on top
of packed blocks, and if block B exceeds the layer-number constraint, we
can change the covering direction to x or y so that block B can be placed
on the right of or behind previous blocks. But if the z position of block B

is still too high, we can dynamically move block B to the lower position
by increasing the number of “1”s in TB. Since TB signifies the number of
blocks covered by B in the direction LB, block B will be moved to lower
blocks when we increase the number of “1”s in TB. We can continue this
process until block B satisfies the layer-number constraint.

Given the number of layers of the design Z con, we scan the CBL list to
pack the blocks from lower-left front corner to upper-right rear corner. The
coordinates of the lower-left front corner for packed block B are (xB, yB, z B)
with the corresponding implementation cB

j .

Hence the process can be described as the following algorithm.

Algorithm Fix Violation

Input:
block B which exceeds the layer number constraint: zB + zB

j > Zcon;

3D CBL and the candidate list for block B.
Output: New 3D CBL with the new candidate selection cBfor B;
If zB < Zcon

For candidate cB
j in candidate list of B

If zB + zB
j ≤ Zcon

choose this candidate cB = cB
j and update the positions of B;

return;
choose the candidate with the lowest z-height and update the information of B;

If LB = Z // cover previous block from z-direction
Change LB to X or Y;

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

Effects of Fine-Grain 3D Integration on Microarchitecture Design • 17:21

While (zB + zB
j > Zcon)

Increase the number of “1” in TLB
B which means the number of blocks covered

by B in the direction LB is increased.
Update the position of B;

End.

The extreme case is that block B is moved to the bottom (zB = 0). The candi-
date list should be constructed with the constraint that every block’s z height
should be less than Z con. Block B will not exceed the layer-number constraint
if zB = 0. Therefore, our algorithm guarantees the feasibility of the results.

4.3 Performance Validation

Once the physical planning stage is finished, the critical-loop latencies and cy-
cle time, along with the architectural configuration, are provided as input into
our cycle-accurate simulation framework. We adapt the SimpleScalar 3.0 tool
set [Burger et al. 1997], a suite of functional and timing simulation tools for
the Alpha AXP ISA, for our simulation framework. We have made significant
modifications to SimpleScalar to model the various speculative techniques and
different configurations in this study. Our framework gives performance statis-
tics in instructions per cycle (IPC) that can be combined with the cycle time
from the floorplanning stage to give a result in BIPS.

5. EXPLORATION WITH A DESIGN DRIVER

We present the detailed evaluation results obtained for our design driver mi-
croarchitecture. Figure 12 shows the important elements of a typical high-
performance superscalar processor. Table I shows the baseline processor pa-
rameters used in this study. We modified SimpleScalar [Burger et al. 1997]
to model this architecture. Based on McFarland and Flynn [1995], we assume
that the clock-cycle overhead is 46ps, which corresponds to roughly 1.8FO4 (fan-

out-of-four) for 70nm technology. Thus, for a 4GHz target cycle time, we set the
useful time for computation as 204ps and use this to calculate the number of
pipeline stages required to cover a given path delay. The delay of interconnects
is derived using the IPEM models [Cong et al. 1999], which consider several
optimizations such as wire sizing, buffer insertion, buffer sizing, etc. To facil-
itate the insertion of repeaters, flip-flops, vias, etc., we assume that 10% of
each block’s area is reserved around the block in the floorplan. To perform our
evaluation, results were collected for the SPEC2000 benchmarks.

5.1 Cube Packing Results

As described in previous sections, we model each critical component with differ-
ent implementations. Given the layer-number constraints, our packing engine
can pack the blocks successfully and choose the best implementation for each.
In Figure 13 we show the packing results for 4GHz frequency. Figure 13(a) dis-
plays the best floorplan in terms of the performance we achieved for one-layer
packing. The chip area is 4.9×4.9mm2 and BIPS is 2.34. Figure 13(b) displays
a 3D view of the floorplan with the highest performance for two-layer packing

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

17:22 • Y. Ma et al.

Fig. 12. Out-of-order, superscalar processor as the design driver.

Table I. Architectural Parameters for the Design Driver

Processor Width 6-way out-of-order superscalar, two integer execution clusters

Register Files 128 entry integer (two replicated files), 128 entry FP

Data Cache 8 KB 4-way set associative, 64B blocksize

Instruction Cache 8 KB 2-way set associative, 32B blocksize

L2 Cache 4 banks, each 128KB 8-way set associative, 128B blocksize

Branch Predictor 8K entry gshare and a 1K entry, 4-way BTB

Functional Units 2 IntALU+1 Int MULT/DIV in each of two clusters;
1 FPALU and 1MULT/DIV

with 3D blocks. The area is 3.6×3.6mm2and BIPS is 2.91. Our packing engine
selects between single-layer or two-layer block architectures. For blocks such
as ALU, MUL, and L2 cache units, single-layer implementation was selected.
The rest of the blocks were implemented in two layers. (We use cubic blocks to
represent multilayer blocks. All these multilayer blocks are placed on multiple
layers.) A subset of blocks are partitioned by block folding, and the remainder
by port partitioning. By choosing multilayer components, the delay along the
critical path can be reduced, leading to a better performance result. Table II
shows the number of cycles along critical loops in the packing results for dif-
ferent designs with 4GHz. Comparing the critical paths in Figures 13(a) and
13(b), the number of cycles along the branch misprediction loop is reduced from
21 to 15.

5.2 Performance Impact of 3D Integration

The intrablock delay can be reduced by implementing components in multiple
layers. Therefore, to study the impact of multilayer blocks on the performance
of the microarchitecture, we generated the best performance results for 2D and
3D block packing by running the floorplanning engine ten times and picking
the best solution for each case. 2D architectural blocks are restricted to a single
layer of silicon, whereas 3D architectural blocks span more than one layer of
silicon, using the wordline or port folding techniques.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

Effects of Fine-Grain 3D Integration on Microarchitecture Design • 17:23

Fig. 13. Cubic packing with different layers: (a) packing on single chip layer; (b) 3D view of packing
on two chip layers.

Table II. Number of Cycles along Critical Loops for 4GHz Frequency

2D1L 2D2L 3D2L 3D3L 3D4L

Wakeup 5 4 4 3 3

DL1 6 5 4 4 4

L2 12 11 10 10 10

Branch Misprediction 21 18 15 16 14

2D1L means 2D architectural blocks packing on one layer, and 3D2L means 3D

architectural blocks packing on two layers.

5.2.1 3D Blocks versus 2D Blocks. Figure 14 shows performance simu-
lation results on SPEC2000 relative to a single-layer design. The first bar
represents the benefit from using two layers of silicon with 2D blocks (as in
Cong et al. [2006]), and the second bar represents that from using two layers of
silicon with 3D blocks. All three configurations (single-layer and dual-layer 2D
blocks and dual-layer 3D blocks) ran at 4GHz. On average, the use of 2D blocks
in a two-layer design improves performance by 6%. Since the blocks themselves
do not take advantage of vertical integration, any performance gain can only
come from a reduction in the interblock wire latency. When we allow selecting
3D block alternatives, we see a performance improvement of 23% on average
over the single-layer architecture. This can be attributed to the ability of 3D
blocks to reduce the intrablock latency of critical processor loops (as shown in
Table II). Therefore, in this 4GHz case in 3D chip design, because of greater
reduction in wire latencies, using multilayer blocks can further improve the
performance by about 16% over single-layer blocks.

5.2.2 Clock Frequency and Number of Layers. To explore the effect on the
designs of different frequencies and layer numbers, in Table III we demonstrate
the performance in BIPS when using different clock frequencies (3GHz–6GHz)
and when using more silicon layers (1–4 layers of silicon). Vertical integration

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

17:24 • Y. Ma et al.

Fig. 14. Performance speedup for dual-layer architecture (2D/3D blocks) to single-layer design.

Table III. Performance Comparison of 2D/3D Blocks in BIPS for 3–6GHz, 1–4 Layers

1L 2L 3L 4L

Type of blocks 2D 3D 2D 3D 2D 3D

3G 2.09 2.2 2.70 2.38 2.83 2.8 2.91

4G 2.34 2.48 2.91 2.76 3.05 2.83 3.25

5G 2.48 2.65 3.19 3.01 3.40 3.2 3.58

6G 2.34 2.53 3.16 2.96 3.33 3.29 3.52

Normalized 1 1.07 1.29 1.20 1.36 1.31 1.43

Average 2D / 1L 1.19 3D/1L 1.36 3D/2D 1.14

with single-layer blocks can improve performance by about 14%. However, by
allowing the use of multilayer blocks and optimizing the implementation with
the packing process, chip performance can be improved by 36% on average and
up to 43% for 4 layers. In order to evaluate the sensitivity of our approach to
different frequencies, we compile results in BIPS for the designs with multilayer
blocks, as shown in Figure 15. We can see better performance with an increase in
the frequency and the number of layers. However, when the frequency increases
to 6GHz, the BIPS drops a little. This is because the higher the frequency of the
chip, the more degradation the extra latency will cause for chip performance.
This trend is also true for the single-layer design and 3D design with single-
layer blocks.

5.2.3 Architecture Block Sizes. Figure 16 illustrates the impact of block
sizing on performance. On average, doubling the issue-queue size provided an
additional 5% performance boost over the experimental benchmarks from the
SPEC2000 suite. An additional 6% performance boost was achieved by doubling
the sizes of the register file and data-cache as well. It is also important to
note that the performance gain is not uniform over all experimental cases.
For benchmarks such as swim and art, increasing the register file and data-
cache size was quite effective, whereas doubling block sizes did not change the
performance for other benchmarks such as mcf.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

Effects of Fine-Grain 3D Integration on Microarchitecture Design • 17:25

Fig. 15. Frequency impact on performance in multilayer implementations.

Fig. 16. Performance impact of doubling the sizes of: (i) issue queue; and (ii) register file, data
cache, and issue queue.

5.3 Thermal Characteristics

The increased on-chip temperature profile of 3D integration is considered one
of the greatest challenges in 3D design. Therefore, an accurate and fast ther-
mal simulation framework is very crucial for design optimization. We use a
state-of-the-art 3D thermal modeling tool, CFD ACE+ temperature simula-
tor [Wilkerson et al. 2004], based on the finite element method (FEM), along
with thermal via insertion [Cong and Zhang 2005]. Our thermal simulation
infrastructure provides detailed thermal maps of individual layers with the
corresponding local hotspots.

Figure 17 shows the temperature profiles of the layers in the two-layer de-
sign, where the top layer is significantly hotter than the bottom layer with a
hotspot temperature of 90◦C. The bottom layer, which is in contact with the
heat spreader and heat sink, is cooler. Although the bottom layer has a higher
power density compared to the top layer, the thermal resistance to the heat sink
from the top layer is higher. Even though silicon is considered a good thermal
conductor, vertical heat conduction is negatively affected by the combination of
metal layers, bonding materials, and the increased distances. We look at using
thermal vias that enable improved vertical heat conduction from the top layer
to the heat sink. Using thermal vias seems effective in keeping the hotspot
temperatures below thermal thresholds.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

17:26 • Y. Ma et al.

Fig. 17. Thermal maps for top and bottom layers (bottom layer is closer to the heat sink).

The results also demonstrate the importance of layer selection for thermal
design of 3D integrated circuits. This is taken into consideration in our thermal-
aware floorplanning algorithm. In general, layers farther away from the heat
sink have considerably higher temperatures; this is due to the serial thermal
resistances from heat source to heat sink in the corresponding thermal RC
network.

Figure 18 illustrates the temperature comparison of the 2D and 3D architec-
tural block technologies. The x-axis shows the different configurations with 2–4
silicon layers in the 3–5 GHz frequency range. The y-axis has the temperature
in ◦C for 3D and 2D block technologies and the results of thermal via insertion.
The ambient temperature is assumed to be 27◦C. On average, multilayer (3D)
block configurations have 11% lower temperature due to the thermal optimiza-
tion in the 3D packing process. As Section 3.2.2 shows, larger structures will
dissipate more power than regular-sized 3D blocks. But despite the increase
in power, the increased area of these larger designs will see an average slight
change in temperature in the case where all three resources are increased for
the initial area.

The previous section showed that multilayer blocks can save about 10–30%
power consumption over single-layer blocks. But temperature heavily relies on
the layout. To relieve hotspots, it is often necessary to keep potential hotspots
away from one another. Even though single-layer blocks may seem to have
advantages over multilayer blocks in this respect, our packing engine over-
comes this issue by its intelligent layer selection for blocks depending on their
thermal profile. Therefore, we can see that for two- and three-layer designs,
temperatures can be reduced due to the power reduction of multilayer blocks
and alternative selection in our engine.

Although multilayer blocks can reduce some power consumption inside
blocks, the temperatures still display a nonlinear increase with an increased

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

Effects of Fine-Grain 3D Integration on Microarchitecture Design • 17:27

Fig. 18. Temperature comparison of 2D and 3D for 3–5GHz and 1–4-layer cases.

number of layers, as well as an elevation with higher frequencies. We see that
without thermal via insertion, the temperatures are above 250◦C for four-layer
designs; these are out of the normal operation range of silicon. Cong et al. [2005]
demonstrate the effects of thermal via insertion with floorplanning bench-
marks: A four-layer design with peak temperature above 200◦C can be cooled
using thermal vias. In our test, through effective use of thermal via insertion,
the temperatures are reduced. Therefore, by incorporating temperature-aware
design planning, 3D architectures with multilayer blocks provide a 36% im-
provement in performance over 2D designs, a 14% improvement over a single-
layer block 3D, and up to 43% improvement in the four-layer case.

6. CONCLUSIONS

Vertical integration has been shown to enable reduction in both interblock and
intrablock wire latency. However, current research is limited to only exploiting
interblock latency due to lack of tool infrastructure. In this study we inves-
tigate the effects of using multilayer blocks instead of constraining blocks in
single-layer silicon. Our results indicate that effective use of multilayer archi-
tectural blocks reduces the impact of wires within a block through a reduction
in block access time and/or power. We observed an average 36% increase perfor-
mance in BIPS compared to the single-layer case (up to 43% in the four-layer
case). Multilayer block integration provides a 14% improvement over the single-
layer block case, along with an 11% reduction in average temperature. Exper-
imental results show that vertical integration technology causes a significant
temperature increase if blocks are restricted to single-layer silicon. However,
temperature-aware design planning and use of thermal vias both enable on-
chip temperatures below the critical thermal thresholds for the two-layer case.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

17:28 • Y. Ma et al.

REFERENCES

BANERJEE, K., SOURI, S., KAPUR, P., AND SARASWAT, K. 2001. 3D ICs: A novel chip design for improv-
ing deep-submicrometer interconnect performance and systems-on-chip integration. Proc. IEEE

89, 5, 602–633.
BLACK, B., ANNAVARAM, M., BREKELBAUM, N., DEVALE, J., JIANG, L., LOH, G. H., MCCAULEY, D., MORROW,

P., NELSON, D. W., PANTUSO, D., REED, P., RUPLEY, J., SHANKAR, S., SHEN, J., AND WEBB, C. 2006. Die
stacking (3D) microarchitecture. Proceedings of the International Symposium on Microarchitec-

ture, 469–479.
BLACK, B., NELSON, D. W., WEBB, C., AND SAMRA, N. 2004. 3D processing technology and its impact

on IA32 microprocessors. In Proceedings of the International Conference on Computer Design,
316–318.

BORCH, E., TUNE, E., MANNE, S., AND EMER, J. 2002. Loose loops sink chips. In Proceedings of the

IEEE International Symposium on High-Performance Computer Architecture, 299–310.
BURGER, D. C. AND AUSTIN, T. M. 1997. The SimpleScalar tool set. Tech. Rep. CS-TR-97-1342,

University of Wisconsin, Madison, Wisconsin. June.
BURNS, J. A., CHEN, C. K., KNECT, J. M., AND WYATT, P. W. 2006. A wafer-scale 3-D circuit integration

technology. IEEE Trans. Electron. Dev. 53, 10, 2507–2516.
BURNS, J., MCLLRATH, L., KEAST, C., LEWIS, C., LOOMIS, A., WARNER, K., AND WYATT, P. 2001. Three

dimensional integration for low power, high-bandwidth systems on a chip. In Proceedings of the

IEEE International Solid State Circuits Conference, San Francisco, CA, 268–269
CAO, Y., SATO, T., SYLVESTER, D., ORSHANSKY, M., AND HU, C. 2000. New paradigm of predictive

MOSFET and interconnect modeling for early circuit design. In Proceedings of the Custom Inte-

grated Circuit Conference, 201–204.
CONG, J. AND PAN, D. Z. 1999. Interconnect estimation and planning for deep submicron designs.

In Proceedings of the 36th ACM/IEEE Conference on Design Automation, 507–510.
CONG, J. AND ZANG, Y. 2005. A thermal-driven multilevel routing for 3-D ICS. In Proceedings of

the Asia Pacific Design Automation Conference, 121–126.
CONG, J., JAGANNATHAN, A., MA, Y., REINMAN, G., WEI, J., AND ZHANG, Y. 2006. An automated design

flow for 3D microarchitecture evaluation. In Proceedings of the Asia and South Pacific Design

Automation Conference, 384–389.
CONG, J., WEI, J., AND ZHANG, Y. 2004. A thermal-driven floorplanning algorithm for 3D ICs.

In Proceedings of the ACM/IEEE International Conference on Computer Aided Design, 306–
313.

DAS, S., FAN, A., CHEN, K.-N., TAN, C. S., CHECKA, N., AND REIF, R. 2004. Technology, performance,
and computer-aided design of three-dimensional integrated circuits. In Proceedings of the Inter-

national Symposium on Physical Design, 108–115.
DAS, S., CHANDRAKASAN, A., AND REIF, R. 2003. Design tools for 3D integrated circuits. In Proceed-

ings of the Asia Pacific Design Automation Conference, 53–56.
FARKAS, K., JOUPPI, N., AND CHOW, P. 1996. Register file design considerations in dynamically

scheduled processors. In Proceedings of the 2nd International Symposium on High Performance

Computer Architecture, 40–51.
FOLEGNANI, D. AND GONZALEZ, A. 2001. Energy-Effective issue logic. In Proceedings of the 28th

Annual International Symposium on Computer Architecture, 230–239.
HONG, X. L., HUANG, G., CAI, Y. C., DONG, S. Q., CHENG, C. K., AND GU., J. 2000. Corner block list:

An effective and efficient topological representation of non-slicing floorplan. In Proceedings of

International Conference on Computer Aided Design, 8–12.
HUNG, W., LINK, G., XIE, Y., VIJAYKRISHNAN, N., AND IRWIN, M. 2006. Interconnect and thermal-

aware floorplanning for 3D microprocessors. In Proceedings of the International Symposium on

Quality of Electronic Design, 98–104.
JAGANNATHAN, A. , YANG, H. H., KONIGSFELD, K., MILLIRON, D., MOHAN, M., ROMESIS, M., REINMAN, G., AND

CONG, J. 2005. Microarchitecture evaluation with floorplanning and interconnect pipelining.
In Proceedings of the Asia Pacific Design Automation Conference, 8–15.

KLEINER, M. B., KUHN, S. A., RAMM, P., AND WEBER, W. 1996. Performance and improvement of the
memory hierarchy of Risc-systems by application of 3-D technology. IEEE Trans. Comp. Packag.

Manufact. Technol. 19, 4, 709–718.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

Effects of Fine-Grain 3D Integration on Microarchitecture Design • 17:29

KOHIRA, Y., KODAMA, C., FUJIYOSHI, K., AND TAKAHASHI, A. 2006. Evaluation of 3D-packing repres-
netations for scheduling of dynamically reconfigurable systems. In Proceddings of the IEEE

International Symposium on Circuits and Systems, 4–8.
LI, F., NICOPOULOS, C., RICHARDSON, T., XIE, Y., NARAYANAN, V., AND KANDEMIR, M. 2006. Design and

management of 3D chip multiprocessors using network-in-memory. In Proceedings of the 33rd

International Symposium on Computer Architecture, Boston, MA, 130–141.
LI, Z., HONG, X., ZHOU, Q., ZENG, S., BIAN, J., YANG, H., PITCHUMANI, V., AND CHENG, C.-K. 2006.

Integrating dynamic thermal via planning with 3D floorplanning algorithm. In Proceedings of

the ACM International Symposium on Physical Design, 178–185.
LIU, Y., MA, Y., KURSUN, E., CONG, J., AND REINMAN, G. 2007. Fine grain 3D integration for mi-

croarchitecture design through cube packing exploration. In Proceedings of the International

Conference on Computer Design, 259–266.
LOH, G. 2008a. 3D stacked memory architectures for multi-core processors. In Proceedings of the

International Symposium on Computer Architecture, 453–464.
LOH, G. 2008b. A modular 3D processor for flexible product design and technology migration. In

Proceedings of the ACM International Conference on Computing Frontiers, 157–170.
MCFARLAND, G. AND FLYNN, M. 1995. Limits of Scaling MOSFETS. Rep. CSL TR-95-62, Stanford

University. November.
MA, Y., HONG, X., CHENG, C. K., AND DONG, S. 2005. 3D CBL: An efficient algorithm for general 3-

dimensional packing problems. In Proceedings of the IEEE the International Midwest Symposium

on Circuits and Systems, 1079–1082.
MIT LINCOLN LABORATORY. 2006. Mitll low-power FDSOI CMOS Process: Design guide. March.
PALACHARLA, S., JOUPPI, N. P., AND SMITH, J. E. 1997. Complexity-Effective superscalar processors.

In Proceedings of the 24th Annual International Symposium on Computer Architecture, 206–218.
PUTTASWAMY, K. AND LOH, G. H. 2006a. Thermal analysis of a 3D die-stacked high-performance

microprocessor. In Proceedings of the ACM/IEEE Great Lakes Symposium on VLSI, 19–24.
PUTTASWAMY, K. AND LOH, G. H. 2006b. The impact of 3-dimensional integration on the design

of arithmetic units. In Proceedings of the International Symposium on Circuits and Systems,
4951–4954.

PUTTASWAMY K. AND LOH, G. H. 2006c. Dynamic instruction schedulers in a 3-dimensional inte-
gration technology. In Proceedings of the ACM/IEEE Great Lakes Symposium on VLSI, 153–158.

PUTTASWAMY, K. AND LOH, G. H. 2007. Scalability of 3D-integrated arithmetic units in high-
performance microprocessors. In Proceedings of the Design Automation Conference, San Diego,
CA, 622–625.

REINMAN, G. AND JOUPPI, N. 2000. Cacti 2.0: An integrated cache timing and power model.
Tech. Rep. 2000/7. Palo Alto, Compaq, California. http://www.hpl.hp.com/techreports/Compaq-
DEC/WRL-2000-7.pdf.

RONNEN, R., MENDELSON, A., LAI, K., LIU, S.-L., POLLACK, F., AND SHEN, J. P. 2001. Coming challenges
in microarchitecture and architecture. Proc. IEEE 89, 3, 325–340.

SHIVAKUMAR, P. AND JOUPPI, N. 2001. Cacti 3.0: An integrated cache timing, power, and area model.
Tech. Rep. Compaq, Palo Alto, California. www.hpl.hp.com/personal/Norman-Jouppi/eacti3.pdf.

SPRANGLE, E. AND CARMEAN, D. 2002. Increasing processor performance by implementing deeper
pipelines. In Proceedings of the 29th Annual International Symposium on Computer Architecture,
25–34.

TOPOL, A. W., LA TULIPE, D. C., SHI, L., FRANK, D. J., BERNSTEIN, K., STEEN, S. E., KUMAR, A., SINGCO,
G. U., YOUNG, A. M., GUARINI, K. W., AND IEONG, M. 2006. Three-Dimensional integrated circuits.
IBM J. Res. Develop. 50, 4-5, 491–506.

TOPOL, A. W., LA TULIPE, D. C., SHI, L., ALAM, S. M., YOUNG, A. M., FRANK, D. J., STEEN, S. E., VICHICONTI,
J., POSILLICO, D., CANAPERI, D. M., MEDD, S., CONTI, R. A., GOMA, S., DIMILIA, D., WANG, C., DELIGIANNI,
L., COBB, M. A., JENKINS, K., KUMAR, A., KWIETNIAK, K. T., ROBSON, M., GIBSON, G. W., D’EMIC,
C., NOWAK, E., JOSHI, R., GUARINI, K. W., AND IEONG, M. 2005. Enabling SOI-based assembly
technology for three dimensional integrated circuits. In Proceedings of the IEEE Interconnection

Electron Devices Meeting, 352–355.
TREMBLAY, M., JOY, B., AND SHIN, K. 1995. A three dimensional register file for superscalar pro-

cessors. In Proceedings of the 28th Hawaii International Conference on System Sciences, 191–
201.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

17:30 • Y. Ma et al.

TSAI, Y., XIE, Y., VIJAYKRISHNAN, N., AND IRWIN, M. 2005. Three-Dimensional cache design explo-
ration using 3D CACTI. In Proceedings of the International Conference on Computer Design,
519–524.

TSUI, Y. K., LEE, S. W. R., WU, J. S., KIM, J. K., AND YUEN, M. M. F. 2003. Three-Dimensional pack-
aging for multi-chip module with through-the-silicon via hole. In Proceedings of the Electronics

Packaging Technology, 1–7.
WILKERSON, P., RAMAN, A., AND TUROWSKI, M. 2004. Fast, automated thermal simulation for three-

dimensional integrated circuits. In Proceedings of the Conference on Thermal and Thermome-

chanical Phenomena in Electronic Circuits, 706–713.
XIE, Y., LOH, G. H., AND BLACK, B. 2007. Processor design in 3D die-stacking technologies. In

Proceedings of the IEEE Micro Conference, 31–48.
XIE, Y., LOH, G. H., BLACK, B., AND BERNSTEIN, K. 2006. Design space exploration for 3D architec-

tures. ACM J. Emerg. Technol. Comput. Syst. 2, 2, 65–103.
XUE, L., LIU, C., AND TIWARI, S. 2001. Multi-Layers with buried structures (MLBS): An approach

to three-dimensional integration. In Proceedings of the IEEE International Conference on Silicon

on Insulator, 117–118.
YAMAZAKI, H., SAKANUSHI, K., NAKATAKE, S., AND KAJITANI, Y. 2000. The 3D-packing by meta data

structure and packing heuristics. IEICE Trans. Fundam. E83-A, 4, 639–645.
YUH, P. H., YANG, C.-L., CHANG, Y.-W. AND CHEN, H.-L. 2008. Temporal floorplanning using 3D-

subTCG. In Proceedings of the Asia Pasific Design Automation Conference, 723–728.

Received December 2007; revised May 2008; accepted May 2008

ACM Journal on Emerging Technologies in Computing Systems, Vol. 4, No. 4, Article 17, Pub. date: October 2008.

