Investigating the Electronic Structure of Prospective Water-splitting Oxide BaCe ${ }_{0.25} \mathbf{M n}_{0.75} \mathbf{O}_{3-\delta}$ Before and After Thermal Reduction

Subhayan Roychoudhury§, Sarah Shuldaql, Anuj Goyalๆ, Robert Bellๆ, Sami Sainioł, Nicholas Strange \ddagger, James Eujin Park\#, Eric N. Coker\#, Stephan Lanyףll, David Ginley $\|$, and David Prendergast§

§ The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA
TNational Renewable Energy Laboratory, Golden, Colorado 80401, USA
\ddagger SLAC National Accelerator Laboratory, Menlo Park, CA 94025
\#Sandia National Laboratories, Albuquerque, New Mexico 87185, USA

Abstract

$\mathrm{BaCe}_{0.25} \mathrm{Mn}_{0.75} \mathrm{O}_{3-\delta}$ (BCM), a non-stoichiometric oxide closely resembling a perovskite crystal structure, has recently emerged as a prospective contender for application in renewable energy harvesting by solar thermochemical hydrogen generation. Using solar energy, oxygen-vacancies can be created in BCM and the reduced crystal so obtained can, in turn, produce H_{2} by stripping oxygen from $\mathrm{H}_{2} \mathrm{O}$. Therefore, a first step toward understanding the working mechanism and optimizing the performance of $B C M$, is a thorough and comparative analysis of the electronic structure of the pristine and the reduced material. In this paper, we probe the electronic structure of BCM using the combined effort of first-principles calculations and experimental O K-edge x-ray absorption spectroscopy (XAS). The computed projected density-of-states (PDOS) and orbital-plots are used to propose a simplified model for orbital-mixing between the oxygen and the ligand atoms. With the help of state-of-the-art simulations, we are able to find the origins of the XAS peaks and to categorize them on the basis of contribution from Ce and Mn . For

the reduced crystal, the calculations show that, as a consequence of dielectric screening, the change in electron-density resulting from the reduction is strongly localized around the oxygen vacancy. Our experimental studies reveal a marked lowering of the first $\mathrm{O} K$-edge peak in the reduced crystal which is shown to result from a diminished $0-2 p$ contribution to the frontier unoccupied orbitals, in accordance with the tight-binding scheme. Our study paves the way for investigation of the working-mechanism of BCM and for computational and experimental efforts aimed at design and discovery of efficient water-splitting oxides.

Introduction:

The quest for developing advanced mechanisms capable of harvesting energy in a renewable, sustainable and environment-friendly manner is one of the grand challenges of modern technological research. One such example is the production of solar fuel by splitting $\mathrm{H}_{2} \mathrm{O}$ or CO_{2} through a reversible two-step cycle involving reduction and re-oxidation of metal oxides. In particular, in one of its most promising approaches, the process of Solar Thermochemical Hydrogen generation (STCH) ${ }^{1-3}$ entails, as a first step, the removal of oxygen atoms from a metal oxide at a high temperature generated using solar irradiation under inert atmosphere. This is then followed by a re-oxidation of the oxide by exposing it to $\mathrm{H}_{2} \mathrm{O}$, resulting in the production of hydrogen. For efficient water-splitting, the oxide must be structurally stable to withstand a large number of redox cycles. Additionally, it must be reducible at relatively low temperature and undergo re-oxidation in spite of the presence of H_{2} in the steam feed. The efficacy of an oxide in the STCH operation is governed by its chemical properties, which, in turn are primarily dictated by its electronic structure. Being able to decipher and manipulate the electronic structure of prospective water-splitting oxides with dedicated theoretical and experimental investigation is, therefore, of paramount importance in gaining a deeper understanding of their working-mechanism as well as in the discovery, design and performance-optimization of such materials.

Owing to their stability against decomposition and phase-change under the extreme environment of a thermochemical reactor, non-stoichiometric oxides have recently received substantial attention in this regard ${ }^{4}$. In particular, non-
stoichiometric ceria $\left(\mathrm{CeO}_{2}\right)$ is generally recognized as the frontrunner among the prospective candidates ${ }^{5,6}$ since, besides possessing other beneficial attributes, it is capable of stripping oxygen from $\mathrm{H}_{2} \mathrm{O}$ even under an extremely unfavorable $\mathrm{H}_{2} \mathrm{O}: \mathrm{H}_{2}$ ratio ${ }^{4}$. However, contrary to the ease of the re-oxidation step, the reduction step for ceria poses a major disadvantage since it requires a temperature above $1500^{\circ} \mathrm{C}^{7,8}$, which necessitates non-standard materials and becomes prohibitively expensive under standard industrial conditions.

As a consequence, the last few years have witnessed the search for alternative oxides that can undergo reduction at a lower temperature, with significant attention being devoted toward perovskite-based structures ${ }^{9-15}$. Recently, the nonstoichiometric perovskite compound $\mathrm{BaCe}_{0.25} \mathrm{Mn}_{0.75} \mathrm{O}_{3-8}(\mathrm{BCM})$ has been proposed as a contender for the STCH application ${ }^{16}$. In addition to high chemical stability and tunability of the point-defect thermodynamics, BCM is shown to offer nearly a three-fold improvement over ceria in hydrogen production at a reduction temperature below $1400^{\circ} \mathrm{C}$. Additionally, like ceria, BCM is also capable of operating under unfavorable $\mathrm{H}_{2} \mathrm{O}: \mathrm{H}_{2}$ ratio. Therefore, as a first step toward gaining a detailed understanding of the factors responsible for its performance, a thorough exploration of the electronic structure of BCM is necessary. In particular, it is imperative that such a study addresses the change in the electronic structure induced by the reversible removal of oxygen atom from the compound.

On the experimental front, investigation of the electronic structure of materials is performed most commonly using core-level spectroscopy. For example, x-ray absorption spectroscopy (XAS) produces an element-specific spectrum of the absorption intensity plotted as a function of photon-energy. However, in order to decipher the details of electronic structure from such a plot, the experimental efforts must often be complemented with theoretical studies. The aim of such theoretical calculations is then to be able to gain insight into the origin of the spectral features by assigning electronic processes and orbitals to them. For several decades, ab initio computation of electronic properties has been performed most commonly with the help of density-functional theory (DFT), thanks to its convenient balance between accuracy and expense. However, in addition to such first-principles simulations, simplified quantum-mechanical models can be extremely helpful in elucidating the electronic properties of most materials.

With these considerations, in this paper we present a detailed combined theoretical and experimental investigation of the electronic structure of BCM. The information obtained with first-principles DFT calculations are presented mostly in the form of partial density-of-states (PDOS) and real-space representation of single-electron energy eigenstates, referred to as electronic orbitals hereafter. The computational studies are then complemented with crystal-field theory (CFT)based models of orbital mixing which corroborate the first-principles results qualitatively. Experimental $\mathrm{O} K$-edge XAS is performed to probe the electronic excitations before and after oxygen-removal from the compound. The absorption spectra so obtained are compared with their simulated counterparts obtained using an accurate many-body method. In particular, prominent changes in the experimental spectrum upon oxygen removal are replicated by the computational results which, in turn, are shown to follow from simplified models.

Computational Formalism:

Experimental and computational details, along with the crystal structure, are included in the Supplementary Materials. However, since a major portion of the paper deals with the analysis of x-ray absorption spectra, in order to facilitate the discussion, here we provide a brief outline of the computational framework employed in the spectroscopic simulations. The O K-edge spectra have been simulated using the Many-Body X-ray Absorption Spectroscopy (MBXAS) ${ }^{17,18}$ formalism which, for an electronic excitation from the initial ground state (GS) $\left|\Psi_{G S}\right\rangle$ to some final core-excited state $\left|\Psi_{f}\right\rangle$, evaluates the transition amplitude $A_{G S \rightarrow f}$ as

$$
A_{G S \rightarrow f}=\left\langle\Psi_{f}\right| \hat{O}\left|\Psi_{G S}\right\rangle,
$$

where \hat{O} is the many-body transition operator, which, in these calculations, is approximated by the dipole term. $\left|\Psi_{G S}\right\rangle$ is approximated by a Slater determinant (SD) composed of the occupied Kohn-Sham (KS) orbitals of the DFT GS. The SD for $\left|\Psi_{f}\right\rangle$, on the other hand, is constructed by populating KS orbitals of a different selfconsistent field - that of a core-ionized state with an empty core orbital on a specific atom, which we refer to as the full core-hole ${ }^{1}$ (FCH) KS system. A specific final state, $\left|\Psi_{f}\right\rangle$, refers to a SD comprising the valence occupied orbitals of the FCH system together with the specific (previously unoccupied) orbital indexed by f (within the so-called $f^{(1)}$ approximation).

[^0]
Results and Discussions:

(1) Structure and Configuration

Fig. 1 The structure of a pristine 12R-BCM crystal. The atoms labeled A, B, C (also $\left.C^{\prime}\right), D$ and E are representatives of a $M n_{M}, O_{M}, M n_{S}, O_{S}$ and Ce atom, respectively. Atoms C^{\prime}, A and C collectively constitute a representative triple of Mn atoms, as mentioned in the text. Each triple of Mn atom contains two Mn_{s} atoms of identical magnetic moment (C and C', for this particular triple) and an Mn_{M} atom which has a magnetic moment in the opposite direction (A, for this particular triple).

As shown in Fig. 1, 12R-BCM has a rhombohedral crystal structure ${ }^{2}$ (R-3m, \#166), with each of Ba, Mn, and O occupying the two unique Wyckoff sites and Ce a single Wyckoff site. Within the standard perovskite notation (not to be confused with the notation used in Fig. 1), the Ba atoms occupy the ' A ' sites while Mn and Ce share the ' B ' sites. Both Mn and Ce atoms exhibit six-fold coordination to neighboring O atoms. O atoms are present in two inequivalent coordinations each with two-fold coordination: O_{M} refers to a "Middle" O atom, which is coordinated by two Mn atoms while O_{s} refers to a "Side" O atom which is coordinated by a single Mn and a single Ce atom. Similarly, the Mn atoms exhibit two inequivalent coordinations in the lattice: those with a Ce atom as a second nearest-neighbor are hereafter labeled Mn_{s}, while those with two other Mn atoms as second nearest neighbors are labeled Mn_{M}. The $\mathrm{Mn}-\mathrm{O}$ coordination environment is not perfectly octahedral because of the unequal $\mathrm{Mn}-\mathrm{O}$ angles and bond lengths: $1.89 \AA \AA$ for $\mathrm{Mn}_{s}-\mathrm{O}_{s}$ and 1.99 \AA ($1.93 \AA$) for $\mathrm{Mn}_{S}-\mathrm{O}_{M}\left(\mathrm{Mn}_{M}-\mathrm{O}_{M}\right)$. Ce-O bonds are arranged in a perfect octahedral symmetry with a Ce-O bond length ($2.23 \AA$) larger than the $\mathrm{Mn}-\mathrm{O}$ bond length. Notably, the difference in the $\mathrm{Mn}-\mathrm{O}_{s}$ and the $\mathrm{Ce}-\mathrm{O}_{s}$ bond lengths ($2.23 \AA-1.89 \AA$, i.e., $0.34 \AA$) is exactly equal to the difference in the ionic radius of $\mathrm{Ce}^{4+}(1.01 \AA)^{3}$ and $\mathrm{Mn}^{4+}(0.67 \AA)^{4}$.

The Mn atoms, which are in the Mn^{4+} oxidation state, have strong net magnetic moments due to the $3 d^{3}$ valence occupancy and are arranged in triples (groups of three neighbors). In our DFT calculations, we simulate the lowest energy antiferromagnetic spin configuration of Mn atoms in the rhombohedral structure such that, in terms of the magnetic moment, the Mn atoms follow an alternating arrangement. Within every triple of Mn atoms, if the Mn_{M} site has a net up (down) magnetic moment, then both of the Mn_{s} sites will have the opposite down (up) magnetic moment, resulting, for each triple, in a net magnetic moment with the direction dictated by the 2:1 majority of Mn_{s} constituents. In the particular antiferromagnetic arrangement in our chosen supercells, all triples within a given layer are spin-polarized along the same direction while triples belonging to neighboring layers have opposite spin-polarizations. The calculated ground-state total energy

[^1]of such a polarization-arrangement is seen to be lower than that of others: e.g., the ferromagnetic arrangement where all Mn atoms are polarized along the same direction or the anti-ferromagnetic one in which neighboring triples differ in their net spin-polarization but within a given triple, all Mn atoms are polarized along the same direction.

(2) Electronic structure of the pristine crystal

Fig. 2 The total and partial DOS of the pristine BCM crystal. The energy of the VBM is set at zero.

Fig. 2 shows the density of states (DOS) of the pristine BCM crystal, along with the projected DOS (PDOS) contributions from the different species. The small contribution of $\mathrm{Ce}-4 f$ in the occupied PDOS indicates that these orbitals do not partake significantly in mixing with $\mathrm{O}-2 p$ orbitals. The Ce- $4 f$ states are mostly
unoccupied, with significant peaks appearing above the Fermi level, and highly localized in energy; confined within 1.5 eV on the energy axis with peak value around 0.75 eV above the CBM. In fact, the PDOS at the LUMO energy shows comparable contributions from $\mathrm{O}-p, \mathrm{Mn}-3 d$ and $\mathrm{Ce}-4 f$ orbitals. The energy of the $\mathrm{Ce}-4 f$ band is relatively similar across the two spin channels because Ce in the Ce^{4+} charge state has an empty valence $4 f$ orbital.

Fig. 3 PDOS plot of an Mn_{M} and an Mn_{s} atom belonging to the same triple. In this representative triple, the Mn_{M} and Mns atoms have a net up and down spinpolarization, respectively [see, for example, the triple consisting of the atoms C^{\prime}, A and C in Fig. 1]. On the energy axis, 0 corresponds to the VBM.

The magnitude of Lowdin polarization is seen to be lower (± 3.13) for Mn_{M} than it is for $\mathrm{Mn}_{s}(\pm 3.19)$, as reported in Tab. 1. This can be associated with the exchange interaction of Mn_{M} with electrons from the second nearest-neighbors, both of which are Mn_{s} atoms with magnetic moments in the direction opposite to that of the Mn_{M} atom. Note from Fig. 3, which shows the $3-d$ PDOS of a Mn_{M} and a Mn_{s} atom (which are constituents of the same triple and therefore, are spin-polarized
along opposite directions) that, in their respective majority spin channels, the CBM in the PDOS of Mn_{M} is at a higher energy compared to that of Mn_{s}. This trend, however, is reversed for the lowest unoccupied peaks of their respective minority channels. Noting that a larger polarization typically corresponds to a larger exchange-splitting, which, in turn, would result, in accordance with the tightbinding formalism, in a larger energy-difference between the unoccupied levels of the two spin-channels, we can attribute the aforementioned property of the PDOS to the relatively higher (lower) local magnetic moment of $\mathrm{Mn}_{\mathrm{M}}\left(\mathrm{Mn}_{\mathrm{s}}\right)$.

We can begin to understand the electronic structure by making some initial simplifications. If we assumed a local octahedral coordination, the $\mathrm{Mn} 3 d$-orbitals for each spin channel would split into e_{g} and $\mathrm{t}_{2 g}$ orbitals. The former would occupy a higher energy subspace as a consequence of increased electronic repulsion resulting from the alignment along the octahedral $\mathrm{Mn}-\mathrm{O}$ bonding-axes, while the latter would be oriented between the bonding-axes and consequently, would have lower energy.
(i) In our attempt at deciphering the electronic structure, as a first approximation, we can neglect all orbital-mixing between the Mn and the O atoms. Since the Mn atoms have a $3 d^{3}$ configuration, under such a hypothetical, fully-ionic Mn^{4+} scenario, then, in the majority spin channel, we would expect each $\mathrm{t}_{2 \mathrm{~g}}$ orbital to be occupied with parallel spins (according to Hund's rule) with the e_{g} orbitals remaining unoccupied. In the minority spin channel, the $\mathrm{Mn} 3 d$ orbitals would have higher energy due to exchange splitting and therefore all the minority d-orbitals would be completely empty, giving rise to a net absolute atomic magnetic moment of $3 \mu_{B}$ for each Mn atom.
(ii) Introducing a further layer of complexity, in accordance with the concepts of ligand-field theory within the solid state ${ }^{19}$, we can take into account the mixing between the $\mathrm{Mn}-\mathrm{e}_{\mathrm{g}}$ and the $\mathrm{O}-2 p$ orbitals, while retaining the non-bonding nature of the $\mathrm{Mnt}_{2 g}$ orbitals since the latter are not oriented along the bonding axes. The mixed ($\mathrm{Mn}-\mathrm{e}_{\mathrm{g}}+\mathrm{O}-2 p$) orbitals would then split into occupied bonding and unoccupied anti-bonding orbitals. Thus, in the majority spin-channel, the occupied orbitals would exhibit either a bonding ($\mathrm{Mn}-\mathrm{e}_{\mathrm{g}}+\mathrm{O}-2 p$) nature or a non-bonding $\mathrm{Mn}-\mathrm{t}_{2 \mathrm{~g}}$ nature, with the VBM consisting predominantly of the former. The unoccupied orbitals can
be expected to show ($\mathrm{Mn}-\mathrm{e}_{\mathrm{g}}+\mathrm{O}-2 p$) nature. In the minority spin channel, all occupied orbitals would show exclusively ($\mathrm{Mn}-\mathrm{e}_{\mathrm{g}}+\mathrm{O}-2 p$) bonding character while in the unoccupied subspace, there would be anti-bonding ($\mathrm{Mn}-\mathrm{e}_{\mathrm{g}}+\mathrm{O}-2 p$) and non-bonding $\mathrm{Mn}-\mathrm{t}_{2 \mathrm{~g}}$ orbitals.

Fig. 4 The PDOS of an Mn_{s} and a neighboring O_{s} atom, showing their $3 d$ and $2 p$ contributions, respectively. As in Fig. 3, the Mn_{s} atom has a majority of down spin electrons. Certain peaks in the up (U) and down (D) spin channels of the PDOS are labeled for further analysi of the corresponding orbitalss, as shown with isovalue plots in Fig. 5 and Fig. 6. In the labels, the superscript t and e, refers to an orbital showing appreciable mixing of $O-2 p$ with $M n-t_{2 g}$ and $M n-e_{g}$, respectively, while the superscript p refers to an orbital having predominantly $0-2 p$ character.

In order to test the validity of two orbital mixing approximation, we analyze the $2 p$ orbital PDOS of an O_{s} atom and the $3 d$ orbital PDOS of the adjacent Mn_{s} atom in

Fig. 4. Note that, in contrast with $\mathrm{O}_{\mathrm{M}}, \mathrm{O}_{\mathrm{s}}$ is coordinated with atoms of two separate species: an Mn_{s} and a Ce, the latter of which shows much weaker mixing with $\mathrm{O} p$ orbitals in comparison with the Mn_{s} (as evident from the low contribution of $\mathrm{Ce} 4 f$ in the occupied PDOS shown in Fig. 2), making the PDOS analysis of $\mathrm{O}_{\mathrm{s}}-2 p$ comparatively simpler. A low numerical broadening (2.86 meV) has been used to facilitate the assignment of electronic orbitals to the PDOS features in Fig. 4. Fig. 5 and Fig. 6, present the isovalue plots of the KS orbitals contributing to various salient peaks of the PDOS for the up (U) and the down (D) spin channels, respectively. Notice, for example, that, in contrast with the aforementioned prediction of ligand-field theory, in the majority, i.e., down spin-channel, the PDOS around the VBM is dominated by orbitals exhibiting mixed $\left(\mathrm{Mn}_{\mathrm{s}}-\mathrm{t}_{2 \mathrm{~g}}+\mathrm{O}_{\mathrm{s}}-2 p\right.$) character [e.g. ${ }^{t} D_{7},{ }^{t} D_{8}$] while orbitals at much lower energy (-4 eV) show distinct $\left(\mathrm{Mn}_{\mathrm{s}}-\mathrm{e}_{\mathrm{g}}+\mathrm{O}_{\mathrm{s}}-2 p\right)$ mixing [e.g. ${ }^{\mathrm{E}} \mathrm{D}_{3},{ }^{e} \mathrm{D}_{4}$]. Additionally, in the minority, i.e., up spinchannel, the occupied orbitals ${ }^{t} U_{1},{ }^{t} U_{2}$ show noticeable $\left(\mathrm{Mn}_{\mathrm{s}}-\mathrm{t}_{2 \mathrm{~g}}+\mathrm{O}_{\mathrm{s}}-2 p\right.$) character. In order to explain such anomalies,
(iii) we propose in Fig. 7, an alternative mixing scheme consistent with the orbital-characteristics observed in Fig. 5 and Fig. 6 which accounts for the possibility of mixing between the $\mathrm{Mn}_{s}-\mathrm{t}_{2 g}$ and the $\mathrm{O}_{\mathrm{s}}-2 p$ orbitals, which is possible, especially due to the fact that the $\mathrm{Mn}-\mathrm{O}$ coordination environment is not perfectly octahedral. This additional mixing leads to splitting of the $\mathrm{Mn}_{\mathrm{s}}-\mathrm{t}_{2 \mathrm{~g}}$ manifold into: a lower energy band of what would be called non-bonding orbitals under the mixing scheme (ii) outlined above, but which here exhibit some mixing with $\mathrm{O}_{\mathrm{s}}-2 p$; and a higher energy band, the anti-bonding counterpart, which, depending on the spin channel, may be occupied (down spin, majority) or not (up spin, minority).

Fig. 5 also shows significant $\mathrm{O}_{\mathrm{s}}-2 p$ (non-bonding) character near the up-spin VBM $\left[{ }^{\mathrm{p}} \mathrm{U}_{5}\right.$ and ${ }^{\mathrm{p}} \mathrm{U}_{6}$]. Additionally, from Fig. 6, we can notice substantial presence of $\mathrm{Ce}-4 f$ in the KS orbitals ${ }^{e} \mathrm{D}_{10}$ and ${ }^{\mathrm{e}} \mathrm{D}_{11}$, which is consistent with the PDOS plot shown in Fig. 2. Overall, the schematic picture in Fig. 7 provides a consistent view of the ultimate electronic structure observed in our simulations.

In summary, we have seen that the Ba orbitals have very little presence in the frontier PDOS. The Ce- $4 f$ orbitals, which show weak mixing with $0-2 p$, are predominantly localized near the conduction band edge. The Mn-3d orbitals, on
the other hand, mix substantially with $0-2 p$, generating bonding and antibonding levels across a wide energy range, as shown schematically in Fig. 7.

Fig. 5 Isovalue plots of up spin KS orbitals having significant contributions to the peaks labeled in Fig. 4. The relevant O_{s} atom is marked with a " + " symbol.

Fig. 6 Isovalue plots of down spin KS orbitals having significant contributions to the peaks labeled in Fig. 4. The relevant O_{s} atom is marked with a "+" symbol.

Fig. 7 PDOS of $\mathrm{Mn}_{s^{-}} 3 d$ and $\mathrm{O}_{s^{-}} 2 p$, along with a schematic detailing the bonding scheme in accordance with the LCAO formalism. Note that the down (up) spin channel corresponds to majority (minority) spins.
(3) O K-edge XAS of the Pristine Crystal

Fig. 8 Top left panel shows the O K-edge XAS of the pristine BCM crystal. Panel (a) shows the experimental spectrum while the panel (b) shows the resultant simulated spectrum, along with the individual contributions from O_{S} and O_{M}. In order to facilitate comparison, the spectra have been divided into four regions along the energy axis and the salient crests and troughs have been labeled. Panel (c) shows, for both of the oxygen atoms, the contribution of the up and the down spin channels to the net spectrum. The rest of the panels show isovalue plots of orbitals of the promoted electron in the excited-states resulting from core-excitation of an O_{M} (panels (d)-(g)) or an Os atom (panels (h)-(m)). The core-excited atom is marked by a " + " symbol. The XAS peak marked by circle of a given color in panel (c) has
substantial contributions from a final (core-excited) state in which the excited electron resides in the orbital labeled by the same color in the isovalue-plots.

One of the most efficacious avenues for experimental investigation of electronic structure is the element-specific X-ray spectroscopy. In the following, we present a detailed experimental and theoretical account of the $\mathrm{O} K$-edge X-ray absorption spectra (XAS) associated with exciting a 1s core electron of an O atom. Since the $B C M$ unit cell contains an equal number of O_{M} and O_{S} atoms, the final spectrum will be the resultant of contributions from both of these atoms. Notably, the final state created by the process of X-ray absorption differs from the GS in that it has a missing 1s electron (a hole) localized on a specific oxygen atom. In addition, the core-hole creation results in a significant modification of electron-density in the vicinity of the excited atom $\mathrm{O}^{(\mathrm{x})}$, resulting, in accordance with the tight-binding framework, in an enhanced contribution to the occupied PDOS and a downward shift in the energy of those orbitals, due to strong, attractive Coulomb interactions with the core hole. Concomitantly, the contributions of the excited atom to the unoccupied PDOS, due to orbitals of mixed character with neighboring atomic sites may be reduced. A comparison of the PDOS of individual atoms corresponding to the ground and the FCH state is presented in Fig.S1. The FCH state is defined above and is the foundational self-consistent field from which the core-excited KohnSham orbitals are obtained.

The experimental $O K$-edge spectrum of BCM is presented in Fig. 8(a). As mentioned in the introduction, the goal then, is to extract meaningful electronic-structure information from the spectrum by associating electronic excitations to the salient spectral features. As a first step to this end, in Fig. 8(b) we show the simulated resultant $\mathrm{O} K$-edge spectrum, as well as the individual contributions from O_{M} and O_{s}. As expected, O_{M}, which is coordinated by two Mn atoms with opposite magnetic moments of comparable magnitude, produces relatively symmetric contributions to the absorption spectrum for the two spin channels (Fig. 8(c)). On the other hand, the spectral contributions of O_{s}, which is coordinated by a Mn and a Ce atom having significant and negligible magnetic moments respectively, differ considerably between the spin channels. This asymmetry leads to a lower intensity of the first

XAS peak in the resultant spectrum of O_{s}. From Table 2, O_{s} can be seen to have a slightly higher Lowdin magnetic moment, indicating a stronger spin-polarization, than O_{M}. The exchange interaction arising from this higher spin-polarization lowers the conduction orbitals of the majority spin channel associated with O_{s}, as evident from the slightly lower energy of the first XAS peak of $\mathrm{O}_{\mathrm{S}}\left(\right.$ compared to O_{M}) in the down spin channel. It is important to note that the appearance of the simulated spectrum is heavily dependent on the broadening used for generating it. A spectral peak which is well-separated in energy from the rest of the features will typically experience a substantial lowering of intensity with increment in broadening. In Fig. 8 (b)-(c), a uniform broadening of 0.2 eV is used, while the spectra simulated with higher broadening energies are shown in Fig. S 2 in the Supplementary Materials. In particular, Fig. S2 reveals that the relative intensities of the net simulated spectrum depend on the broadening. For higher broadening values, the relative intensity of the intense peak A diminishes in comparison with the others. Additionally, the features at 528.9 eV and 529.7 eV , which are present between A and B in in the simulated spectrum (black line in Fig. 8(b)), but not visible in the experimental counterpart (Fig. 8(a)), vanish for higher values of broadening.

Peak	O atom	Ligand atom	Note
A^{\prime}	$\mathrm{O}_{\text {s }}$	$\mathrm{Mn}_{\text {s }}$	($\mathrm{O}_{\mathrm{s}}-2 \mathrm{p}+\mathrm{Mn}_{\mathrm{s}}-3 \mathrm{~d}$) orbital in majority spin-channel
A	$\mathrm{O}_{\text {M }}$	Mn	($\mathrm{O}_{\mathrm{M}}-2 \mathrm{p}+\mathrm{Mn}-3 \mathrm{~d}$) orbital in majority spin-channel. Both up and down orbitals contribute, since O_{M} has two neighboring Mn atoms with opposite spin-polarization.
B	0	Mn	$\left(\mathrm{O}_{\mathrm{s}}-2 \mathrm{p}+\mathrm{Mn}_{\mathrm{s}}-3 \mathrm{~d}\right)$ orbital in the minority channel. $\quad\left(\mathrm{O}_{\mathrm{m}}\right.$ $2 \mathrm{p}+\mathrm{Mn}-3 \mathrm{~d}$) orbital in both spin channels.
D	O s	Ce, Mn	$\mathrm{O}_{s}-2 \mathrm{p}$ orbital mixed with $\mathrm{Ce}-4 \mathrm{f}$ and Mn -3d
E	0	Ce	Highly delocalized orbital showing mostly ($\mathrm{O}-2 \mathrm{p}+\mathrm{Ce}-4 \mathrm{f}$) character.

Table 1 The characteristics of the excited-electron giving rise to the salient peaks in the experimental O K-edge spectrum. Mn / O atom without a subscript indicates substantial contribution from both "middle" (M) and "side" (S) atoms.

The utility of computation in the analysis of x-ray spectroscopy can be appreciated from Table 1 which maps the low-energy spectral peaks to the orbitals of the excited electron. The peaks in region I of the spectrum (see Fig. 8(a)) arise mostly from mixing of $\mathrm{O}-2 p$ with $\mathrm{Mn}-3 d$ orbitals while the contribution of $\mathrm{Ce}-4 f$ is noticed in region II.

A more detailed visual description of the associated orbitals is provided by the relevant isovalue plots of Fig. 8(d)-(m). The orbital plot in panel (d) of Fig. 8 reveals that, in accordance with our theoretical model, the first peak of the $\mathrm{O}_{\mathrm{M}} \mathrm{K}$-edge (contributing to peak A) in the up spin channel originates from a final state where the excited electron resides in an orbital with substantial contribution from the 3d orbital of Mn_{M}, which has a net positive spin-polarization. Panel (e) shows that the down spin counterpart essentially involves the $3 d$ orbital of the neighboring Mn_{s} atom, which has a net negative spin-polarization. Similar to the intense first peak, for O_{M}, the feature at $\sim 530.5 \mathrm{eV}$ (contributing to peak B) can be associated with an orbital with mixed $\mathrm{O}-2 p$ and $\mathrm{Mn}-3 d$ character (panel (f)) which, for brevity, has been plotted for the up-spin channel only. However, unlike the orbital associated with the first peak (i.e., panel (d)), this orbital corresponds to the minority spin channel of the relevant Mn atom and consequently has a higher energy, more delocalization and lower intensity. Note that, while both panel(d) and (f) correspond to peaks in the up-spin spectrum, the contributing Mn atom for panel (d) is the Mn_{M}, which has a positive spin-polarization while that for panel (f) is the Mn_{s}, which has a negative spin-polarization. The orbital associated with the higher energy peak at $\sim 532.2 \mathrm{eV}$ (panel (g), peak E), which shows even more delocalization, can be seen to contain appreciable contribution from the $\mathrm{Ce}-4 f$ orbitals.

Similar to the O_{M} spectrum, the first peak of the O_{s} spectrum (contributing to peak A^{\prime}) in the down spin channel originates from mixing of $0-2 p$ with the $3 d$ orbital of the neighboring Mns_{s} atom, which has a negative spin-polarization (panel (h) in Fig. 8). By contrast, for the up spin contributions in the O_{s} spectrum, as already shown in Fig. 3 and Fig. 7, the lack of exchange interaction pushes the minority (up) spin $\mathrm{Mns}_{\mathrm{s}}-3 d$ orbitals to higher energy, and the first $\mathrm{O}_{\mathrm{s}} \mathrm{K}$-edge peak in this spin-channel (at $\sim 529 \mathrm{eV}$, between A and B), in fact, arises primarily from an unoccupied orbital with heavy contributions from $\mathrm{Ce}-4 f$, as evident from panel (i) in Fig. 8. This explains
the relatively higher energy and lower intensity of this peak, in comparison with the down-spin counterpart. The up-spin peak at $\sim 530.4 \mathrm{eV}$ originates from an orbital similar in characteristics to the one responsible for the peak at $\sim 530.5 \mathrm{eV}$ for the O_{M} spectrum, as can be seen by noting the similarity between panels (f) and (j).

The higher-energy resultant peak at $\sim 531.8 \mathrm{eV}$ (peak D) contains appreciable contribution from both spin channels of the $\mathrm{O}_{\mathrm{S}} \mathrm{XAS}$ spectrum. The comparability of the energy and the intensity of these two peaks corresponding to different spin channels can be attributed to the fact that they are associated with unoccupied orbitals containing contributions mostly of $4 f$ orbitals of the neighboring Ce atom, which has negligible magnetic moment (panels (k) and (I)).

Panels (d), (e) and (h) reveal that all of the intense low-energy XAS peaks contain substantial contribution from a $3 d$ orbital of a Mn atom coordinated with the coreexcited oxygen $\mathrm{O}^{(x)}$ [note that in panels (d) and (e), this is an O_{m} atom while in panel (h), this is an O_{s} atom]. However, the $2 p$ contribution of $\mathrm{O}^{(x)}$ is noticeably lower than that of other (i.e., not core-excited) O atoms coordinated with the aforementioned Mn . This result is somewhat counterintuitive, since we might expect the core-hole to attract the promoted electron mostly to the $\mathrm{O}^{(x)}$ atom. However, as a purely quantum-mechanical effect, the presence of a core-hole would lower the onsite energy of $O^{(x)}$, resulting in a reduction of its relative contribution to the antibonding orbitals responsible for these spectral peaks. By contrast, we see the largest $2 p$ contribution for the O atom on the opposite side of the Mn atom from the core-excited $O^{(x)}$, due to its farther distance from the core hole [evident in panels (d), (e) and (h)]. Notably, the MBXAS method captures the contributions of both the excited and occupied valence orbitals to these spectral features and leads to strong XAS intensities which would be underestimated with single-particle corehole approaches.

In short, the O K-edge spectrum of the pristine BCM crystal is generated from a non-trivial combination of contribution from the two different spin-channels of the two inequivalent O sites: O_{m} and O_{s}. As summarized in Table 1, the low-energy features result mostly from promoting the O 1 s electron to orbitals of mixed $\mathrm{O}-2 p$ and $\mathrm{Mn}-3 d$ character, while the presence of $\mathrm{Ce}-4 f$ is noticed at relatively higher energies.

(4) The Reduced BCM Crystal

As mentioned in the introduction, for the STCH operation, BCM is exposed to high-temperature in an inert atmosphere, resulting in removal of oxygen atoms and it is this reduced phase that takes part in H_{2} generation by splitting the $\mathrm{H}_{2} \mathrm{O}$ molecule. This prompts us to investigate the electronic structure of the thermallyreduced BCM crystal. In particular, owing to the high electronegativity of the O atom, bonding between O and metallic ligands typically involves concentration of electronic population around the former. It is then instructive to probe how the excess electronic population available in the system as a result of the oxygenremoval, arranges itself. On the experimental front, as shown in Fig. 13, O K-edge XAS reveals a marked reduction in the first-peak intensity in the reduced crystal in comparison with the pristine counterpart. A detailed theoretical analysis is required to shed light on the origin of such reduction.

For a vacancy at the O_{M} site, the formation energy (2.7 eV) is seen to be lower than that for a vacancy at the O_{s} site (3.3 eV), which indicates a higher probability for oxygen-removal from the O_{M} site. This conclusion is also supported by experimental XAS studies presented in ref. ${ }^{20}$, which reports substantial change in the Mn L-nearedge spectrum as a function of temperature, implying a progressive reduction of the Mn atom. On the contrary, no major energy-shift is noted in the Ce M-edge spectrum. Therefore, in the rest of the paper, the theoretical treatment of electronic structure and XAS will be limited to a reduced structure with a vacancy at the O_{M} site.

Fig. 9 Top left panel shows a diagrammatic representation of the reduced crystal structure with the oxygen-vacancy at an O_{M} site indicated by a dashed circle. The Mn atoms affected most drastically by the removal of O_{M} are marked by ' e^{-1}, indicating the presence of excess electronic population (i.e., they are nominally reduced to Mn^{3+}). The bottom left panel shows, for clarity, the relative positions of atoms close to the vacancy. Various atoms, which are subjected to further analysis, have been marked by colored arrows with labels in the right-hand-side panel. In the labels, the superscript red., which is short for "reduced" (dist., which is short for "distant") denotes an atom located near (far from) the O_{M} vacancy.

The structure of the reduced crystal (provided in the Supplementary Materials) is obtained by relaxing the ionic coordinates in presence of the oxygen vacancy. From Table 2 and Figure 9, it can be seen that the electronic population and the spinpolarization of the atoms nearest the oxygen vacancy (both Mn and O) are noticeably larger than their counterparts in the pristine crystal. We label the
corresponding Mn atoms as $\mathrm{Mn}_{s}{ }^{(\text {red. })}$ and $\mathrm{Mn}_{\mathrm{M}}{ }^{(\text {red. })}$. Due to the vacancy, they are coordinated with 5 (as opposed to 6) oxygen atoms. We would expect that the removal of an O atom would leave behind two electrons on Mn sites. In fact, it is these neighboring Mn atoms, as well as the O atoms coordinated with them which gain electron density (Table 2), and so, we label them as reduced (red.). On the other hand, the more distant (dist.) atoms in the supercell show much smaller deviations in their electron populations. Thus, the excess electronic population available in the system as a result of oxygen-removal, remains local to the site of reduction. A combination of localized orbitals and dielectric screening leads to the effect of the oxygen-vacancy diminishing with increasing distance.

Atom	Total Population	Spin Up	Spin Down	Polarization
Pristine				
$\mathrm{Mn}_{\mathrm{S}}[\mathrm{C}]$	13.4731	5.1401	8.3330	-3.1929
$\mathrm{Mn}_{\mathrm{M}}[\mathrm{A}]$	13.5225	8.3287	5.1938	3.1350
O_{S} [D]	6.5212	3.2817	3.2394	0.0423
$\mathrm{O}_{\mathrm{M}}[\mathrm{B}]$	6.5680	3.2969	3.2711	0.0258
Reduced				
$\mathrm{Mn}_{S}{ }^{\text {(dist.) }}$	13.4734	5.1408	8.3325	-3.1917
$\mathrm{Mn} \mathrm{M}^{\text {(dist.) }}$	13.5217	8.3308	5.1909	3.1398
$\mathrm{O}_{S}{ }^{\text {(dist.) }}$	6.5165	3.2822	3.2343	0.0479
$\mathrm{O}_{\mathrm{M}}{ }^{\text {dist.) }}$	6.5658	3.2948	3.2710	0.0237
$\mathrm{Mns}^{\text {(red.) }}$	13.5232	4.8637	8.6595	-3.7958
$\mathrm{Mn}_{\mathrm{M}}{ }^{\text {(red.) }}$	13.5875	8.6647	4.9228	3.7419
$\mathrm{OS}_{S}{ }^{\text {(red.) }}$	6.5559	3.2970	3.2589	0.0381
${ }^{[1]} \mathrm{O}_{\mathrm{M}}$ (red.)	6.6015	3.3209	3.2806	0.0403
${ }^{[2]} \mathrm{O}_{\mathrm{M}}{ }^{\text {(red.) }}$	6.6192	3.3203	3.2988	0.0215

Table 2 For various atoms of the pristine and the reduced crystal (column 1), the total electron population (column 2), spin-up population (column 3), spin-down population (column 3) and polarization (column 4) of valence electrons, calculated using Lowdin's scheme of population analysis. For the pristine crystal, the atoms
are labeled (A-D) in accordance with Fig. 1 while for the reduced structure, the color-convention used in Fig. 11 is maintained.

Fig. 10 Mn -3d PDOS plots contrasting contributions of atoms from the reduced crystal to those of atoms from the pristine one. The top (bottom) panel corresponds to the middle, i.e. M (side, i.e. S) site. The VBM is set to zero.

Fig. 10 showcases a comparison of the $3 d$ PDOS of different Mn atoms: $\mathrm{Mn}_{M}{ }^{\text {(red.) }}$ and $\mathrm{Mn}_{5}{ }^{\text {(red.) }}\left(\mathrm{Mn}_{\mathrm{M}}{ }^{\text {(dist.) }}\right.$ and $\mathrm{Mn}_{s}{ }^{\text {(dist.) }}$) present at the site of reduction (distant from the site of reduction). As expected, the PDOS of the distant atoms, $\mathrm{Mn}_{M}{ }^{\text {(dist.) }}$ and $\mathrm{Mns}_{s}{ }^{\text {(dist.) }}$, bear noticeable resemblance with their counterparts from the pristine structure, while those of the reduced atoms, $\mathrm{Mn}_{\mathrm{M}}{ }^{\text {(red.) }}$ and $\mathrm{Mn}^{(r e d .)}$, differ appreciably. From Table 2, it can be noted that, owing to their coordination with
fewer O atoms, the reduced Mn atoms have higher valence electronic population. This enhanced occupation elevates the unoccupied orbitals to higher energy and shifts their weight off the reduced Mn sites, as evident from the higher energy and lower intensity of the relevant Mn PDOS-peaks, respectively. For the pristine crystal, Fig. 3 reveals that for both of the Mn sites (i.e., Mn_{M} and Mn_{s}), the unoccupied edge of the PDOS corresponds to the respective majority spin channels. Therefore, after the thermal reduction, the excess electron available to $\mathrm{Mn}_{\mathrm{M}}{ }^{(\text {red. })}$ and $\mathrm{Mns}_{s}{ }^{\text {(red.) }}$ can be expected to go to the majority spin channel. This is consistent with Table 2, which shows that the absolute values of the polarization of the reduced Mn atoms are higher than those of the pristine counterparts. In Fig. 10, this can be associated with the isolated PDOS contribution in the majority spin channel at the Fermi level (0 eV).

(5) OK-edge XAS of the reduced structure

Fig. 110 K-edge XAS of different oxygen sites of the reduced crystal. The left (right) panels correspond to $O_{M}\left(O_{S}\right)$ sites. In each panel, the shaded plots show the up and down spin contributions of the relevant O atom, the solid black line shows the spinsummed spectrum, while the broken blue line represents the spectrum of an $\mathrm{O}_{\mathrm{M}} / \mathrm{O}_{S}$ atom from the pristine crystal.

O K-edge X-ray absorption spectra corresponding to core-excitation of different inequivalent oxygen sites is displayed in Fig. 11, along with counterparts from the pristine crystal, to facilitate comparison. Once again, the spectra of the distant atoms are very similar to those from the pristine crystal while those of O atoms close to the vacancy-site differ substantially. For ${ }^{[2]} \mathrm{O}_{\mathrm{M}}{ }^{\text {(red.) })}$, the up and down-spin spectra do not display any drastic asymmetry since both of its neighboring Mn atoms are 5 -fold coordinated due to the neighboring vacancy (i.e., they are $\mathrm{Mns}_{s}{ }^{\text {(red.) }}$ and $\mathrm{Mn}_{\mathrm{M}}{ }^{(\text {red. })}$). However, the increased electron population on these reduced Mn atoms raises the energy of their 3d orbitals, leading to a higher energy-difference between the corresponding $\mathrm{Mn}-3 d$ and the $0-2 p$ levels, effectively making the bonding more ionic (due to decreased orbital mixing). In accordance with the tightbinding formalism, this results in a reduced $\mathrm{O}-2 p$ contribution to the anti-bonding orbitals (see schematic in Fig. 12). Therefore, the intensity of the resultant ${ }^{[2]} \mathrm{O}_{\mathrm{m}}{ }^{(\text {red.) }}$ spectrum is lower than the O_{M} counterpart from the pristine crystal. On the other hand, the ${ }^{[1]} \mathrm{O}_{\mathrm{M}}{ }^{\text {(red.) }}$ atom is coordinated with two Mn atoms among which, only $\mathrm{Mn}_{\mathrm{M}}{ }^{(\text {red. })}$, which has a positive spin-polarization, experiences a major enhancement in electron population. Mixing between ${ }^{[1]} \mathrm{O}_{\mathrm{M}}^{(\text {red. })}-2 p$ and $\mathrm{Mn}_{M}{ }^{\text {(red.) }}{ }^{-} 3 d$ orbitals is primarily responsible for the up-spin spectrum of ${ }^{[1]} \mathrm{O}_{M}{ }^{\text {red. })}$. Therefore, for ${ }^{[1]} \mathrm{O}_{M}{ }^{(\text {red. })}$, the first peak of the up-spin spectrum exhibits a noticeably higher energy and lower intensity compared to the down-spin counterpart. The energy-shift between the first peaks corresponding to these two spin-channels leads to a substantial reduction in the intensity of the resultant peak for ${ }^{[1]} \mathrm{O}_{\mathrm{M}}{ }^{\text {(red. })}$, as can be seen by comparing the panels (a) and (b) of Fig. 11. The peak intensity for $\mathrm{Os}_{s}^{(r e d .)}$ is also lowered in comparison with that of pristine O_{s}, although this lowering is less pronounced since, in the pristine as well as in the reduced crystal, only the first peak originates from mixing with Mn orbitals. The second peak, which corresponds to a different spin channel and is much lower in intensity, results mostly from mixing with Ce orbitals and therefore, does not experience any major change upon reduction. The up-spin peak of ${ }^{[1]} \mathrm{O}_{M}{ }^{\text {(red.) })}$, the down-spin peak of $\mathrm{O}_{s}{ }^{\text {(red. }), ~ a n d ~ b o t h ~}$ peaks of ${ }^{[2]} \mathrm{O}_{\mathrm{M}}{ }^{\text {(red.) }}$ are associated with orbitals resulting from the mixing of $0-2 p$ with the $3 d$ orbital of the reduced (i.e., 5 fold coordinated) Mn atom(s). The blueshift of these peaks, with respect to their counterparts in the pristine spectrum is consistent with previous reports ${ }^{21}$ and expected from the tight-binding consideration.

As discussed above, for all three O atoms near the site of reduction, i.e., for atoms ${ }^{[1]} \mathrm{O}_{\mathrm{M}}{ }^{(\text {red. }),},{ }^{[2]} \mathrm{O}_{\mathrm{M}}{ }^{\text {red. })}$ and $\mathrm{O}_{\mathrm{s}}{ }^{\text {red.) })}$, the first peak of the spectrum shows a reduction in
intensity. Therefore, the resultant O K-edge spectrum of the reduced crystal should exhibit lowering of the first peak intensity, although the exact ratio can be expected to depend on the percentage of oxygen-vacancies formed in the crystal. However, as shown in Fig. 13, at least in qualitative terms, the experimental O K-edge spectrum of reduced BCM corroborates the aforementioned conclusion of intensity-lowering.

Fig 12 Schematic diagram showing a reduction in the $0-p$ contribution to the antibonding orbital resulting from a higher population of Mn. To facilitate comparison, the O-p level is kept at the same energy. This effect is further exaggerated by the core-excited state, which draws down the $O 2 p$ orbital energies and enhances the ionicity, further reducing O character in the antibonding orbital.

Fig 13 Experimental O K-edge absorption spectra of pristine and reduced BCM.

As a consequence of the reduction, in general the electronic population increases in the vicinity of the site of reduction. From the consideration of classical Coulombic interaction, this can be expected to result in a diminished contribution from the local DOS of these atoms to the low-energy conduction orbitals of the system. However, as we have seen in the case of the pristine crystal, quantum mechanical effects associated with orbital-mixing (within the tight-binding framework) can play a crucial role in deciding the character of the final orbital. In order to investigate further how the interplay of the $\mathrm{O}-2 p$ and $\mathrm{Mn}-3 d$ orbitals results in a reduction in the peak intensities for the $O^{(\text {red. })}$ atoms, we compare, for the reduced crystal,
A. the PDOS of $\mathrm{Mn}_{S}{ }^{\text {(dist.) }}$ - 3 d and $\mathrm{O}_{S}{ }^{\text {(dist.) }}-2 \mathrm{p}$ as a consequence of coreexciting the $\mathrm{O}_{\mathrm{s}}{ }^{\text {(dist.) }}$ atom (note that Fig. 11 indicates that this should be relatively similar to the pristine counterpart).
B. the PDOS of $\mathrm{Mns}_{s}{ }^{(\text {red. })}-3 \mathrm{~d}$ and $\mathrm{O}_{s}{ }^{(\text {red. })}-2 \mathrm{p}$ as a consequence of coreexcitation of the $\mathrm{Os}^{(\text {red. })}$ atom, against

For the final core-excited state corresponding to case [A], (case[B]), let us denote the KS orbital responsible for generating the peak at $9.94 \mathrm{eV}(10.34 \mathrm{eV})$ as $\phi^{A}\left(\phi^{B}\right)$. Further, let ${ }^{[A]} \mathrm{C}[\mathrm{Mn}]$ and ${ }^{[A]} \mathrm{C}[\mathrm{O})\left({ }^{[B]} \mathrm{C}[\mathrm{Mn}]\right.$ and $\left.{ }^{[B]} \mathrm{C}[\mathrm{O}]\right)$ denote, respectively, the contribution from the Lowdin-orthogonalized $\mathrm{Mn}_{s}{ }^{\text {(red.) }}-3 d$ and $\left.\mathrm{O}_{s}{ }^{\text {(red.) }}\right) 2 p$ ($\mathrm{Mn}_{s}{ }^{\text {(dist.).) }}$ $3 d$ and $\left.\mathrm{O}_{s}{ }^{\text {dist.) }}\right) 2 p$) atomic-orbitals to $\phi^{A}\left(\phi^{B}\right)$. Note that the $\mathrm{O}_{s}{ }^{\text {(red.) })} 2 p$ and the $\mathrm{O}_{\mathrm{s}}{ }^{\text {ddist.) }}-2 p$ orbitals are responsible for the corresponding first-peaks in the absorption spectra shown in Fig. 11. The computed values of the aforementioned contributions reveal that
$\frac{{ }^{[A]} C[M n]}{{ }^{[B]} C[M n]}=0.86$ while $\frac{{ }^{[A]} C[0]}{{ }^{[B]} C[O]}=2.3$.
In other words, creation of the oxygen-vacancy results in a lowering of the contribution of the $2 p$ orbital of the core-excited O_{s} atom at the conduction bandedge. Conversely, the contribution of the $\mathrm{Mn}_{s} 3 d$ orbital is enhanced. We note here that the difference in the Lowdin population of the $\mathrm{Mn}_{5}{ }^{\text {(red.) }}$ atom in case [B] (i.e., after core-excitation of $\mathrm{O}_{s}{ }^{\text {ddist.) }}$) and the $\mathrm{Mn}_{s}{ }^{\text {(dist.) }}$ atom in case [A] (i.e., after coreexcitation of $\mathrm{O}_{s}{ }^{(\text {red. })}$) is 0.06 while that between the corresponding core-excited oxygens is 0.01 . The higher contribution of the $2 p$ orbital of the excited oxygen far from the site of oxygen-vacancy essentially points to the fact that, owing to the higher electronic population of $\mathrm{Mn}^{\text {(red.) }}$ [see Tab. 2], the difference in the onsite energy between $\left.\mathrm{Mn}_{s}{ }^{(\text {red. })}\right)_{-} 3 \mathrm{~d}$ and core-excited $\mathrm{O}_{s}{ }^{\text {(red.) })}-2 \mathrm{p}$ in case $[\mathrm{A}]$ is higher than that between $\mathrm{Mn}_{S}{ }^{\text {(dist.) }}$ - 3 d and core-excited $\mathrm{O}_{\mathrm{S}}{ }^{\text {(dist.) }}-2 \mathrm{p}$ in case $[\mathrm{B}]$. Therefore, in accordance with the tight-binding prescription, in an anti-bonding orbital with mixed $\mathrm{Mn}_{s}-3 d$ and $\mathrm{O}_{s}-2 p$ character, the $\mathrm{O}_{s}-2 p$ contribution would be relatively lower in case [A]. This effect is demonstrated schematically in Fig. 12. The lower $\mathrm{O}_{S^{-}}$ $2 p$ contribution in case [A] would, in turn, result in a reduction in the intensity of the corresponding XAS peak.

To summarize, a qualitative theoretical analysis combining first-principles calculations and a tight-binding model reveals that the lowering of the first-peak intensity in the reduced crystal originates from a combination of two effects:

1. Lifting of degeneracy between the up and the down spin peaks for ${ }^{[1]} \mathrm{O}_{\mathrm{M}}{ }^{(r e d .)}$, as shown in Fig. 11, and
2. Reduction in the $0-2 p$ contribution to the unoccupied orbitals, as illustrated schematically in Fig. 12.

Fig. 14 Top panel shows the experimental O K-edge spectra of the pristine and the reduced crystal (same as Fig. 13). Bottom panel shows the simulated spectrum of the pristine crystal in black solid line (same as that shown in black line in Fig. 8(b). The broken blue line in the bottom panel shows a model spectrum calculated approximately for the reduced triple. Further details are provided in the text

Fig. 14 shows, along with the experimental counterparts, the simulated O K-edge spectrum for pristine BCM and a model spectrum for the reduced crystal. In the
latter, we have accounted, in an approximate manner, only for the O atoms coordinating the reduced triple (see Fig. 9 in the main manuscript). More
 $\left.)+2 \times I\left({ }^{[2]} \mathrm{O}_{\mathrm{M}}{ }^{(\text {red. })}\right)\right]$, where $\mathrm{I}\left(\mathrm{O}_{\mathrm{m}}\right)$ denotes the spectrum of the O_{m} atom. Note that the actual spectrum of the reduced crystal will contain contributions from all 0 atoms present in the crystal, not just the O atoms coordinating the reduced triple. The contributions coming from all O atoms occupying inequivalent sites in the reduced crystal will, in principle, be different. Therefore, the final spectrum will depend, in a complicated manner, not only on the density but also on the distribution of the defects. If the thermal reduction results in removal of two oxygens coordinating the same triple, the spectra would likely be significantly different. Note, for example, that the first-peak of the experimental absorption spectra for the pristine and the reduced crystal are coincident on the energy-axis. On the other hand, in the $O K$-edge EELS spectra reported in Ref. ${ }^{20}$, a noticeable blueshift is reported with increasing thermal reduction, especially at $700^{\circ} \mathrm{C}$. As discussed in section (5), such a blueshift is expected in the spectral contribution of the $O^{(\text {red. })}$ atoms. Similarly, owing to the change in the anti-bonding orbital as well as spin-splitting, the $O^{(r e d .)} K$-edge spectra will experience a reduction in the intensity of the first peak. The degree of prominence of such features in the net experimental spectrum will, however, be dictated by the density and distribution of the oxygen vacancies and by the probe-depth and resolution of the experiment. Notably, the measured overall red-shift in the spectral features at and above 536 eV is reproduced in our simulations.

Conclusion

In conclusion, with a combination of theoretical and experimental studies, in this paper we present a detailed description of the electronic structure of the $\mathrm{BaCe}_{0.25} \mathrm{Mn}_{0.75} \mathrm{O}_{3-\delta}$ crystal in its pristine and reduced form. The electronic structure is probed experimentally with the help of O K-edge XAS, which shows a substantial reduction in the first-peak intensity as a result of oxygen-removal. On the theory front, DFT based first-principles calculations are performed to obtain the PDOS and to plot, in real-space, the occupied and the unoccupied orbitals. On the basis of these ab initio results, we propose a simple scheme of orbital-mixing between the O and the ligand orbitals consistent with the tight-binding model and the crystal field theory. Furthermore, using state-of-the-art spectroscopic simulations using
the MBXAS method, we provide an in-depth analysis of the O K-edge spectrum by associating the spectral peaks with the relevant unoccupied electronic orbitals. We show that the low-energy peaks can mostly be attributed to $\mathrm{O}-2 p$ and $\mathrm{Mn}-3 d$ mixing, while the presence of $\mathrm{Ce}-4 f$ orbitals are observed only at relatively higher energy. For the reduced crystal, our calculations reveal that, owing to dielectric screening, the change in electron-density is heavily localized around the site of reduction. At atomic sites distant from the oxygen-vacancy, the density is practically identical to that of the pristine counterpart. Finally, the simulated spectra replicate the qualitative lowering of the K-edge intensity for O atoms close to the vacancy-site. Within the tight-binding formalism, this can be explained in terms of the reduction in the relative contribution of these O atoms to the frontier unoccupied orbitals.
(1) Rao, C. N. R.; Dey, S. Solar Thermochemical Splitting of Water to Generate Hydrogen. Proc. NatI. Acad. Sci. U.S.A. 2017, 114 (51), 13385-13393. https://doi.org/10.1073/pnas. 1700104114.
(2) Nakamura, T. Hydrogen Production from Water Utilizing Solar Heat at High Temperatures. Solar Energy 1977, 19 (5), 467-475. https://doi.org/10.1016/0038-092X(77)90102-5.
(3) Steinfeld, A. Solar Thermochemical Production of Hydrogen-a Review. Solar Energy 2005, 78 (5), 603-615. https://doi.org/10.1016/j.solener.2003.12.012.
(4) McDaniel, A. H. Renewable Energy Carriers Derived from Concentrating Solar Power and Nonstoichiometric Oxides. Current Opinion in Green and Sustainable Chemistry 2017, 4, 37-43. https://doi.org/10.1016/j.cogsc.2017.02.004.
(5) Chueh, W. C.; Falter, C.; Abbott, M.; Scipio, D.; Furler, P.; Haile, S. M.; Steinfeld, A. HighFlux Solar-Driven Thermochemical Dissociation of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ Using Nonstoichiometric Ceria. Science 2010, 330 (6012), 1797-1801. https://doi.org/10.1126/science. 1197834.
(6) Chueh, W. C.; Haile, S. M. A Thermochemical Study of Ceria: Exploiting an Old Material for New Modes of Energy Conversion and CO 2 Mitigation. Phil. Trans. R. Soc. A. 2010, 368 (1923), 3269-3294. https://doi.org/10.1098/rsta.2010.0114.
(7) Siegel, N. P.; Miller, J. E.; Ermanoski, I.; Diver, R. B.; Stechel, E. B. Factors Affecting the Efficiency of Solar Driven Metal Oxide Thermochemical Cycles. Ind. Eng. Chem. Res. 2013, 52 (9), 3276-3286. https://doi.org/10.1021/ie400193q.
(8) Cheng, W.-H.; de la Calle, A.; Atwater, H. A.; Stechel, E. B.; Xiang, C. Hydrogen from Sunlight and Water: A Side-by-Side Comparison between Photoelectrochemical and Solar Thermochemical Water-Splitting. ACS Energy Lett. 2021, 6 (9), 3096-3113. https://doi.org/10.1021/acsenergylett.1c00758.
(9) McDaniel, A. H.; Miller, E. C.; Arifin, D.; Ambrosini, A.; Coker, E. N.; O’Hayre, R.; Chueh, W. C.; Tong, J. Sr- and Mn-Doped LaAIO3- δ for Solar Thermochemical H2 and CO Production. Energy Environ. Sci. 2013, 6 (8), 2424. https://doi.org/10.1039/c3ee41372a.
(10) Yang, C.-K.; Yamazaki, Y.; Aydin, A.; Haile, S. M. Thermodynamic and Kinetic Assessments of Strontium-Doped Lanthanum Manganite Perovskites for Two-Step Thermochemical

Water Splitting. J. Mater. Chem. A 2014, 2 (33), 13612-13623.
https://doi.org/10.1039/C4TA02694B.
(11) Sai Gautam, G.; Stechel, E. B.; Carter, E. A. Exploring Ca-Ce-M-O (M = 3d Transition Metal) Oxide Perovskites for Solar Thermochemical Applications. Chem. Mater. 2020, 32 (23), 9964-9982. https://doi.org/10.1021/acs.chemmater.0c02912.
(12) Emery, A. A.; Saal, J. E.; Kirklin, S.; Hegde, V. I.; Wolverton, C. High-Throughput Computational Screening of Perovskites for Thermochemical Water Splitting Applications. Chem. Mater. 2016, 28 (16), 5621-5634.
https://doi.org/10.1021/acs.chemmater.6b01182.
(13) McDaniel, A. H.; Ambrosini, A.; Coker, E. N.; Miller, J. E.; Chueh, W. C.; O’Hayre, R.; Tong, J. Nonstoichiometric Perovskite Oxides for Solar Thermochemical H2 and CO Production.
Energy Procedia 2014, 49, 2009-2018. https://doi.org/10.1016/j.egypro.2014.03.213.
(14) Vieten, J.; Bulfin, B.; Huck, P.; Horton, M.; Guban, D.; Zhu, L.; Lu, Y.; Persson, K. A.; Roeb, M.; Sattler, C. Materials Design of Perovskite Solid Solutions for Thermochemical Applications. Energy Environ. Sci. 2019, 12 (4), 1369-1384. https://doi.org/10.1039/C9EE00085B.
(15) Barcellos, D. R.; Coury, F. G.; Emery, A.; Sanders, M.; Tong, J.; McDaniel, A.; Wolverton, C.; Kaufman, M.; O'Hayre, R. Phase Identification of the Layered Perovskite $\mathrm{Ce}_{x} \mathrm{Sr}_{2-x} \mathrm{MnO}_{4}$ and Application for Solar Thermochemical Water Splitting. Inorg. Chem. 2019, 58 (12), 7705-7714. https://doi.org/10.1021/acs.inorgchem.8b03487.
(16) R. Barcellos, D.; Sanders, M. D.; Tong, J.; McDaniel, A. H.; O'Hayre, R. P. BaCe ${ }_{0.25} \mathrm{Mn}_{0.75} \mathrm{O}$ ${ }_{3-\delta}$-a Promising Perovskite-Type Oxide for Solar Thermochemical Hydrogen Production. Energy Environ. Sci. 2018, 11 (11), 3256-3265. https://doi.org/10.1039/C8EEO1989D.
(17) Liang, Y.; Prendergast, D. Quantum Many-Body Effects in x-Ray Spectra Efficiently Computed Using a Basic Graph Algorithm. Phys. Rev. B 2018, 97 (20), 205127. https://doi.org/10.1103/PhysRevB.97.205127.
(18) Liang, Y.; Vinson, J.; Pemmaraju, S.; Drisdell, W. S.; Shirley, E. L.; Prendergast, D. Accurate X-Ray Spectral Predictions: An Advanced Self-Consistent-Field Approach Inspired by ManyBody Perturbation Theory. Phys. Rev. Lett. 2017, 118 (9), 096402. https://doi.org/10.1103/PhysRevLett.118.096402.
(19) Hoffmann, R. How Chemistry and Physics Meet in the Solid State. Angew. Chem. Int. Ed. Engl. 1987, 26 (9), 846-878. https://doi.org/10.1002/anie.198708461.
(20) Trindell, J. A.; McDaniel, A. H.; Ogitsu, T.; Ambrosini, A.; Sugar, J. D. Probing Electronic and Structural Transformations during Thermal Reduction of the Promising Water Splitting Perovskite BaCe ${ }_{0.25} \mathrm{Mn}_{0.75} \mathrm{O}_{3}$. Chem. Mater. 2022, acs.chemmater.2c00731. https://doi.org/10.1021/acs.chemmater.2c00731.
(21) Roychoudhury, S.; Qiao, R.; Zhuo, Z.; Li, Q.; Lyu, Y.; Kim, J.-H.; Liu, J.; Lee, E.; Polzin, B. J.; Guo, J.; Yan, S.; Hu, Y.; Li, H.; Prendergast, D.; Yang, W. Deciphering the Oxygen Absorption Pre-Edge: A Caveat on Its Application for Probing Oxygen Redox Reactions in Batteries. ENERGY \& ENVIRONMENTAL MATERIALS 2021, 4 (2), 246-254.
https://doi.org/10.1002/eem2.12119.

Supplementary Materials for "Investigating the Electronic Structure of Prospective Water-splitting Oxide BaCe ${ }_{0.25} \mathrm{Mn}_{0.75} \mathrm{O}_{3-\delta}$ Before and After Thermal Reduction"

Subhayan Roychoudhury§, Sarah Shuldaๆl, Anuj Goyal $\boldsymbol{\|}$, Robert Bell \uparrow, Sami Sainio \ddagger, Nicholas Strange \ddagger, James Eujin Park\#, Eric N. Coker\#, Stephan Lanyๆl, David Ginley 9 , and David Prendergast§
§ The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA
ๆNational Renewable Energy Laboratory, Golden, Colorado 80401, USA
\ddagger SLAC National Accelerator Laboratory, Menlo Park, CA 94025
\#Sandia National Laboratories, Albuquerque, New Mexico 87185, USA

Details of XAS Experiment:

X-Ray absorption spectroscopy data was acquired at the Stanford Synchrotron Radiation Lightsource (SSRL). For analysis of the oxygen K-edge, collected on beam line 10-1, a thin layer of BCM powder was spread on carbon tape. Total fluorescence yield spectra were obtained with a silicon diode AXUV100. An oxygen reference spectrum was collected simultaneously with data collection at the oxygen edge for both (reduced and oxidized) samples. The sample data was put on an absolute energy grid for direct comparison by aligning the refence spectra and shifting the sample data correspondingly. Specific to this beamline, an agglomerate of chemical species resides permanently within the beam path for reference collection. Two spectra at three different spots were collected and averaged for each sample. Alignment and averaging were carried out in Athena ${ }^{1}$. Normalization was carried out with Igor Pro (Wavemetrics, Lake Oswego, OR, USA). O1s spectra were base line corrected by subtracting the minimum pre-edge value to bring preedge to 0 and then were divided by the average of the region after the main
features (after 547 eV). In-situ heating experiments at the Mn K-edge and Ce Ledges were carried out on beamline 4-1 using an in-situ chamber fabricated at Sandia National Laboratory. All data was collected in fluorescence using a Ge array fluorescence detector. Three spectra were collected, normalized, aligned, and then averaged for each sample. For normalization, the pre-edge was fit to a line and the extended region fit to a 3 -term quadratic polynomial. Reference foils were collected simultaneously with sample data acquisition to enable accurate alignment of all spectra (to place all spectra on an absolute energy grid). Data normalization, alignment, and averaging was carried out in Athena ${ }^{1}$.

Computational Details:

DFT based first-principles calculations of electronic structure are performed with the Quantum Espresso software package. Plane-wave energy cutoff of 35 eV and 280 eV are used for wavefunction and energy, respectively. PBE exchangecorrelation functional and Ultrasoft pseudopotentials have been used throughout. In calculations of the x-ray excited states, the core-excited oxygen atom is represented by a modified pseudopotential which encodes the effects of the corehole. Hubbard U values of 3.9 eV and 5.4 eV are used for the $\mathrm{Mn}-3 d$ orbitals and the Ce- $4 f$ orbitals, respectively. In order to mitigate the effects of the interaction between the periodic images of the core-excited atom, we use a large supercell in our XAS calculations (parameters provided below). Therefore, the self-consistent field calculations are performed at the $k=0$ point only. A uniform (i.e., independent of the incident frequency) broadening of 0.2 eV is used to generate the spectra. Results obtained using other energies for broadening are shown in Fig. S2. The relative alignment of the spectra of different O atoms is determined with the help of the total energies of the FCH states and the energies of the lowest unoccupied orbitals. If, for the FCH state corresponding to core-excitation of the i-th (j-th) O atom, $E_{i}\left(\mathrm{E}_{j}\right)$ is the sum of the total energy and the KS energy of the lowest unoccupied orbital, then the onset-energy for the spectrum of the i-th O atom will be higher than that of the j-th O atom by ($\left.\mathrm{E}_{\mathrm{i}}-\mathrm{E}_{\mathrm{j}}\right)$.

Fig. S1 Figure showing the PDOS of Mn and O atoms before and after the X -ray absorption process. Panel (a) and panel (b) show, respectively, the GS $2 p$ PDOS of an O_{M} and an O_{s} atom along with the 3d PDOS of the neighboring atoms. Panel (c) (panel(d)) shows, for the FCH state obtained by core-exciting an $\mathrm{O}_{\mathrm{M}}\left(\mathrm{O}_{S}\right)$ atom, the $2 p$ PDOS of the core-excited atom $O_{M}^{(x)}\left(O_{S}^{(x)}\right)$, along with the 3d PDOS of the neighboring Mn atoms.

Fig. S2 O K-edge spectrum of the pristine BCM crystal using different energies for broadening.

Fig. S3 The green and orange lines show, at the conduction band edge, the PDOS, respectively, of $\mathrm{Mns}_{s}{ }^{\text {(red.) }}$) $3 d$ and $\mathrm{O}_{s^{(r e d .)}}{ }^{\text {(}} 2 p$ corresponding to the SCF resulting from core-excitation of the $\mathrm{Os}_{s}{ }^{\text {(red.) }}$ atom. The brown and the red lines show the conduction
 excitation of the $O_{s}{ }^{\text {dist.) }}$ atom. The $O_{s}{ }^{\text {(red. })}-2 p$ orbital generates the first-peak in the $O_{s}{ }^{\text {(red.) }} K$-edge spectrum shown in Fig. 11 (bottom right panel) while the $O_{s}{ }^{\text {(dist.) }} 2 p$ orbital is responsible for the $\mathrm{Os}^{\text {(dists.) }}$ K-edge first-peak in Fig. 11 (top tight panel).

Structure of the Crystal

Superell Parameters

Lattice Parameter, $\mathrm{a}_{0}: 38.5438$ a.u.
Crystal axes in units of a a_{0}

$$
a(1)=(0.500000-0.866025-0.000065)
$$

$$
\begin{aligned}
& a(2)=\left(\begin{array}{lll}
0.500041 & 0.288699 & 0.000000
\end{array}\right) \\
& a(3)=\left(\begin{array}{lll}
-0.166698 & 0.288729 & 0.953047
\end{array}\right)
\end{aligned}
$$

Ionic coordinates of the pristine crystal in Angstrom (Mn 1 and Mn 2 atoms are spinpolarized along opposite directions) :

Ba	3.3992982800040	-5.8877571473726	5.9030879974125
Ba	1.6992753014839	-2.9432306153339	15.6224917664166
Ba	8.4988409553240	-2.9435347977983	5.9030879992436
Ba	6.7988179768038	0.0009917342405	15.6224917682477
Ba	8.4984193486792	-14.7196939519691	5.9024215079341
Ba	6.7983963701591	-11.7751674199303	15.6218252769381
Ba	13.5979620239991	-11.7754716023947	5.9024215097652
Ba	11.8979390454790	-8.8309450703559	15.6218252787692
Ba	3.3995090833264	0.0003224297127	5.9034212430673
Ba	1.6994861048063	2.9448489617515	15.6228250120713
Ba	8.4990517586464	2.9445447792871	5.9034212448984
Ba	6.7990287801262	5.8890713113259	15.6228250139024
Ba	8.4986301520016	-8.8316143748837	5.9027547535889
Ba	6.7986071734815	-5.8870878428449	15.6221585225929
Ba	13.5981728273215	-5.8873920253093	5.9027547554200
Ba	11.8981498488014	-2.9428654932706	15.6221585244240
Ba	5.0991316821485	-2.9435103526960	3.8153160382894
Ba	3.3991087036284	0.0010161793427	13.5347198072935
Ba	10.1986743574684	0.0007119968783	3.8153160401205
Ba	8.4986513789483	2.9452385289171	13.5347198091246
Ba	10.1982527508237	-11.7754471572924	3.8146495488110
Ba	8.4982297723035	-8.8309206252537	13.5340533178150
Ba	15.2977954261436	-8.8312248077181	3.8146495506421
Ba	13.5977724476235	-5.886982756793	13.5340533196461
Ba	5.0993424854709	2.9445692243894	3.8156492839442
Ba	3.3993195069508	5.8890957564281	13.5350530529482
Ba	10.1988851607908	5.8887915739637	3.8156492857753
Ba	8.4988621822707	8.8333181060025	13.5350530547793
Ba	10.1984635541461	-5.8873675802071	3.8149827944658
Ba	8.4984405756259	-2.9428410481683	13.5343865634698
Ba	15.2980062294660	-2.9431452306327	3.8149827962969
Ba	13.5979832509459	0.0013813014061	13.5343865653009
Ba	5.0990564182092	-2.9433798354133	8.2066141932703
Ba	3.3990334396890	0.0011466966254	17.9260179622743
Ba	10.1985990935291	0.0008425141610	8.2066141951014
Ba	8.4985761150090	2.9453690461998	17.9260179641054
Ba	10.1981774868843	-11.7753166400098	8.2059477037918
Ba	8.4981545083642	-8.8307901079710	17.9253514727959
Ba	15.2977201622043	-8.8310942904354	8.2059477056229
Ba	13.5976971836841	-5.8865677583966	17.9253514746270
Ba	5.0992672215316	2.9446997416720	8.2069474389250
Ba	3.3992442430114	5.8892262737108	17.9263512079291

Ва 10.1988098968515
Ba 8.4987869183314
Ва 10.1983882902067
Ва 8.4983653116866
Ва 15.2979309655267
Ва 13.5979079870065
Ba 3.3995843472658
Ва 1.6995613687456
Ва 8.4991270225857
Ва 6.7991040440656
Ва 8.4987054159409
Ba 6.7986824374208
Ва 13.5982480912609
Ва 11.8982251127407
Ba 3.3993735439434
Ba 1.6993505654232
Ba 8.4989162192633
Ba 6.7988932407432
Ba 8.4984946126185
Ba 6.7984716340984
Ba 13.5980372879385
Ва 11.8980143094183
Ce 0.0000000000000
Ce -1.7000229785201
Ce 5.0995426753199
Ce 3.3995196967998
Ce 5.0991210686751
Ce 3.3990980901550
Се 10.1986637439951
Ce 8.4986407654750
Ce 5.0993318719975
Ce 3.3993088934774
Ce 10.1988745473175
Ce 8.4988515687973
Ce 10.1984529406727
Ce 8.4984299621526
Ce 15.2979956159926
Ce 13.5979726374725
Mn1 1.6997598483999
Mn1 - 0.0002631301202
Mn1 6.7993025237198
Mn1 5.0992795451997
Mn1 6.7988809170751
Mn1 5.0988579385549
Mn1 11. 8984235923950
Mn1 10.1984006138749
Mn1 6.7990941696678
Mn1 5.0990711911476
Mn1 11. 8986368449877
Mn1 10.1986138664676

5.8889220912464	8.2069474407561
8.8334486232852	17.9263512097602
-5.8872370629244	8.2062809494466
-2.9427105308856	17.9256847184506
-2.9430147133500	8.2062809512777
0.0015118186888	17.9256847202818
0.0001919124300	1.5121230880864
2.9447184444688	11.2315268570905
2.9444142620044	1.5121230899175
5.8889407940432	11.2315268589216
-8.8317448921664	1.5114565986080
-5.8872183601276	11.2308603676121
-5.8875225425920	1.5114566004391
-2.9429960105533	11.2308603694432
-5.8878876646553	1.5117898424317
-2.9433611326166	11.2311936114357
-2.9436653150810	1.5117898442628
0.0008612169578	11.2311936132668
-14.7198244692518	1.5111233529532
-11.7752979372130	11.2305271219573
-11.7756021196774	1.5111233547844
-8.8310755876386	11.2305271237884
0.0000000000000	0.0000000000000
2.9445265320388	9.7194037690040
2.9442223495743	0.0000000018311
5.8887488816131	9.7194037708351
-8.8319368045964	-0.0006664894784
-5.8874102725576	9.7187372795256
-5.8877144550221	-0.0006664876473
-2.9431879229833	9.7187372813567
-2.9438572275110	-0.0003332438237
0.0006693045277	9.7190705251804
0.0003651220633	-0.0003332419926
2.9448916541021	9.7190705270115
-11.7757940321075	-0.0009997333021
-8.8312675000687	9.7184040357019
-8.8315716825331	-0.0009997314710
-5.8870451504943	9.7184040375331
2.9443744408066	4.8597018854176
5.8889009728453	14.5791056544216
5.8885967903809	4.8597018872487
8.8331233224197	14.5791056562527
-5.8875623637899	4.8590353959391
-2.9430358317511	14.5784391649432
-2.9433400142155	4.8590353977702
0.0011865178233	14.5784391667743
0.0005130610966	7.3894409247774
2.9450395931354	17.1088446937815
2.9447354106709	7.3894409266085
5.8892619427097	17.1088446956126

	111.8982152383429	-8.8314237434998	7.3887744352990
	10.1981922598228	-5.8868972114611	17.1081782043030
	116.9977579136629	-5.8872013939255	7.3887744371301
	15.2977349351427	-2.9426748618867	17.1081782061342
Mn1	1.6995465958072	-2.9437009840799	2.3292963565793
1	$1-0.0004763827130$	0.0008255479589	12.0487001255833
	6.7990892711271	05213654945	
1	15.0990662926070	332	12.0487001274144
	6.7986676644823	-11.7756377886763	32.32862
	5.0986446859622	-8.8311112566375	12.0480336361049
	11.8982103398023	-8.8314154391020	2.3286298689320
	10.1981873612821	-5.8868889070632	12.0480336379360
2	21.6995490450775	-2.9437051362788	4.8593686397628
2	-0.0004739334426	0.0008213957600	14.5787724087668
2	26.7990917203974	0.0005172132955	4.8593686415939
	5.0990687418773	343	14.5787724105979
2	26.7986701137527	-11.7756419408752	24.8587021502844
n2	2.0986471352325	-8.8311154088365	14.5781059192884
2	211.8982127890726	-8.8314195913009	4.8587021521155
Mn2	210.1981898105525	-5.8868930592621	14.5781059211195
Mn2	21.6997622976702	43702886076	7.3897741686011
Mn2	$2-0.0002606808499$. 8888968206464	17.1091779376051
	6.7993049729902	6381820	7.3897741704322
Mn2	2.0992819944700	8.8331191702207	17.1091779394362
Mn2	26.7988833663454	-5.8875665159888	7.3891076791227
Mn2	2.0988603878252	-2.9430399839500	17.1085114481267
2	211.8984260416653	-2.9433441664144	7.3891076809538
n2	210.1984030631452	0.0011823656243	17.1085114499578
n2	26.7988784678047	-5.8875582115909	2.3289631127556
	2.0988554892846	-2.9430316795521	12.0483668817597
$n 2$	211.8984211431247	-2.9433358620166	2.3289631145867
	210.1983981646045	0.0011906700222	12.0483668835908
	211.8979995364799	-14.7194950161873	32.3282966232772
	210.1979765579597	-11.7749684841486	612.0477003922812
	216.9975422117998	-11.7752726666130	02.3282966251083
	215.2975192332797	-8.8307461345742	12.0477003941123
0	6.0518685395084	-4.5936989226439	6.0810425107902
	4.3518455609883	-1.6491723906051 15	15.8004462797943
1	11.1514112148284	-1.6494765730695	6.0810425126213
	9.4513882363082	1.295049958969315	15.8004462816254
1	11.1509896081836	-13.4256357272403	6.0803760213118
	9.4509666296634	-10.4811091952015	15.7997797903158
01	16.2505322835035	-10.4814133776659	6.0803760231429
01	14.5505093049834	-7.5368868456272 15	15.7997797921469
0	6.0520695928534	-1.2931696830465	6.0816616470464
0	4.3520466143333	1.651356848992315	15.8010654160505
	11.1516122681734	1.6510526665279	6.0816616488775
0	9.4515892896532	4.595579198566715	15.8010654178816
	11.1511906615286	-10.1251064876429	6.0809951575680
	9.4511676830084	-7.1805799556041	

016.2507333368485 014.5507103583284
03.1936366615992

0 1.4936136830791
08.2931793369192
$0 \quad 6.5931563583990$
$0 \quad 8.2927577302744$
06.5927347517543
013.3923004055943
011.6922774270742
$0 \quad 0.9527377208559$
$0-0.7472852576643$
06.0522803961758
$0 \quad 4.3522574176557$
06.0518587895310
$0 \quad 4.3518358110109$
011.1514014648510
$0 \quad 9.4513784863308$
03.1934258582768
$0 \quad 1.4934028797567$
0 8.2929685335968
06.5929455550766
08.2925469269520
$0 \quad 6.5925239484319$
013.3920896022719
011.6920666237518
$0 \quad 0.9525366675109$
0 -0.7474863110093
06.0520793428308
04.3520563643107
06.0516577361860
04.3516347576659
011.1512004115060
$0 \quad 9.4511774329858$
$0 \quad 2.4467722259665$
$0 \quad 0.7467492474464$
$0 \quad 7.5463149012865$
05.8462919227663
07.5458932946417
$0 \quad 5.8458703161215$
012.6454359699616
010.9454129914415

0 5.3052149071981
03.6051919286780 010.4047575825180
08.7047346039979
010.4043359758733
08.7043129973531
015.5038786511932

0 13.8038556726731
-7. 1808841380685
-4.2363576060298
2.9444711569437
5.8889976889825
5.8886935065181
8.8332200385568
-5.8874656476527
-2.9429391156139
-2. 9432432980784
0.0012832339604
1.6506875444646
4.5952140765033
4.5949098940389
7.5394364260777
-7.1812492601318
-4.2367227280931
-4.2370269105575
-1.2925003785187
-2. 9436084201417
0.0009181118971
0.0006139294327
2.9451404614714
-11.7755452247381
-8.8310186926993
-8.8313228751637
-5.8867963431250
-1. 6498416951328
1.2946848369059

1. 2943806544415
4.2389071864803
-10.4817784997292
-7.5372519676905
-7.5375561501549
-4.5930296181161
1.6505109996606
4.5950375316993
4.5947333492349
7.5392598812737
-7. 1814258049358
-4.2368992728971
-4.2372034553615
-1. 2926769233227
0.0004204971584
2.9449470291971
2.9446428467327
5.8891693787715
-8.8315163074380
-5. 8869897753993
-5. 8872939578637
-2.9427674258249
6.0809951593991
15.8003989284031
6.0819948916698
15.8013986606739
6.0819948935009
15.8013986625050
6.0813284021914
15.8007321711954
6.0813284040225
15.8007321730265
6.0819948908701
15.8013986598741
6.0819948927012
15.8013986617052
6.0813284013917
15.8007321703957
6.0813284032228
15.8007321722268
6.0816616460151
15.8010654150191
6.0816616478462
15.8010654168502
6.0809951565366
15.8003989255407
6.0809951583677
15.8003989273718
6.0813757546139
15.8007795236179
6.0813757564450
15.8007795254490
6.0807092651355
15.8001130341395
6.0807092669666
15.8001130359706
3.6376947705665
13.3570985395705
3.6376947723976
13.3570985414016
3.6370282810881
13.3564320500921
3.6370282829192
13.3564320519232
3.6370756353416
2. 3564794043457
3.6370756371727
3. 3564794061768
3.6364091458632
4. 3558129148673
5. 6364091476943
6. 3558129166984
07.5459030446191
05.8458800660989
012.6454457199390
010.9454227414189
012.6450241132942
010.9450011347741
017.7445667886142
016.0445438100940
$0 \quad 5.3050041038757$
0 3.6049811253556
010.4045467791956
08.7045238006755
010.4041251725509
08.7041021940307
015.5036678478708
013.8036448693507
$0 \quad 2.4465711726215$
$0 \quad 0.7465481941014$
07.5461138479415
05.8460908694213
07.5456922412967
05.8456692627765
012.6452349166166
010.9452119380965
07.5461040979641
05.8460811194439
012.6456467732840
010.9456237947639
012.6452251666392
010.9452021881191
017.7447678419592
016.0447448634390
$0 \quad 2.4964507145836$
$0 \quad 0.7964277360635$
07.5959933899036
$0 \quad 5.8959704113834$
07.5955717832588
05.8955488047386
012.6951144585787
010.9950914800586

0 7.5952984046644
$0 \quad 5.8952754261442$
012.6948410799843
010.9948181014642
012.6944194733395
010.9943964948194
017.7939621486595
016.0939391701393
$0 \quad 0.1066303044843$
0 -1.5933926740358
-4.5938754674479
-1.6493489354091
-1.6496531178735

1. 2948734141652
-13.4258122720443
-10.4812857400055
-10.4815899224699
-7.5370633904312
-5.8876590799270
-2.9431325478882
-2.9434367303527
0.0010898016861
-14.7195958845234
-11.7750693524847
-11.7753735349491
-8.8308470029103
-1.6500182399368
1.2945082921019
2. 2942041096375
3. 2387306416763
-10.4819550445333
-7.5374285124945
-7.5377326949589
-4. 5932061629201
-1. 2933462278505
1.6511803041883
1.6508761217239
4.5954026537627
-10.1252830324469
-7. 1807565004081
-7. 1810606828725
-4.2365341508338
4.3239924294312
7.2685189614700
7.2682147790055
10.2127413110443
-4.5079443751652
-1.5634178431265
-1.5637220255909
1.3808045064479
-1.3785530969637
1.5659734350750
1.5656692526106 4.5101957846494 -10.2104899015602
-7. 2659633695214
-7. 2662675519858
-4. 3217410199470
2.9442289661446
5.8887554981834
4. 6367423904866
5. 3561461594907
3.6367423923177
13.3561461613218
3.6360759010082
13.3554796700122
3.6360759028393
6. 3554796718433
3.6367423896869
7. 3561461586909
3.6367423915180
8. 3561461605220
3.6360759002084
13.3554796692125
3.6360759020396
13.3554796710436
3.6370756343103
13.3564794033143
3.6370756361414
13.3564794051454
3.6364091448319
13.3558129138359
3.6364091466630
13.3558129156670
3.6373615267428
9. 3567652957469
3.6373615285739
13.3567652975780
3.6366950372644
10. 3560988062684
3.6366950390955
13.3560988080995
8.4109867367717
18.1303905057757
8.4109867386028
18.1303905076068
8.4103202472933
18.1297240162973
8.4103202491244
18.1297240181284
8.4106921260847
18.1300958950887
8.4106921279158
18.1300958969199
8.4100256366063
11. 1294294056103
8.4100256384374
12. 1294294074414
8.4109867359188
13. 1303905049229
$0 \quad 5.2061729798043$
03.5061500012841

0 5.2057513731595
03.5057283946394 010.3052940484794
08.6052710699593
$0 \quad 5.2059621764819$
03.5059391979618
010.3055048518018
08.6054818732817
010.3050832451570
08.6050602666369
015.4046259204770
013.7046029419568
$0 \quad 2.4959665326668$
$0 \quad 0.7959435541467$
$0 \quad 7.5955092079868$
$0 \quad 5.8954862294666$
07.5950876013420
$0 \quad 5.8950646228218$
012.6946302766619
010.9946072981418
$0 \quad 2.4962399112612$
$0 \quad 0.7962169327411$
0 7.5957825865811
05.8957596080610
07.5953609799363
05.8953380014162
012.6949036552563
010.9948806767361
08.3920104609906
$0 \quad 6.6919874824705$
013.4915531363105
011.7915301577904
013.4911315296658
011.7911085511456
018.5906742049857
016.8906512264656
$0 \quad 0.9033423608106$
0 -0.7966806177096
06.0028850361305
04.3028620576104
06.0024634294857
04.3024404509656
011.1020061048057

0 9.4019831262855
06.0021900508914
04.3021670723712
011.1017327262113
$0 \quad 9.4017097476912$
5.8884513157190
8.8329778477577
-5.8877078384518
-2.9431813064130
-2.9434854888774
0.0010410431613
0.0003717386336
2.9448982706724
2.9445940882079
5.8891206202467
-8.8315650659628
-5.8870385339241
-5.8873427163885
-2.9428161843497
1.5653041305473
4.5098306625861
4.5095264801216
7.4540530121604
-7.2666326740491
-4. 3221061420103
-4.3224103244748
-1.3778837924360
-1. 5640871476541
1.3804393843846
1.3801352019202
4.3246617339590
-10. 3960239522505
-7.4514974202118
-7.4518016026762
-4. 5072750706374
-5. 8874168891279
-2.9428903570891
-2.9431945395536
0.0013319924852
-14.7193536937243
-11.7748271616856
-11.7751313441500
-8.8306048121112
-1.5646348260196
1.3798917060192
1.3795875235548
4.3241140555936
-10.3965716306160
-7.4520450985772
-7.4523492810416
-4.5078227490029
-7. 2671803524146
-4. 3226538203758
-4. 3229580028402
-1. 3784314708014
8.4109867377499
18.1303905067540
8.4103202464404
18.1297240154444
8.4103202482715
18. 1297240172755
8.4106534920952
18.1300572610992
8.4106534939263
18. 1300572629303
8.4099870026167
18. 1293907716208
8.4099870044478
18.1293907734519
8.4110253699084
18. 1304291389124
8.4110253717395
18. 1304291407435
8.4103588804299
18.1297626494340
8.4103588822610
18. 1297626512651
8.4106534911169
18.1300572601210
8.4106534929480
18. 1300572619521
8.4099870016385
18. 1293907706425
8.4099870034696
18. 1293907724736

1. 3077505454379
11.0271543144419
1.3077505472690
11.0271543162730 1.3070840559595
11.0264878249635
1.3070840577906
11.0264878267946
2. 3080451552720
11.0274489242760
1.3080451571031
11.0274489261071
1.3073786657936
11.0267824347976
3. 3073786676247
11.0267824366287
4. 3077505445850
11.0271543135891
5. 3077505464161
11.0271543154202

-16. 0991171570110
-13. 1545906249722
-13. 1548948074366
-10.2103682753978
-4. 5084920535306
-1. 5639655214918
-1.5642697039563
1.3802568280825
-13.3404288581270
-10. 3959023260882
-10. 3962065085527
-7.4516799765139
-1.3791007753291
1.5654257567097
1.5651215742452
4.5096481062840
-10. 2110375799255
-7.2665110478867
-7.2668152303512
-4.3222886983124
-2. 9435596616169
0.0009668704219
0.0006626879575
2.9451892199962
-11.7754964662133
-8.8309699341745
-8.8312741166390
-5.8867475846002
1.3070840551066
11.0264878241106
1.3070840569377
11.0264878259417
6. 3077119114483
11.0271156804524
7. 3077119132794
11.0271156822835
1.3070454219699
11.0264491909740
1.3070454238010
11.0264491928051
8. 3080837902398
11.0274875592438
1.3080837920709
11.0274875610749
1.3074173007614
11.0268210697654
9. 3074173025925
11.0268210715965
10. 3080837892615
11.0274875582656
1.3080837910927
11.0274875600967
1.3074172997831
11.0268210687872
11. 3074173016142
11.0268210706183

Ionic coordinates of the reduced crystal in Angstrom (Mn1 and Mn2 atoms are spinpolarized along opposite directions) :

Ba 3.4040895190061
Ba 1.7040665404859
Ва 8.5032105876812
Ва 6.8031876091611
Ba 3.3178615110375
Ва 1.6178385325173
Ва 8.4169825797126
Ва 6.7169596011925
Bа 5.0784088649930
Ba 3.3783858864729
Ва 10.1775299336682
Ba 8.4775069551480
Ba 5.1319315780046
Ba 3.4319085994845
Ва 10.2310526466798
-5.8645513210539
-2.9200247890151
-14.6964881256503
-11.7519615936115
0.0685691035000
3.0130956355388
-8.7633677010964
-5.8188411690576
-2. 9663778313410
-0.0218512993022
-11.7983146359374
-8.8537881038986
2.9256405405172
5.8701670725559
-5.9062962640793
5.9088414399699
15.6282452089740
5.9081749504915
15.6275787194956
5.8822084861659
15.6016122551699
5.8815419966875
15.6009457656915
3.6793491705317
13.3987529395358
3.6786826810533
13.3980864500573
3.7896500451257
13.5090538141298
3.7889835556473

	8.5310296681596	-2.9617697320405	13.50838
Ba	5.0556400633749	-3.0145395684981	8.3745257190662
Ba	3.3556170848548	-0.0700130364594	18.0939294880703
Ba	10.1547611320501	-11.8464763730946	8.3738592295878
Ba	8.4547381535299	-8.9019498410558	18.0932629985918
Ва	5.1206036048368	2.9262833236750	8.2262294990924
Ba	3.4205806263167	5.8708098557138	17.9456332680965
Ba	10.2197246735120	-5.9056534809214	8.2255630096140
Ba	8.5197016949918	-2.9611269488827	17.9449667786181
Ba	3.4231482612154	0.0129761209801	1.5232703971657
Ba	1.7231252826953	2.9575026530189	11.2426741661697
Ba	8.5222693298906	-8.8189606836163	1.5226039076873
Ba	6.8222463513704	-5.8744341515775	11.2420076766913
Ba	13.5928633772548	0.0074040315938	1.5019560279765
Ba	11.8928403987347	2.9519305636326	11.2213597969805
Ba	18.6919844459300	-8.8245327730026	1.5012895384981
Ba	16.9919614674098	-5.8800062409638	11.2206933075021
Ba	8.5950761146876	-2.9919241216079	5.8941707699720
Ba	6.8950531361674	-0.0473975895691	15.6135745389761
Ba	13.6941971833627	-11.8238609262043	5.8935042804936
Ba	11.9941742048426	-8.8793343941655	15.6129080494977
	8.5183723611846	2.9614089366863	5.8964536811389
Ba	6.8183493826645	5.9059354687250	15.6158574501429
Ba	13.6174934298598	-5.8705278679102	5.8957871916605
Ba	11.9174704513396	-2.9260013358714	15.6151909606645
Ba	10.2004668910093	0.0262023754860	3.8158049179340
Ba	8.5004439124892	2.9707289075248	13.5352086869380
Ba	15.2995879596845	-8.8057344291104	3.8151384284556
Ba	13.5995649811643	-5.8612078970716	13.5345421974596
Ba	-0.0090112759983	0.0161983434607	3.8021901139515
Ba	-1.7090342545185	2.9607248754995	13.5215938829555
Ba	5.0901097926768	-8.8157384611357	3.8015236244731
Ba	3.3900868141567	-5.8712119290969	13.5209273934771
Ba	10.1829124240489	0.0043994050102	8.1959829834398
Ba	8.4828894455287	2.9489259370490	17.9153867524439
Ba	15.2820334927240	-8.8275373995862	8.1953164939614
Ba	13.5820105142039	-5.8830108675474	17.9147202629654
Ba	10.1835002637261	5.8806382723380	8.2041582660053
Ba	8.4834772852059	8.8251648043767	17.9235620350094
Ba	15.2826213324012	-2.9512985322585	8.2034917765269
Ba	13.5825983538811	-0.0067720002197	17.9228955455309
Ba	8.4991362103609	2.9463798242817	1.5170712772442
Ba	6.7991132318408	5.8909063563205	11.2364750462483
Ba	13.5982572790361	-5.8855569803147	1.5164047877658
Ba	11.8982343005159	-2.9410304482759	11.2358085567698
Ba	8.5204778274776	-2.8938461208796	1.5623727125110
Ba	6.8204548489575	0.0506804111592	11.2817764815150
Ba	13.6195988961528	-11.7257829254760	1.5617062230325
Ba	11.9195759176327	-8.7812563934372	11.2811099920366
Ce	10.1904409535025	5.8675456206648	0.0053540376008

	15.2895620221777	-2.9643911839316	0.0046875481224
Ce	13.5895390436576	-0.0198646518929	9.7240913171264
Ce	3.3974960511682	-0.0016035229482	9.6887710684674
Ce	1.6974730726481	2.9429230090906	19.4081748374714
Ce	8.4966171198434	-8.8335403275446	9.6881045789890
Ce	6.7965941413232	-5.8890137955058	19.4075083479930
Ce	8.4925329900939	-2.9474050072702	9.6989500904609
Ce	6.7925100115738	-0.0028784752314	19.4183538594649
Ce	13.5916540587691	-11.7793418118666	9.6982836009824
Ce	11.8916310802489	-8.8348152798279	19.4176873699865
Ce	10.2083396342900	0.0179591231985	0.0241394416810
Ce	8.5083166557698	2.9624856552373	9.7435432106850
Ce	15.3074607029651	-8.8139776813979	0.0234729522026
Ce	13.6074377244450	-5.8694511493591	9.7428767212066
Mn1	6.7942213973146	-5.8474760341253	4.8549203875392
Mn	5.0941984187944	-2.9029495020865	14.5743241565433
Mn1	11.8933424659897	-14.6794128387217	4.8542538980608
Mn1	10.1933194874696	-11.7348863066829	14.5736576670649
Mn	6.7912894739824	-0.0172173067702	7.4192110384332
Mn1	5.0912664954623	2.9273092252686	17.1386148074373
Mn1	11.8904105426576	-8.8491541113666	7.4185445489548
Mn	10.1903875641374	-5.9046275793278	17.1379483179589
Mn1	1.7206859283224	-2.9138975756940	2.3480077961458
Mn	0.0206629498023	0.0306289563448	12.0674115651498
Mn	6.8198069969975	-11.7458343802904	2.3473413066673
Mn	5.1197840184774	-8.8013078482516	12.0667450756714
Mn1	6.8164613655725	5.8877280669186	4.8572869252217
Mn1	5.1164383870524	8.8322545989574	14.5766906942258
Mn	11.9155824342477	-2.9442087376778	4.8566204357433
	10.2155594557275	0.0003177943610	14.5760242047473
Mn1	11.8885284531816	2.9332923492647	7.4065109086546
1	10.1885054746614	5.8778188813035	17.1259146776586
	16.9876495218567	-5.8986444553317	7.4058444191761
Mn	15.2876265433366	-2.9541179232929	17.1252481881802
	6.8130600074064	0.0292125819041	2.3370442435857
Mn1	5.1130370288862	2.9737391139429	12.0564480125897
1	11.9121810760815	-8.8027242226923	2.3363777541072
Mn1	10.2121580975614	-5.8581976906536	12.0557815231113
n2	1.7287594246200	-2.9173257043775	4.8784321553607
Mn2	0.0287364460999	0.0272008276613	14.5978359243647
Mn2	6.8278804932952	-11.7492625089739	4.8777656658822
Mn2	5.1278575147750	-8.8047359769352	14.5971694348863
Mn2	1.6912628440275	2.9414190300235	7.3885104220945
Mn2	-0.0087601344926	5.8859455620623	17.1079141910985
Mn2	6.7903839127027	-5.8905177745729	7.3878439326161
Mn2	5.0903609341825	-2.9459912425341	17.1072477016201
Mn2	6.8070200511077	-5.8658842224715	2.3246855720501
Mn2	5.1069970725875	-2.9213576904327	12.0440893410542
Mn2	11.90614111978	-14.6978210270679	2.32401908257

Mn2	10.2061181412627	-11.7532944950291	12.0434228515757
Mn2	6.8280681010776	0.0480381338381	4.8472432749950
Mn2	5.1280451225574	2.9925646658769	14.5666470439990
Mn2	11.9271891697527	-8.7838986707583	4.8465767855166
Mn2	10.2271661912326	-5.8393721387195	14.5659805545206
Mn2	6.8007733673805	5.8748307777536	7.3867700727171
Mn2	5.1007503888604	8.8193573097923	17.1061738417211
Mn2	11.8998944360557	-2.9571060268428	7.3861035832386
Mn2	10.1998714575355	-0.0125794948041	17.1055073522427
Mn2	11.9071226993696	-2.9259170924913	2.3293666533667
Mn2	10.2070997208495	0.0186094395475	12.0487704223707
Mn2	17.0062437680448	-11.7578538970877	2.3287001638882
Mn2	15.3062207895247	-8.8133273650489	12.0481039328923
0	6.0714020068665	-4.5404458428838	6.0928019870478
0	4.3713790283463	-1.5959193108450	15.8122057560519
0	11.1705230755416	-13.3723826474802	6.0921354975694
0	9.4705000970215	-10.4278561154414	15.8115392665735
0	3.1866245012928	2.9596263902512	6.0825499502425
0	1.4866015227727	5.9041529222900	15.8019537192466
0	8.2857455699680	-5.8723104143452	6.0818834607641
0	6.5857225914479	-2.9277838823064	15.8012872297682
0	0.9332430518142	1.6822662778721	6.0533422829054
0	-0.7667799267059	4.6267928099109	15.7727460519094
0	6.0323641204893	-7.1496705267243	6.0526757934269
0	4.3323411419692	-4.2051439946856	15.7720795624310
0	3.2237178578407	-2.8930326157643	6.1167021775932
0	1.5236948793206	0.0514939162745	15.8361059465972
0	8.3228389265159	-11.7249694203607	6.1160356881147
0	6.6228159479957	-8.7804428883219	15.8354394571188
0	0.9560828183334	-1.6400785528025	6.1059139787483
0	-0.7439401601868	1.3044479792362	15.8253177477523
0	6.0552038870085	-10.4720153573990	6.1052474892699
0	4.3551809084884	-7.5274888253602	15.8246512582739
0	2.4358377591511	1.6753737124261	3.6336974046790
0	0.7358147806310	4.6199002444649	13.3531011736831
0	7.5349588278263	-7.1565630921703	3.6330309152006
0	5.8349358493061	-4.2120365601315	13.3524346842046
0	5.2896851567785	-0.0275961155209	3.6537188209249
0	3.5896621782584	2.9169304165179	13.3731225899289
0	10.3888062254537	-8.8595329201173	3.6530523314465
0	8.6887832469335	-5.9150063880786	13.3724561004505
0	7.5526726325684	-4.5747704050830	3.6332762636462
0	5.8526496540482	-1.6302438730442	13.3526800326502
0	12.6517937012435	-13.4067072096794	3.6326097741678
0	10.9517707227234	-10.4621806776406	13.3520135431718
0	5.3055434074124	-5.8544180518367	3.6230239562230
0	3.6055204288923	-2.9098915197980	13.3424277252270
0	10.4046644760876	-14.6863548564332	3.6223574667445
0	8.7046414975674	-11.7418283243944	13.3417612357486
0	2.4608386110021	-1.6176108952995	3.6660149171243

$0 \quad 0.7608156324819$
07.5599596796772
$0 \quad 5.8599367011571$
07.5403325819054
05.8403096033852
012.6394536505805
010.9394306720604

0 2.4978512573595
$0 \quad 0.7978282788394$
07.5969723260347
05.8969493475145
07.4883025535042
$0 \quad 5.7882795749841$
012.5874236221794
010.8874006436592
$0 \quad 0.0845810415709$
$0-1.6154419369492$
$0 \quad 5.1837021102461$
03.4836791317259
$0 \quad 5.0770705965302$
03.3770476180100
010.1761916652053
08.4761686866852
$0 \quad 2.4645954271232$
$0 \quad 0.7645724486031$
$0 \quad 7.5637164957984$
05.8636935172782
02.4100055855722
$0 \quad 0.7099826070520$
07.5091266542473
$0 \quad 5.8091036757272$
08.3974054821384
06.6973825036183
013.4965265508135
011.7965035722934
$0 \quad 0.9231650564783$
$0-0.7768579220418$
06.0222861251535
04.3222631466334
$0 \quad 6.0136079972739$
04.3135850187537
011.1127290659490
$0 \quad 9.4127060874289$
06.0201102027811
04.3200872242609
011.1192312714562

0 9.4192082929361
06.0413900534684
04.3413670749483
011.1405111221435
1.326915636739313 .3854186861283
$-10.4495476998959 \quad 3.6653484276458$
-7.5050211678571
-1.3091258510045
1.6354006810343
-10.1410626556009
-7. 1965361235621
4.2372562189895
7.1817827510283
-4. 5946805856069
-1. 6501540535681
-1. 5915339611152
1.3529925709236
-10. 4234707657116
-7.4789442336728
2.9190086307584
5.8635351627972
-5. 9129281738380
-2. 9684016417992
-0.2041833909277
2.7403431411111
-9.0361201955241
-6.0915936634853
1.5099660881686
4.4544926202074
-7. 3219707164278
-4. 3774441843890
-1.6208004829549

1. 3237260490839
-10.4527372875513
-7. 5082107555125
-5.8626317129236
-2.9181051808848
-14.6945685175200
-11.7500419854812
-1.5300643833802
1.4144621486586
-10.3620011879766
-7.4174746559378
-7.2274847751323
-4. 2829582430936
-16.0594215797287
-13.1148950476900
-4.4749332614079
-1.5304067293691
-13. 3068700660043
-10.3623435339655
-1. 3656500975223
$1.5788764345165 \quad 10.9641917040451$
-10.1975869021187
13.3847521966499
2. 6531329497328
13.3725367187368
3.6524664602544
13.3718702292584
8.4854761415347
18.2048799105387
8.4848096520563
18.2042134210603
3. 2429693139533
17.9623730829573
4. 2423028244749
17.9617065934789
8.3923959311201
18.1117997001242
8.3917294416417
18.1111332106458
8.2392533372218
5. 9586571062258
6. 2385868477434
17.9579906167474
8.3497027701300
18.0691065391341
8.3490362806516
18.0684400496556
8.5239843893594
18.2433881583634 8.5233178998810
18.2427216688850
7. 3065747919767
11.0259785609807
1.3059083024983
11.0253120715023
1.3377417400967
11.0571455091007 1.3370752506183
11.0564790196223
8. 2604905723121
9. 9798943413161
10. 2598240828336
10.9792278518377
1.3147290838105
11.0341328528145
1.3140625943321
11.0334663633361
11. 2447879350410 1.2441214455626
$0 \quad 9.4404881436234$
0 3.3364854712871
$0 \quad 1.6364624927670$
08.4356065399622
06.7355835614421 011.1653017569011 0 9.4652787783809 0 16.2644228255762 014.5643998470561 0 11.1785918950263 0 9.4785689165062 016.2777129637015 014.5776899851813 0 8.3039769348279 06.6039539563077 013.4030980035030 011.7030750249829 06.0578791396479 04.3578561611277 011.1570002083230

0 9.4569772298029
0 8.2675466587014
$0 \quad 6.5675236801813$
0 13.3666677273766
0 11.6666447488564
05.9929750239030
04.2929520453828
011.0920960925781
$0 \quad 9.3920731140580$
0 7.5519530277913
05.8519300492712
012.6510740964664
010.9510511179463
010.4323459970390
08.7323230185188
015.5314670657141
013.8314440871940
012.6682816868520
010.9682587083318
017.7674027555271
016.0673797770070
010.4176613544500
08.7176383759299
015.5167824231252
013.8167594446051
07.5843740049639
05.8843510264438
012.6834950736390
010.9834720951189
$0 \quad 2.4752704758464$
-7. 2530603700799
-2. 8941070340477
0.0504194979910
-11.7260438386442
-8.7815173066054
-1. 6535923323214

1. 2909341997174
-10.4855291369178
-7.5410026048790
1.6535706070225
4.5980971390613
-7.1783661975739
-4. 2338396655351
5.8761691915909
8.8206957236296
-2. 9557676130056
-0.0112410809668
4.5824549486078
7.5269814806466
-4.2494818559886
-1.3049553239498
-0.0802857895686
2.8642407424702
-8.9122225941650
-5.9676960621262
2. 2244454405915
3. 1689719726302
-7. 6074913640049
-4. 6629648319662
4.5953937898702
7.5399203219089
-4.2365430147262
-1. 2920164826875
2.9656467410863
5.9101732731251
-5.8662900635101
-2.9217635314714
-1.6515564408778
1.2929700911609
-10.4834932454743
-7.5389667134355
-2.9436822698560
0.0008442621828
-11.7756190744524
-8.8310925424137
1.3950857022530
4.3396122342917
-7.4368511023435
-4. 4923245703047
-4. 2090762618233
4. 9635252145666
5. 3562565167706
11.0756602857746
1.3555900272922
11.0749937962962
6.0799170042454
15.7993207732494 6.0792505147670
15.7986542837710
6.0681128082813
15.7875165772854
6.0674463188029
15.7868500878069
6.0842019664315
15.8036057354355
6.0835354769531
15.8029392459571
6.0681855059117
15.7875892749157
6.0675190164332
15.7869227854373
6.1066749377331
15.8260787067371
6.1060084482547
15.8254122172587
6.1079580871536
15.8273618561576
6.1072915976752
15.8266953666792
3.6294260353689
13.3488298043730
3.6287595458905
13.3481633148946
3.6561766557800
13.3755804247840
3.6555101663016
13.3749139353056
3.6543492449422
13.3737530139462
3.6536827554637
13.3730865244678
3.6379080415031
13.3573118105072
3.6372415520247
13.3566453210287
3.5190610125200
13.2384647815240
3.5183945230415
13.2377982920456
3.6503451759262
$0 \quad 0.7752474973263$
07.5743915445215
05.8743685660014
07.5837947352616
05.8837717567415

0 12.6829158039368
0 10.9828928254166
0 12.6724353115694
0 10.9724123330493
017.7715563802446
016.0715334017244
05.1927542444039

0 3.4927312658838
0 10. 2918753130791
08.5918523345589

0 10.2737378581223
08.5737148796022

0 15.3728589267975
0 13.6728359482773
07.5873961338659
05.8873731553458

0 12.6865172025411
010.9864942240210
07.5966502825796
05.8966273040595

0 12.6957713512548
0 10.9957483727346
0 13.5073001458697
0 11.8072771673495
0 18.6064212145448
0 16.9063982360247
05.9825289795379

0 4.2825060010178
0 11.0816500482130
0 9.3816270696929
0 11.0951191579772
$0 \quad 9.3950961794570$
0 16.1942402266523
0 14.4942172481322
0 11.1386254764681
$0 \quad 9.4386024979479$
0 16.2377465451432
014.5377235666231

0 11.1433439404342
$0 \quad 9.4433209619140$
0 16.2424650091093
0 14.5424420305892
0 8.4039367961331
06.7039138176129
013.5030578648082
-1.2645497297846
-13.0410130664198
-10.0964865343810
7.2445876717383
10.1891142037771
-1. 5873491328581
1.3571773991807
1.5258854197144
4.4704119517532
-7.3060513848820
-4.3615248528432
5.8571950236458
8.8017215556845
-2. 9747417809507
-0.0302152489119
2.8904264174695
5.8349529495083
-5. 9415103871269
-2.9969838550881
4.4948959140044
7.4394224460432
-4.3370408905920
-1.3925143585532
1.3753995945015
4.3199261265403
-7. 4565372100949
-4.5120106780561
-2. 9198026454300
0.0247238866087
-11.7517394500264
-8. 8072129179877

1. 3927590028501
4.3372855348888
-7.4391778017463
-4.4946512697076
-4.2649354215963
-1.3204088895575
-13.0968722261927
-10.1523456941540
-1.5066935667847
1.4378329652540
-10.3386303713812
-7. 3941038393424 1.6118042065468 4.5563307385856
-7. 2201325980496
-4. 2756060660109
0.0263615376035
2.9708880696422
-8.8055752669929
2. 3697489449302
3.6496786864477
13.3690824554518
8.4288535332319
18.1482573022360
8.4281870437535
18.1475908127576
8.4020284402986
3. 1214322093027
8.4013619508202
4. 1207657198242
5. 3826450037341
18.1020487727382
8.3819785142557
6. 1013822832597
8.3681021542043
18.0875059232084
7. 3674356647259
18.0868394337299
8.3911311131904
18.1105348821944
8.3904646237119
18.1098683927160
8.6040212436857
18.3234250126897
8.6033547542072
18.3227585232113
8. 3248938236300
11.0442975926341 1.3242273341516
11.0436311031556
9. 3123559589807
11.0317597279847
10. 3116894695022
11.0310932385063
1.2444216343746
10.9638254033787

$$
1.2437551448962
$$

10.9631589139002

1. 3747381930345
11.0941419620386
1.3740717035561
11.0934754725602
2. 3003128103053
11.0197165793094
3. 2996463208269
11.0190500898310 1.3343557489030
11.0537595179070 1.3336892594246
$011.8030348862881-5.8610487349542 \quad 11.0530930284286$
(1) Ravel, B.; Newville, M. ATHENA , ARTEMIS , HEPHAESTUS : Data Analysis for X-Ray Absorption Spectroscopy Using IFEFFIT. J Synchrotron Rad 2005, 12 (4), 537-541. https://doi.org/10.1107/S0909049505012719.

[^0]: ${ }^{1}$ Lowest energy state of the system corresponding to core-ionization of the relevant atom.

[^1]: ${ }^{2}$ The crystal structure is provided in the supplementary materials.
 ${ }^{3}$ https://www.webelements.com/cerium/atom sizes.html
 ${ }^{4}$ https://www.webelements.com/manganese/atom sizes.html

