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Peripheral membrane-associated proteins are known to accumulate on the surface of biomem-
branes as result of membrane-mediated interactions. For a pair of rotationally-symmetric curvature-
inducing proteins, membrane mechanics at the low-temperature limit predicts pure repulsion. On
the other hand, temperature-dependent entropic forces arise between pairs of stiff-binding proteins
suppressing membrane fluctuations. These Casimir-like interactions have thus been suggested as
candidates for attractive force leading to aggregation. With dense assemblies of peripheral proteins
on the membrane, both these abstractions encounter multi-body complications. Here, we make use
of a particle-based membrane model augmented with flexible peripheral proteins to quantify purely
membrane-mediated interactions and investigate their underlying nature. We introduce a continuous
reaction coordinate corresponding to the progression of protein aggregation. We obtain free energy
and entropy landscapes for different surface concentrations along this reaction coordinate. In parallel,
we investigate time-dependent estimates of membrane entropy corresponding to membrane undu-
lations and coarse-grained tilt field and how they also change dynamically with protein aggregation.
Congruent outcomes of the two approaches point to the conclusion that for low surface concentra-
tions, interactions with an entropic nature may drive the aggregation. But at high concentrations,
energetic contributions due to concerted membrane deformation by protein clusters are dominant.

Biomembranes are physical and chemical boundaries
of cells and many of their organelles, as well as quasi-
two-dimensional universes of encounters and actions
behind a vast variety of vital functions [1]. Many aspects
of membrane dynamics, configuration, topology, and
even composition are actively controlled by membrane-
associated proteins, facilitating, among others, cellular
motility [2], proliferation [3], response to stimuli [4], traf-
ficking and endocytosis [5-8]. This renders the under-
standing of localization, organization and action of these
proteins of utmost importance. Peripheral proteins are
a prominent class of membrane proteins, which can,
through curvature-generation, contribute to membrane
remodeling [9, 10]. The actual mechanism with which
these proteins can sense or induce membrane curva-
ture may vary [11-14], but the important commonality is
how the concerted action of a collection of these pro-
teins can lead to macroscopic membrane deformations
[15, 16]. As an example, it was established early on
that the internalization of Cholera toxin from cell mem-
brane into endoplasmic reticulum can progress with or
without relying on clathrin- or caveolae-mediated endo-
cytosis [17]. Or when bound to glycolipids on the outer
leaflet of giant unilamellar vesicles (GUV’s), the pentag-
onal subunit B of Shiga toxin (STxB) was shown to in-
duce invaginations, and long tubules, in the absence of
active cellular machinery [18]. This rather elegant en-
try mechanism, which has promoted STxB as a model
for glycolipid-dependent endocytosis [19], has also in-
spired using it as a vehicle for drug delivery and anti-
cancer therapy purposes [20—22]. The fact that mem-
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brane remodeling leading to internalization of these tox-
ins can progress without relying on energy-consuming
cell machinery has fueled the research into understand-
ing the underlying protein-membrane mechanical inter-
play [15, 23, 24].

Organization of peripheral proteins is a complex and
multi-scale phenomenon. Focusing on peripheral pro-
teins inducing isotropic local curvature, effects ranging
from lipid compression [14] and lipid phase separation
[25] to active cytoskeletal forces [26] are considered to
play a role. Focusing on length-scales at which the
membrane can be modeled as a continuous surface,
the free energy density corresponding to membrane de-
formations very well conforms with the Helfrich function
f = 2r(H — Hy)® + <G, where H, G and H, are the
mean, Gaussian and spontaneous curvatures, and «
and & are the attributed elastic constants [27-31]. Utiliz-
ing this model, and minimizing total free energy in the
presence of two inclusions with isotropic curvature of
the same sign predicts “curvature-mediated” repulsion
[32—34]. Similar repulsion has also been shown to sort
partially budded membrane domains [35]. On the other
hand, a dense assembly of curvature-inducing proteins
can minimize energy with collective membrane deforma-
tions, and even result in apparent attraction [36]. At-
tractive interaction is also possible when inclusions pos-
sess anisotropic curvatures [32, 37-39]. On the other
hand, temperature-dependent “fluctuation-mediated” in-
teractions have been implicated as the source of long-
range attraction [23, 34, 40—44]. These thermal Casimir-
like forces push proteins that suppress membrane fluc-
tuations together to minimize their adverse entropic ef-
fect. Simulations focusing on these interactions have
confirmed their effectiveness in protein organization [24,
45].
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Theoretical models and simulations in simplified sce-
narios that focus on certain type of membrane-mediated
interactions are illuminating, but lack the generality in
a more realistic setup where a dynamic membrane
crowded with large numbers of peripheral proteins is
evolving at timescales appropriate to the correspond-
ing slow dynamics. The multi-scale nature of the prob-
lem connotes the usual trade-off between size and de-
tails, making it challenging to propose a model that can
capture several aspects of peripheral protein interac-
tions and organization. This spatiotemporal range of
interest is very well covered by the so-called interact-
ing particle reaction-diffusion (iPRD) models [46—49].
Proper to these models, we have recently developed
an ultra coarse-grained membrane model [50, 51], with
an accompanying hydrodynamic coupling method [52],
which offers a remarkable balance between mimicking
membrane mechanics and dynamics at the large scale
and offering the possibility of small-scale effects, in-
cluding flexible peripheral proteins inducing local cur-
vatures [53, 54]. We implemented these membrane-
associated proteins as particles tagged in the model to
carry a masked force field as they freely diffused along
the membrane. We took painstaking care to prevent the
peripheral proteins to experience direct interactions as
result of force field masking (see [54] and its Supple-
mentary Information). The proteins aggregated on the
membrane nonetheless, and the stiffest among them
could form macroscopic clusters, given enough surface
concentration, leading us to the conclusion that forces
mediated by the membrane were responsible for this or-
ganization. Here, via similar large-scale simulations, we
look into the actual origin of these forces. Specifically,
we investigate the duality between energetic curvature-
mediated and entropic fluctuation-mediated interactions
in details. Using a liquid-mixture model, we first quantify
pairwise membrane-mediated interactions and demon-
strate the effect of protein stiffness and concentration.
We subsequently use the continuous reaction coordi-
nate highlighting protein aggregation to investigate the
entropy landscape as a function of protein aggregation
at different surface concentrations. We compare these
entropies with two-dimensional configurational entropy
due to surface distribution of proteins to show where ag-
gregation enhances or diminishes overall entropy. Fi-
nally, we propose a method for direct estimation of en-
tropy corresponding to fluctuations in membrane ampli-
tude and lipid tilt field from simulation trajectories, and
successfully repeat the same analysis thereon.

RESULTS
Magnitude of membrane-mediated interactions

We have simulated membrane patches containing pe-
ripheral proteins of intrinsic curvature of 0.08 nm~!, with
the stiffness of 50, 100, and 200 MPa, and surface con-
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centrations in the range 2—8 nmol m~2 using our meso-
scopic modeling framework (details in Methods and
[54]). The model allows for observation and measure-
ment of the emergent membrane-mediated interactions
between these proteins. We employ the statistical me-
chanics of liquid mixtures to estimate the effective in-
teractions between pairs of the constituents. We con-
sider a two-dimensional fluid, consisting of either pure
membrane (m) or protein-bound (p) particles, and re-
spectively denote the effective pairwise interactions as
Umm, Ump, and u,,. We estimate these effective interac-
tions from the set of all pair-correlation functions (details
in Methods section “Statistical mechanics of liquid mix-
tures”). The interaction potential u,, also contains con-
tributions from the underlying membrane particles. To
correct for this, we have simply calculated the net mem-
brane mediated interaction as upp, — umm (Fig. 1B).

We consider two prominent continuum-based models
for comparison: (i) repulsive mean-field interactions be-
tween symmetrically curved regions, either from periph-
eral proteins or from stiff inclusions in the membrane
[82—34]. These interactions stem from minimizing mem-
brane elastic energy, neglecting fluctuations, thus corre-
sponding to equilibrium at zero temperature [40]. For a
pair of particles with the separation r, this interaction is
approximated in the leading power by [34, 40, 44],

Urep (r) = 870, (%)4 (1)

where 6, and r, are the contact angle and the radius
of the curved region and « is the bending rigidity of the
membrane. (ii) attractive entropic forces emerging when
the binding is stiff enough to locally suppress membrane
fluctuations at non-vanishing temperature (the so-called
thermal Casimir effect). An approximate expression for
the potential of this attractive interaction is [34, 40, 44],

N mp)*
Unte (1) = —6KT ( . ) @)
Membrane-mediated interaction potentials that we ob-
tained from the simulations show significant attraction at
close range (Figs. 1B). For the stiffest proteins consid-
ered, this attraction is present even up to particle sep-
arations of 3a where a is the lattice parameter of the
model (Figs. 1A and 1B). Attraction strength (depth
of the potential well) for the first and second neighbors
(Au; and Awusy, respectively) is proportional to the pro-
tein stiffness (Figs. 1B and 1C). Yet, looking at how
the surface concentration of proteins affects the attrac-
tion (Fig. 1D) reveals non-trivial dependence, espe-
cially for the second-neighbor interactions. This points
to the shortcoming of pairwise interaction model under-
lying the liquid-mixture model and reveals weak multi-
body contributions.

Higher protein stiffness results in more pronounced
curvatures [54], and subsequently closer possible ap-
proach of tagged particles in two dimensions (Fig. 1A).
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Figure 1: Membrane-mediated interactions in the dynamic model of membrane and peripheral proteins: (A)
Mesoscopic membrane model with selected particles “tagged” as supporting peripheral membrane-bound proteins.
Where a protein is bound to the membrane, a locally modified force field is applied (masking of the force field).
Force field parameters are optimized to reproduce the Helfrich energy density for regular particles, plus an
additional strain energy corresponding to the deformation of peripheral proteins for tagged particles (Methods
section “Particle-based model of membrane and peripheral proteins”). (B) Interaction potential as a function of
inter-particle distance, for peripheral proteins with the given stiffness, inferred from simulations using the
liquid-mixture model (Methods section “Statistical mechanics of liquid mixtures”). Repulsive curvature-mediated
interaction U,.p,, as well as the fluctuation-mediated attractive interaction Uy, are plotted for comparison (Egs. (1)
and (2)). Shaded pink and orange regions correspond to first and second neighborhood of particles, determined
from position of peaks in the pair-correlation functions. The width of both regions is characterized by the shown six
standard deviations from the mean distance. Gray shaded region designate where the heights of the repulsive
barriers have been sampled. (C) Effect of the protein stiffness on the shape and strength of the interaction potential.
Well-depth, Au, o, and barrier height, Auy,, are measured according to the inset schematic shown in (B). (D) Effect
of the protein surface concentration on the attraction between a protein and its first and secondary neighboring
proteins.

Yet, with the increase in protein stiffness, the close-
range repulsion occurs at larger distances, evidently be-
yond the unperturbed lattice parameter, a (Fig. 1B).
We thus conclude that aside from the steric repulsion
of particles, which is similar for all cases, a curvature-
mediated repulsion is also present.

We also observe a small repulsive barrier at the dis-
tance of ~ 5a, which is not predicted by either of the two
models (Fig. 1B). There is a clear relation between the
barrier height, Auy, and protein stiffness (Fig. 1C) which
implies a long-range curvature-mediated effect.

Entropy of protein aggregation from histogram analysis

We have performed equilibrium simulations with dif-
ferent surface concentration of peripheral proteins with
the stiffness of 200 MPa and have used a reaction co-
ordinate ¢ to be a continuous descriptor of aggregation.
This reaction coordinate is defined as the mean of in-
verse pairwise distances between bound proteins, with
larger ¢ values implying stronger aggregation (Figs. 2A
and 2B, Methods section “Entropy Estimation” and [54]).
We have affirmed the sensitivity of ¢ to protein aggre-
gation by obtaining clear separation of distributions for
states that differ minutely in mean cluster size (Fig. 2C).
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Figure 2: Entropy change due to protein aggregation studied via histogram-based estimates based on a continuous
reaction coordinate: (A) Definition of the reaction coordinate ¢ corresponding to the degree of aggregation, based
on the pairwise distances between peripheral proteins. (B) Time evolution of the reaction coordinate for simulations
with the given surface concentration of proteins. (C) Histograms of reaction coordinate, split for frames in which the
mean cluster size, (n), complies with the given criteria. (D) Enthalpy, binned along the reaction coordinate ¢. Colors
correspond to different surface concentrations, following the legend of panel (B). (E) Entropy change as a function
of protein aggregation, which is indicated by the reaction coordinate, ¢, for the given protein surface concentrations.
(F) Mean entropy as a global function of surface concentration of proteins. The two-dimensional configurational
entropy of proteins (Eq. (10)) is also shown for comparison.

We have obtained histograms of states along ¢ and
have used reweighting based on a model of biased in-
teractions to come up with continuous free energy and
entropy landscapes (Methods section “Entropy Estima-
tion”). We observe the entropy as a function of ¢ to
have a concentration-dependent behavior (Fig. 2E).
For low surface concentrations of 0.10nmolm~2 and
2.10nmolm~—2, the entropy increases with ¢, compliant
with entropic forces pushing toward more aggregation.

But as concentration increases to 4.19nmolm~2 and
8.29nmolm~2, this trend is reversed, with more aggre-
gation lowering the entropy (Fig. 2E). The histograms of
enthalpy along q reveals the energy to increase with ¢ for
low concentrations (Fig. 2D), but at the high concentra-
tions, local energy minima explaining the observed ag-
gregated states are present (Figs. 2D and 2B).
Calculating the expectation value of the estimated en-
tropy along ¢ yields its mean value as a continuous
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function of surface concentration, T' (Fig. 2F). We
found it greatly beneficial to include a measure of two-
dimensional configurational entropy of indistinguishable
particles with the same surface concentration (Eq. (10)
and Fig. 2F). Firstly because the numerical proximity
of the two entropy estimates serves as a sanity check
for the histogram-based estimation (Fig. 2F). Sec-
ondly, the “contest” between the two entropies intro-
duces three distinct regimes (Fig. 2F): (l) histogram-
based and configurational entropies are closely compa-
rable at low I". Smaller histogram-based entropy might
be due to insufficient sampling in this disperse regime.
(1) At mid-range T', histogram-based entropy is remark-
ably higher than the 2D configurational estimate. This
is possible because the histogram-based estimate also
includes membrane contributions. In this regime, the
increased entropy suggests new microstates available
through amenable membrane configurations. This also
perfectly matches our observation of the dominance of
entropic interactions for this range of surface concentra-
tions. (lll) At high T', histogram-based entropy falls sig-
nificantly lower than the pure configurational estimate,
highlighting the fact that stable clustered configurations
in this regime prevent the exploration of combinatorial
configuration possibilities. Lowered entropy must be
compensated by favorable energetic interactions (Fig.
2D).

Using the differential form dG' = —SdT'+ Ad~y+ ppd Ny,
where + and A are the membrane tension and surface
area, and IV, and p,, are copy number and chemical po-
tential of the bound proteins, a Maxwell relation can be

written as,
05\ __(om
(azvp); (aTl ©

Thus, positive slope in the entropy-concentration plot of
Fig. 2F means the chemical potential decreasing with
temperature. Referring to the usual temperature depen-
dence of entropic forces (e.g. Eq. (2)), this is equivalent
to the increase in attractive entropic interactions.

Direct estimation of membrane entropy

To gain better insight into the origin of the observed
entropy variations, we directly estimate the entropy of
the membrane from simulation trajectories, and observe
its behavior as a function of protein aggregation. Gen-
erally, it is non-trivial to assign a quasi-equilibrium time-
dependent estimate of entropy to a dynamical system
[65-57]. Out main interest here is to observe the qual-
itative behavior of the entropy functional, and thus, we
approach this simply via coarse-grained Gibbs entropy,

S=—kY_ p;log(p;) (4)
J

where the summation is carried out on all the states
in an arbitrarily discretized configuration space and p;’s
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correspond to the probability of the system being found
in the j-th discrete cell. We limit our measurement to
two aspects of the entropy in this system: (i) AS;, the
entropy assigned to membrane undulations, where the
discretization is done in the Fourier space of fluctua-
tion modes (Fig. 3A), and (ii) AS,, the orientational
entropy of the tilt field, where the probability of states
is measured based on P;(cos#), where P, (z) is the
Legendre polynomial of order 2, and 6 is the local tilt
angle (Figs. 1A and 3A). Counting the states, respec-
tively based on the discretized fluctuation spectrum and
the order parameter distribution, comprises a specific
coarse-graining which renders the numerical values of
the entropies thus obtained not comparable to other es-
timates. On the other hand, this specific accumulation
of microstates results in sufficient sampling for each bin,
even in a time-dependent evolving sense, when sam-
pling is performed over sliding temporal windows (further
details in Methods section “Entropy estimation”).

We observe that AS), only increases with pro-
tein aggregation in the lowest concentration of I' =
2.10nmolm~—2 (Figs. 3C and 3D). When higher con-
centrations are imposed (I' = 4.19 and 8.29 nmolm™2),
this entropy decreases with aggregation. The decrease
becomes more drastic with higher concentrations (Figs.
3C and 3D). On the other hand, the tilt-field entropy,
ASy, tends to increase with aggregation, independent
of concentration (Figs. 3C and 3D). The slope of its
increase is also directly proportional to surface concen-
tration (Fig. 3D). Interestingly, with both AS;, and AS,,
when T' = 8.29 nmol m~2, we observe a clear separation
of low and high entropy states (Fig. 3C).

DISCUSSION

We have performed simulations using a particle-
based membrane model with locally masked force field
representing curvature-inducing bound proteins. This
model predicts a complex aggregation behavior for
these peripheral proteins based on their stiffness and
surface concentration [54].

Using a liquid mixture model, we quantified the ef-
fective pairwise potential of membrane-mediated inter-
actions between proteins. We observe a rather long-
range attraction with a strength depending on protein
stiffness. Surface concentration of particles has an ef-
fect on the pairwise interactions, especially when the
pair of particles are not nearest neighbors (Fig. 1D).
This suggests that multi-body effects are present. Ideal-
ized repulsion and attraction potentials originating from
continuum models (Egs. 1 and 2) are not applicable
to the complex interaction potential observed. On the
other hand, multi-body effects limit the applicability of
the pairwise interaction model altogether. Application of
more elaborate data-driven models to these interactions
would thus be promising in gaining better insight as well
as extrapolating the dynamics to larger timescales. We
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Figure 3: Entropy change due to protein aggregation based on direct estimation of membrane entropy from
simulation trajectories. (A) Schematics depicting how the entropy of membrane undulations, AS}, (top) as well as
the orientational entropy of the tilt field, AS,,, (bottom) are estimated from dynamic histograms. (B) Time series of
the two entropies for the given surface concentration of peripheral proteins. (C) Heat maps of estimated entropies
when trajectory frames are also binned against the reaction coordinate ¢. (D) Undulation and tilt-field entropies as

functions of the reaction coordinate ¢ (colors correspond to the legend of panel (B)).
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believe deep learning, especially via graph convolutional
neural networks (GCNN) holds the key to such an inves-
tigation [58, 59].

We obtained entropy landscapes along a continuous
aggregation reaction coordinate, and showed that en-
tropy only increases with aggregation when the sur-
face concentration is below a threshold. Comparison of
mean entropy as a function of surface concentration re-
vealed that only for concentrations below this threshold
the estimated entropy can surpasses the 2D configura-
tional entropy of proteins as indistinguishable particles
on the membrane. We thus conclude that while entropic
forces originated from membrane fluctuations exist and
are apparently responsible for bringing proteins together
in the low-concentration regime, they are overshadowed
at higher concentrations. At high concentrations, there
are enough random encounters between particles on
the surface of the membrane that the energy minima due
to collective membrane deformation become more influ-
ential.

To further corroborate these findings, we took an inde-
pendent measurement via direct estimation of coarse-
grained Gibbs entropy. We looked at the entropy of
membrane undulation modes as well as orientational en-
tropy of the tilt field. We found out that the generally
larger undulation entropies point to the same trend as
the histogram-based estimates. We also observed that
the orientational entropy of the tilt field always favors ag-
gregation. It is imaginable that in a model with a higher
resolution representation of lipids, this entropy have a
more pronounced effect. But in our model, and with the
admittedly arbitrary partitioning of configuration space,
the undulation entropies seem to be always dominant in
magnitude, and resisting the aggregation at high con-
centrations.

We believe the dynamic membrane + protein model
and the detailed analyses presented here can be
greatly beneficial in investigating different scenarios for
membrane-mediated collective action. Ever-advancing
super-resolution microscopy [60] and optical spec-
troscopy methods [61] make it possible to look at orga-
nization of membrane-associated proteins in unprece-
dented details, while resolving membrane fluctuations at
nanometer/microsecond range. This opens the door to
direct quantitative comparison with experimental obser-
vation of membrane-mediated effects, and will pave the
way for unraveling and controlling the underlying mech-
anisms.

METHODS

Particle-based model of membrane and peripheral
proteins

The particle-based model of membrane and bound
peripheral proteins used in this study is fully described
in [54]. This model is an extension of our previously es-
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tablished dynamic membrane model [50-52]. We have
used a lattice parameter of 6.5nm for all the particles,
comparable with the diameter of the STxB protein. We
use a force field for describing nearest neighbor interac-
tions in this model which allows a local masking where
peripheral proteins are bound (Fig. 1A). We have uti-
lized the combined energy density of membrane and the
protein in conjunction with parameter-space optimiza-
tion to obtain the global force field parameters [54] (Fig.
1A).

Statistical mechanics of liquid mixtures

We assume rotational isotropy in the 2D fluid,
and consider the pair-correlation function between the
species a and 5 as gap (). Defining has () = gas (1) —
1, the so-called direct correlation function, ¢,z (1), is de-
fined implicitly [62],

o (1) = ca (1) + ST [ o (5) o (1 5|} ds (5)

where I'’'s denote surface densities. Eq. (5) translates to
H(q) =C(q) +C(g)H(g) (6)

where H and C are 2 x 2 matrices with elements H,5 =
(Fal“ﬁ)% iLa/j and éag = (Fal—‘ﬁ)% éag and Bag and éag
are two-dimensional Fourier transforms of h,g and c, s.
Eqg. (6) is formally known as the Ornstein-Zernike re-
lation [62, 63]. Several “closure” relations are available
which tie hag, cap, and gop via a pairwise potential uqp
between « and 5. We have employed the convoluted
hypernetted-chain (CHNC) relation [64],

s () = has (r) gy (1) — 22200 7)

The procedure for obtaining the potentials umm, Ump,
and most importantly, u,,, is as follows: we calculate
discretized estimates of the three pair correlation func-
tions, gwm (1), gmp (r), and gpp (), from the simula-
tion trajectories, and substitute numerically obtained 2D
Fourier transforms into Eqg. (6) to obtain c,’s and sub-
sequently uqyg’s from Eq. (7).

Entropy estimation

As is implied in Fig. 2A, the reaction coordinate ¢
is defined based on the inverse pairwise distances be-
tween proteins [54],

2 1
N(N— 1) Z Tij (f)

i,j>i

q(t) = (8)

Each simulation with a fixed surface concentration yields
a histogram of microstates along ¢. Because of the fact
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the implementation of the masked force field only mod-
ifies the interaction potential without changing the num-
ber of particles, we make the assumption that the Hamil-
tonian is biased as H = Ho + £ f (q), with £ proportional
to the surface concentration. Based on this assump-
tion, the multiple histogram method of Ferrenberg and
Swendsen [65] (which is the precursor to the well-known
Weighted Histogram Analysis Method (WHAM) [65, 66])
can readily be applied to combine the histograms from
different simulations.

We assume that each simulation, in which a different
number of particles have been tagged as proteins, is bi-
ased with a Hamiltonian of the form H = Ho + £ f (q).
A justification for this assumption is given in [54]. We
have chosen polynomials of degree 4 as the function
f (¢), and have fitted to randomly sub-sampled energy
data to obtain an error estimate. Application of multiple
histogram reweighting yields the free energy landscape
along ¢ for different values of £, which correlate with sur-
face density of proteins. Once the free energy change,
AG, is available, we can estimate the entropy chage as,

AS =kInZ (q) + A<TH> = A<H>T_ 26 (g

where Z (q) is the isothermal-isotension partition func-
tion.

For estimating the two dimensional configurational en-
tropy of proteins spattered on the membrane surface,
we have simply assumed that they can occupy any of
the available sites on the particle-based membrane (Fig.
1A). A simple combinatorial assessment followed by the

Stirling’s formula yields,

Sz—D—ln N
Eo MV

N N
—_ Niln( —2
N_Np) pn<N_Np>

where N and IV, are the total number of particles in the
upper leaflet and the number of proteins, respectively.

We have obtained the undulation entropy, AS}, by first
mapping the height of membrane particles to a regular
2D grid using bilinear interpolation, i.e. to get a regu-
lar sampling of the height function, h (z,y). Following
a spatial fast Fourier transform for each time frame, we
have discretized h (k) in the frequency domain based
on the length of the wave-vector, & (Fig. 3A) and ob-
tained a sliding-window estimate of the probability distri-
bution from the histogram of states. For the tilt-field en-
tropy, AS,, the discretization is achieved in real space
based on samples of the orientational order parameter
P, (cos ) (Fig. 3A). For both entropies, point values has
been estimated on sliding-window samples over a 0.5 ms
temporal window.
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