
Investigating the geometry of quasars with microlensing

C. J. Fluke* and R. L. Webster
School of Physics, University of Melbourne, Parkville, Victoria 3052, Australia

Accepted 1998 August 18. Received 1998 July 28; in original form 1997 January 20

A B S T R A C T

When a source crosses the caustics of a gravitational microlens at cosmological distances, a

high-magni®cation event occurs. This is seen as a change in the total ¯ux of the image of the

source. We present an analytic result for the magni®cation of a point source near a parabolic

fold caustic. This is a higher-order approximation to the existing solution for a straight fold

caustic. We show from a study of fold-crossing events that we can distinguish between disc and

annular source geometries.

One important application of this work will be the determination of the geometric structure

of the luminous regions of quasars. By observing the ¯ux changes of a quasar image during a

microlensing event, it is possible to determine features of quasar structure that would

otherwise be below the resolution limit available with existing optical methods.

Key words: quasars: general ± gravitational lensing.

1 I N T R O D U C T I O N

Gravitational microlensing offers a unique probe of the geometry of

quasars. Theoretically, it is possible to image a quasar on the scale

of microarcseconds, which is very much smaller than existing

techniques such as reverberation mapping. The microlensing

technique can only be applied in instances where the intrinsic

variations of the quasar can be determined, for example, where

the quasar has several resolvable macroimages. Observable lensing

situations are complex: the macroimages formed by a lensing

galaxy consist of a large number of microimages attributable to

the individual stars in the galaxy ± each of which acts as a

microlens. The ®rst stage in understanding the possibilities of the

microlensing mapping technique is to investigate possible

signatures of different quasar geometries in a well-sampled light

curve.

In order to observe multiple images of a background source, the

surface density of the lensing mass distribution must be greater than

the critical value, Scrit, and the angular radius of the source must

satisfy vs & vE, the Einstein radius of the lensing mass (see Section

2). At cosmological distances, a galaxy will multiply-image a

background quasar into resolvable images, separated by ,1 arcsec.

However the emission regions of a quasar are suf®ciently small that

they can also be multiply-imaged by stars in the galaxy. In this case,

the image separations are ,1 microarcsec, and are not resolvable

with existing telescopes. However, microlensing is detectable in

instances where a quasar has several resolvable macroimages,

allowing the detection of uncorrelated ¯ux changes between the

individual images. By comparison, an intrinsic change in the ¯ux of

a source would appear as a correlated change in the light curve of all

of the images, separated by the time delay of the lens. Using this

technique, microlensing was ®rst observed in image A of the

multiply-imaged quasar 2237+0305 by Irwin et al. (1989).

The geometric scales of different emission regions of quasars can

be estimated from variability time-scales, reverberation mapping

and from physical models of the accretion disc and the broad

emission line gas. The two components of speci®c interest for

microlensing studies are the compact continuum source and the

more extended broad emission line region (BLR). The amplitude of

the magni®cation caused by microlensing is greater for small

sources, so the continuum source will be more highly magni®ed

than the BLR.

The most widely accepted quasar model suggests that the

continuum source consists of a massive black hole, surrounded by

an accretion disc. The broad emission lines may be emitted either

from a wind associated with the accretion disc, or from a spherical

distribution of small clouds that surrounds the continuum source. In

this work, we are not concerned with the physical processes that

produce the different quasar spectral components, but instead

investigate the possibility of determining the geometry of the

different emission regions using microlensing. An accretion disc

will be projected on to the sky as an ellipse, depending on the

inclination of the disc to the line of sight, while a spherical cloud

distribution will be seen as a circular source.

By observing the ¯ux of a quasar through a ®lter, we are selecting

a speci®c temperature range of the source. Assuming that the

temperature of a quasar accretion disc falls off with distance from

the centre, we are effectively sampling an annular geometry.

Microlensing also allows us to identify characteristic signatures

of annular geometries in light curves.

In Section 2, we introduce the equations for lensing of a point

source. For a proper treatment of microlensing of quasars, however,

the source must be considered as an extended object rather than a
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point source. There are two main methods for solving gravitational

microlensing problems involving extended sources: either by

numerical techniques, particularly ray-shooting, or through direct

analytic results. Schneider, Ehlers & Falco (1992) give a compre-

hensive description of the ray-shooting methods. The emphasis in

recent years has been on numerical methods that model the caustic

networks and sample light curves for various lensing scenarios (for

example PaczynÂski 1986; Kayser, Refsdal & Stabell 1986; Wambs-

ganss 1990). These microlensing simulations have also been used to

investigate speci®c quasar geometries ± for example, Wambsganss

& PaczynÂski (1991) examined two-component sources with circu-

lar geometry, while Rauch & Blandford (1991) and JaroszynÂski,

Wambsganss & PaczynÂski (1992) considered more realistic thermal

accretion disc models, inclined to the line of sight.

This work follows the alternative path. In Sections 3 and 4, an

analytic solution for microlensing of extended sources near fold

caustics is developed and is applied to a variety of source geome-

tries. Finally, in Section 5 we consider the observational possibi-

lities for determining quasar geometry from microlensing light

curves.

A numerical technique is ideal for performing realistic simula-

tions to obtain statistical distributions of the variety of caustic

networks possible for a lensing scenario, and, for different source

geometries, can demonstrate qualitatively the resulting light curves.

The analytic method allows a greater ¯exibility in examining a

particular microlensing event. It may be possible to ®t for the

values of the shear, shape of the caustic and source geometry for an

observed caustic crossing event, as a result of the additional degrees

of freedom introduced with a higher-order approximation to the

shape of a caustic.

2 G R AV I TAT I O N A L M I C R O L E N S I N G

We brie¯y introduce the important aspects of gravitational lensing

required for a discussion of lensing of extended sources near

caustics. For a more complete description of lensing, the reader is

referred to Schneider et al. (1992).

The dimensionless gravitational lens equation is y � x ÿ a�x�

where y and x are scaled vectors in the source and lens plane

respectively, and a�x� is the de¯ection angle. The characteristic

scaling length in the de¯ector plane is

y0 �

�������������������������
4GM

c2

DodDds

Dos

s
;

and in the source plane,

h0 �
Dos

Dod

y0:

Here, M is the lens mass and the Dij are angular diameter distances

between the observer, de¯ector (lens) and source planes. The

Einstein radius is vE � y0=Dod and the critical surface density for

multiple imaging is

Scrit �
c2Dos

4pGDodDds

:

The magni®cation of an image depends on the area distortion

caused by the lens and is given by

m�x� � det A�x�� �
ÿ1;

where

A�x� � Aij � ¶y=¶x

is the Hessian of the lens equation. The magni®cation is crucial

to an investigation of microlensing, as it produces the

observable effect of a change in ¯ux of one of the multiple

images of a source.

The critical curves in the lens plane are the set of points satisfying

det A�x� � 0;which formally have in®nite magni®cation. It is

important to note that the geometric optics used to derive the lens

equation for a point source breaks down on the caustics, and wave

optics should be applied. As shown in Schneider et al. (1992),

however, for an extended source, geometric optics is suf®cient as

wave effects will average out over the source.

The lens equation is used to map the critical curves on to caustics

in the source plane. Caustics separate regions in the source plane

where the total number of images produced by the lens differs by

two. There are only two stable singularities of the lens mapping,

namely folds and cusps (which are points where folds meet). The

characteristic diamond shape of a fold caustic can be readily

generated when the microlens is modelled as a point mass with

an external shear provided by the mass of the host galaxy (Chang &

Refsdal 1979).

Owing to the relative motion of the source, lens and observer, the

magni®cation of an extended source will vary as it crosses the

caustics of a microlens. The three generic ways in which this may

occur are demonstrated in Fig. 1. A source crossing a fold caustic

produces a pair of highly magni®ed images near the critical curve.

The shape of the caustic will determine how the magni®cation

depends on the source geometry. Existing expressions for the

magni®cation treat the fold caustics as straight lines, but in this

work we derive the point-source magni®cation for a source near a

parabolic fold caustic (see Section 3).

A source passing outside, but close to, a cusp can undergo a

change in magni®cation, but the number of images remains con-

stant. A simple analytic result exists for a point-source and point-

mass lens, and solutions for extended sources have been developed

by, for example, Heyrovsky & Loeb (1997). The ®nal case of a

source crossing through a cusp is a much more dif®cult problem,

and has been investigated (to ®rst order only) by Schneider & Weiss

(1992), Mao (1992) and Zakharov (1995).

3 T H E PA R A B O L I C F O L D A P P R OX I M AT I O N

Existing expressions for the magni®cation of point sources near

fold caustics treat the folds as straight lines (see, for example,

Chang 1984). The point-source magni®cation in this case is

mp ~ yÿ1=2
2 , where y2 is the distance to the fold, measured normal
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Figure 1. Extended source interacting with caustics of a microlens. The

three possible trajectories are: source passes outside a cusp, through a cusp,

or across a fold caustic.
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to the caustic.

Although this is appropriate for small sources, for a larger

extended source, such as the BLR of quasars, we need a more

accurate representation of the shape of the caustic. It is shown in

Schneider et al. (1992) that the local shape of a caustic is a parabola,

which is a good approximation to the actual caustic shapes found

using the Chang±Refsdal lens (Chang & Refsdal 1979). The

parabolic fold caustic is the obvious next highest approximation

to the shape of the caustics beyond a straight line.

We found by generating the caustics of the Chang±Refsdal lens

for values of the external shear 0:1 # g # 0:7, and by ®tting a

parabola of the form y2 � zy2
1 to them by eye, that parabolae did

match the caustics remarkably well. The results presented in Table 1

are not true ®ts, and should only be used as an approximation. The

®ts became progressively worse for larger values of g.

In Appendix A, we extend the method that Schneider et al. (1992)

used to ®nd magni®cations near straight caustics, to obtain an

expression for the magni®cation of a point source near a parabolic

fold caustic.

We use the scalar potential formalism for the lens equation

(introduced by Schneider 1984), where the lens equation is

=f�x; y� � 0, so that images occur at the stationary points of the

scalar potential f�x; y�. It is easy to show that the magni®cation of

an image is related to the potential via Aij � fij where the sub-

scripts on f are derivatives in two orthogonal directions in the lens

plane. We then perform a Taylor series expansion of the potential,

f�x; y�, about an image produced by a source on a caustic, and

calculate the determinant of the Hessian. The Taylor series approx-

imation is only valid for small changes in the source positions, so we

must restrict ourselves to considering distances that are a few source

diameters either side of the fold. It is interesting to note that the

expression for the magni®cation derived in Appendix A contains

equation 6.16 of Schneider et al. (1992), which describes a para-

bolic caustic.

The magni®cation of a point source in the parabolic approxima-

tion is given by (and refer to Fig. 2)

mp � m0 � a0H� y�� y2 ÿ zy2
1�

ÿ1=2; �1�

where m0 is the contribution to the magni®cation from all other

images of the source, assumed to remain constant while the source

crosses the caustic, a0 is a scaling constant, H�y� is a step function

(to ensure real magni®cations only) and z speci®es the shape of the

parabolic caustic. z is a function of the derivatives of f, and since

caustics are concave for a source on the outside, we must have

z < 0.

If we set z � 0, we recover the straight fold point-source

magni®cation, as expected. Even without a rigorous derivation, it

is easy to argue on grounds of symmetry that the next highest term

in the magni®cation must contain a term like y2
1, as there should be

no dependence on which side of a normal to the caustic that the

source approaches. A cross-term like y1y2 corresponds to a rotation

of the parabola, which only produces a small distortion to the shape

of the caustic. With an appropriate rotation of the coordinate

system, this term will vanish.

An extended source may be treated as a collection of a large

number of point sources, with a speci®ed intensity pro®le U�y�. The

magni®cation of an extended source, me, is found by integrating

equation (1) over the source, weighted by U�y� and normalizing by

integrating over the intensity alone, thus

me �

�
d2yU�y�mp�y��

d2yU�y�
: �2�

If we evaluate this integral at every position along a path for an

extended source of known geometry, crossing a fold caustic, we can

obtain a magni®cation pro®le, J�d�, versus the distance of the centre

of the source from the caustic, D. We use d � D=R, with R the radius

of the source, to remain consistent with the analytic solution of

Schneider & Weiss (1987) for a circular source crossing a straight

fold caustic. There will also be a contribution to the magni®cation

pro®le resulting from any other images of the source, m0, so that by

`zero magni®cation' we are referring to a zero with respect to the

magni®cation of other images.

Since every point on the source obeys the point-source magni-

®cation, the pro®le will have zero magni®cation when the source is

completely outside the caustic. As the edge of the source ®rst

crosses part of the caustic, there will be a rapid increase in

magni®cation up to some peak value. Once the source is completely

inside the caustic, the magni®cation will decrease.

The microlensing light curve of a macroimage of a quasar will be,

in general, a discrete sampling of the magni®cation pro®le as the

quasar interacts with the microlens caustics.

4 R E S U LT S

The parabolic fold caustic approximation was investigated by

obtaining magni®cation pro®les for a variety of circular and

elliptical disc and annular source geometries. Fig. 2 shows a typical

trajectory for a circular source crossing a parabolic caustic at an

angle. Each set of results presented here involves changing one of

the following parameters: the curvature of the parabolic caustic (z),

the angle at which the source crosses the caustic centre measured

from a normal to the caustic (v) and, for annular sources, the inner

radius.

Magni®cation pro®les of a representative set of simulations are

shown in Figs 3 to 8. They are plotted as the magni®cation of the

source, J�d�, versus D, where d � D=R, D is the distance of

the centre of the source from the caustic and R is the radius of the

source. For convenience, all sources have an outer radius of one

70 C. J. Fluke and R. L. Webster
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Table 1. Parabolic caustic approximation (z) for Chang±

Refsdal lens with external shear (g).

g 0.1 0.2 0.3 0.4 0.5 0.6 0.7

z ÿ2.0 ÿ0.9 ÿ0.6 ÿ0.5 ÿ0.3 ÿ0.2 ÿ0.15

Figure 2. Extended source crossing parabolic caustic, y2 � zy2
1, at an angle

v. For a one unit radius source, the caustic in this diagram has z � ÿ0:2.
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unit, where the length unit is h0 and depends on the lens geometry.

We choose a constant intensity pro®le, U�y�, in equation (2) as there

is no overwhelming physical reason to choose an alternative (e.g.

Gaussian pro®le).

For an elliptical source crossing a straight fold caustic, it was

found that there was little difference between the magni®cation

pro®les as the eccentricity was changed. The maximum magni®ca-

tion was found to increase as the area of the source decreased (for a

®xed semimajor axis, this was produced by varying the eccentricity

from 0 to 1), as expected since smaller sources should be more

highly magni®ed by microlensing. We conclude that, for caustic

crossing events, there are no observable differences between the

magni®cation pro®les of elliptical and circular geometries. In light

of this, the following general results were obtained for circular

geometries.

In Fig. 3 we have a circular source crossing various parabolic fold

caustics along a trajectory normal to the caustic (v � 0±). For

values of jzj < 0:5, there is little difference between the magni®ca-

tion pro®les obtained using the parabolic caustic approximation and

the straight caustic approximation for sources on trajectories

normal to the caustic. When we change the angle at which the

caustic is crossed, the magni®cation pro®le becomes smeared out as

shown in Fig. 4. The magni®cation is staying near its peak value, as

the source is essentially moving along the caustic, i.e. there are

more point sources on the source that have very high magni®cations

at each position along the trajectory, compared to the case for

smaller values of the angle v. This result could not have been

obtained with the existing straight fold caustic approximation,

because when z � 0:0, the magni®cation only depends on the

perpendicular distance to the caustic, so J�d� will have the same

generic shape for all values of v.

By ®xing the angle v, and changing z, we obtain Fig. 5, which

further demonstrates the variation in magni®cation pro®les

obtainable as a result of the parabolic nature of the caustic. In

this example (v � 79±), for jzj , 0 the circular source moves

along the caustic producing the double-humped pro®les of Fig. 4.

At larger values of jzj, the source is within the parabolic caustic

for much of the trajectory and crosses the fold only near y1 � 0, so

the pro®le is similar to that of the straight fold caustic

approximation.

We can now repeat these three cases for annular source geome-

tries, and we note that there are some important differences in the

nature of the pro®les obtained. Fig. 6 shows an annular source

crossing a parabolic caustic with z � ÿ0:5, for a range of inner

annuli radii, ai. The source is moving normal to the caustic. These

magni®cation pro®les show a characteristic fast initial rise-time as

the edge of the annular source crosses the fold, followed by an

almost symmetric slower rise and fall in the magni®cation

around the peak. This is a signature for an annular source

The geometry of quasars using microlensing 71
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Figure 3. Circular source, radius 1 unit, crossing parabolic fold caustic with

z � ÿ0:01;ÿ0:1;ÿ0:5;ÿ1:0, at angle v � 08.

Figure 4. Circular source, radius 1 unit, crossing parabolic fold, z � ÿ0:2,

at angles v � 218; 458; 798; 848.

Figure 5. Circular source, radius 1 unit, crossing parabolic fold caustic,

z � ÿ0:1;ÿ0:2;ÿ0:5;ÿ1:0 at angle v � 798.
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geometry undergoing microlensing. Similar pro®les are seen in the

ray-shooting work of Grieger, Kayser & Refsdal (1988) and

JaroszynÂski et al. (1992).

For a ®xed annular source geometry, Fig. 7 shows the variation in

pro®les for different parabolic caustics. The double-peaked features

seen in Fig. 6 are still obvious, strengthening the case that this is a

signature for annular source geometries. As the curvature of the

parabola increases, the ®rst peak becomes more prominent. Finally,

in Fig. 8, we ®x the source geometry and change the angle of

crossing the caustic. The double-peaked structure is still present,

and shows different behaviour to that of the non-annular geometry

of Fig. 4.

Although we have shown that annular sources produce

characteristic double-peaked pro®les, it is important to note that

double peaks do not necessarily imply an annular geometry. Similar

pro®les may be produced, for example, by binary lenses or when

(non-annular) sources cross more complex caustic arrangements

(such as can occur in the complex caustic networks of a distribution

of microlenses). However, the parabolic caustic approximation is

still a useful result with which to constrain models of the source

geometry.

5 O B S E RVAT I O N A L P R O S P E C T S

As a speci®c quasar to study, we choose the gravitational lens

system QSO 2237+0305, where the lensing galaxy is at redshift

z � 0:0394 and the quasar is at z � 1:695 (Wambsganns & Pac-

zynÂski 1991). The lens produces four images of the source, with a

time delay less than one day between the images. The convergence

from compact objects for image A is k� # 0:3, which means that

most microlensing events will be caused by a single caustic [Irwin

et al. (1989), and more recent numerical simulations by Wyithe &

Webster (in preparation), which place this result on a stronger

footing]. QSO 2237+0305 provides a unique opportunity to study

both microlensing and the structure of the lensed quasar.

The typical time-scale for a fold crossing event will depend on

the time taken for a source of diameter D to cross the caustic,

DT � D=jVj. V is the relative transverse velocity of the system,

resulting from the motions of the source, lens and observer (as

introduced by Kayser et al. 1986). For QSO 2237+0305, V has been

determined to lie in the range 2500 & V & 13 000 km sÿ1, and for

the doubly lensed quasar QSO 0957+561, 250 & V & 1300 km sÿ1

(Webster et al. 1991). It is likely that most gravitational lens systems

will give similar results, so we will consider 102 & V & 104 km sÿ1.

As was introduced earlier, quasars have at least two components

with different geometries and scales. The continuum source has a

typical size of ,1014M=M8 cm, where M8 is the mass in units of

108M(. This source will be more highly magni®ed than the

much larger broad-line region, where the typical scale is

72 C. J. Fluke and R. L. Webster
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Figure 6. Annular source, outer radius 1 unit, inner radius

ai � 0:1; 0:2; 0:5; 0:8 units, crossing parabolic fold caustic, z � ÿ0:5, at

an angle v � 08.

Figure 7. Annular source, outer radius 1 unit, inner radius 0.7 units, crossing

parabolic fold caustic z � ÿ0:01;ÿ0:1;ÿ0:5;ÿ1:0 at an angle v � 08.

Figure 8. Annular source, outer radius 1 unit, inner radius 0.7 units, crossing

parabolic fold caustic z � ÿ0:2 at angles v � 218; 458; 798; 848.
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,1018 cm or ,1 pc.

For the continuum source then, DT will vary between ,1 d and

,100 d, while variations over the scale of years will occur for the

larger BLR. Even though the BLR is signi®cantly larger in size than

a continuum source, there is evidence for microlens-induced varia-

tions in the BLR of QSO 2237+0305 (Saust 1993). These time-

scales are such that we should be able to obtain reasonably well

sampled light curves through regular monitoring (i.e. every few

days) of gravitational lens systems.

6 C O N C L U S I O N S A N D C O M M E N T S

We have derived a new analytic result for the magni®cation of a

point source near a parabolic fold caustic. This has been applied to a

number of extended-source geometries, which are consistent with

the currently accepted quasar models, to obtain a variety of

magni®cation pro®les. This analytic result has important applica-

tions to the study of microlensing of sources with sizes that are

comparable to the typical scaling length in the source plane, such as

for the broad-line region of quasars ± a problem that has only been

investigated numerically before.

We have shown with a parabolic fold caustic approximation that

fold crossing events may be used to distinguish between disc and

annular geometries, but not between circular and elliptical sources.

The straight fold approximation is valid for small sources that move

normal to fold caustics, but to study sources that are moving at other

angles to the caustics, the parabolic result is required.

A study of microlensing events can allow us to classify the shape

of quasars, and perhaps provide an answer as to which of the quasar

models ± a spherical broad-line region or an accretion disc (or even

neither of these) ± is an appropriate model, based on arguments of

source geometry.

The results of this work con®rm the need to carry out regular (i.e.

at least every few days) monitoring of gravitational lens systems, in

the hope of increasing our understanding of the structure of quasars.
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A P P E N D I X A : T H E PA R A B O L I C C AU S T I C

A P P R OX I M AT I O N

We wish to obtain an expression for the magni®cation of a point

source crossing a fold caustic to a higher order of approximation

than the existing straight fold caustic case.

When a source crosses a fold caustic, two new images are created,

or equivalently there is a new saddle point and either a new maximum

or minimum to the scalar potential f�x; y�. Suppose we make a Taylor

expansion of f�x; y� about the image creation point, with the source

and image placed at the origins of the source and lens planes. The

coordinate systems are rotated so that fij is diagonal, and superscript
�0� refers to the derivatives evaluated at the image position.

On the caustic, f�0�
22 � 0, as one of the eigenvalues of fij changes

sign. The Taylor expansion, which is valid for small displacements

about the image creation position, is

f�x; y� � f�0�
ÿ x´y �

1

2
y2

�
1

2!
�x2

1f
�0�
11 �

�
1

3!
�x3

1f
�0�
111 � 3x2

1x2f
�0�
112 � 3x1x2

2f
�0�
122 � x3

2f
�0�
222�

� R�x�; �A1�

where R�x� is a remainder term (cf. Schneider et al. 1992, equation

6.11). We restrict our study to the case f�0�
11 Þ 0 Þ f�0�

222. There is

some degree of arbitrariness as to which terms to keep in the Taylor

expansion ± for fold caustics, we will neglect those terms which

have more than three derivatives of f�0�, but to solve the case of

sources crossing cusps, it would be necessary to keep additional

terms in the Taylor series.

The image positions are given by fi � 0 as

y1 � f�0�
11 x1 �

1

2
f�0�

111x2
1 � f�0�

112x1x2 �
1

2
f�0�

122x2
2; �A2�

y2 �
1

2
f�0�

112x2
1 � f�0�

122x1x2 �
1

2
f�0�

222x2
2: �A3�

We can combine these equations to eliminate terms of the form x2
2

and hence ®nd an expression for x1 in agreement with Schneider et

al. (1992, equation 6.17)

x1 �
f�0�

222y1 ÿ f�0�
122y2

f�0�
11 f�0�

222

: �A4�

Substituting this back into equation (A3), we get a quadratic

equation to solve for x2

x2
2 �

2f�0�
122

f�0�
222

x1

 !
x2 �

f�0�
112

f�0�
222

x2
1 ÿ

2

f�0�
222

y2

 !
� 0; �A5�

which has solutions

x2 � ÿ
f�0�

122

f�0�
222

x1 6

���������������������������������������������������������������
��f�0�

122�
2 ÿ f�0�

112f
�0�
222�

�f�0�
222�

2
x2

1 �
2

f�0�
222

y2

s
: �A6�

The magni®cation is given by

m �
1

det A
; �A7�

where the lens matrix, A, satis®es Aij � fij. The determinant to

highest order in x1 and x2 is then
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det A � f�0�
11 f�0�

122x1 � f�0�
11 f�0�

222x2

� 6
��f�0�

122�
2
ÿ f�0�

112f
�0�
222�

�f�0�
222�

2
�f�0�

222y1 ÿ f�0�
122y2�

2

 
� 2�f�0�

11 �
2f�0�

222y2

�1=2
: �A8�

We can now write det A � 6
���������
C�y�

p
, where C�y� � Q�y� � P�y�,

where we have de®ned

Q�y� � 2�f�0�
11 �

2f�0�
222y2 ÿ �f�0�

112f
�0�
222 ÿ �f�0�

122�
2
�y2

1; �A9�

P�y� � 2f�0�
122 f�0�

112 ÿ
�f�0�

122�
2

f�0�
222

 !
y1y2

�
f�0�

122

f�0�
222

 !2

��f�0�
122�

2
ÿ f�0�

112f
�0�
222�y

2
2: �A10�

Q�y� contains only the highest powers of both y1 and y2, so for small

changes in the source position we can neglect the contribution of

P�y�. We write

det A � 6
���������
Q�y�

p
: �A11�

which we call the parabolic approximation to a fold caustic, by

comparison with equation 6.16 of Schneider et al. (1992), which

describes the shape of a caustic as a parabola satisfying Q�y� � 0.

The mixed term y1y2 in P�y� produces a small distortion to the

parabolic shape, which is actually a rotation of the parabola. Since

we are only interested in obtaining the next highest approximation

after the straight fold, we seem justi®ed in keeping just the term

Q�y�.

The total magni®cation, jmtotj, of a point source will depend on

the contribution of both images, since individual images cannot be

resolved for the case of microlensing, thus

jmtotj � m� ÿ mÿ �
2���������
Q�y�

p : �A12�

To simplify the expression for Q�y�, we introduce the coef®cient

z �
f�0�

112f
�0�
222 ÿ �f�0�

122�
2

2�f�0�
11 �

2f�0�
222

; �A13�

which depends only on the derivatives of the lens model, and so we

arrive at

jmtotj �
1

jf�0�
11 j

�����������������������������
2

f�0�
222� y2 ÿ zy2

1�

s
: �A14�

For the case z � 0, we regain the straight fold caustic result

jmtotj �
1

jf�0�
11 j

�������������
2

f�0�
222y2

s
� a0dÿ1=2; �A15�

where y2 is replaced by the perpendicular distance, d, to the fold,

and a0 is a constant. To be slightly more rigorous, we write the

magni®cation of a point source near a parabolic caustic as

mp � m0 � a0H�y�� y2 ÿ zy2
1�

ÿ1=2; �A16�

where H�y� is a step function (since we only want real solutions

for mp), a0 is a constant and m0 is the contribution from all other

images of the source, under the assumption that the magni®cation of

these images does not change signi®cantly while the source crosses

the caustic. We have a condition imposed on the possible values of z

by the actual shape of the caustics of the Chang±Refsdal lens,

which are concave for a source on the outside of a fold. This means

that we must have z < 0.
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