
Vol.:(0123456789)

SN Applied Sciences (2021) 3:291 | https://doi.org/10.1007/s42452-021-04274-4

Research Article

Investigating the growth of AlGaN/AlN heterostructure by modulating 
the substrate temperature of AlN buffer layer

Neha Aggarwal1 · Shibin Krishna2 · Lalit Goswami1 · Shubhendra Kumar Jain1,3,6 · Akhilesh Pandey4 · 

Abhiram Gundimeda5 · Pargam Vashishtha1,6 · Jasveer Singh1 · Sandeep Singh1 · Govind Gupta1,6 

Received: 12 November 2020 / Accepted: 25 January 2021 / Published online: 8 February 2021 
© The Author(s) 2021  OPEN

Abstract

We have investigated the impact of AlN bu�er layer growth parameters for developing highly single crystalline AlGaN 
�lms. The low mobility of Al adatoms and high temperature for compound formation are amongst the major causes that 
a�ects the growth quality of AlGaN �lms. Thus, proper optimization need to be carried out for achieving high quality 
AlGaN due to an augmented tendency of defect generation compared to GaN �lms. Thus, growth conditions need to be 
amended to maximize the incorporation ability of adatoms and minimize defect density. So, this study elaborates the 
growth optimization of AlGaN/AlN/Si (111) heterostructure with varied AlN bu�er growth temperature (760 to 800 °C). 
It was observed that the remnant Al in low temperature growth of AlN bu�er layer resist the growth quality of AlGaN 
epitaxial �lms. A highly single crystalline AlGaN �lm with comparatively lowest rocking curve FWHM value (~ 0.61°) and 
smooth surface morphology with least surface defect states was witnessed when AlN bu�er was grown at 780 °C. From 
the Vegard’s law, the photoluminescence analysis unveils Aluminium composition of 31.5% with signi�cantly reduced 
defect band/NBE band ratio to 0.3. The study demonstrates good crystalline quality AlGaN �lm growth with Aluminium 
content variation between ~ 30–39% in AlGaN/AlN heterostructure on Si(111) substrate leading to a bandgap range 
which is suitable for next-generation solar-blind photodetection applications.
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1 Introduction

A ternary alloy of III-Nitride material system i.e.  AlxGa1-xN 
has huge number of potential applications in high power 
and radiation-resistance electronics such as �ame and heat 
detectors, missile plume detection and safe inter-satellite 
communications, UV calibration and monitoring devices for 
medical and biological sensors, etc. [1–3]. In the past few 

years, these applications were ful�lled by photomultiplier 
tubes, SiC and Si based detectors [4]. Sooner the photomul-
tiplier tubes are found to be ine�cient due to bulky instru-
mentation while, Si, having a narrow bandgap of 1.1 eV, 
demands optical �lters to function as a UV detector which 
again makes the system massive and costly. However, band-
gap of  AlxGa1-xN can be tuned between 3.4 eV (at 0% Al) and 
6.2 eV (at 100% Al) thus; it o�ers a great advantage over Si by 
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eliminating the need of optical �lters [5]. Besides the robust-
ness of  AlxGa1-xN material, it also provides the potential to 
yield stable device operation even in harsh environments 
[6, 7]. On the other hand, SiC, having a bandgap of ~ 3.0 eV 
is similar in robustness to nitrides, still does not have the 
potential to tune the bandgap via alloying and thus, they 
require expensive �lters for UV applications [5, 8]. Since, an 
ideal optoelectronic device necessitates deeper understand-
ing about various factors a�ecting optical and electrical 
transport properties of the thin �lms. The major challenge 
that hinders the development of highly e�cient AlGaN/AlN 
heterostructure based devices is the high quality growth on 
suitable substrate as this will directly impact the structural 
and optical properties which ultimately alter the current 
transport behavior in the device. Usually, high quality AlGaN 
has been grown on sapphire substrates or GaN templates for 
better growth quality [9–11] but soon researchers started 
growing AlGaN on Si substrates for better integration with 
existing established device fabrication technology [12–15]. 
Here, Si substrate is utilized because it is easily available at 
low cost & provides integration with the well-established 
Si growth technology that ensures high quality device fab-
rication as well. However, the direct growth of AlGaN on Si 
substrate may lead to high amount of defects and cracks 
due to lattice-mismatch and thermal expansion coe�cient 
mismatch between the substrate and the epitaxial �lm [5]. 
Consequently, these defects states instigate degradations in 
structural, morphological and optical properties. Thus, intro-
duction of a bu�er layer is extremely necessary as it plays a 
key role in improving the crystalline quality and reducing 
the defect states in epitaxial AlGaN �lms grown by plasma-
assisted molecular beam epitaxy (PAMBE) system [16, 17]. 
However, most of the studies report AlGaN growth on Si 
using GaN bu�er layer and only few reports elaborate the 
growth on Si using AlN bu�er [3, 18]. Although, the e�ect of 
AlN bu�er layer has been vastly studied [19, 20] on the prop-
erties of GaN �lms still its role on AlGaN/AlN heterostruc-
ture grown on Si (111) has not yet explored much in detail. 
Hence, this work explicates the in�uence of AlN bu�er layer 
on the crystalline quality and defect density of epitaxially 
grown AlGaN �lms by PAMBE. The present study also cor-
relates the role of di�erent AlN bu�er growth temperatures 
with the structural, morphological and optical properties of 
AlGaN �lms including compositional variations that result in 
bandgap variation as well.

2  Materials and methods

The AlGaN/AlN heterostructures were grown on p-Si 
(111) substrate (325 ± 25 µm thick, boron doped (p-type) 
with resistivity of 5–15 Ω-cm) by PAMBE system. The 
(111) orientation of Si substrate is utilized in this study 

because the growth of wurtzite hexagonal AlN (002) is 
more preferred on Si (111) over other orientations of 
silicon substrate which leads to good quality nitride 
heterostructure [21]. The silicon substrates were chemi-
cally pre-cleaned by using the standard RCA procedure 
before loading into the load-lock chamber followed by 
out-gassing in the buffer chamber at 630 °C.

Prior to growth, the Si substrates were flashed at 
high temperature in the growth chamber to achieve 
atomically clean 7 × 7 reconstructed surfaces. Ini-
tially, ~ 480 nm thick AlN buffer layer is grown on Si sub-
strate since, the introduction of AlN buffer layer may lead 
towards crack free growth. Thus, a number of samples 
have been grown with varied growth parameters of AlN 
and some of them are discussed in this study to avail 
better understanding about role of buffer layer growth 
conditions on the AlGaN epitaxial layer. A growth-time 
vs temperature diagram representing each step involved 
in the growth process is shown in Fig. 1. The diagram 
illustrates that the growth procedure starting from the 
outgassing of substrate to obtaining an epitaxial AlGaN 
heterostructure takes nearly 330 min. to complete. Here, 
three samples are being discussed which are grown with 
different AlN substrate temperatures varied between 
760 to 800 °C and labelled according to buffer growth 
temperature i.e., S-760, S-780 and S-800. Apart from 
the substrate temperature of AlN, rest all other growth 
parameters are kept constant in complete growth pro-
cess of all the samples. Then, ~ 1.5 µm thick AlGaN has 
been grown with a constant pre-optimized parameters 
on the AlN buffer with varied growth temperature. The 
substrate temperature, BEP of Ga and Al,  N2 flux as well 
as RF power and growth time during AlGaN growth was 
set to 690 °C, 2 × 10–6 Torr, 2 × 10–7 Torr, 3 sccm, 400 W 
and 120 min, respectively. Therefore, the effects of AlN 
buffer layer were elaborated via various structural, mor-
phological and optical properties of PAMBE grown epi-
taxial AlGaN film.

The structural quality of the grown films was gauged 
by using high resolution X-ray diffraction (HRXRD, 
Panalytical X’Pert PRO MRD System), and the surface 
morphology was probed by atomic force microscopy 
(AFM, Multimode-V Veeco) and FESEM (ZEISS AURIGA). 
The optical properties, bandgap evaluations and stress 
variations have been reckoned by using photolumines-
cence (PL) and Raman spectroscopy (RS), respectively. 
PL measurements were carried out using FLS980 D2D2 
(Edinburg) system equipped with a He − Cd laser operat-
ing at 325 nm as an excitation source. Room temperature 
(RT) micro-Raman measurements were performed using 
a triple Raman spectrometer in backscattering configu-
ration with an excitation source of argon ion laser (Ar +) 
having an operating wavelength of 514 nm.
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3  Results and discussions

A systematic study of the hetero-epitaxial growth of 
AlGaN/AlN on Si (111) via PAMBE has been illustrated by 
using a number of samples grown with varied bu�er layer 
growth parameters. Depending upon the buffer layer 
growth conditions, physical as well as optical properties 
of the epitaxial AlGaN �lm may di�er. Several properties 
of the grown heterostructure is analyzed deeply and dis-
cussed as follows.

3.1  Structural properties

A schematic diagram showed in Fig. 2a represents the 
PAMBE grown heterostructure where initially AlN �lm is 
grown on atomically cleaned Si (111) surface which act 
as bu�er layer for the epitaxial growth of AlGaN �lm. The 
AlGaN �lms grown on the three distinct AlN bu�er lay-
ers has been characterized by HRXRD measurements to 
examine the quality of grown AlGaN/AlN/Si (111) het-
erostructure. Figure 2b illustrates the HRXRD 2θ-omega 
scan of S-760 sample where the highly intense and sharp 
peaks at 35.04° and 36.08° explicates the growth of single 
crystalline AlGaN and AlN �lms, respectively. Moreover, 
the presence of �rst and second order X-ray di�ractions 
of AlGaN in the 2θ–omega scan endorses that single crys-
talline AlGaN �lm has been successfully grown epitaxially 
on the Si substrate. Besides, the sharp peaks at 28.4° and 
58.8° have been derived from the �rst and second order 
di�ractions of Si (111). An additional peak at ~ 31.8° has 
been observed in Fig. 2b and Fig. 2c which is found to be 
associated with the (002) orientation of α-Si3N4 that might 
have formed while exposing the substrate to active N spe-
cies for AlN growth [22].

Further, HRXRD analysis of S-780 sample (Fig. 2c) indi-
cates that high temperature bu�er can yield improved 
crystalline quality of AlGaN by observing very sharp peaks 
with reduced FWHM value. It has been clearly witnessed 
that the intensity ratio of AlGaN/AlN in S-760 (9.75) is more 
compared to S-780 sample (3.48). This can be attributed 
to a slight remnant Al present in low temperature (760 °C) 
grown AlN as confirmed from a small peak at 38.1° in 
2θ–omega scan of S-760 (in Fig. 2 (b) which was absent in 
the sample S-780 where AlN is grown at a slightly higher 
temperature (780 °C) leading to improved AlN quality as 
well as AlGaN epitaxial quality. This signi�es that the rem-
nant Al (in S-760) must have resisted the growth of AlGaN 
�lm thereby, a�ecting its growth rate and quality. How-
ever, upon further increasing the AlN bu�er growth tem-
perature to 800 °C in S-800 sample, HRXRD analysis shown 
in Fig. 2d) reveals that such high temperature bu�er can 
lead to a reduction in peak intensity of AlGaN as well as 
AlN as observed from the plot peaks in S-800 with reduced 
intensity compared to S-780. This analysis reveals that 
higher growth temperature results in lower growth rate 
of AlN bu�er which slows down the growth rate of AlGaN 
epitaxial �lm as well. Thus, the sharp and intense peaks 
signify highly single crystalline nature of AlN and AlGaN 
�lms in each grown heterostructure optimized to a best 
crystallinity and highest intensity in S-780 sample.

For better understanding, the average grain size for AlN 
and AlGaN layers has been evaluated by using the Scherrer 
formula: [20, 23]

Here, ‘t’ is the average grain size, ‘K’ is a proportion-
ality constant (assumed value near to unity), ‘λ’ is the 
wavelength of the incident beam (0.15406 nm), ‘β’ is the 

(1)t = K ⋅ λ∕β cos θ

Fig. 1  The growth-time–tem-
perature diagram representing 
complete timeline of develop-
ing epitaxial AlGaN on Si (111) 
substrate
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FWHM of the AlN and AlGaN peak from 2θ–omega scan 
of HRXRD pattern along (0002) plane of diffraction (in 
radians), and ‘θ’ is the diffraction angle of the AlN (0002) 
and AlGaN (002) peaks. The grain sizes obtained by the 
Scherrer formula are tabulated in Table 1.

It was clearly observed from Table 1 that the aver-
age grain size is largest for the AlN and AlGaN grown in 
S-780 sample which is suggesting that the buffer growth 
temperature of 780 °C is providing adequate amount of 
surface energy to the ad-atoms arriving at the surface 
for growing the desired nitride heterostructure. Next, 
to quantify the crystalline quality of grown films, the 
X-ray rocking curves (XRCs) has been utilized which are 
plotted in Fig. 3a where the evaluated FWHM value is 
0.63°, 0.61°arcsec and 0.93° along in-plane (002) diffrac-
tion from samples S-760, S-780 and S-800, respectively 
(Fig. 3b). The FWHM values are directly related to the 
dislocation density existing in the grown layer which 
will lately govern the performance of an optoelectronic 

Fig. 2  a A schematic diagram 
of heterostructure grown via 
PAMBE; HRXRD 2θ—omega 
scans of grown epitaxial struc-
ture in b S-760;c S-780 and d 
S-800

Table 1  The evaluated average 
grain sizes of AlN and AlGaN 
grown with varied bu�er layer 
temperatures

Material Average grain size 
(nm)

S-760 S-780 S-800

AlN 24.75 49.97 44.82

AlGaN 26.72 52.05 49.02

Fig. 3  a The comparative XRC 
plots of AlGaN along (0002) 
plane of di�raction; b The 
trends revealing variation in 
FWHM from XRCs and strain 
evaluated for epitaxial AlGaN 
�lms with changing bu�er 
growth temperatures
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device to be developed using them [24]. It is interesting 
to notice that the FWHM value of S-780 sample is lower 
than other two samples grown with varied buffer via 
PAMBE and some previous reports of AlGaN growth on Si 
(111) [25]. The lower value of the FWHM in sample S-780 
exemplifies low mosaicity of the grown film and can be 
correlated to better formation of AlN which resulted in 
enhanced crystalline quality of the epitaxial AlGaN film. 
The FWHM and strain variation is represented in Fig. 3b 
where the strain values have been evaluated by using 
the peak positions of 2θ-omega scans in Bragg’s law [26].

Here, the strain free values were assumed to be the 
lattice constants corresponding to the Al compositions 
evaluated from omega-2θ scans which will be discussed 
next in this section. Upon quantifying, the strain values 
are found to be 0.01 GPa, 0.19 GPa and 0.14 GPa for 
S-760, S-780 and S-800, respectively. The higher strain 
value in S-780 implies strained film which may or may 
not lead to cracks that can further be affirmed by observ-
ing the morphological properties of the grown AlGaN 
films. The topographical study has been discussed in 
next section for gaining deeper understanding into it. 
Before that, the omega-2 theta scan has been carried out 
for the determination of Al composition in PAMBE grown 
AlGaN films. Figure 4a–c shows the omega-2 theta scan 
HRXRD spectra along the symmetric (0002) plane of dif-
fraction from the AlGaN and AlN films.

The fitting of these spectra (not shown here) revealed 
the Al composition of 37.5%, 39% and 33% in sample 
S-760, S-780 and S-800, respectively. The evaluated 
Al composition variation is plotted against sample in 
Fig. 4d. It was noticed that the Al composition is high-
est in sample S-780 due to optimized buffer conditions 
which lead to better AlN quality and thereby, enhanced 
AlGaN crystallinity along with higher Al incorporation. 
The physical mechanism and surface kinetics defined by 
the buffer growth temperature towards increasing the 
Al incorporation in S-780 sample is explained as follows. 
At lower growth temperature (760  °C) of AlN buffer 
layer, the HRXRD analysis of 2θ-omega scan shows a 
small peak at ~ 38.20° which is associated with the pres-
ence of excess metallic Al at the interface. [3] This is 
due to inadequate surface energy at lower tempera-
ture which limits the conversion of all the arriving Al 
ad-atoms into AlN compound, resulting in remnant Al at 
the interface. So, when the surface is exposed to Al, Ga 
ad-atoms and N active species for AlGaN growth, it was 
observed that initially the excess Al utilizes the nitrogen 
to form AlN restricting the formation of AlGaN and later 
on, the growth of AlGaN was pursued leading to lower 
Al incorporation in the AlGaN layer. Secondly, at the 
higher temperature of 800 °C, nitrogen rich condition 
leads to III-group vacancies. Upon exposing the surface 
with Al, Ga and N for AlGaN growth, these vacancies 
are initially filled by III-group elements which should be 

Fig. 4  HRXRD omega-2theta 
scans of epitaxial AlGaN �lms 
grown in a S-760; b S-780 and 
c S-800 samples; d Al composi-
tions evaluated by �tting of 
omega– 2θ scans
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followed by the AlGaN growth. This leads to lower incor-
poration of Al in AlGaN layer since the growth time and 
Al flux is kept constant in all the three samples. Finally, 
in the stoichiometric conditions of sample S-780, there 
was no remnant Al after AlN deposition and also no 
III-group vacancies due to optimum growth tempera-
ture of AlN buffer layer. This leads to smooth and quick 
start for the growth of AlGaN as soon as the surface was 
exposed to the Al, Ga and N adatoms. This must resulted 
in highest incorporation of Al in the AlGaN grown in 
S-780. Next, the influence of buffer quality on surface 
morphology of AlGaN has been examined by analyzing 
the FESEM and AFM micrographs shown in Fig. 5.

3.2  Morphological properties

Figure 5 displays the topographical features of the top 
AlGaN surface in all the grown AlGaN/AlN heterostruc-
tures. The influence of buffer growth temperature has 
been clearly witnessed by the variations in surface mor-
phology of AlGaN. The FESEM, AFM and depth pro�les 
are shown in Fig. 5 (a,d,g), (b,e,h) and (c,f,i) for the AlGaN 
surface in samples S-760, S-780 and S-800, respectively. It 
can be observed from the FESEM image of S-760 (Fig. 5a) 
that the surface is quite smooth with the presence of few 
nano-islands while, a highly smooth surface with almost 
coalesced epitaxial �lm is witnessed in the FESEM image 
of S-780 (Fig. 5d) and the nano-islands observed in S-760 
has also been reduced effectively. However, when the 
AlN growth temperature increased to 800 °C in S-800, 

Fig. 5  The topographical analysis using (a,d,g) FESEM; (b,e,h) AFM and (c,f,i) Depth pro�ling (via AFM where the area is marked by red line) 
for samples S-760, S-780 and S-800, respectively
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the surface becomes quite rough with huge nano-sized 
islands agglomerated into an epitaxial �lm as shown in 
Fig. 5g. Therefore, it can be concluded that the �lm grown 
in sample S-780 has smoother surface morphology along 
with less surface defects than the �lms grown in samples 
S-760 and S-800.

Furthermore, to avail better understanding of morpho-
logical properties, the surface was probed by AFM which 
will divulge the surface morphology along with surface 
roughness and its depth pro�le. The AFM image of AlGaN 
�lm grown in S-760 (Fig. 5b) shows slightly smooth surface 
morphology (r.m.s. roughness,  Rr.m.s = 6.44 nm) covered 
with small troughs which were assumed to be appeared 
due to the nitrogen vacancies in epitaxial AlN bu�er layer 
that was grown in Al-rich conditions [27]. As the bu�er 
growth temperature increases to 780 °C (Fig. 5e), the active 
nitrogen species is expected to be entirely consumed by 
the impinging Al �ux due to su�ciently available thermal 
energy on the substrate and thereby, growing high quality 
AlN layer e�ectively improved the surface morphology of 
AlGaN layer to a greater extent [28]. An e�ective reduction 
in surface roughness has been witnessed with the  Rr.m.s 
value of 5.62 nm which may lead to better carrier transport 
if utilized for device fabrication. This has been correlated 
with the high strain value evaluated from HRXRD that 
mutually explicate highly smooth and slightly strained 
�lm surface by restricting the crack formation which some-
times appear due to strain relaxation. Recently, Singh et al. 
reported that a reduction in roughness of AlN bu�er layer 
could lead to improved mobility resulting in enhanced 

transport properties [29]. However, further increment in 
bu�er growth temperature to 800 °C resulted in morpho-
logical transition in AlGaN �lm from highly smooth surface 
to a comparatively rough surface as shown in Fig. 5h. The 
surface is pertaining large amount of nano-sized islands 
agglomerated and the surface roughness is found to be 
increased nearly 3 times having  Rr.m.s value of 18.2 nm. 
The surface degradation could be associated to a lim-
ited incorporation probability of Al in AlN due to higher 
substrate temperature and thus lead toward a compara-
tively degraded quality of AlN bu�er layer. This belong to 
a rise in excess active N on the surface of the �lm due to 
increased surface di�usion barrier, that resulted in N-rich 
growth of bu�er layer leading to degraded morphology 
of AlGaN epitaxial layer grown on it. Further, the depth 
pro�le observed for each AlGaN �lm revealed smoothest 
surface in AlGaN grown in S-780 (Fig. 5f ) among all the 
samples grown via PAMBE under di�erent bu�er growth 
conditions.

3.3  Optical properties

The in�uence of bu�er layer parameters on optical prop-
erties has been explored which will indirectly play a 
prominent role in deciding the behavior of optoelectronic 
devices to be developed using AlGaN [3, 30]. Figure 6a rep-
resents the RT -PL spectra of each sample where a sharp 
NBE emission is observed for every AlGaN �lm with a trivial 
shift in its NBE position leading to slight variation in the 

Fig. 6  a The RT-PL spectra 
acquired from the AlGaN 
�lms grown in S-760, S-780 
and S-800 samples; b the plot 
showing variation in Al com-
position with changing bu�er 
condition in each sample; c the 
trends of PL NBE bandwidth 
and ratio of DB to NBE intensity 
variation  (IDB/INBE) against each 
sample grown with di�er-
ent bu�er parameters; d The 
micro-Raman Spectra enlarged 
for the range of 550–750 cm−1; 
inset shows the complete 
Raman spectra in the range of 
450–800 cm−1
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bandgap of the grown ternary AlGaN alloys. The NBE peaks 
are centered at 312, 309 and 307 nm with error of ± 0.5 nm 
for samples S-760, S-780 and S-800, respectively.

Further, a shoulder peak to NBE emission was promi-
nently observed at around 327 nm in S-760 (Fig. a) which 
is ascribed to transitions from shallow donor to shallow 
acceptor states known as Donor Accepter Pair (DAP) transi-
tions in the grown AlGaN �lms. This characteristic can be 
attributed to an exciton bound to a native defect related 
shallow acceptor states such as any vacancy-related com-
plex [31]. Though, a more prominent DAP could also exist 
in NBE peak’s envelope of other AlGaN �lms in S-780 and 
S-800 which resulted in broadening of the NBE emission 
band. This enhanced DAP emission could be attributed 
to either increased III-group vacancies or in�uenced by 
the unintentional doping from the substrate during the 
growth into the nitride layer [32, 33]. Besides, a broad 
emission band centered at around 481, 498 and 511 nm 
in samples S-760, S-780 and S-800, respectively is clearly 
noticed which is related to the defect states within the 
energy bandgap of the grown AlGaN films [34]. It can 
be clearly observed that the defect band is signi�cantly 
suppressed for the �lm grown in S-780 sample. Next, the 
bandgap obtained from the NBE emission has been used 
for evaluating the Al composition (x) by using Vegard’s law, 
[35]

where x is the Al mole fraction and b is the bowing param-
eter, b = 1.3 in alloy  AlxGa1-xN [36]. The evaluated composi-
tion values are plotted against the sample in Fig. 6b and 
exhibited an incrementing trend with increasing bu�er 
growth temperature. This suggests that bu�er tempera-
ture and crystalline quality may lead to slight changes in 
the bandgap of the material. The Al composition is 30, 31.5 
and 33% for S-760, S-780 and S-800, respectively. It was 
reported that the growth rate signi�cantly a�ects the Al 
incorporation e�ciency in AlGaN growth [37, 38]. Thus, 
the increased Al incorporation from S-760 to S-800 sam-
ples could be related to di�erent growth rates of AlGaN 
with varied AlN bu�er growth quality. Although, these 
values are found to be slightly di�erent from the HRXRD 
results that could be due to strain present in the grown 
�lms which have lead towards this deviation in the HRXRD 
results. Furthermore, it is known that the FWHM of NBE 
emission band (Fig. 6c) determines the quality of grown 
epitaxial �lm, thus, the changes in bu�er growth tempera-
tures resulted in varying the quality of grown AlGaN �lms 
with least FWHM for sample S-760, which is found to be 
increased with increasing bu�er growth temperature. This 
could be correlated to the enhanced DAP band existing 

(2)EAlGaN
g

= x.EAlN
g

+ (1 − x)EGaN
g

+ b.x.(1 − x)

along with NBE in complete peak envelope of S-780 and 
S-800.

On the other hand, Fig. 6c shows the change in ratio of 
defect band and NBE band extracted from the obtained 
experimental PL results of each sample. It was observed 
that the  IDB/INBE value is least for the sample S-780 which 
signi�es high quality AlGaN growth with least amount 
of trap/defect states in the energy bandgap. Therefore, 
although the FWHM is slightly higher for AlGaN �lm grown 
in S-780 still, the intensity ratio of defect band to NBE is 
prominently reduced compared to other two growths 
carried out in S-760 and S-800. Conclusively, the PL analy-
sis recommend that the optical properties of AlGaN �lm 
grown in S-780 is superlative compared to the other 
grown samples and thus, it is highly expected to yield 
better device e�ciency. The optical properties are fur-
ther analyzed by performing micro-Raman spectroscopy. 
The Raman measurements have been used to evaluate 
the energies of phonon modes present in  AlxGa1-xN ter-
nary alloy. Inset of Fig. 6d shows the micro-raman spectra 
obtained for a whole range of 450–800 cm−1 which yielded 
a highly dominant Si substrate peak at around 521.5 cm−1 
in all the AlGaN/AlN/Si heterostructures. A closer exami-
nation unveils the existence of two modes each one of 
GaN-like and AlN-like mode branches from the PAMBE 
grown samples S-760, S-780 and S-800. This implicates 
two-mode behavior for  E2(high) mode of AlGaN [39]. For 
deeper investigation, the experimental data acquired 
from the Raman spectra is enlarged from 550–750 cm−1 
as shown in Fig. 6d. It was perceived that apart from sam-
ple S-760, the AlGaN grown in other two samples i.e. S-780 
and S-800 almost coincides at same GaN-like and AlN-like 
 E2(high) mode which suggests nearly same Al composition 
in AlGaN grown in samples S-780 and S-800 compared to 
S-760. The two mode behavior could be responsible for 
variation in the composition evaluation from HRXRD and 
the Raman phonon frequencies.

In summary, AlGaN �lm with high crystalline epitaxial 
quality has been grown by optimizing di�erent AlN bu�er 
layer growth conditions on Si (111) substrate using PAMBE. 
The AlN bu�er has been grown under varied growth tem-
peratures (760 °C to 800 °C) wherein, a highly single crys-
talline AlGaN �lm with comparatively lowest XRC FWHM 
value of 2196 arcsec was witnessed when AlN bu�er was 
grown at 780 °C. The quality of AlN bu�er layer is found to 
impact the growth properties as well as the Al incorpora-
tion in the grown AlGaN �lms. The morphological analysis 
reveals highly smooth surface morphology with least sur-
face defect states. Then, the optical properties were ana-
lyzed to gauge the in�uence of bu�er layer on the AlGaN 
�lms where, the RT-PL analysis of sample S-780 revealed 
a bandgap value of 309 nm resulting in 31.5% Al compo-
sition evaluated using the Vegard’s law. Along with this, 
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the defect band to NBE band ratio  (IDB/INBE) is signi�cantly 
reduced from 0.57 to 0.3 when bu�er growth temperature 
increased from 760 to 780 °C. While, the  IDB/INBE ratio again 
increased to 0.72 when the bu�er temperature increases 
to 800 °C. Therefore, the structural, morphological and 
optical properties divulges that the AlGaN �lm grown in 
sample S-780 (where bu�er growth temperature is 780 °C) 
is highly crystalline in nature with minimum defects states. 
Conclusively, this study determines that the bu�er layer 
temperature plays signi�cant role in controlling the struc-
tural and optical properties of AlGaN layer grown over it.
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