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Abstract 

This study investigated the intrinsic biodegradation potential of marine organic sediment 

for effective biogas production from various species of marine macroalgae and non-

marine biomass. Biogas production potential tests were carried out on three species of 

seaweed harvested from the west coasts of Scotland, Laminaria digitata, Fucus 

serratus, and Saccharina latissima, and on a non-marine cellulose biomass seeded with 

uncultivated and unadapted anoxic marine sediments. As a comparison, the same 

experiments were repeated using the same substrates but seeded with active 

mesophilic anaerobically digested sewage sludge. For the cultures seeded with anoxic 

marine sediments, the highest methane yield was observed in both L. digitata and S. 

latissima cultures while F. serratus and cellulose, cultures performed relatively poorly. 

For those seeded with digested sludge, all cultures performed relatively well, except F. 

serratus. These results show that marine sediments can be effective inoculum for 

seaweeds digestion. Phylogenetic analyses of the methanogenic community in both 

sources of inoculum showed that the methanogen community within the sediment and 

sludge seeded cultures were different. Each culture was dominated by methanogenic 

populations suitable for the utilization of the specific biomass derivatives and 

environmental conditions. For instance, members of the genus Methanosaeta which, 

dominated sludge seeded cultures were not detected in the sediment seeded cultures. 

A similar occurrence was observed for the genus Methanofolis which was only detected 

in the sediment seeded cultures.  Hence, in areas where seaweed forms part of a co-

digestion with non-marine biomass, start-up using a mixture of anoxic marine sediments 

and digested wastewater sludge has the potential to provide greater process stability 

and robustness than using either as sole inoculum.  

Keywords: anaerobically digested sewage sludge inoculum, marine macroalgae 

species, marine sediments inoculum; methanogenic microbial community; seaweeds 
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1. Introduction 

The current global quest for alternative, sustainable and renewable energy has 

renewed interests in a number of possible sources of renewable energy [1,2]. 

Bioenergy appears to be a viable option because it can be sourced locally and it is one 

of the very few forms of renewable energy that can be stored [1–3]. Of all the alternative 

energy sources currently considered, biomass represents the most ready to be utilised 

on a large scale with minimal environmental and economic implications [4]. However, 

there are concerns about growing terrestrial crops (1st generation biofuels) for 

bioenergy production which may make negligible contribution to net greenhouse gas 

emission and cause other problems relating to water and food shortages [5–7]. 

Therefore, the current quest for increased utilisation of seaweeds (3rd generation 

biofuels) as a potential resource for renewable energy production is timely. Marine 

biomass, such as seaweed, offers an attractive option for producing renewable energy 

in a more sustainable manner [7-10]. 

Apart from its ability to efficiently fix CO2 faster than most terrestrial plants [12], 

seaweeds have a number of advantages over terrestrial biomass as source of 

renewable energy. These include, lack of lignin, which makes up a bulk of terrestrial 

biomass, thereby making it relatively easier material for bioconversion, and its 

cultivation does not require arable land or fresh water, therefore there is no competition 

with food crops [7,9,10]. Nevertheless, the presence of salt and polyphenols in 

seaweeds  can inhibit microbial biodegradation, as a result, dilution of the feedstock has 

been proposed as a means of ensuring efficient biodegradation [9]. However, dilution 

requires the use of freshwater and undermines the sustainability of the process. It is 

therefore pertinent to seek ways to ensure effective biodegradation without a need for 

freshwater dilution.  
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The type of inocula utilised for start-up of anaerobic digestion of biomass is one of the 

important factors that determine the eventual composition of the microbial community 

and hence efficiency of the process [11,12]. Different sources of inoculum have been 

used for the anaerobic digestion of seaweeds by many researchers in an attempt to 

quicken process start-up through faster acclimatisation to the type of feedstock and 

environmental conditions such as high salinity levels, and thus enhance methane yield. 

Non-marine sourced anaerobic sludge appears to be the dominant source of inoculum 

for the start-up of biomethanation of seaweeds as reported in the literature. For 

instance, Chynoweth, et al.,[13] seeded L. digitata with anaerobically digested 

mesophilic sludge in a conventional reactor operating at mesophilic temperature and 

reported maximum methane production of 280 ml/g VSadded after 30 days. Thermophilic 

digestion of S. latissima seeded with sludge obtained from cultures treating cattle 

manure operating under thermophilic conditions (55oC) reported a maximum methane 

production of 340 ml/g VSadded after 34 days of operation [14]. Similarly, a biochemical 

methane potential (BMP) test of Ulva lactuca using inoculum effluent from cattle 

manure thermophilic digester in a reactor operated at 52oC produced 271 ml/g VSadded 

after 42 days of incubation [5]. However, in areas where there is no accessible 

anaerobic digestion plant to obtain seed sludge, such as in remote sparsely populated 

coastal locations with abundant supply of seaweeds, the start-up or re-start of seaweed 

anaerobic digestion plant will pose a substantial challenge. Recent research by Miura et 

al., 2014  [15] and Miura et al., 2015  [16], found the use of anoxic sediments as 

inoculum for seaweed anaerobic digestion to be promising. However, these studies 

involved serial cultivation of the sediment inoculum in order to ensure effective 

adaptation to the salinity conditions of seaweeds prior to its use as inoculum, thereby 

making the process time consuming and involving a great amount of material and 

human resources. Furthermore, the study used only one species of seaweed, S. 
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japonica. Since many previous studies [17,18] have shown that various species 

respond differently to anaerobic biodegradation, it is not clear if the type of seaweed 

can affect the effectiveness of sediment inoculum. Hence, to investigate the 

effectiveness of marine sediments as inoculum for anaerobic digestion operations in 

rural coastal communities, it is important to evaluate its performance using different 

species of seaweed.  Such seaweeds, which have not been washed with freshwater to 

reduce their salinity contents would be utilised and compared with the same seaweed 

cultures seeded with anaerobic activated sewage sludge, a commonly used source of 

inoculum. Thus, the objectives of this study are to: 

• Access the suitability of anoxic sediment as a source of inoculum for anaerobic 

digestion of seaweeds  

• Evaluate and compare the effect of inoculum source fate of the methanogenic 

community present in the different seaweed cultures.  

2. Materials and methods 

2.1  Substrates (Seaweeds) 

Fresh seaweeds, Laminaria digitata, Fucus serattus and Sacharrina Latissima,  were 

harvested from the beach near Scottish Association for Marine Science, (SAMS) near 

Oban (56°27'09.5"N 5°26'43.2"W) in August, 2012 at low tide. These species (L. 

digitata, F. serattus and S. latissima) were selected based on three key considerations, 

availability,  carbohydrate content [7,19], and potential for large scale cultivation [20]. 

The seaweeds were transferred within an hour to the lab, frozen overnight, freeze-dried 

and manually grinded using ceramic mortar and pestle to powder and sieved ˂1 mm. 

Powdered  seaweeds were stored in sealed plastic bags at room temperature until use. 
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Cellulose powder (Fluka, Sigma-Aldrich, Denmark) was used as the positive control [21] 

for comparison with the biodegradation of the seaweeds.  

2.2 Seed inocula 

The first seed inoculum was anaerobic digested sludge obtained from Hatton municipal 

wastewater treatment plant near Dundee (Scotland) operating at mesophilic 

temperature of about 37oC. The second inoculum was anoxic surface sediments, 

obtained in the vicinity of a fish farm (sediment exposed to organic input) from Loch 

Linnhe, (56o 35'31.5"N 5o 22'44.3"W).It was transported in a closed container to avoid 

exposure to oxygen and transferred to the lab within 5 hours of collection. In the lab, the 

sediment was homogenised using mechanical stirrer and was diluted using sterile water 

to achieve the desired volatile solids content and immediately put under anaerobic 

condition. The choice of location for sediments was to ensure a greater diversity of 

microbes for a range of seaweeds species. Both inocula were incubated at 37oC for 24 

hours before use. The characteristics of experimental materials are shown in Table 1.  

Table 1: Characterisation of experimental materials 

Component L. digitata* F. serattus* S. latissima* Anoxic 
Sediment  

Digested 
sludge  

TS (wet %) 27±1.4 29±0.9 27.5±1.32 97.7±2.2 22.9±1.2 
VS (dry %) 85.41±3 81.14±2.1 87.64±2.30 18.56±1.8 13.19±0.8 
Ash (dry %) 14.59±1.4 18.86±1.6 12.36±.1.3 79.14±2.4 30.8±1.4 

      

Results are represented by an average of 3 replicates ±SD 

*Detailed characterization of the algal biomass is described by Schiener at al, 2014 

2.3 Buffer solution 

A synthetic mineral buffer was used to provide essential nutrients and stabilise the pH. 

The composition of the buffer [22], include; 2.7 g/L KH2PO4 (strong buffer agent), 3.5 

g/L K2HPO4 (strong buffer agent), 5 mg/LMgSO4.7H20, 0.5 mg/LCaCl2, 0.5 mg/LFeCl3, 

0.5 mg/LKCl3, 0.1 mg/LCoCl2 and 0.1 mg/LNiCl2 in seawater. Seaweeds contain 
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sufficient phosphorus and source of nitrogen to support the growth of microorganisms 

during anaerobic digestion [20].  

2.4  Experimental Design 

To maintain adequate mass transfer balance, 5 g of substrates (seaweeds and 

cellulose) in 150 ml of non-growth medium was placed into 575 ml capacity test bottles 

and seeded with 150 ml of anoxic sediment or digested sludge. The mixtures were set 

up to a working volume of 300 ml leaving a 275 ml headspace for gas measurement. 

Each culture composed of substrates to inoculum ratio (VS:VS) of 1:1, as 

recommended in the literature [21]. 

After set-up, the pH values of the cultures were adjusted to 7.5±0.3, and the bottles 

sealed with septum and tightly closed with aluminium caps. The headspaces were 

thereafter flushed with nitrogen at 0.1 dm3min-1 for 2 minutes and sealed with silicon 

sealant (SwiftSeal® UK).  

The blanks (negative controls) containing only inoculum and buffer solution were 

included to account for any methane produced due to residual substrates in the inocula. 

All cultures were performed in triplicates and incubated at 37oC for 50 days.  

2.5 Sampling 

Gas composition was analysed from the headspace using 100 µl gas tight syringes 

daily in the first 10 days and at 3days interval afterwards, while gas volume was 

determined using syringes. To ensure that the residual pressure was negligible, the size 

of syringes used changed between 50 ml to 1 ml. Samples for microbial analyses were 

collected after thorough homogenisation of the batch reactor by using needles with 

larger pores, sealed with silicon material (SwiftSeal® UK) and checked with water to 

ensure no leakages. Syringes (with ~1 mm needles) were used to draw samples for 
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microbial analyses in other to avoid opening the cultures. Gas volume measurements 

took into account changes in headspace volume over time. Methane concentration (%) 

was multiplied by the increasing volume of the batch headspace to account for the 

cumulative increases in headspace volume over time.   

2.6  Analytical Methods 

Headspace methane concentration was analysed daily in the first 10 days of the 

experiment and every 3 days afterwards using Gas Chromatography (HEWLETT 

PACKARD 5890 SERIES 11, USA) previously described [21]. Total solids and moisture 

content of the seaweeds and seed inoculums were determined according to standard 

procedures [20] in triplicates. The volatile fatty acids (VFAs) concentration was 

determined by esterification method [23], while colorimetric determination was done 

using a HACH DR/5000 (HACH method 8196). The pH was measured using pH meter 

SensIon 3 (HACH) at regular intervals as indicated above. 

 

2.7 Molecular techniques 

DNA was extracted from the seaweeds cultures (0.5 mL; from both the sludge and 

sediment seeded cultures) in duplicate on Day 20 (a period of considerable methane 

production) of the anaerobic digestion process using the FastDNA spin kit for soils (MP 

Biomedical, USA) according to manufacturer instructions. Extracted DNA was 

quantified using a spectrophotometer (Thermo Scientific™ Evolution™ 260 Bio 

spectrophotometer, USA) and were diluted 1/10 to achieve optimal concentration for 

PCR. Methanogens were detected by targeting the α-subunit of the methyl-coenzyme 

M reductase (mrcA) gene which encodes the enzyme catalysing the last step in 

methanogenesis and is found in all known methanogens [24]. For specific methanogens 

studies, primer pair targeting the mcrA gene: mlas 



8 

 

(5’-GGTGGTGTMGGDTTCACMCARTA-3’) and m-rev (5’-

CGTTCATBGCGTAGTTVGGRTAGT-3’) which produces ~500bp DNA fragment were 

employed as previously described [24]. All PCR runs were carried out in a total 25 µl 

volume containing 0.5 µl of forward primer, 0.5 µl of reverse primer (10ρmoles/ µl), and 

0.1 µl of MyTaq polymerase (5u / µl). Other components of the mix are 5µl of PCR 

Buffer (comprising 5 mM dNTPs, 15 mM MgCl2, stabilizers and enhancers), 18.4 µl of 

molecular grade water (17.4 µl) and 0.5 µl of DNA extract. Negative controls containing 

0.5 µl of sterile molecular grade water were included in all cases. All primers were 

obtained from Integrated DNA Technologies, (Belgium) while other reagents were 

obtained from Bioline Reagents Ltd, (London, UK). Duplicate PCR products were 

pooled and purified with the QiaQuick PCR Purification Kit (Qiagen, USA) prior to being 

used in the cloning reaction [25]. 

Clone libraries were constructed by ligating the mcrA gene PCR products into pCR 2.1-

TOPO® vector and transformed into One Shot TOP10 chemically competent 

Escherichia coli using the TOPO TA® cloning kit according to the manufacturer’s 

instructions (Invitrogen, CA, USA).   

Transformed clones were screened using LB plates containing Ampicillin (50mg/ml) 

[26]. Randomly selected colonies were re-streaked onto new LB plates overnight at 

37°C. Selected clones were used directly in PCR reactions using vector-specific 

primers M13F (5’-TGTAAAACGACGGCCAGT - 3’) and M13R (5’-

CAGGAAACAGCTATGACC -3’) (Invitrogen) as previously described [27,28]. PCR 

product (5µl) were visualised by agarose gel electrophoresis to check the sequences 

were the right sizes. Clones (56) of the correct size were purified (QIAquick spin 

columns, Qiagen, Crawley, UK) and sequenced using the primer M13F by Source 

Bioscience (Glasgow, UK) using Sanger Sequencing approach. Sequences were 
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viewed and corrected using FinchTV Version 1.4.0 (Geospiza Inc.) and aligned using 

Bioedit Sequence Alignment Editor. Nucleotide sequences from the clone library and 

were compared to the GenBank database using FASTA [29]. The acceptable 

percentage of identity was set at ≥70 % (for mcrA gene fragments) and minimum 

nucleotide length was 196bp [30].  

2.8 Statistical analysis 

Experimental error was determined for replicate assays and expressed in standard 

deviation. The significances of differences in results were determined by one-way 

analysis of variance (ANOVA). Statistical significant interactions were further analysed 

using post hoc test (Tukey) at 95 % confidence interval. Differences between species 

and across treatments were also determined. All statistical analyses were performed 

using Minitab Statistical Software (Pen. State University, USA) version 17.0. 
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3 Results and discussion 

During the 50-day test, pH, VFAs and methane production were measured as a function 

of process performance. The results as presented below are generally net of blanks.  

3.1 Methane production in cultures seeded with anoxic sediment  

For the cultures seeded with anoxic sediments biogas produced in the first 7 days of 

incubation consisted mainly of carbon dioxide (Fig. 1A). It was not until after 10 days 

that methane gas was detected in the cultures. The absence of methane production at 

the early stages of the anaerobic digestion process might be due to initial adaptation of 

the microbial community of the sediment collected at a temperature of 8oC compared to 

37oC of the digestion process. 

As shown in Figure 1A, the results suggest that L. digitata was the most digestible 

substrate and had the highest cumulative methane yield of all the substrates, whilst F. 

serratus produced the lowest cumulative methane gas of the seaweeds tested. The 

cellulose cultures produced the lowest overall of all the cultures with only 0.052 dm3 of 

methane gas compared to 0.875 dm3 produced by L. digitata.  

Results of VFA analyses revealed ample volatile fatty acids yield in all experimental 

cultures, indicative of the effectiveness of hydrolysis and acidogenesis processes. For 

the anoxic sediment seeded cultures, rapid increase in VFA production was observed in 

all cultures after Day 8, which reached its peak on Day 23 in all the 3 seaweeds and 

Day 35 in cellulose cultures as shown in figure 2A. Peak VFA values observed on Day 

23 in L. digitata, F. serratus, and S. latissima cultures were 2.514, 2.934, 4.154 g.dm-3 

respectively, while peak VFA value of 1.551 g.dm-3 in cellulose cultures occurred later 

on Day 35 as shown in Fig 2A. These results suggest that the sediment inoculum 

provided effective hydrolytic activity. 
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Figure 1. Cumulative methane yield of seaweed cultures seeded with (A) marine sediments and 
(B) digested sewage sludge. Error bars represent standard deviation from the mean (n=3). 

 

  

A 

B 
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Moreover, rapid VFAs formation in seaweeds cultures resulted in substantial drops in 

pH within the first 48 hours of the AD process. The pH of all seaweeds cultures dropped 

below 6.3 from the original 7.5 within the first 24 hours of the test, while the pH of the 

cellulose and blank cultures remained steady above 7.2. This may be due to the 

presence of readily hydrolysable sugars in the seaweeds which could be easily 

hydrolysed and fermented resulting in faster acid formation and resultant drop in pH [9]. 

Moreover, the pH did not go below 6 in any of the reactors during the hydrolysis and 

acidogenesis stages, therefore there was no pH adjustment. The lowest pH recorded in 

seaweeds reactors were 6, 6.15, and 6.2 for F. serratus, L. digitata and S. lattisima 

respectively. After the initial drop, a steady rise in pH was observed in all reactors, 

despite increasing VFAs production (Fig S1A). This may be as a result of the buffering 

provided by the buffers included in the experimental set up as well as ammonia 

accumulation during substrates degradation  [31].  

Generally, the VFAs produced in sediment-seeded cellulose cultures remained poorly 

converted during the process. The results demonstrate a preference of the 

methanogens present in the sediments for seaweeds rather than cellulosic biomass. 

The methanogens in the marine sediment perhaps require a longer adaptation period in 

non-marine substrates or were not suited to utilise some of the derivatives of the 

substrates. More so, the low methane yields obtained from pure cellulose cultures might 

be due to the lack of cellulase enzyme activity needed to break polysaccharide 

cellulose into smaller fermentable sugars in the microbial community within the cultures. 

The results therefore indicate that marine sediments contain microbial populations that 

are more suited to seaweed digestion than cellulose digestion. Cumulative methane 

yield of sediment-seeded substrates used in the study is of the order: L. digitata> S. 

latissima>F. serratus > cellulose. 
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3.2  Methane production in cultures seeded with digested sludge  

Methane production started gradually in most sludge-seeded cultures from Day 1 as 

shown in Figure 1B.This relative greater initial surge of biogas production is believed to 

be due to abundance of methanogens that are tolerant to a wide range of 

environmental conditions in the anaerobic sludge and already adapted to mesophilic 

anaerobic conditions. 

Methane production yields in L. digitata and S. latissima seaweed cultures were similar 

and significantly greater than the yield from the F. serratus cultures (Fig.1B), likely 

because of lower sugar and higher ash content of F. serratus [33]. It is also noteworthy 

that F. serratus cultures gave lower methane yields than the other seaweeds in the 

study in both anoxic sediments and digested sludge seeded cultures (Fig. 1). 

Unlike sediment-seeded cultures, sludge-seeded cellulose cultures gave greater 

methane yields (Fig.1B). This was somewhat expected since the digested sludge is 

often exposed to cellulose-like substrates, and might contain microbial community that 

are well adapted to cellulose utilisation. The cellulose culture produced significantly 

(p<0.05) higher methane yield than L. digitata and over 3 times more than F. serratus 

as shown in Figure 1B. Meanwhile, methane yield from the sludge-seeded cellulose 

cultures was more than 26 times higher than those seeded with anoxic sediment. This 

is an indication of the suitability of digested sludge over anoxic sediment for cellulose 

anaerobic digestion. Cumulative methane yield recorded for cellulose and the three 

seaweed cultures seeded with digested sludge occurred were in the order: cellulose >L. 

digitata> S. latissima>F. serratus. 

To examine the likely causes of the observed methane production pattern by the sludge 

and sediment seeded cultures, the volatile fatty acids (VFA) concentrations of the 
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cultures were analysed during the course of the experiment. Results showed 

differences in the VFA yields by both sets of cultures. 

As in the sediment seeded cultures, rapid increases in VFA concentrations were 

recorded after Day 8 in the digested sludge seeded cultures. However, the levels of 

their accumulations were lower, perhaps as a result of concomitant conversion by the 

methanogens into methane. Peak VFA values observed on Day 23 in L. digitata and S. 

latissima cultures were 2.34, 2.66 g.dm-3 respectively, while peak VFA value of 2.48 

and 1.33 g.dm-3 in F. serratus and cellulose cultures occurred later on Day 27 as shown 

in Fig 2A.  

 

A 
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Figure 2. VFA production from experimental samples seeded with (A) marine sediments and (B) 
digested sludge.  Mean VFAs produced by the blank batches was subtracted from the mean of 
the other cultures. Error bars represent standard deviation from the mean (n=3). 

Increases in VFAs concentration resulted in corresponding decline in pH from the initial 

7.5 to 5.3, 5.4 and 6.7 in L. digitata, S. latissima, F. serratus cultures respectively, while 

the pH of the cellulose cultures was stable above 7.0 (Fig S1B), perhaps due to no or 

low VFA accumulation . pH below 6 were re-adjusted within the first few days to avoid 

inhibition after which a pH stability above 6.5 was established. The VFA concentrations 

at the end of the experiment were relatively lower than those of the sediment-seeded 

cultures as shown in Figure 2B,an indication of more effective methanogenic activities 

in these set of cultures. Moreover, as in the sediment cultures, hydrolysis and 

acidogenesis were not the limiting steps in the study.  

3.3  Effect of sources of seed inoculum on methane yield 

The specific methane yield for cultures seeded with anoxic sediment were 205, 175, 

100 and 10.4 dm3kg-1 VSadded, for L. digitata,S. latissima, F. serratus and cellulose 

B 
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respectively, whilst for cultures seeded with digested sludge, the yields were 

respectively 256, 230, 103 and 270 dm3kg-1VSadded  as shown in Figures 3.  

 

Figure 3. Specific methane yield of seaweed cultures seeded with (A) marine sediments (B) 
digested sewage sludge. Error bars represent standard deviation from the mean (n=3). 

 

Statistical analysis of the results obtained with the digested sludge inoculum showed 

that there was no significant difference in methane yield between sludge seeded 

cellulose and L. digitata cultures (p<0.05). Methane yield from L. digitata and S. 

latissima in this study compare favourably with those of other substrates reported in the 

literature as shown in Table 2. These results therefore suggest that L. digitata and S. 
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latissima are suitable for commercial scale biogas plant. On the other hand,  F. serratus 

seems to be generally poorly biodegradable in anaerobic conditions, as also reported 

by other authors [32] due probably to relatively high content of recalcitrant and inhibitory 

compounds such as polyphenols. Although inhibitory polyphenols are present in most 

brown seaweeds, their concentration in Fucus sp. has been reported to be up to 14% of 

the total solids, which is significantly higher than the 2% in Laminaria and Saccharina 

spp. [20,33].  

Table 2 here 

Results of the current study highlight the importance of prior microbial biomass 

adaptation in the anaerobic digestion process (as shown with marine sediment at 

mesophilic conditions). Adaptation period can vary from a few days to months 

depending on the source of inoculum and type of biomass. It is therefore important that 

future studies are carried out to determine suitable loading conditions before a novel 

biomass is introduced into an operational anaerobic digestion system to avoid process 

failure. This is particularly important when marine biomass, by virtue of their seasonal 

availability fluctuations, is used as sole or part of the feedstock mix in co-digestion 

systems.   

3.4  Methanogen community in seaweed cultures 

In order to assess the composition of the methanogenic community, clone libraries of 

the mcrA methanogenic functional genes were constructed from both sludge and 

sediment seeded cultures. Day 20 Laminaria digitata culture was chosen based on 

methane production data.  
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3.4.1 Methanogen community in sediment-seeded seaweed cultures 

Results of phylogenetic analysis of 28 randomly selected clones of mcrA gene 

sequence from sediment seeded cultures reveals sequences affiliated with three orders 

namely Methanosarcinales (43 %), Methanomicrobiales (43 %) and Methanobacteriales 

(11 %), while 3 % of the detected methanogens was unclassified. The dominance of 

Methanosarcinales and Methanomicrobiales in anaerobic digestion processes have 

been reported previously [34].  

All the Methanosarcinales (43 % of methanogens) identified were composed entirely of 

methanogens related to the genus Methanosarcina. This genus has been reported as 

the most versatile of all methanogens, because of their ability to utilise the widest range 

of substrates including acetate, H2 and methyl compounds such as methanol and 

methylamines. They are also known to be more tolerant to sudden changes in pH than 

other methanogens and hence their dominance is indicative of stable and effective 

process [35,36]. 

Analysis of methanogens related to the order Methanomicrobiales from the sediment-

seeded cultures showed that this order was much more diverse, with at least four 

genera detected, and Methanofolis being the dominant genus. Others include 

Methanoculleus Methanogenum, and Methanospirillium. Methanofolis is considered to 

be a halotolerant hydrogenotrophic methanogens, which is able to metabolise a wide 

range of substrates such as H2+ CO2, formate, 2-propanol + CO2, 2- butanol + CO2, or 

cyclopentanol + CO2 but cannot utilise acetate, methanol, ethanol or dimethylamine. It 

has been detected in a number of habitats such as oil fields [37], fish ponds [38], rumen 

of buffaloes [39] as well as in anaerobic sludge digesters [26]. Methanoculleus spp. on 

the other hand, have been reported to be involved in syntrophic oxidation of acetate in 

digesters containing high concentration of VFAs and compete with acetoclastic 
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methanogens for acetate [27,40,41]. They also have the ability to metabolise a wide 

range of substrates such as H2 + CO2 , formate, 2-propanol + CO2 , or 2- butanol + CO2 

for methane production [34,35]. The significant contribution of Methanoculleus spp. to 

hydrogenotrophic methanogenesis in full-scale anaerobic reactor digesting activated 

sludge has also been reported [42,43].  

3.4.2 Methanogen community in sludge-seeded seaweed cultures 

Analysis of 28 randomly selected cloned mcrA gene sequences from sludge-seeded 

cultures revealed sequences affiliated with at least three methanogen orders namely: 

Methanomicrobiales (39 %), Methanosarcinales (36 %) and Methanobacteriales (21 %) 

with about 4 % unclassified methanogens. These results corroborate previous reports 

of the dominance of genera Methanomicrobiales and Methanosarcinales in various 

anaerobic digesters [44,45].  

Detailed analyses of the sequences within the Methanomicrobiales order were made up 

of three genera namely; Methanospirillum (37 %), Methanoculleus (36 %) and 

Methanogenium (27 %). In addition, the order Methanosarcinales is composed of three 

possible genera. Meanwhile, Methanosaeta-like sequences, accounted for half (50 %) 

of the order, Methanosarcinales in sludge seeded cultures. Methanosaeta is the only 

genus of methanogen that thrives exclusively on acetate. It is one of the most reported 

genera of methanogens, occurring in a wide range of habitats [40,46–49]. Interestingly 

Methanoaeta, which forms the bulk (50 %) of the order Methanosarcinales, was not 

detected in the sediment-seeded cultures.  

The second genus of methanogens related to the order Methanosarcinales; 

Methanosarcina accounting for 40 %.These methanogens have been found to be 

dominant in anaerobic reactors operating at short retention time [36], abandoned coal 



20 

 

mines [50], in salt-mesh creek sediment [51] and high salinity cultures digesting brown 

algae [15]. The third Methanosarcinales-like genus, Methanolobus which constitutes 10 

% of the order is both halophilic and exclusively methylotrophic; metabolising methanol, 

methylamines and sometimes methyl sulphides [52]. Methanolobus has also been 

detected in large numbers in mesothermic oil fields [37]. 

3.4.3 Impact of the source of inoculum on methanogen distribution 

Many similarities and differences were observed between the methanogenic 

communities of the two sources of inoculum utilised in this study. Figure 4 shows the 

distribution of methanogen genera within sediment and sludge seeded seaweed 

cultures.  

 

Figure 4. Genus distribution of the methanogen population between marine sediments and 
digested sewage sludge inoculated cultures. Genus name in blue occurs only in sediment while 
those in red were detected only in sludge-inoculated cultures. 
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At a glance, results showed that the sludge-seeded cultures harboured greater species 

richness of methanogen sequences with at least 9 sequence types detected, compared 

to the possible 7 within the sediment seeded ones. The differences in the type and 

species richness of methanogen sequences might explain the differences recorded in 

methane yield. For instance, four genera; Methanosaeta, Methanolobus, 

Methanothermobacter and Methanobrevibacter which were found in the sludge-seeded 

cultures were not detected in the sediment-seeded cultures. Similarly, Methanofolis 

which was one of the dominant genera within the sedimentseeded cultures was not 

detected in the sludge-seeded cultures (Fig 4). It showed that inoculum from 

wastewater treatment plant provided a more diverse group of methanogens than the 

sediment inoculum. Incidentally, there is also an absence of Methanosaeta in the 

sediment inoculum, which are generally considered to be the dominant species involved 

in acetoclastic methanogensis [50] 

Generally, the results of this study suggest that different sources of inoculum introduced 

different groups of microorganisms into anaerobic digestion reactions. These 

differences may influence the performance of the system in terms of biogas yield, 

stability, tolerance to adverse environmental conditions and inhibitory compounds 

contained in the biomass, e.g. phenolic compounds and salinity associated with 

seaweed biomass. Therefore, for the co-digestion of seaweeds with other materials 

such as grasses, food and animal wastes start-up using a mixture of anoxic marine 

sediments and digested wastewater sludge may provide greater process stability and 

robustness than if either is used as sole inoculum. This is necessary in order to 

withstand any adverse effects to the biological process that can be caused by seasonal 

fluctuations in seaweed availability and hence their loadings to the digester. 
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Furthermore, as shown in figures 2A, a slower conversion of VFA in the sediment-

seeded cultures resulted in a bulk of the VFA being unutilised at the end of the study. 

This observation is supported by the result of the methanogens community analysis, 

which did not detect any Methanosaeta-like methanogens in these cultures. The 

absence of Methanosaeta sp. in the marine sediment, which are thought to be 

responsible for most of the methane production in anaerobic systems [16,46], could 

explain the build-up of VFA and low methane production recorded. However, 

Methanosarcinales spp. were detected in the sediment inoculum and these 

methanogens have been shown to possess the ability to utilise a range of substrates 

including acetate [50,52,53]. As such, the lower methane yields recorded in the 

sediment-seeded cultures might not be due to the absence of Methanosaeta alone. 

Conclusion 

This study highlights that seaweed species such as L. digitata and S. latissima 

seaweed species are more amenable to biogas production than F. serratus under 

different inoculation conditions. This study showed that methane yield from different 

reactors was achieved by different types of methanogens. Poor methane yield recorded 

in the sediment-seeded cultures was as a result of the absence of key methanogenic 

community needed to convert available volatile fatty acids into methane. Anaerobically 

digested sewage sludge seemed effective as inoculum for start-up of various substrates 

including seaweeds.  
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Fig S1A. pH variation in batch reactors during anaerobic digestion of substrates seeded with 

anoxic sediment. 
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Fig S1B. pH variation in batch reactors during anaerobic digestion of seaweed substrates seeded 

with digested sludge. pH below 6 was readjusted to 7 to avoid system failure. 
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Fig. S2. Phylogenetic tree showing the relationship between representative methanogen clones present in 

the day 20 sediment (SEMCR) and sludge (HAMCR) inoculated seaweeds reactors and reference 

organisms (sequences) retrieved from the GenBank database. Accession number of the reference sequences 

is listed in parenthesis. Phylogenetic tree was inferred using the Neighbour-Joining method. The optimal 

tree with the sum of branch length = 11.01316005 is shown. The percentage of replicate trees in which the 

associated taxa clustered together in the bootstrap test (100 replicates) is shown next to the branches. The 

tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to 

infer the phylogenetic tree. The evolutionary distances were computed using the Maximum Composite 

Likelihood method and are in the units of the number of base substitutions per site. The analysis involved 

53 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All ambiguous 

positions were removed for each sequence pair. There were a total of 1845 positions in the final dataset. 

Evolutionary analyses were conducted in MEGA6.   
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