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Abstract— Real-Time Thermal Rating (RTTR) is a smart grid 

technology that allows electrical conductors to operate at an 

enhanced rating based on local weather conditions. RTTR also 

provides thermal visibility of the network, making system 

operators aware if the actual rating drops below the static 

seasonal rating. This paper investigates how using these 

enhanced, variable ratings affects power network reliability. A 

methodology has been developed to assess network reliability 

with variable conductor ratings. The effect of failures and 

uncertainties in the RTTR system are also considered, and the 

effect of the correlation between conductor ratings due to 

common weather conditions is built into the model. State 

sampling and sequential Monte Carlo simulations are used to 

estimate the reliability of the RBTS 6-bus test network. At low 

loading levels the RTTR appears to reduce network reliability, 

but actually illustrates occasions when the existing ratings are 

being unknowingly infringed. For higher loading the network 

reliability is significantly improved by the use of RTTR, with 

reductions in loss of load expectation of up to 67%. 

 
Index Terms— Power system planning, Power system reliability, 

Transmission lines, Smart grids 

 

I. INTRODUCTION 

EAL-TIME THERMAL RATING  is a smart grid 
technology which allows electrical conductors to operate 

at an enhanced rating based on local weather conditions. 
Conventionally overhead lines are given a fixed rating based 
on a conservative set of weather conditions [1, 2]. The actual 
rating is dependent on the local wind speed, wind direction, 
ambient temperature and solar radiation, and is often 
significantly higher than the seasonal static rating [3]. A 
number of systems have been developed to exploit this 
additional capacity [4-6]. 
 This paper describes a methodology to evaluate the impact 
that of using this enhanced, variable rating on network 
reliability. Energy targets such as the 80% reduction in CO2 
emissions by 2050 target in the EU [7], will cause an increase 
in electricity demand as transport and heating are electrified. 
This could cause the presently reliable transmission and 
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distribution systems to become unreliable and need significant 
reinforcement. RTTR, as part of a larger suite of smart grid 
technologies, could eliminate or reduce the need for new 
conductors while giving network operators more information 
about the state of the system. 
 Although RTTR allows conductor ratings to be set in real 
time, this paper deals with the technology from an offline 
planning perspective. While on first inspection this may seem 
counter intuitive, it is essential to be able to understand the 
impact of a new technology before it is deployed on a real 
network. The methods described allow the impact of the 
variable ratings on network reliability to be quantified at the 
planning stage. Thorough calculations can be performed at this 
stage without the time constraints that may be present during 
operation. 
 The archival value of this paper lies in the adaptation of 
established reliability analysis techniques to work with the 
upcoming RTTR technology, coupled with a quantification of 
the benefits RTTR can provide to network reliability. Further 
to this, RTTR’s deployment is dependent on proper 
understanding of the accuracy and reliability of the RTTR 
system; this paper demonstrates the effect of the uncertainty 
and reliability of RTTR on system reliability. 

II. POWER SYSTEM RELIABILITY 

Power system reliability has always been important to 
network operators. Since the advent of computing power, 
more complex solutions, both analytical and Monte Carlo 
(MC) based, have become available. There are two problems 
to be solved within power system reliability; generation 
adequacy, whether there is sufficient generation to meet 
demand and transmission adequacy, whether there is sufficient 
transmission capacity to connect generation to load [8]. 
Transmission systems are concerned with both problems, 
while distribution networks are only concerned with 
transmission adequacy. That being said, generation at lower 
voltages can be used to assist in transmission adequacy [9]. 
Since RTTR provides a benefit to transmission adequacy, only 
that was considered in this work. 

Network reliability can be quantified in different ways. Loss 
of Load Expectation (LOLE) is the likelihood that the load in 
the system cannot be adequately supplied [8]. Loss of Energy 
Expectation (LOEE) goes further by assessing the deficit 
between the load and the supply. Although it has more 
physical significance than LOLE, it has less flexibility and has 
been less widely applied [8]. 

Investigating the Impact of Real-Time Thermal 
Ratings on Power Network Reliability 
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A. Probabilistic Reliability Assessment 

Power systems are large and complex; consequently they 
can occupy many different states during operation. This large 
state space makes analytical state space enumeration, where 
the probability and consequence of each state is evaluated, 
difficult and time consuming. MC simulations offer a way to 
explore this state space by simulating a large number of 
random input states to assess system behavior. 

MC simulations can take various forms. For this application 
one option is state sampling MC [10, 11], where each input 
variable is assigned a probability distribution. Samples from 
these distributions are then used to perform a large number of 
calculations to explore the state space. This method is simple, 
but does not account for any time dependencies within the 
model. The sequential MC simulation [12, 13] keeps this time 
dependency intact, but at the cost of greater computational 
resources and complexity. A method for pseudo sequential 
MC simulation was proposed [14] where states are sampled 
randomly from a time series, but on occasions where the 
system was not adequate the duration of this inadequacy was 
examined by looking at the appropriate section of the time 
series.  

A key difficulty in evaluating the impact of RTTR on 
system security is the correlation structure between the ratings 
of the lines in the network. Networks cover a wide 
geographical area, so overhead lines which are directly 
connected will have highly correlated ratings, while lines 
which are more remote from one another will have weakly 
correlated ratings. This implies that stronger correlation will 
be present in meshed networks than radial networks, since in 
meshed networks a large number of conductors cover a 
smaller geographical area. The correlation between conductors 
in transmission networks will generally be lower than those in 
distribution networks, because the transmission network spans 
a larger geographical area. In all cases, the terrain local to the 
conductors will have an impact on these correlations. The 
effect of wind speed correlation on the reliability provided by 
wind generation was investigated by [15] and a methodology 
for incorporating these correlations into the MC simulation 
was developed. The method used a genetic algorithm to ensure 
the sampled variables corresponded to a previously selected 
correlation between wind sites. The methodology used an 
Auto-Regressive Moving Average (ARMA) model of wind 
speed [16]. This allowed a synthetic data set much larger than 
the real data set available to be used in a sequential MC 
simulation. The paper concludes that multiple independent 
wind farms provide a higher contribution to network security 
than a single wind farm, or multiple wind farms in the same 
wind regime. 

This concept is important for assessing the impact of RTTR 
on reliability, though the effect of the correlations may be 
different. The correlation between the ratings of lines must be 
accounted for in any model of network reliability 
incorporating RTTR.  

B. Novel Reliability Assessment Methodologies 

The MC based approach has come under criticism in recent 
years because of its time and computation requirements. 
Consequently new methods have been proposed which attempt 
to provide the same level of detail as MC at a reduced 

computational cost. Several of these approaches, which 
attempt to enumerate the probability states efficiently, were 
considered for this application [17-20]. 

Unfortunately these approaches are not well suited to the 
RTTR application. The variable conductor ratings mean that 
each conductor has many states representing different rating 
levels. This vastly increases the number of low probability 
states, making state enumeration more intensive. The number 
of states could be reduced by breaking the rating of the line 
into a small number of discrete states, but this would lead to a 
loss of detail in the results. The complex correlations between 
the conductor ratings in the network are also difficult to assess 
using a state space method, but can be accounted for using a 
sequential MC simulation. 

After investigating the available methods for assessing 
power system reliability, sequential Monte Carlo simulation 
seems most appropriate for the RTTR application. MC is an 
effective means of exploring a large number of low probability 
states [18], and sequential simulations allow the correlations 
between line ratings to be accounted for. The downside with 
MC is that long calculations are required. Because this work 
deals with network reliability from a planning perspective, 
time consuming calculations are acceptable. 

C. Smart Grid Reliability 

Implementing smart grid projects will have an impact on 
network security [21]. The consensus is that smart grids will 
rely heavily on IT and communications infrastructure [14, 21], 
and that the reliability of these components will heavily 
influence the reliability of the smart grid. It is clear that in 
assessing the impact of RTTR on power network reliability, 
the reliability of the RTTR technology must be taken into 
account. 

III. METHODOLOGY 

A. Overhead Line Reliability Model 

The reliability of the overhead lines in this study was 
represented as a two state Markov process; an up state 
(available) and a  down state (unavailable) [22]. The 
probability of being in the down state is given by:  

Where MTTR is mean time to repair, MTTF is mean time to 
fail (in hours) and f is the failure rate (failures per year). 
Transmission system reliability data were available [23].  

B. Reliability Test Networks 

In order to develop a methodology for assessing the 
reliability of an RTTR enabled network, a test case must be 
used. Probabilistic reliability analysis is more commonly 
performed on transmission networks, due to the high 
complexity and comparatively low impact of distribution 
networks on loss of load. 

Various test networks are available. Figure 1 shows the 
RBTS [24] is a 6 bus, 9 transmission line system. This small 
network was used because it allowed results to be easily 
analyzed. The changes in power flows due to outages are 
obvious, so it is easy to see where RTTR is providing a 

                              
(1) 
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benefit. The IEEE 14-bus, 24-bus and 39-bus networks were 
used to test the scalability of the method. 
 

 
Figure 1:  Diagram of the test network  

C. State Sampling Simulations 

State sampling Monte Carlo simulations are simple to 
perform. The different parameters in the model are represented 
by probability distributions. In each calculation, every 
parameter is represented by a random sample from these 
probability distributions. The model is then run a large number 
of times to effectively explore the state space. Reliabilities can 
be represented as a simple probability derived from the MTTF 
and MTTR, since the state sampling method does not use any 
kind of time series. 

The line ratings were approximated by a normal distribution 
with µ=1.7 and σ=0.35 as a proportion of static rating. The 
load data were sampled from a simple load distribution curve. 
Since this study is concerned with the impact of RTTR on 
transmission adequacy the generation was considered to be 
perfectly reliable. The impact of RTTR on composite system 
reliability could be considered in a future study. 
 State Sampling studies gave reasonable results, but the 
impact of outage durations, the time domain behavior of the 
line rating and loading and the correlation structure between 
the line ratings were all of interest, and could only be properly 
represented by a sequential simulation. 

D. Sequential Monte Carlo 

Sequential MC was used to give a more complete and 
realistic representation of the system. Synthetic time series 
were used rather than PDFs, and a Markov model was used to 
represent the reliabilities. 

To perform sequential MC studies, the existing sampling 
method for generating rating data was replaced with synthetic 
time series calculated using real data. An Auto Regressive 
Moving Average (ARMA) model was used to represent the 
ratings. Third order auto regressive and first order moving 
average models were used. The model was generated using the 
square root of the ratings data, since this provided a closer 

approximation to a normal distribution than the ratings 
themselves. The distribution used is dependent on the specific 
historical data, and an appropriately selected model will lead 
to more representative results. 
The autoregressive model was of the form: 
  ( )            (   )           (   )           (   )          (   ) 

 

(2) 

 
Where α is a random sample from a normal distribution 

with µ=0 and σ=1.216. The model is based on data from a 
RTTR trial site with a sampling rate of 5 minutes [4]. The 
thermal time constant of the overhead line is such that the 
rating must be updated every 5 minutes to ensure the 
conductor operates within the thermal limit [25]. One year of 
historical data was available, so the ARMA model was used to 
allow simulations of time periods greater than one year. Using 
ARMA models rather than using historical data directly also 
allowed investigation into the impact of different levels of 
correlation between the overhead line ratings on the overall 
network reliability. Load data were generated using a similar 
model. The model parameters were selected using historical 
load data. Again, the ARMA model used a normal distribution 
based on the square root of the load data, since this gave the 
best approximation to the data. 

The PDFs used were evaluated in terms of the average root 
mean square error (ARMS) [26]: 

     √∑ (             )       

 

(3) 

Where FMod,i and FRef,i are the ith values on the CDF curves of 
the fitting model and the reference respectively. N is the 
number of selected points which are chosen from the range of 
the CDFs within a certain interval. The historical data were 
used as the reference. The ARMS values for the models used 
in the analysis are shown in Table 1. 

Parameter ARMS Error 
Rating 3.57% 
Load 2.70% 

Square Root of Rating 2.03% 
Square Root of Load 0.70% 

Table 1: Average Root Mean Square errors of the load and rating distributions 

E. Correlated Rating Time Series 

In a network, conductors at geographically close locations 
will have ratings which are correlated to one another in some 
way. Figure 2 shows correlations calculated using weather 
data from the UK. The weather data was used to calculate 
conductor ratings via the CIGRE overhead line model [27]. 
Two sets of weather stations were used; one set of tightly 
grouped stations, with a maximum spacing of 15km, and four 
stations spread across the UK with a maximum spacing of 
over 600km. The correlations were calculated using the 
Pearson product-moment correlation:     (   )     (   )       (    )(    )      

 

(4) 
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Where cov is the covariance, E is the expectation; µ  is the 
mean and σ is the standard deviation. 

 
Figure 2: Plot of correlation between conductor ratings against distance 
between conductors 

The results demonstrate that although the high correlation 
between the ratings of nearby conductors decays quickly with 
distance, there is still some correlation between conductors 
hundreds of kilometers apart. Conductor ratings are governed 
by weather conditions, and conductors hundreds of kilometers 
apart will still be affected by the same large scale weather 
phenomena. 

These correlations must be represented in the model. The 
ARMA model used to represent the ratings uses a random 
number string as part of the moving average model. If these 
strings are specified with set correlations to one another, then 
the resulting ratings data will have a similar correlation [15].  

Specified random number series can be generated using 
Cholesky decomposition [28]. This approach requires a 
positive definite matrix to be specified, where element (a,b) 
represents the desired correlation between conductors a and b 
(resulting in 1s on the leading diagonal, since this represents 
the correlation of a rating with itself). Cholesky decomposition 
is performed, to give the matrix U. A matrix of uncorrelated 
random numbers, R, can then be multiplied by U to give Rc, a 
matrix of correlated random numbers. This is shown in 
equation 5. 

 
 

  
[  
   
                                                                                                                                                                               ]  

   
 
 

 

 

(5) 

       

 

(6) 

 
An example of this for the RBTS ratings is shown in 

equation 4 above. Conductors 1 and 6 and conductors 2 and 7 
were assumed to have the same rating, so only seven sets of 
correlated ratings were generated. Figure 3 shows an example 
of this data. The correlations were checked against the desired 
values before the simulations were carried out. Alternatively 
the correlated random number series could be created through 
eigenvalue decomposition or using genetic algorithms [15]. 

 
Figure 3: 7 sets of rating data with pre specified correlations 

Load data were created using the same method; the 
correlation between all loads was set to 0.8.  

The conductor reliability model was calculated ahead of 
time, with time series of data with each conductor in either the 
0 (down) or 1 (up) state. A model was also included for the 
reliability of the RTTR system. When the RTTR system is in 
the 0 state, the conductor reverts to its static rating. This is a 
worst case assumption, since in operation some form of 
graceful degradation could be applied [29]. The MTTF and 
MTTR values for the conductors were taken from [24]. The 
RTTR system was assigned a MTTF of 3 months and a MTTR 
of 10 hours, though in reality these values would vary 
depending on which RTTR technology was implemented.  

F. Uncertainty Quantification 

In a real system, the operator will not have perfect 
information about the rating of the conductors. If weather 
based RTTR [4] is used, there are uncertainties in the 
measurement of weather parameters, the line rating model and 
using weather station data to estimate conductor ratings at an 
unobserved location. If a tension or sag  monitoring solution 
[30] is used then there is uncertainty in the measurement of 
sag or tension, error in the model used to infer a rating from 
this data and further uncertainty because it is unlikely that 
every conductor span will be instrumented. If this 
methodology is to provide an accurate assessment of the 
benefits of RTTR then these uncertainties must be accounted 
for. Equation 6 shows an uncertainty model for RTTR, where 
emod is the uncertainty associated with the CIGRE ratings 
equations, emeas is the uncertainty in weather or conductor 
rating measurements, ePDF represents the difference between 
the assumed probability distribution and the true data, 
calculated using the ARMS error in section III,  and einterp is 
the uncertainty arising from calculating the rating of a 
conductor based on measurements that are some distance 
away.    (                       ) (7) 

This function was evaluated using a Monte Carlo model, 
using typical uncertainty values from RTTR proof of concept 
studies [4, 5] and the uncertainty in the CIGRE rating model 
[31]. The rating equations, along with randomly generated 
input errors, were used to calculate the distribution of errors is 
shown in Figure 4. The largest source of error is the 
interpolation error, which stems from the physical spacing of 
measurement equipment and the variability of weather 
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conditions on relevant space scales. This could be alleviated 
by heavily instrumenting the network or by pre-identifying 
critical spans and instrumenting those areas.  

 
Figure 4: Probability distribution of the error in rating estimation 

 

Figure 5: A Flow chart showing the complete methodology, broken into set up 
and simulation steps 

Figure 4(a) shows the error distribution with an 
interpolation error of 0% (the error at the location of the 
measurement), while 4(b) shows the error distribution with a 
10% interpolation error (equivalent to a distance of 1km from 
the measurement location). 

The sequential simulation was run with different levels of 
rating uncertainty to see how this would affect the system 
reliability. 

The complete methodology is shown in a flow chart in 
Figure 5. The method is broken up into set up and simulation 
steps. 

IV. RESULTS 

A. System Behavior 

The main goal of this paper is to produce a methodology to 
assess the impact of RTTR on transmission reliability. In order 
to do this it is important to first establish confidence that the 
methodology delivers a good representation of system 
behavior with and without RTTR. 

Figure 6 shows 90 hours of data from one line from a 
simulation of the test network. The figure shows a failure of 
the RTTR system, where the rating reverts to the static value 
and a failure of the overhead line where the line flow drops to 
zero. This capacity is made up by the other lines in the 
network, which could cause them to exceed their static ratings. 
An outage on another conductor is also shown, leading to a 
rise in the current flowing through the observed line. 

Figure 6 also illustrates the behavior of the line flow and the 
rating in a system using RTTR. On some occasions the RTTR 
drops below the static rating; having knowledge of this could 
help network operators make decisions during an outage to 
prevent damage to a conductor or a potential cascading failure. 
On other occasions the line flow goes above the static limit, 
but still stays well below the RTTR. This demonstrates the 
benefit of RTTR not just to reliability, but to network 
capacity. 

 
Figure 6: A plot of RTTR, static rating and line flow in amps, with an RTTR 
failure a line outage, the line flow exceeding the static rating and the RTTR 
dropping below the static rating all pictured 

B. Reliability Indices 

The network was assessed in terms of its LOLE for a 
variety of loading conditions using sequential MC simulations. 
Figure 7 shows the LOLE of the RBTS for different loading 
conditions. The load was increased uniformly taking the mean 
loading from 0.285pu up to 0.855pu. For low loading 
conditions the static rating appears to give a lower LOLE. This 
is an artifact from the calculation method used for overhead 
lines, and is effectively giving network operators a false sense 
of security. Conventionally lines are rated such that there is a 
low, but non-zero, probability of the actual rating being below 
the nominal rating. 
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At higher loading conditions the two data series diverge, 
with the RTTR providing a substantially lower LOLE. This is 
because often the high current flows required in the event of 
an outage can be supported by the enhanced capacity provided 
by RTTR, while using the static rating would require load to 
be shed or other corrective action to be taken. 

 
Figure 7: LOLE in hours per year for RTTR and static ratings at different 
network loading conditions 

C. Effect of Correlation 

More geographically dispersed networks will have a lower 
correlation between conductor ratings. Figure 8 shows the 
reliability of the network for different levels of correlation 
between conductor ratings, varying from complete 
independence to complete dependence. 

 
Figure 8: The results demonstrate that although the high correlation between 
the ratings of nearby conductors decays quickly with distance, there is still 
some correlation between conductors hundreds of kilometers apart. 

  The impact of correlation on reliability is small when 
compared with the overall improvement of using RTTR. The 
case with completely independent ratings yielded the lowest 
reliability. This is because there is greater variance between 
the ratings of lines within the network, leading to a higher 
likelihood of one line having a low rating and resulting in a 
loss of load. The effect of correlation increases with loading, 
because at higher loads reliability is more dependent on 
RTTR. 

D. Impact of Uncertainty 

Rather than using a confidence interval, for each step in the 
time series the LOLE was evaluate probabilistically.         (         ) (8) 

And from the concept of expectation:        ∑ ∏ (        )          
(9) 

Where m is the number of iterations, n is the number of 
circuits, R is the line rating, i is the line current, j is the line 
number and k is the time step.  
 Figure 9 shows the impact of accounting for uncertainty on 
the perceived benefit. The uncertainty shown had a standard 
deviation of 30A, which corresponds to the error at the 
location of a sensor. As the distance from the sensor increased, 
the uncertainty increased considerably and consequently the 
LOLE was greater.  

 
Figure 9: LOLE in hours per year for RTTR with and without uncertainty. 
While the uncertainty reduces the improvement in LOLE there is still a 
significant benefit. 

 With the uncertainty in the RTTR represented in the 
simulation there is still a benefit to reliability as loading 
increases. If a more accurate sensor or conductor thermal 
model were available, the LOLE would further decrease, 
approaching the benefit of the ideal RTTR system. 
 

E. Scalability 

The results presented so far used the 6 bus RBTS. Since real 
power systems are larger, it is important to ensure the method 
functions on larger networks and scales reasonably in terms of 
computational time. RTTR calculations were performed for 
the IEEE 14, 24 and 39-bus test networks to test the system at 
multiple voltage levels and to see how well the simulation 
scaled with network size.  

Table 2: The impact of network size on simulation time 
Table 2 shows that the simulation time scales well with 

network size. These simulations were performed on a desktop 
PC with an Intel i5 processor and 8 GB of RAM. A more 
powerful computer could reduce the computational times. 
Figure 10 shows the results of these simulations in terms of 
LOLE for the 14 and 24 bus network. The general trends are 
similar to that of the RBTS, with RTTR providing lower 
LOLE at higher load levels. However, the specific results 
depend on the network topology and loading conditions. 

RTTR deployments are likely to only cover subsections of 
network [6], usually where power flow congestion, load 
growth or high penetrations of wind energy are a problem. 
Consequently, this analysis will be possible within a 
reasonable time frame. 

 No. of Buses Simulation Time (100,000 Iterations) 
6 53 minutes 

14 58 minutes 
24 72 minutes 
39 80 minutes 
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Figure 10: LOLE in hours per year for the (a) 14 and (b) 24 bus network 
with and without RTTR 

V. DISCUSSION 

A. Holistic Smart Grid Approach 

The results show that RTTR can give a substantial reduction 
in LOLE for heavily loaded networks. However the resulting 
LOLE is still higher than network operators would accept. 
Consequently it is clear that RTTR cannot allow a doubling of 
network capacity in isolation. However as part of a holistic 
smart grid deployment RTTR could allow substantial 
increases in network capacity at a lower cost than 
conventional reinforcement. 

For example if RTTR was employed alongside energy 
storage and demand side response (DSR) it should be possible 
to maintain the same high levels of reliability the network 
enjoys today. When the RTTR is high, energy could be 
transferred into storage facilities, and when the rating is low 
the additional capacity could be made up through storage. If 
this was not sufficient, DSR could be used to ensure no 
customers are disconnected. Distributed generation could also 
be used to compensate during periods of low rating. 

B. Financial Benefits 

One of the incentives for network operators to connect 
distributed generation is that it can defer investment in new 
conductors [32]. RTTR can offer a similar financial benefit. A 
scheme implemented by Scottish Power Energy Networks in 
the UK [33] suggests that implementing RTTR could cost less 
than 10% of the cost of otherwise required network 
reinforcement. RTTR is currently still a new technology; if it 
is widely adopted then economies of scale will drive this price 
down further. 

There is an argument that by using variable technologies 
and accepting a level of risk, networks can deliver better value 
for money to consumers and system operators [34]. Network 

capacity is currently deterministic, and is provided through 
asset based redundancy; this is expensive and inefficient. If 
network capacity was subject to a cost-benefit analysis, 
technologies such as RTTR would compare favorably to the 
existing approach. This paper has demonstrated the benefit 
that RTTR can provide to network reliability. However 
changes in policy and standards may be required for before the 
full benefits can be unlocked. 

C. Network Management and RTTR Deployment 

The work presented in this paper has not accounted for the 
benefits of active network management informed by the 
RTTR. In reality it would be possible for network operators to 
embed RTTR into their Network Management System (NMS) 
[29] and use active control to minimize the probability of 
exceeding the RTTR.  

When an outage occurs network operators take steps to 
reconfigure the remaining network such that customers remain 
connected. RTTR adds a powerful additional tool to this, as 
well as alleviating the need to reconfigure the network. The 
benefits of combining network reconfiguration and RTTR has 
been demonstrated by [35]. 

When deploying smart grids, the technology developers 
must be mindful of providing the correct information for 
system operators to make informed decisions. Too much 
information can cause decisions to become too complicated. In 
this case, the ideal information would be the rating of the 
determining span of each circuit, and information about the 
uncertainty of that value. 

RTTR may not be an appropriate solution for all networks 
as many conductors will soon be in need of replacement. 
However, there are areas of network that are fit for purpose, 
but may need reinforcing before they would be replaced. 
These are the areas where RTTR, along with other smart grid 
technologies, could be successfully implemented. Further to 
this, there is no reason that RTTR could not be deployed on 
new networks; indeed networks could even be designed with 
RTTR in mind, possibly leading to a reduction in the number 
of conductors required [34]. 

VI. CONCLUSION 

The primary contribution of this paper is a novel method for 
assessing the contribution of RTTR to power system 
reliability. Though current transmission and distribution 
systems are very reliable, if more load is connected the 
reliability rapidly degrades and corrective action must be 
taken. Conventionally new lines would be used to alleviate the 
risks and provide further reliability. However this paper shows 
how deploying RTTR could offset much of the risk without 
the need for any new infrastructure.  
 RTTR alone cannot deliver the high reliability the power 
systems currently operate under. However if it is deployed as 
part of a holistic smart grid strategy, network reliability could 
be maintained with a minimum of new conductors, instead 
relying on RTTR, DSR and energy storage to keep customers 
connected.  
 The analysis takes account of the reliability and uncertainty 
inherent in the use of RTTR. The uncertainty analysis suggests 
that for RTTR the greatest uncertainty arises from calculating 
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the rating of components far from observation points. To offer 
the greatest benefit critical spans must be identified and 
instrumented, the whole network must be heavily 
instrumented or some means of predicting how ratings vary 
with distance must be devised and implemented. 
 Though this paper has demonstrated that RTTR can make a 
significant contribution to network reliability, it does not fit in 
to the existing paradigm of network design. Network design 
and planning standards must move away from asset based 
redundancy and accept the capacity provided by technologies 
such as RTTR. With proper planning and analysis, this will 
yield more cost-effective networks without compromising 
reliability.  
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