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Abstract
The outbreak of the Covid-19 pandemic has come across as an exogenous shock to the firms and their supply chains. It 
has led firms to rethink and rework their existing robust and resilient supply chains. The purpose of this study is to move 
beyond robustness and resilience and shift to an antifragile supply chain that sees disorder as an opportunity to learn and 
grow. In this study, various factors to attain an antifragile supply chain have been identified through literature review and 
experts’ opinions. Using TISM-MICMAC, structural relationships among these factors have been developed, and, then the 
factors have been classified as drivers or dependents. The study reveals the importance of having proactive top management 
as a major driving power to build an antifragile supply chain. Development of a strategy for collaboration and innovation, 
development of a skilled workforce for technology adoption, and resource allocation for digitalization are some other factors 
with strong driving power. The novelty of the study lies in its effort to drive the attention of researchers and practitioners 
towards thinking beyond robustness and resilience and shifting towards antifragility. The study will help firms in strategic 
decision-making for the adoption of additive manufacturing technology to develop antifragility in the supply chain and save 
itself from negative consequences in the face of disruption.
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1 Introduction

In the recent past, firms have seen an increasing number of 
epidemic outbreaks (Baral et al. 2021). A whopping 1438 
epidemics cases were reported by World Health Organiza-
tion (WHO) from 2011 to 2018 (Hudecheck et al. 2020). 
The last decade alone has seen the outbreak of epidemics 

such as the Middle East respiratory syndrome / MERS-
CoV in 2012, the Western African Ebola virus epidemic in 
2013, and the Zika virus epidemic in 2015 among others.1 
The outbreak of Coronavirus (Covid-19) towards the end 
of 2019 was a rare catastrophic event. Later, on March 11, 
2020, WHO classified the COVID-19 outbreak as a pan-
demic. The Covid-19 disaster constitutes a special case of 
pandemic outbreaks in terms of duration and intensity. It can 
be classified as a low-frequency-high-impact (LFHI) event. 
LFHI events cause a ripple effect that cascades through all 
the operations involved in a supply chain causing consider-
able adverse effects (Ivanov et al. 2014; Dolgui et al. 2018; 
Hosseini et al. 2019; Ivanov 2020; Kinra et al. 2020).

This pandemic has shocked supply chains across nations. 
It has exposed the vulnerabilities in the supply chains (El 
Baz and Ruel 2021). The supply chains that were other-
wise considered a source of sustained competitive advantage 
(Barney 2012) turned out to be the Achilles heel of the com-
panies negatively affecting the operations of more than 94% 
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of Fortune’s top 1000 companies (Fortune 2020). It has not 
only affected the supply side but demand ripples have also 
been observed (Guan et al. 2020; Sarkis 2021) both at global 
and local scales (Ivanov 2020). While demand deficiencies 
arose due to real or anticipated income risks and economic 
uncertainty, the world also saw a huge rise in demand for 
necessary items such as medical supplies and equipments 
including masks, gloves, oxygen cylinders, ventilators, PPEs 
(personal protective equipment), and sanitizers (Balleer 
et al. 2020; Bag et al. 2021a, b; Dubey et al. 2021). Simi-
larly, with the closure of national and international borders, 
vehicle movement and international trade were interrupted. 
There was a shortage of labor and social distancing was sup-
posed to be maintained (Gunessee and Subramanian 2020). 
These led to disruption in the flow of materials, information, 
and funds, and hence the entire supply chain was disrupted 
substantially (Chopra et al. 2021). The toilet paper shortage 
in the early days of the pandemic and the semiconductor 
shortage, a product with long lead times, for automakers 
are a few such examples.2 The global supply chains strug-
gled to deliver even the necessary items and their fragility 
and lack of operational agility became conspicuous (Mishra 
et al. 2021). Supply chains which were otherwise designed 
to be global and lean faced increased vulnerabilities in the 
current epidemic context. Globalization, offshoring, and lean 
systems were heavily scrutinized and looked at with mistrust 
since they increased the firms’ exposure to disorder (El Baz 
and Ruel 2021).

The crisis has led to the researchers reflecting on the 
inadequacies of existing supply chain structures and risk 
management practices. The researchers have highlighted the 
need to build a fuller picture of the disruptions caused by 
the Covid-19 pandemic, its impact on the supply chain, and 
the response so far (Queiroz et al. 2020; Remko 2020). They  
also call for a robust and resilient supply chain in the event 
of future disruptions (Ivanov and Das 2020; Chowdhury 
et al. 2021). Resilience can be defined as “the ability of a sup-
ply chain to return to normal operating performance, within 
an acceptable period, after being disturbed” (Christopher  
and Peck 2004). The 68th session of the WHO Regional 
Committee for the Eastern Mediterranean also talks about 
building stronger systems and resilient communities.3 By 
implementing several resilience-building strategies such as 
investing in flexibility, visibility, risk mitigation, or redun-
dancy to name a few, these organizations strive to mitigate 
the immense pandemic crisis disruption in their supply 
chains (Chopra et al. 2021).

Digitalization of the supply chain has emerged as 
a resilience-building strategy in the recent past. Tech-
nological advancements and digitalization (Hald and 
Coslugeanu 2021) have played a substantial role in acceler-
ating supply chain resilience. Additive manufacturing (AM) 
methods, such as 3-D printing technology can prove an 
effective way to digitalize manufacturing and supply chain 
operations.  AM involves layer upon layer joining of the 
materials to make the final product from a 3D model data 
(ASTM F2792-12 2012). This is the stark opposite of what 
traditional subtractive manufacturing does.  AM remark-
ably surpasses the traditional manufacturing methods and 
has the potential to become the norm over the decades to 
come (Attaran 2017). The popularity of AM has grown 
considerably in the last decade and it is now being pursued 
by many researchers (Achillas et al. 2017). With new tech-
nologies and new materials coming into play, there has been 
rampant growth in the application of AM across various 
manufacturing industries (Gardan 2016; Huang et al. 2021a, 
b) which includes sectors such as automotive (Muhammad 
et al. 2021), aerospace (Kemsaram and Maley 2019), medi-
cal (Choudhary et al. 2021; Patel and Gohil 2021), and elec-
tronics (Ghobadian et al. 2020). During the pandemic, AM 
technologies have been used to quickly meet the increased 
demand for medical equipment and kits such as ventilators, 
PPEs, hands-free door openers, and face shields (Iyengar 
et al. 2020; Novak and Loy 2020). Thus, AM technologies 
can be leveraged to build a robust and resilient supply chain.

Several articles in the extant literature have studied the 
impact of catastrophes and pandemics on the supply chain 
(Fonseca and Azevedo 2020; Okorie et al. 2020; Sharma 
et al. 2020), and some have suggested resilience and robust-
ness as a means to tackle supply chain disruption. However, 
resilience talks only about the bouncing back of supply 
chains. It fails to recognize the need to learn and grow from 
such disruptions. Hence, the need of the hour is to build 
an antifragile supply chain. While a resilient supply chain 
aims at absorbing shocks, an antifragile supply chain sees 
these shocks as an opportunity to get stronger and better. 
An antifragile supply chain does not only respond to dis-
ruption but also thrives in it (Taleb 2012). While resilient 
supply chains have been extensively discussed, very few 
articles discuss an antifragile supply chain as a response 
to the disruption caused by pandemics. Größler (2020) has 
explored the consequences of antifragility on supply chain 
behaviour and performance through simulation. Jaaron and 
Backhouse (2014) explored the impact of the application of 
systems approach in service organizations to build an anti-
fragile system that flourishes in disruption. Nikookar et al. 
(2021) have built on Taleb’s concept of antifragility and 
have introduced the concept in the purchasing and supply 
chain management discipline. They have briefly discussed 
some directions leading to an antifragile supply chain and 

2 https:// www. white house. gov/ cea/ writt en- mater ials/ 2021/ 06/ 17/ 
why- the- pande mic- has- disru pted- supply- chains/
3 http:// www. emro. who. int/ pande mic- epide mic- disea ses/ outbr eaks/ 
outbr eaks- archi ve. html
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have suggested the nexus between antifragility and Industry 
4.0 technologies as a scope for future research. This study 
discusses Additive manufacturing applications to build an 
antifragile supply chain. AM reduces the lead time, offers 
huge flexibility, shortens the time to market (Engelseth 
et al. 2021), and helps to achieve environmental sustain-
ability (Afshari et al. 2019). The decentralized supply chain 
promoted by AM helps to locate the manufacturing facility 
closer to the customer (Rinaldi et al. 2021a, b). With opera-
tional and technological innovations, AM can also be used to 
achieve high-volume production output (Huang et al. 2021a, 
b). The digital inventory that can be held in AM and the pos-
sibility of having multiple iterations before actually print-
ing the product make it preferable over the conventional 
manufacturing technologies (Engelseth et al., 2021). Thus, 
AM enhances the overall supply chain flexibility and perfor-
mance (Delic and Eyers 2020). It helps in achieving supply 
chain agility (Ohmori 2021), and increases the supply chain 
responsiveness (Boer et al. 2020) which are important fac-
tors to thrive during a disruption. To the best of the authors’ 
knowledge, this is by far the only study that exclusively talks 
about leveraging additive manufacturing capabilities as a 
strategy to build an antifragile supply chain. Consequently, 
this study seeks to achieve the following research objectives:

RO1  To identify the factors affecting the implementation 
of additive manufacturing technologies to build an 
antifragile supply chain during disruption.

RO2  To develop a structural relationship framework for 
the identified factors that affect the implementation 
of additive manufacturing technologies to build an 
antifragile supply chain during disruption.

RO3  To categorize and analyze these factors based on 
driving and dependence power.

For the first objective, a literature review is conducted 
to derive the factors affecting AM implementation from an 
academic perspective. Post this, the industry perspective is 
captured using experts’ opinions. For the second and third 
objectives, total interpretive structural modeling (TISM) and 
Matrice d’Impacts Croisés Multiplication Appliqués à un 
Classement (MICMAC) analysis are used to establish the 
structural relationships among AM implementation factors 
and to categorize these factors based on driving and depend-
ence power respectively. While several studies have been 
performed on additive manufacturing techniques, these are 
mostly qualitative, and very few studies have used multi-
criteria decision-making (MCDM) techniques to categorize 
and analyze the factors. This study uses TISM to build a 
structural framework that would help in better understand-
ing the relationship between the factors. Few studies in the 
past, have studied the factors for AM implementation using 
ISM. Sonar et al. (2020) have used ISM to understand the 

factors that influence AM implementation in the Indian 
manufacturing sector. Dwivedi et al. (2017) have used fuzzy-
ISM to analyze the barriers to implement AM in the Indian 
automotive sector. Shukla et al. (2018) have used ISM to 
understand the barriers to implementing AM for mass cus-
tomization. Choudhary et al. (2021) analyzed the barriers 
to AM adoption in the medical sector. To the best of the 
authors’ knowledge, this is by far the first study utilizing 
the approach of TISM to explore the structural relationship 
between the factors affecting the implementation of additive 
manufacturing technologies to build an antifragile supply 
chain during disruption.

The remaining part of the paper is structured as follows. 
In the Sect. 2, we discuss related literature and provide the 
theoretical foundation for the paper. Following this, the 
research methodology is described. In Sect. 3, we then pre-
sent the TISM model for understanding the critical success 
factors for AM implementation to build an antifragile sup-
ply chain. In Sect. 4, the MICMAC analysis is presented 
and then in Sect. 5, we discuss the results of the research, 
managerial and practical implications of the study. Finally, 
in Sect. 6, we conclude by summarizing the results, discuss-
ing the limitations of our study, and providing some areas 
for future research.

2  Literature review for identification 
of factors

In this study, first, a thorough review of the extant litera-
ture was done to find the critical success factors to build an 
antifragile supply chain (SC). For this purpose, literature on 
additive manufacturing and the ones discussing antifragil-
ity and resilience building in a supply chain were reviewed.

2.1  Pilot search and article selection criteria

In the first phase, a pilot search was conducted to gain an 
idea of the ongoing research in the field. Scopus was used 
as the database to search for articles on the two topics. 
Scopus is one of the largest multidisciplinary databases 
with citation indexing. It has a broader and more robust 
cover-to-cover indexing policy than Web of Science and 
offers the best choice amongst the multidisciplinary data-
bases with citation indexing (Norris and Oppenheim 2007). 
Scopus has better coverage as compared to Web of Science 
(Martín-martín et al. 2019; Mongeon and Paul-Hus 2016). 
Comerio and Strozzi (2019), who have collected prelimi-
nary data for their study from Scopus, highlight that Sco-
pus has 60% more content coverage than Web of Science. 
Gupta et al. (2019) used a similar approach in their study 
where Scopus was used as the database. The importance 
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of using the right set of keywords for literature search has 
been highlighted by Rowley and Slack (2004). For this pur-
pose, the keywords such as ‘Additive manufacturing’, ‘3D 
printing’, and ‘supply chain’ were included in the search 
string. The reason for including supply chain along with 
additive manufacturing was to get an output where the arti-
cles would be discussing additive manufacturing from the 
supply chain perspective because several studies in AM 
have also been done on manufacturing part in the engi-
neering domain which was not to be a part of the scope of 
this study. The search syntax for the keywords has been 
discussed in Table 1.

As discussed in the previous sections, antifragility is a 
novel concept and is unexplored. The search syntax for an 
antifragile supply chain also reveals the same. Thus, this 
provides us with a very good opportunity to explore the field 
further. In the next stage, the articles written in English were 
only considered and the subject area was limited to Busi-
ness management. For literature on resilient supply chain, 
the study focussed mostly on publications from 2020 and 
after. This is because ever since the outbreak of the Covid-19 
pandemic, there have been numerous studies done on build-
ing resilience into the supply chain. However, some studies 
discussing resilience-building strategies in the supply chain 
that were published before 2020 were also identified through 
cross-referencing and included in the study. PRISMA (Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analyses) guidelines were followed for article selection and 
inclusion. The above Boolean search resulted in 378 articles 
and another 24 articles were included through snowballing 
and cross-reference. These articles were then uploaded in 
Zotero software where the duplicates were removed, leaving 
us with 363 documents. Further, an abstract search for these 
articles was done and another 211 documents were excluded. 
In the end, after the full-text screening, 105 documents were 
retained for this study. The PRISMA flow diagram for study 
selection and exclusion has been shown in Fig. 1.

2.2  Identification of factors

The ever-changing business environment, business sce-
narios, and such a high level of uncertainties during a 
disruption such as the Covid-19 pandemic cause sudden 
and huge changes in customer demand. The firms are cau-
tiously looking forward to moving towards technological 
innovations and a resilient, robust, and antifragile supply 
chain. The firms must build dynamic capabilities to address 
such disruptions to the supply chain in a timely fashion to 
avoid negative consequences on firms’ overall performance 
(Dubey et al. 2019).

Introduced in the 1980s, Additive Manufacturing (AM), 
also known as 3D printing or rapid manufacturing has grown 
in popularity by benefitting manufacturers who want to pro-
duce less quantity of complex parts. The easy availability 
and accessibility of tools required in the additive manufac-
turing process is enabling firms to adopt this technology. 
With need basis printing and reduction in inventories, AM 
seems to be having a bright future. In this study, we have 
aimed to introduce AM as an implementation strategy to 
build an antifragile supply chain. An antifragile supply chain 
gains from disorder. They get stronger by being exposed to 
intentional randomness, similar to the human immune sys-
tem (Nikookar et al. 2021). An article in Financial Times (Ft.
com 2020) also discusses how firms need to move beyond 
robustness and resilience and aim for antifragility.

In the next section we have discussed the 19 factors lead-
ing to an antifragile supply chain identified through literature 
review:

 i. Development of skilled workforce for technology 
adoption

   Afshari et al. (2019) highlight the need for highly 
skilled workers for AM, who would facilitate the 
design process, and who could operate the AM 
machines. They also discuss how skilled workers can 

Table 1  Search syntax*

(*Last accessed on 06 January 2022)

Database and search topic Search syntax Records 
obtained

Scopus - AM TITLE-ABS-KEY (“Supply chain” AND (“Additive manufacturing” OR “3D printing” OR 
“3DP”)) AND (LIMIT-TO (SUBJAREA, “BUSI”)) AND (LIMIT-TO (LANGUAGE,  
“English”))

173

Scopus - Resilient supply chain TITLE-ABS-KEY (“supply chain” AND (“resilient” OR “resilience” OR 
“robust") AND ("Covid" OR "covid-19" OR "pandemic")) AND (LIMIT-TO  
(SUBJAREA, "BUSI")) AND (LIMIT-TO (PUBYEAR 2022) OR LIMIT-TO  
(PUBYEAR 2021) OR LIMIT-TO (PUBYEAR 2020)) AND (LIMIT-TO  
(LANGUAGE, "English"))

200

Scopus - Antifragile supply chain TITLE-ABS-KEY (("antifragile" OR "Anti fragile" OR "anti-fragile" OR "antifragility")  
AND ("supply chain" OR "operations")) AND (LIMIT-TO (LANGUAGE, "English"))  
AND (LIMIT-TO (SUBJAREA, "BUSI") OR LIMIT-TO (SUBJAREA, "DECI"))

5
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affect profitability while implementing novel para-
digms, such as AM. Despeisse and Minshall (2017) 
discuss how the lack of skills and education prevents 
the firms from adopting AM technology. Technical 
and managerial skills are two important aspects of 
human resources and these skills need to be developed 
over time (Gupta and George 2016). It is important 
to plan for the resource supply chain strategy which 
involves selecting the critical workforce for the firm, 
one which will have the capability to handle disrup-
tions in the supply chain. The firm should be able 
to handle those resources under any circumstances 
(Sharma et al. 2020).

 ii. Cost-effective design and manufacturing
   Researchers have suggested 3-D printing tech-

niques, as a solution to help companies design and 
manufacture products quickly (Novak and Loy 2020). 
In the recent past, owing to the advancement in tech-
nologies, the price of 3D printers has gone down mak-
ing it even more feasible for firms to implement 3D 
printing (Attaran 2017). Moreover, a decentralized 
supply chain facilitated by AM offers a better solution 
in terms of holding stock, and in general, on supply 
chain costs as compared to traditional manufacturing 
(Nagarajan et al. 2018). AM also shortens the sup-
ply chain which leads to a shorter cash-to-cash cycle. 
With AM machines there are no costly setups, and 
so production of small batches becomes economical 
(Pour et al. 2016). On-demand manufacturing elimi-
nates the need for stockpiling inventories.

 iii. Reduction in manufacturing lead time

   Additive manufacturing supports mass customiza-
tion at low cost and without a lengthy delivery time 
(Pereira et al. 2019). AM, by its additive capabilities, 
reduces the number of parts that need to be produced, 
procured, or assembled. This considerably brings 
down the assembly time leading to shorter manu-
facturing lead times (Rogers et al. 2016; Despeisse 
et al. 2017). The faster production process coupled 
with a simple supply chain brings down the supply 
chain lead time (SCLT). An SCLT reduction of up to 
60% has been estimated by switching from conven-
tional to additive manufacturing (Rinaldi et al. 2021a, 
b).

 iv. Environmental sustainability
   AM has the potential to substantially reduce mate-

rial consumption and wastage during manufacturing 
thus reducing the emission of  CO2. It minimizes the 
need for logistics, thus,  CO2 emissions associated with 
transport activities are reduced (Rinaldi et al. 2021a, 
b). It also facilitates an extended product life which 
is achieved through technical approaches such as 
repair, remanufacture, and refurbishment (Ford and 
Despeisse 2016; Boer et al. 2020). The strength and 
durability of the product are enhanced. There are 3D 
printed concrete-based houses which can withstand 
8.0 Richter scale earthquakes (Ghaffar et al. 2018). 
Kumar et al. (2020) discuss how AM technologies can 
be utilized to build sustainability in the supply chain. 
Mukherjee et al. (2021) argue that to develop supply 
chain capabilities, it is important to support sustain-
able practices.

Fig. 1  PRISMA flow diagram for study selection criteria
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 v. Development of strategy for collaboration and innova-
tion

   A synchronized system would lead to intelligent 
workflows which will improve efficiencies across 
the supply chain. With this, the firms will be able 
to quickly intuit the changes in the environment and 
respond with the help of intelligent workflows by 
processing any delivery changes or responding to 
a new customer request with minimum hassle and 
error (Oyekan et al. 2017; Zhong et al. 2017). To 
perform efficiently, a supply chain depends on close 
collaboration across various supply chain partners 
(Bag et  al.  2021c). Close collaboration with SC 
partners is also required for efficiently mitigating 
the risk factors in a supply chain before a disruptive 
event occurs or after the event has unfolded (Fan 
and Stevenson 2018). SC collaboration will help 
the firms in achieving end-to-end visibility, under-
standing associated complexities, and reducing the 
vulnerabilities in the supply chain. Also, techno-
logical and operational innovation could help firms 
in achieving competitive advantage and catering to 
rapid demand changes (Huang et al. 2021a, b).

 vi. Manufacturing repurposing
   Manufacturing repurposing has been identified as 

critical to manufacturing life-saving products. Repur-
posing is a quick response solution to cater to the man-
ufacture of essential items such as PPEs, diagnostic 
equipment, and clinical care equipment.4 However, it 
is considered a temporary strategy and can be chal-
lenging and expensive to implement. It would require 
the employees to be trained to handle such temporary 
repurposing thus making employee skills and know-
hows a crucial enabler (Okorie et al. 2020).

 vii. Effective additive manufacturing processes
   Additive manufacturing can easily be considered 

a revolution in the field of manufacturing technology 
(Oettmeier and Hofmann 2016). It opens new avenues 
for business firms that intend to improve their manu-
facturing efficiency. Some studies consider AM a 
powerful tool to simplify the supply chain in many 
ways. The popularity of AM has grown consider-
ably in the last decade and it is now being pursued by 
many researchers who study the advantages it offers 
as compared to traditional manufacturing (Achillas 
et al. 2017). With new technologies and new materi-
als coming into play, there has been rampant growth 
in the application of AM across various manufacturing 
industries (Gardan 2016) which includes sectors such 

as automotive, aerospace, medical, and electronics 
(Ghobadian et al. 2020).

 viii. Supply chain risk management
   SC risk management practices are aimed at reduc-

ing the supply chain vulnerabilities and mitigating 
the impacts of the disruptions (Ho et al. 2015). This 
involves four interconnected processes: risk iden-
tification, risk assessment, risk mitigation, and risk 
control (Fan and Stevenson 2018). AM technologies 
have been known to lead to supply chain integra-
tion and risk management through its digital nature, 
where the design can be easily transferred to a differ-
ent location and printed in case of disruptions faced 
at one manufacturing location (Durach et al. 2017). 
The design and volume changes can be easily accom-
modated which helps in moving the order decoupling 
point closer to the customer (Tuck et al. 2007). This 
provides agility in case of supply chain disruption. A 
diversified supply chain reduces the firms’ dependence 
on a few suppliers, provides supply chain flexibility 
and creates agility that helps reconfigure the supply 
chain whenever required.

 ix. Effective inventory management
   Additive manufacturing efficiently changes the 

supply chain configuration, thus achieving a reduc-
tion in safety inventory which helps in cutting down 
the inventory holding costs significantly (Cestana 
et al. 2019). In additive manufacturing, there are no 
held-up costs and risk of scrapping the unsold fin-
ished goods inventories. Instead, firms only hold digi-
tal 3D data in stock (Berman 2012). The on-demand 
manufacturing capability of AM eliminates the need 
for stockpiling inventories (Hedenstierna et al. 2019). 
Direct digital manufacturing might currently lag tradi-
tional manufacturing methods but with technological 
and operational innovations, it will very soon question 
the established practices of inventory management 
(Holmström et al. 2016).

 x. Proactive top management
   Top management commitment is an important 

factor for the implementation of AM to build a resil-
ient supply chain (Sonar et al. 2020). A proactive 
decision-maker would plan for rapid global crisis 
detection and response systems which will eventually 
lead to enhanced competitiveness for the firm (Singh 
et al. 2007; Dwivedi et al. 2017). Ivanov and Das 
(2020) have also highlighted the need for proactive 
top management who would be responsible for map-
ping the supply chain and synchronization of strategic 
processes such as creating flexible redundancies in the 
supply chain. These activities would enhance supply 
chain collaboration (Bag et al. 2021d) and make the 
SC networks less sensitive to external uncertainties. 

4 https:// www. unido. org/ news/ covid- 19- criti cal- suppl ies- manuf actur ing- 
repur posing- chall enge
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Devi et al. (2020) highlight the importance of proac-
tive decision-making by top management who have 
the sole responsibility to plan, strategize and imple-
ment digitalization of the supply chain.

 xi. Supply chain redesigns
   The supply chain redesign can be considered in two 

aspects: multi-sourcing and reinforced e-commerce 
capabilities. Multi sourcing involves procuring the raw 
materials from multiple suppliers instead of relying on 
a single supplier. This would result in building redun-
dancy across suppliers.5 Resorting to e-commerce and 
moving from Business to Business (B2B) to Business 
to Consumer (B2C) are other ways of SC redesign that 
enable building resilience. Many firms, with physical 
stores closed, have transitioned to e-commerce (Barriball 
et al. 2020).

 xii. Efficient information sharing process
   A resilient supply chain requires firms to collect 

data on their critical processes, flows, and partners 
so that the necessary optimization steps can be taken 
when required (El Baz and Ruel  2021). Another 
means to prevent supply chain disruption is to time 
the closing and opening of the facilities at different 
SC echelons. This can be done only when necessary 
technologies have been installed for real-time informa-
tion sharing which enhances supply chain visibility 
(Routroy et al. 2018). The technologies enable real-
time tracking of the goods and with digitalization, this 
huge volume of information can be analyzed and used 
for process improvements (Zhong et al. 2017). For this 
purpose, RFID and GPS systems could be utilized. 
Also, this would help in pre-emptive breakdown and 
maintenance of the machinery (Sanders et al. 2016). 
Converting data into meaningful information will help 
the firms in predicting disruptions and preparing nec-
essary actions and this information sharing leads to 
better collaboration, thus enhancing the overall supply 
chain performance (Baah et al. 2021). Dubey et al. 
(2019) have discussed how information-sharing posi-
tively impacts supply chain visibility, which in turn 
impacts supply chain resilience.

 xiii. Distributed manufacturing system
   Decentralization of manufacturing capacity and 

production in smaller batches are important aspects 
for building future supply chains (Fonseca and 
Azevedo 2020). The establishment of geographically-
dispersed manufacturing facilities with the necessary 
logistical supports is considered effective as a pro-
active readiness strategy (Shokrani et al. 2020). For 

this purpose, the firms will also need to redesign their 
logistics systems and switch to faster delivery modes 
(Chowdhury et al. 2021). AM facilitates a shorter 
and simpler supply chain. It reduces the number of 
raw material suppliers required by dint of its additive 
properties. It supports decentralized manufacturing 
where the technology could potentially reduce the 
need for logistics as designs could be transferred digi-
tally (Luomaranta and Martinsuo 2020). Flexibility 
to produce different products in a single run, tooling 
freedom, as well as the possibility of making prod-
ucts without having molds, are some other benefits 
of AM implementation (Pour et al. 2016). It also sup-
ports easy manufacturing of products that fall under 
the Mass Complexity category, where parts exhibit 
complex geometries (Pereira et al. 2019). Smaller 
batch size production is possible due to AM capabili-
ties which decreases the dependency on forecasting 
(Bogue 2013; Bogers et al. 2016).

 xiv. Resource allocation for digitalization
   Gupta and George (2016) have proposed seven 

resources critical to an organization to build digital 
capabilities. They discuss tangible resources such 
as data, technology, time, and investments, human 
resources such as managerial and technical skills, and 
intangible resources such as data-driven culture and 
the intensity of organizational learning. Integrating 
the technologies with the supply chain improves the 
overall operational efficiency of the supply chain and 
eliminates wastes and non-value-added tasks (Raji 
et al. 2021). Technology deployment will also enable 
the firms in monitoring their supply partners’ actions 
(Sharma et al. 2020). Bag et al. (2021c) in their study, 
elucidate how tangible resources and workforce skills 
drive technological enablement.

 xv. Antifragile supply chain
   The COVID-19 crisis has revealed fragility and 

exposed the global supply chains' vulnerability and 
low resilience (Delic et al. 2019). Operational and 
supply chain resilience has three aspects, namely 
preparedness, response, and recovery. Preparedness 
corresponds to taking a proactive measure for unfore-
seen disruptions. Responsiveness corresponds to act-
ing quickly along with the other supply chain partners 
to minimize the immediate impacts. For recovery, the 
aim is to return to the original or even better form 
after the disruption (Chowdhury and Quaddus 2016). 
An antifragile supply chain goes beyond a robust and 
resilient supply chain and thrives in disorder. To gain 
antifragility, a supply chain needs to develop option-
ality, create redundancy, weaken the link between the 
nodes, encourage eustress, adopt a barbell strategy, 
allow systems to fail fast, learn from the failures, and 

5 https:// www. mckin sey. com/ busin ess- funct ions/ opera tions/ our- insig hts/ 
risk- resil ience- and- rebal ancing- in- global- value- chains
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conduct trial and error, effectuation, and swarming. 
These help the supply chain in detecting vulnerabili-
ties early, learning quickly, and gaining from disor-
der (Nikookar et al. 2021). Antifragility provides a 
complete alternative to deal with future uncertainties 
(Derbyshire and Wright 2014).

 xvi. Rapid market responsiveness
   AM offers flexibility which enables manufacturers to 

create an optimal design for lean production (Chekurov 
et al. 2018; Devi et al. 2020). With AM, customer demand 
can be met quickly, and this leads to improvement in the 
quality of care and aftermarket services. While modifi-
cation of design costs significantly and also causes time 
delays in a traditional manufacturing setup, additive 
manufacturing facilitates the production of multiple ver-
sions of a single product through digital 3D mode, that 
too in a cost-effective manner (Rogers et al. 2016; Jimo 
et al. 2019).

 xvii. Integrated manufacturing processes/operations
   Integration of manufacturing processes is a major 

requirement for achieving the global manufacturing 
paradigm (Valilai and Houshmand 2015). AM encour-
ages a distributed manufacturing system thus making 
data management a crucial task. This requires the inte-
gration of autogenous, scattered, and unorganized data 
sources into a single data source. Also, to reduce the 
build time, improve geometry quality and reduce the 
geometrical errors in the production process, global 
integration through AM paradigm becomes imperative 
(Jin et al. 2013). The digital nature of AM promotes 
the integration of various processes and functions in 
a supply chain where improving data flow becomes 
very important (Delic et al. 2019). By adopting the 
integrated and coordinated approach, additive manu-
facturing enhances firm competitiveness and helps 
achieve sustainability targets (Gebler et  al.  2014; 
Dircksen and Feldmann 2020).

 xviii. Effective knowledge management process
   Proactive top-level management would ensure 

accurate mapping of the supply chain beyond the first 
or second supply tiers (Ivanov and Rozhkov 2020). 
Nissan has developed a supply chain resilience pro-
gram that incorporates supply chain mapping and vis-
ibility. This would protect its supply chain in case of 
disruptions by helping the firms to formulate node or 
supplier-specific strategies (Ivanov and Dolgui 2021). 
The firms need to assess how much they are depend-
ent on other countries and what critical technologies, 
critical resources, and manufacturing capacity they 
want to retain. After the pandemic, several countries 
have started re-evaluating their supply chains and 
reducing their dependency on other countries to be 
resilient. Even if a firm decides to outsource prod-

ucts from overseas, it will still need to strike a balance 
between domestic production and international trade 
to reduce vulnerability (Deaton and Deaton 2020). 
Flexible manufacturing system technologies such as 
additive manufacturing and robotics can localize pro-
duction capabilities (Sarkis 2021). The collaborative 
environment and the sharing of knowledge provided 
by AM aim to expand the strategic scope, maximizing 
the supply chain surplus ( Shah et al. 2017; Equbal 
et al. 2021).

 xix. Design freedom and customisability
   The need of the hour is to design products that 

incorporate component switching options. This would 
enable the firm to procure the raw materials or com-
ponents from other suppliers where the disruption has 
not yet occurred (Ivanov and Das 2020). With AM, 
any design changes can be easily made digitally and 
multiple iterations could be tried without any cost 
penalties (Engelseth et al. 2021). It also substantially 
reduces the product repair time and provides an oppor-
tunity to modify the repaired components to the latest 
design. Furthermore, with the innovation of smaller 
3D printing machines, it is now possible for consum-
ers to print their parts for fixing their purchased prod-
ucts (Attaran 2017). AM also enables customers to 
co-design products that can perfectly fit their demands 
and ambitions (Ghaffar et al. 2018).

3  Research methodology

Once the factors were identified, using expert opinion initial 
reachability matrix was built and, in the end, total interpreta-
tive structural modeling (TISM) was used to highlight the 
interdependence between these factors. Furthermore, cross-
impact matrix multiplication (MICMAC) was used to deter-
mine each factor's driving and dependence power.

3.1  Total interpretive structural modeling (TISM) 
and model development

Interpretive Structural Modeling (ISM) was first developed 
by J. Warfield in 1974 (Warfield 1974) and is an adapta-
tion of paired comparison approach (Haleem et al. 2012). 
ISM methodology helps in addressing complex issues and 
aims to provide order and direction to the complex rela-
tionships among the elements in a system. The application 
of ISM helps the top-level management reassess their per-
ceived priorities of the factors and understand the linkages 
between the factors (Singh 2015). Singh and Gupta (2020) 
used ISM to develop a structural relationship among sustain-
able maintenance system factors from a strategic perspec-
tive. Even though ISM serves to provide solutions to critical 

574



Investigating the interaction of factors for implementing additive manufacturing to build…

1 3

management issues through the development of hierarchies 
among the elements, it has several limitations. First, the cor-
rect interpretation of how the direct linkages between the 
elements operate is not explained by ISM. Second, it fails 
to explain the transitive links and causality of the linkage 
between building blocks of the ISM (Sushil 2012). Thus, 
TISM was developed which provides an interpretation of 
both nodes and links. TISM is the extension of ISM and 
can provide a better explanatory framework with important 
transitive links (Behl et al. 2018). While ISM helps to under-
stand the ‘what’ and ‘how’ of a research study, TISM helps 
in answering the ‘why’ (Hasan et al. 2019a, b).

TISM is an innovative technique used by many research-
ers across various fields. Yadav and Sushil (2014) used 
TISM to model the performance factors in the Indian Tel-
ecomm. Service Industry. Dubey et al. (2015) employed 
TISM to study the association among various enablers for 
sustainable manufacturing. Singh and Sushil (2013) have 
used TISM in the airline industry, Bag (2016) employed 
TISM in the green procurement sector and Mahajan et al. 
(2016) used TISM to analyze the interrelations among chal-
lenges of management education in India. Since this study 
intends to model the critical success factors for AM imple-
mentation to build an antifragile supply chain, TISM was 
chosen as the method to accomplish the objective. Table 2 
discusses some of the recent papers that have successfully 
applied TISM in their studies. TISM flowchart illustrating 
all the steps in the TISM-MICAMC process has been shown 
in Fig. 2.

3.2  Questionnaire development and data collection

After identification of a total of 19 critical success factors 
from the literature, the second phase was to focus on the 
selection of experts who would be willing to participate in 
the study. Through an internet search, companies that have 
applied AM technologies were identified and contacted 
for participation. Also, a few academicians (subject matter 
experts) were identified and contacted. We received partici-
pation confirmation from 7 experts across industry and aca-
demia. Murry and Hammons (1995) and Novakowski and 
Wellar (2008) have suggested that a sample size between 5 
and 15 could be taken to get quality results in cases of high 
heterogeneity of the panel of experts. Thus, a sample size 
of 7 experts used in this study is adequate. Details of the 
experts who participated in the study have been mentioned 
in Table 3.

Delphi method was used to finalize the factors and build 
the structural self-interaction matrix (SSIM). The Delphi 
method was proposed by Dalkey and Helmer (1963) and 
aims at getting consensus from a panel of experts while 
providing anonymity to the participants. To determine 
the critical success factors, a questionnaire was developed 

and shared with the experts asking for their opinion on the 
importance of those 19 factors identified from literature on 
a Likert scale of 1 to 5 (1 being strongly disagreed and 5 
being strongly agreed). The experts were also asked to add 
to the list, any factor which they found missing. The views 
and opinions of the experts were then compiled and, in the 
end, resulted in 16 critical success factors being a part of 
our study. For this purpose, the factors for which the mean 
score was greater than 3 were only considered for the study. 
Thus, after the experts’ opinion, the factors ‘Supply chain 
redesign’ ‘Manufacturing repurposing’ and ‘Environmental 
sustainability’ were dropped. Then the response was col-
lected from the participants for the SSIM based on the Del-
phi approach where the output from the previous round was 
compiled and sent to the participants for review. The list of 
the critical success factors for AM implementation to build 
an antifragile supply chain has been mentioned in Table 4.

4  Results and data analysis

Different steps of TISM that were followed to analyze results 
are mentioned in the following sections.

4.1  Structural self‑interaction matrix

After finalizing the 16 critical success factors, the next step 
was to establish a contextual relationship among the factors. 
This was done based on the pair of factors that were identi-
fied. Thus, a pairwise comparison matrix (SSIM) for the 16 
critical success factors was developed with the help of expert 
opinion. To establish a relationship between any two factors, 
four symbols have been used which denote the direction of 
the relationship between the factors i and j (where i < j). The 
symbols are as given below:

• V – Factor i will lead to parameter j
• A – Factor j will lead to parameter i
• X – Factors i and j will lead to each other
• O – Factors i and j are unrelated
In the SSIM (Table 5), we can see the use of the symbols 

V, A, X, and O. Here, factor 1 leads to factor 15 (V). Factor 
14 leads to factor 3 (A). Factors 6 and 14 lead to each other 
(X). Factors 2 and 6 are unrelated (O). The structural self-
interaction matrix (SSIM) has been displayed in Table 5.

4.2  Reachability matrix

In the next step, the SSIM was converted into a binary 
matrix, also known as the initial reachability matrix. This 
was done by substituting V, A, X, and O with 1 and 0 as per 
the case. The substitution of 1 s and 0 s were done based on 
the following rules (Singh et al. 2018):
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• If the (i, j) cell in the SSIM is V, the (i, j) entry in 
the reachability matrix becomes 1 and the (j, i) entry 
becomes 0.

• If the (i, j) entry in the SSIM is A, the (i, j) entry in 
the reachability matrix becomes 0 and the (j, i) entry 
becomes 1.

• If the (i, j) entry in the SSIM is X, the (i, j) entry in the 
reachability matrix becomes 1 and the (j, i) entry also 
becomes 1.

• If the (i, j) entry in the SSIM is O, the (i, j) entry in the 
reachability matrix becomes 0 and the (j, i) entry also 
becomes 0

The above rules have been followed to form the initial 
reachability matrix as shown in Table 6.

After the formation of the initial feasibility matrix, the 
next step is to check for transitivity. Transitivity can be 
explained with the following example: if element A relates 

Fig. 2  TISM flowchart
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to element B and element B relates to element C, then tran-
sitivity implies that element A should relate to element C. 
It also helps in maintaining conceptual consistency. After 
incorporating the transitivity, the final reachability matrix 
is prepared as shown in Table 7. The * marks represent 
transitivity. We have also calculated the driving power and 
dependence for each factor in Table 7. The driving power 

is the total number of variables (including itself), that the 
factor might help to achieve. On the other hand, depend-
ence is the total number of variables (including itself), that 
might help in achieving the factor. These driving power and 
dependencies will be utilized at a later stage while we clas-
sify the factors into four groups of autonomous, dependent, 
linkage, and drivers.

4.3  Level partitions

The final reachability matrix is then divided into different 
levels for each factor based on reachability and anteced-
ent sets through a series of iterations called level parti-
tions. The reachability set for each factor comprises of 
the element itself and other elements which it might help 
in achieving, whereas the antecedent set for each factor 
comprises of the element itself and other elements, which 
might help in achieving it. Then, the intersection of these 
sets is derived for all factors. The factors for which the 
reachability and intersection sets are the same are the 

Table 3  Experts' profile

Sl. No Expert’s profile Industry Experience 
in  
years

1 Technical lead Service provider 12
2 Assistant manager Automotive 8
3 Senior design engineer Jewelry and dental 7
4 Academician Education 6
5 Academician Education 10
6 Business development 

manager
Service provider 7

7 Senior product engineer Consumer products 12

Table 4  Critical success factors for AM implementation to build an antifragile SC

Sl. No. Factors References

1 Development of skilled workforce for technology adoption Gupta and George 2016; Despeisse and Minshall 2017; Afshari et al. 2019; 
Sharma et al. 2020

2 Cost-effective design and manufacturing Pour et al. 2016; Attaran 2017; Nagarajan et al. 2018; Novak and Loy 2020
3 Reduction in manufacturing lead time Rogers et al. 2016; Despeisse and Minshall 2017; Pereira et al. 2019; 

Rinaldi et al. 2021a, b
4 Development of a strategy for collaboration and innovation Oyekan et al. 2017; Fan and Stevenson 2018; Bag et al. 2021c; Huang 

et al. 2021a, b
5 Effective additive manufacturing processes Gardan 2016; Oettmeier and Hofmann 2016; Achillas et al. 2017;  

Ghobadian et al. 2020
6 Supply chain risk management Tuck et al. 2007; Ho et al. 2015; Durach et al. 2017; Fan and  

Stevenson 2018;
7 Effective inventory management Berman 2012; Holmström et al. 2016; Cestana et al. 2019; Hedenstierna 

et al. 2019
8 Proactive top management Singh et al. 2007; Dwivedi et al. 2017;. Devi et al. 2020; Ivanov and 

Das 2020; Sonar et al. 2020; Bag et al. 2021d
9 Efficient information sharing process Sanders et al. 2016; Zhong et al. 2017; Routroy et al. 2018; Dubey 

et al. 2019; Baah et al. 2021; El Baz and Ruel 2021
10 Distributed manufacturing system Bogue 2013; Bogers et al. 2016; Pour et al. 2016; Pereira et al. 2019; 

Fonseca and Azevedo 2020; Luomaranta and Martinsuo 2020; Shokrani 
et al. 2020; Chowdhury et al. 2021

11 Resource allocation for digitalization Gupta and George 2016; Devi et al. 2020; Sharma et al. 2020; Bag 
et al. 2021c; Raji et al. 2021

12 Antifragile supply chain Derbyshire and Wright 2014; Chowdhury and Quaddus 2016; Delic 
et al. 2019; Nikookar et al. 2021

13 Rapid market responsiveness Rogers et al. 2016; Chekurov et al. 2018; Jimo et al. 2019; Devi et al. 2020
14 Integrated manufacturing processes Jin et al. 2013; Gebler et al. 2014; Valilai and Houshmand 2015; Delic 

et al. 2019; Dircksen and Feldmann 2020
15 Effective knowledge management process Shah et al. 2017; Deaton and Deaton 2020; Ivanov and Rozhkov 2020; 

Equbal et al. 2021; Ivanov and Dolgui 2021; Sarkis 2021
16 Design freedom and Customisability Attaran 2017; Ghaffar et al. 2018; Ivanov and Das 2020; Engelseth 

et al. 2021
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top-level factors in the hierarchy. The top-level factor 
of the hierarchy would not help achieve any other factor 
above it. Once the top-level factor is identified, it is sepa-
rated from the other factors. The process is then repeated 
to find the next level. This process is continued until the 
level of all the factors is determined. In Table 8, we can 
see that there are a total of 12 levels across which these 16 
factors will be arranged.

4.4  Formation of TISM model

A structural model, which we also call a digraph is devel-
oped based on the final reachability matrix. In the model, 
critical success factors are arranged and represented by 

nodes, and the relationship linkages between two factors as 
obtained in the final reachability matrix are also depicted. 
The level of each factor achieved during level partition-
ing helps in assigning the levels for each element. The 
final TISM model formed from the levels of each factor is 
shown in Fig. 3

4.5  Matrice d’Impacts Croisés Multiplication 
Appliqués à un Classement (MICMAC) analysis

Once the TISM model is developed, MICMAC analysis is 
performed to place the factors into one of the four quad-
rants. MICMAC analysis was first used by Duperrin and 
Godet in 1973. It is based on a system of multiplication of 

Table 5  Structural Self-
Interaction Matrix (SSIM)

Factors 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 DSTA O V V V V X V V A V V V A V V -
2 CDM A A A V V A A A A X O A A A - -
3 RMLT X O A V V A A A A V A A A - - -
4 DSCI V V V V V V V V A V V V - - - -
5 EAMP V A A V V A V A A V A - - - - -
6 SCRM V A X V V A V A A V - - - - - -
7 EIM A A A V V A A A A - - - - - - -
8 PTM O V V V V V V V - - - - - - - -
9 EISP V V V V V A V - - - - - - - - -
10 DMS V A O V V A - - - - - - - - - -
11 RAD O V V V V - - - - - - - - - - -
12 AFSC A A A A - - - - - - - - - - - -
13 RMR A A A - - - - - - - - - - - - -
14 IMP O A - - - - - - - - - - - - - -
15 EKMP V - - - - - - - - - - - - - - -
16 DFC - - - - - - - - - - - - - - - -

Table 6  Initial reachability 
matrix

Factors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 DSTA 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0
2 CDM 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
3 RMLT 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 1
4 DSCI 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
5 EAMP 0 1 1 0 1 0 1 0 0 1 0 1 1 0 0 1
6 SCRM 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 1
7 EIM 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
8 PTM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
9 EISP 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1
10 DMS 0 1 1 0 0 0 1 0 0 1 0 1 1 0 0 1
11 RAD 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0
12 AFSC 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
13 RMR 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
14 IMP 0 1 1 0 1 1 1 0 0 0 0 1 1 1 0 0
15 EKMP 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1 1
16 DFC 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 1
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matrices (Govindan et al. 2012). MICMAC aims to group 
the factors based on their dependence and driving pow-
ers. It helps in understanding whether the factor drives 
the other factors or is dependent on other factors. A direct 
relationship matrix reveals the variables with maximum 
direct impact but fails to identify the hidden variables 
which at times might have high influence. MICMAC anal-
ysis helps in understanding the diffusion of these impacts 
(Saxena et al. 1990). The necessary information can be 
derived from the final reachability matrix, where the row 
total gives the driving power, and the column total gives 

the dependence for each factor. A graph is then plotted 
with X-axis representing the dependence power and Y-axis 
representing the driving power. The four quadrants of the 
graph are as mentioned below:

• Autonomous: Factors with low dependency and low driv-
ing power are placed in the first quadrant.

• Dependent: Factors with high dependency and low driv-
ing power are placed in the second quadrant.

• Linkage: Factors with high dependency and high driving 
power are placed in the third quadrant.

Table 7  Final reachability 
matrix

Numbers marked with * represent transitivity

Factors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Driver power

1 DSTA 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1* 14
2 CDM 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 4
3 RMLT 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 1 6
4 DSCI 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 15
5 EAMP 0 1 1 0 1 0 1 0 0 1 0 1 1 0 0 1 8
6 SCRM 0 1* 1 0 1 1 1 0 0 1 0 1 1 1 0 1 10
7 EIM 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 4
8 PTM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1* 16
9 EISP 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 12
10 DMS 0 1 1 0 0 0 1 0 0 1 0 1 1 0 0 1 7
11 RAD 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1* 14
12 AFSC 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
13 RMR 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 2
14 IMP 0 1 1 0 1 1 1 0 0 1* 0 1 1 1 0 1* 10
15 EKMP 0 1 1* 0 1 1 1 0 0 1 0 1 1 1 1 1 11
16 DFC 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 1 6
Dependency 4 14 12 2 9 8 14 1 5 10 4 16 15 8 6 12 140

Table 8  Level partitions for barriers based on multiple iterations

Factor Reachability set Antecedent set Intersection set Level

1 1,2,3,5,6,7,9,10,11,12,13,14,15,16 1,4,8,11 1,11 10
2 2,7,12,13 1,2,3,4,5,6,7,8,9,10,11,14,15,16 2,7 3
3 2,3,7,12,13,16 1,3,4,5,6,8,9,10,11,14,15,16 3,16 4
4 1,2,3,4,5,6,7,9,10,11,12,13,14,15,16 4,8 4 11
5 2,3,5,7,10,12,13,16 1,4,5,6,8,9,11,14,15 5 6
6 2,3,5,6,7,10,12,13,14,16 1,4,6,8,9,11,14,15 6,14 7
7 2,7,12,13 1,2,3,4,5,6,7,8,9,10,11,14,15,16 2,7 3
8 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 8 8 12
9 2,3,5,6,7,9,10,12,13,14,15,16 1,4,8,9,11 9 9
10 2,3,7,10,12,13,16 1,4,5,6,8,9,10,11,14,15 10 5
11 1,2,3,5,6,7,9,10,11,12,13,14,15,16 1,4,8,11 1,11 10
12 12 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 12 1
13 12,13 1,2,3,4,5,6,7,8,9,10,11,13,14,15,16 13 2
14 2,3,5,6,7,10,12,13,14,16 1,4,6,8,9,11,14,15 6,14 7
15 2,3,5,6,7,10,12,13,14,15,16 1,4,8,9,11,15 15 8
16 2,3,7,12,13,16 1,3,4,5,6,8,9,10,11,14,15,16 3,16 4
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Fig. 3  TISM-based model
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• Driver: Factors with weak dependence and high drive 
power are placed in the fourth quadrant.

These quadrants have been shown in Fig. 4 along with the 
factors belonging to each quadrant.

5  Discussion

The Covid-19 driven disruption has made resilience a buz-
zword for business firms. A resilient firm can be considered 
an adaptive system that withstands disruption and recovers 
from it in quick time. In contrast, an antifragile supply chain 
does not adapt but evolves. AM has gained huge attention 
in recent times as a technological intervention to save the 
supply chain from disruption. We see many applications of 
AM across various sectors such as aerospace, automotive 
components, medical supplies, jewelry, and pharmaceuti-
cals. This study reveals its importance in building an anti-
fragile supply chain.

The first objective of the study was to identify the factors 
affecting the implementation of additive manufacturing tech-
nologies to build an antifragile supply chain during disrup-
tion. To begin with, nineteen critical success factors to build 
an antifragile supply chain were identified through literature. 

Seven experts were identified across various fields who sub-
stantiated the findings through the Delphi method and that 
resulted in a total of sixteen factors to work with. The second 
objective was to develop a structural relationship framework 
for the factors identified. For this purpose, the experts were 
contacted again to collect their response through the Delphi 
method, and accordingly, the reachability matrix was devel-
oped. This led to the development of a TISM based model 
which clearly explains the interrelations between these fac-
tors. The TISM model reveals the importance of having pro-
active top management whose quick decision-making and 
strategic planning skills will help in developing strategies for 
collaboration and innovation across the supply chain, which 
is an important factor, especially during a disruption. This 
would provide firms with access to new knowledge and help 
them learn and innovate for enhanced performance. These 
strategies will also help the firm in the selection of critical 
workforce who are skilled and assist the firm in technology 
adoption. The skilled workforce helps in implementing novel 
paradigms which leads in efficient information sharing. The 
firms also build strategies to plan for resource allocation and 
implementation of digitalization of the supply chain. These 
technologies enable real-time information sharing in the sup-
ply chain. The efficient information sharing process leads to 
an effective knowledge management process by facilitating 

Fig. 4  Driving power and dependence diagram
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the firms in expanding their strategic scope and maximiz-
ing the supply chain surplus. This knowledge management 
helps in the integration of various processes and functions 
in a supply chain and these interconnected processes lead 
to risk identification, assessment, mitigation, and control. 
Integrated and coordinated approaches and effective risk 
management strategies help the firm in AM adoption and 
its effective implementation. As the designs can be digitally 
stored and transferred, AM facilitates a decentralized manu-
facturing system. This moves the manufacturing closer to 
the customer and digital designs allow multiple iterations 
of the product before printing as the changes are made to 
the 3D design digitally. This provides design freedom and 
customisability. Also, since AM reduces the number of parts 
required to be produced, procured, or assembled, the manu-
facturing lead time is reduced. This helps the firms to design 
and manufacture new products cost-effectively. Since the 
stock can be digitally held, it reduces the need to have a huge 
inventory. These quick design changes, reduced procurement 
needs, distributed systems, and digital designs save a lot of 
time and help the firms in rapid market responsiveness. Dur-
ing a disruption, these help the firms in acting quickly and 
minimizing the effects of disruption which ultimately leads 
to building an antifragile supply chain.

The third objective was to categorize and analyze these 
factors based on driving and dependence power. The MIC-
MAC analysis helps in classifying the factors into the fol-
lowing clusters:

• Autonomous factors: These factors have weak driving 
and dependence power indicating that they are discon-
nected from the system and do not have much influence 
on developing the antifragile supply chain. In this study, 
there are no factors categorized as autonomous meaning 
that all 16 factors identified are important for the system.

• Dependent factors: These factors have high depend-
ence and low driving power. These factors are impor-
tant for an organization and can be seen at the top of the 
TISM model. They represent the desired objectives for 
an organization. In this study, effective additive manu-
facturing processes, distributed manufacturing system, 
effective knowledge management process, reduction in 
manufacturing lead time, design freedom and customis-
ability, cost-effective design and manufacturing, effective 
inventory management, rapid market responsiveness, and 
antifragile supply chain are the dependent factors. The 
success of these factors is strongly dependent on other 
factors.

• Linkage factors: The results reveal that there are no 
linkage factors that have strong driving power as well as 
strong dependence. These variables are unsteady and any 
action on these variables will influence other variables as 
well as the feedback on them. Thus, it can be inferred that 

among all the 16 factors chosen for this study, no factor 
is unstable, and the factors do not require handling with 
care while dealing with them.

• Driver factors: These factors help organizations in 
achieving their desired objectives and are classified as 
independent factors or drivers. They have high driving 
power and low dependence and are investigated from 
a strategic perspective by the top management. In this 
study, supply chain risk management, integrated manu-
facturing processes, efficient information sharing pro-
cess, development of a skilled workforce for technology 
adoption, resource allocation for digitalization, develop-
ment of a strategy for collaboration and innovation, and 
proactive top management are the drivers.

Antifragile supply chain, which is at the top of the hier-
archy in the TISM model revealing its low driver power and 
high dependence. Thus, it has a more competitive orientation. 
Proactive top management, on the other hand, is at the bot-
tom of the hierarchy revealing its low dependence and high 
driver power. Thus, it has a more strategic orientation. Hence, 
a competitive advantage can be achieved by continuously 
enhancing the capabilities of the drivers. Also, the study has 
no autonomous and linkage factors. All the factors are either 
drivers or dependants stating that all are steady factors and 
important for the model. They either drive the other factors 
or are dependent on other factors for their success.

5.1  Theoretical contributions

This study makes substantial contributions to the literature. 
The literature review revealed that most of the studies focus 
on building a resilient and/or robust supply chain. These 
studies discuss how to make the supply chain bounce back 
quickly in the event of a disruption or an exogenous shock 
such as the Covid-19 pandemic. However, only a handful 
of studies could be identified which talk about building an 
antifragile supply chain that thrives in uncertainty and chaos. 
This indicates that the focus of researchers is towards tack-
ling the disruptions and saving the supply chain from any 
adversaries. On the contrary, the shift from robustness and 
resilience to antifragility requires the firms to deliberately 
cause some level of disruption to the supply chain, so that it 
embraces disruption and gains from it rather than avoiding 
it altogether. The few studies that have discussed antifragil-
ity focus on the need for antifragility and how it impacts 
the supply chain. None of the studies in the literature have 
focused on the factors that lead to antifragility. In this regard, 
this study adopts a very novel approach in determining the 
factors that could lead to an antifragile supply chain and how 
additive manufacturing capabilities can be utilized to lead to 
antifragility. The study draws the attention of the researchers 
towards a concept less explored. The conceptual framework 
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is built using the TISM approach and discusses a firm’s strat-
egies and decisions in a turbulent environment. The study 
figures out the relevant factors towards an antifragile supply 
chain, determines the hierarchies and interlinks and classi-
fies them based on driving and dependence power.

5.2  Implications to practice

The recent worldwide disruption to operations and supply 
chains has got the firms rethinking their strategies. The need 
of the hour is to develop dynamic capabilities which would 
prove beneficial in these uncertain times so that the firms 
can combat and learn from disruption to avoid any negative 
consequences on the firms’ overall performance. Currently, 
resilience and robustness are the go-to strategies for a firm 
to save itself in the face of adversities. This study brings to 
the forefront, the concept of antifragility which points out 
the need to embrace disruption and learn from them. The 
study helps the firms develop a mind shift towards building a 
supply chain that sees disorder as an opportunity to learn and 
grow. Finally, the nexus between antifragility and digitaliza-
tion develops a fertile ground for the adoption of additive 
manufacturing technologies. This study reveals how AM can 
be used as a competitive advantage by the firms to combat 
any negative consequences on its overall performance in 
the face of disruption. The structural framework, its hierar-
chies, and interlinks can be utilized by decision-makers as a 
powerful tool to understand the cause and effect. Also, the 
MICMAC analysis helps the firms understand what factors 
are driving the changes and which are dependent on others. 
Efforts of the decision-makers can now be directed towards 
achieving an antifragile supply chain by understanding the 
links and prioritizing their actions towards the goal. These 
actions will help the firms prepare better in case of future 
disruptions to their supply chains.

6  Conclusion, limitations, and future scope

In the post-Covid-19 era, supply chain resilience has gained 
the attention of researchers and practitioners. Supply chain 
resilience is the ability of a supply chain to return to its pre-
disrupted mode in an acceptable period. An antifragile supply 
chain strives to embrace the disorder and gain from it rather 
than avoid it. Here, we can find its analogy with any vaccina-
tion, the aim of which is to intentionally expose our immune 
system to the virus to build a stronger immunity towards it. 
Similarly, an antifragile supply chain helps firms to convert 
the challenges into opportunities. During the recent outbreak, 
additive manufacturing evolved to become a ubiquitous tech-
nology and the world saw its potential applications in the 
printing of medical supplies. Quite a few studies have dis-
cussed how additive manufacturing technology can be uti-
lized to combat the Covid-19 challenges. Several industries 

and business sectors, such as the medical sector, used AM 
to manufacture customized and cost-efficient products in 
a timely fashion. Recent improvements in AM technology 
enable co-designing and mass-personalization. Operational 
and technological innovations have also been done to push 
the boundaries of customization and provide high volume 
at a low cost. AM helps the firms in overcoming the tradi-
tional manufacturing constraints, including but not limited to 
inventory buffers and tooling requirements. AM’s potential to 
rapidly produce unlimited range of products can prove to be 
a winning factor during a disruption for any firm.

Existing literature talks about resilient and robust sup-
ply chains but factors leading to an antifragile supply chain 
have not yet been discussed. In this study, through litera-
ture review, initially, nineteen factors are identified for an 
antifragile supply chain. Delphi method is used to collect 
experts’ opinions to corroborate the findings which led to the 
final sixteen factors for this study. Using TISM-MICMAC, 
the hierarchy and interaction of these factors are analyzed 
and the factors are then clubbed as drivers and dependants. 
The results reveal the importance of proactive top manage-
ment to implement AM, which ultimately leads to an anti-
fragile supply chain. The TISM-MICMAC approach used in 
this study provides a macro picture of the critical factors to 
build an antifragile supply chain. Findings will help manag-
ers in decision-making to prepare for future disruptions in 
the supply chain. However, this study has some limitations. 
It gives only the interrelationships between the factors and 
fails to assign relative importance to the factors. Hence, for 
further validation of findings, Structural Equation Modeling 
(SEM) and m-TISM could be applied as future scope of the 
study.
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