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Abstract This paper investigates the mechanical behav-

ior of inherently-anisotropic granular materials from macro-

scopic and microscopic points of view. The study is achieved

by simulating biaxial compression tests performed on granu-

lar assemblies by using numerical discrete element method.

In the same category of numerical studies found in the liter-

ature, the simulations were performed by considering ellip-

tical/oval particles. In the present study, however, the shape

of particles is considered as convex polygons, which mostly

resembles real sand grains. Particle assemblies with four dif-

ferent bedding angles were tested. Similar to what observed

in experiment, inherent anisotropy has a significant effect

on macroscopic mechanical behavior of granular materials.

The shear strength and dilative behavior of assemblies were

found to decrease as the bedding angle increases. Evolution

of the microstructure of all samples and the influence of bed-

ding angle on the fabric and force anisotropy during loading

process were investigated. It is seen that the microscopic evo-

lutions in the fabric can justify well the macroscopic behavior

of granular assemblies. It is found that the long axis of par-

ticles tend to be inclined perpendicular to the loading axis,

which results in generating more stable column-like micro-

structures in order to transfer the applied load. Moreover, the

number of contacts as well as the magnitude of forces among

particles varies in different directions during the loading pro-

cess and the initial anisotropy condition totally evolves due

to the induced anisotropy within samples.
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1 Introduction

Anisotropy is a common phenomenon in a granular mate-

rial since it consists of individual discrete bodies. There are

many studies suggested that the anisotropy is one of the most

important aspects to be taken into account for better under-

standing of the mechanics of granular soils [1–7]. The first

type of anisotropy in granular materials especially in natu-

rally deposited sands is inherent anisotropy. It pertains to the

initial spatial arrangement of particles, voids, and associated

contacts. This is generally initiated during the deposition of

soil particles under gravity so that the long axis of parti-

cles tends to align in a specific direction, which is termed

as bedding plane. Such initially-generated structure in gran-

ular materials influences the mechanical behavior including

shear strength and deformability, which is an important issue

in geotechnical engineering problems. There exists another

type of anisotropy, which occurs during loading process and

shear deformation of aggregate media. The latter is referred to

induced anisotropy. In fact, the anisotropy induced in the fab-

ric explains variations observed in the mechanical response

of granular materials. Such fabric evolution is also affected

by the inherent anisotropy in the medium.

Studying the mechanical behavior of inherently anisotropic

granular soils have been the subject of many experimen-

tal/laboratorial researches. Different test methods includ-

ing plane strain compression tests [8–11], direct shear tests

[5,12], triaxial tests [8,13], true triaxial tests [14,15], and

hollow cylinder torsion shear tests [9,15,16] have been used

to find characteristics of initially anisotropic sand fabrics. In

addition to the efforts made by testing on naturally deposited

and laboratory-prepared sand samples, biaxial compression

tests were also performed by using two-dimensional assem-

blies of photo-elastic oval cross-sectional rods [17]. The out-

come of all these tests wholly indicates that shear strength
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and deformability of granular soils is highly dependent on

the initial fabric condition. In other words, the stress-strain

behavior of such soils significantly varies with the direction

of applied loading or stresses with respect to the bedding

plane.

Regardless of the initial condition within the soil fabric, an

evolution in the soil fabric occurs when a granular soil under-

goes shear deformation. The evolution in fabric corresponds

to the changes in particle arrangement as well as develop-

ment/disappearance of contacts between particles. A remark-

able aspect of such induced anisotropy is the development of

vertical columns through which the major principal stress is

transmitted. Wakabayashi [18] and Drescher [19] observed

dark bands in stressed assemblies of optically sensitive parti-

cles under polarizing light and interpreted them as principal

stress trajectories. The same experience was obtained by Oda

et al. [17] by using photo-elastically sensitive rod-like parti-

cles in biaxial compression tests. The particles had oval cross

sections. They found that during the sample deformation

and up to the peak stress ratio, new contacts are continu-

ally generated in such a manner that they tend to concentrate

more in the direction parallel to the major principal stress

axis. This concentration seems to be closely related to the

formation of new column-like load paths which carry the

increasing applied stress in that direction. After the peak

stress ratio, however, buckling of such column-like micro-

structures occurs, but considerable rearrangement of the load

paths takes place and new concentrations lead to form new

columns. Therefore, the generation and collapse of columns

carries on successively. The other observation in their test

was the appearance of large voids between the buckling col-

umns. They explained that such happening is the reason why

large dilatancy can be found after the peak stress [17]. Oda

et al. [20] compared these results with those of plane strain

tests on Ticino and Toyoura sands [21] and they found that the

same happenings can take place in real sand samples within

narrow shear bands. Accordingly, it is possible to say that

the mechanical behavior of granular materials can be well

interpreted as a consequence of microscopic events within

the assembly.

The numerical discrete element method (DEM) has been

used increasingly in recent years to investigate the behavior of

granular soils both from macro and micromechanical points

of view. By using DEM, the mechanical response of gran-

ular media can be acquired by considering each particle as

an individual body having interactions with its neighboring

particles as a dynamic process and using simple mechani-

cal laws for their interactions. In addition, DEM is a very

powerful tool in order to study the evolutions taken place

in the microstructure of granular materials. For instance,

DEM facilitates to investigate the development of stress/force

transmission [22,23], contact network [24], and generation

of shear zones [25]. In the simplest form, the simulations

of aggregates can be performed by circular discs [26–28] or

spheres [29,30]. Due to the simplicity in particle shapes, the

advantage of these simulations is the reduction in calculation

time. However, such simplification has some imperfections.

Firstly, these simulations do not consider the effect of parti-

cle shape and different dimensions in different directions.

Secondly, another shortcoming arises from the excessive

freedom of these particles, which causes higher degree

of rotation in comparison with real sand particles. There

have been various attempts to eliminate this imperfection.

Regarding two-dimensional simulations with circular parti-

cles, Iwashita and Oda [31,32] introduced modified discrete

element method (MDEM), in which the conventional DEM

is modified in such a way that the effect of rolling resistance

at contact points could be taken into account. By compar-

ing the results of DEM with those of MDEM simulations,

they showed that column-like microstructures, large voids

and high degree of particle rotation in shear bands can be well

obtained by MDEM in quite similar manner to natural sands.

A similar approach has been taken into account in simulating

3-D sphere particles [33]. However, MDEM can not be used

when it is aimed to study the inherent anisotropy in granular

materials, because there is no elongation and preferred ori-

entation in the geometry of circular/spherical particles. As

another alternative for the above mentioned imperfection of

circular/spherical particles is to use non-circular/non-spher-

ical particles, which are often elliptical/oval in shape and are

used in both 2-D [27,34,35] and 3-D simulations [36]. Ideas

for creating non-circular/non-spherical particles are clusters

of bonded circles/spheres [37] or overlapping rigid clusters

[38]. Although these clustering techniques provide non-cir-

cular/non-spherical particles for more rigorous simulations,

they would require a big amount of memory and thus, the

calculation time increases.

The other approach, which will be used in the present

study, is to use convex polygon-shaped particles [39,40]. By

this approach, it is possible to predefine the geometry of par-

ticles in numerical assemblies as arbitrary convex polygons.

Each particle is considered as a rigid body in similar manner

to simulations with circular/elliptical particles and thus, not

only the simulation process is simple and efficient compared

to clustering techniques, but also the geometry of particles

are very close to real soil particles compared with elliptical

particles.

The present paper aims to investigate the evolution of

microstructure within two-dimensional inherently aniso-

tropic granular materials. The study is achieved by simulating

biaxial compression tests for four series of granular assem-

blies using DEM. Each sample contains a set of elongated

polygon-shaped particles, which makes the results of simula-

tions more reliable compared with using elliptical particles.

The state of inherent anisotropy is taken into consideration by

generating assemblies in such a way that the average initial
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bedding angle of particles is oriented towards a specific direc-

tion with respect to the loading axis. The effect of inherent

anisotropy on the behavior of assemblies is firstly studied in

terms of shear strength as well as deformability. Then, more

specifically in this paper, the microstructure evolutions inside

the assemblies are investigated by following the rearrange-

ment of contacts and distribution of contact forces during

loading process.

2 Principles of the numerical procedure

Numerical simulations are carried out by using DEM. In

DEM, a granular material is considered as a group of individ-

ual particles and equations of motion are solved for each par-

ticle using implicit time integration method. A brief review of

the numerical procedure is explained below, which is based

on the original work presented by [41].

2.1 Equations of motion

In a Cartesian coordinates system (x1 −x2), consider an indi-

vidual particle surrounded by neighboring particles as shown

in Fig. 1a. The particle may have interactions with some

of the adjacent particles through the contact points. Conse-

quently, the particle as a rigid body can move and rotate due

to applied peripheral forces from adjacent particles (Fig. 1b).

The rotational and translational accelerations of motion can

be calculated for each particle by using Newton’s second law

of motion:

I θ̈ =

Nc
∑

c=1

Mc

m Ẍ i =

Nc
∑

c=1

Fc
i (1)

where m and I are the mass and moment of inertia of the par-

ticle. Fc
i and Mc are the i th force component (i = 1, 2) and

the moment applied at the center of gravity of the particle,

respectively. Nc is the number of contacts with other par-

ticles. Ẍ i and θ̈ are translational component and rotational

accelerations of the particle, respectively. These equations

are integrated once to calculate the respective velocity and

then once again to find the displacement components as well

as rotation.

In addition to the forces and moments caused by contacts,

particles are imposed by extra force and moment components

representing viscous damping in order to maintain the stabil-

ity of the method by dissipating particle movements. To do

so, the values of the damping force component F D
i and the

damping moment M D are related to the translational (Ẋ i )

and rotational (θ̇) velocity components by constants Cm and

CI as follows:

F D
i = −Cm Ẋ i

M D = −C I θ̇ (2)

where Cm = αmm and C I = αI I , in which αm and αI are

damping coefficients.

It is noted that the accuracy of such simulation is mainly

related to the prediction of interactions between particles.

During loading, new contacts may be generated and at the

same time, some of existing contacts may be disappeared.

As a consequence, the simulation is a dynamic process and

equations of motion should be solved for each particle in

every time step during the simulation process.

2.2 Contact law

The shape of particles in simulations is considered as con-

vex polygon i.e., having sharp corners and edges and thus,

Contact Point

(b)(a)

Fig. 1 a Presentation of a particle surrounded by neighboring particles; b associated contact forces on the particle
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Fig. 2 Representation of contact definition between two angular par-

ticles

the contact detection algorithm is the main challenge in the

simulation process. Mirghasemi et al. [39] introduced and

examined two different contact laws (linear and overlap-area)

for angular particles and they showed that both contact laws

yield similar results. In the present study, the overlap-area

contact law is applied in simulations.

Consider two polygon-shaped particles having contact

with each other according to Fig. 2. The contact is char-

acterized by an overlap area between two particles. The line

between the intersection points P1 and P2 indicates the con-

tact length (L) between particles. The indentation length

(δ) can be defined as δ = A/L , where A is the overlap

area between particles. The contact force is assumed to be

imposed at the middle of the P1 P2 line. Each contact force

comprises of normal and tangential components. The direc-

tion of the normal contact force (Fn) is perpendicular to the

line P1 P2 and the value is calculated as follows:

Fn = knδ (3)

where kn is normal stiffness coefficient. Similarly, the tan-

gential contact force (Fs) exerted along the line P1 P2, is

defined as:

Fs = ks� (4)

where ks is shear stiffness coefficient and � is the relative

tangential displacement of two particles along the line P1 P2.

The relationship between the normal contact force and inden-

tation length (Eq. 3) is elastic. In contrary, it is assumed that

the contact surface along the line P1 P2 behaves as frictional

and the elastic tangential force-displacement relationship is

limited. It means that sliding may occur along the contact sur-

face when |Fs | > µs Fn . Otherwise, the relationship between

shear force and tangential displacement is recoverable. µs

equals tan φµ, where φµ is the inter-particle friction angle,

whose value relates to the characteristics of the particles

material [42].

2.3 Average stress tensor

In a granular assembly, the average stress tensor (σi j ) can

be computed as an average of microscopic characteristics as

follows [43,44]:

σi j =
1

V

Nc
∑

c=1

f c
i lc

j i, j = 1, 2 (5)

The sum above is with respect to the total number of contacts

(Nc) in the volume V. f c
i is the i th component of the contact

force acting at the cth contact point between two particles; lc
j

is the j th component of the contact vector that points from

the center of the mass of each particle to the middle of the

contact surface.

Alternatively, the average stress tensor can be obtained

from tractions applied on the boundary of the assembly. If

external forces T 1
i , T 2

i , . . . , T m
i are exerted on the boundary

points x1
i , x2

i , . . . , xm
i , the average stress tensor of an assem-

bly with statically balanced condition can also be assessed

by:

σi j =
1

V

m
∑

b=1

T b
i xb

j i, j = 1, 2 (6)

2.4 Average strain tensor

The average strain tensor (εi j ) of an assembly with the

volume V can be obtained by measuring displacements of

boundary particles [26]:

εi j =
1

V

Nb
∑

β=1

[

1

2
{�x

β

j + �x
β+1
j }e

β

i Sβ

]

i, j = 1, 2 (7)

The boundary is defined by connecting the center of all

boundary particles to each other. In accordance with Fig. 3,

�x
β

j and �x
β+1
j represent the j th component of the two

adjacent particles displacement, which are connected to each

other through the line Sβ . e
β

i is the i th component of the unit

vector whose direction is perpendicular to Sβ . Nb in the above

equation is the number of total boundary contacts.

3 Numerical simulations

The numerical procedures described above have been imple-

mented in a computer program called POLY [39]. It is a

developed version of the code DISC [45], which was used to

model two-dimensional biaxial compression tests with circu-

lar particles. POLY has been later developed for simulating

breakage phenomenon in convex angular particles [46].
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Fig. 3 Definition of the average strain tensor by considering displace-

ments of boundary particles

3.1 Particle generation

As explained before, the particles are considered as poly-

gon in shape. The geometry of each particle as a polygon

is defined by introducing the coordinates of the polygon

corners. The particle geometry can be considered arbitrarily

except for being convex. This condition is because of the con-

tact detection algorithm. It is also possible to define arbitrary

number of particle types regarding the size and geometry. In

the present study, three forms of elongated particles are cho-

sen with three different sizes. The geometry of the particles

is considered in such a way that a particle is surrounded by

an ellipse. Accordingly, the major and minor axes of a parti-

cle are defined as the long and short axes of the surrounded

ellipse, respectively. The orientation of a particle with respect

to the horizontal axis is determined by the direction of the

major (or long) axis. It is noted that the procedure used for

the definition of particle orientation does not directly con-

sider a unique value of the particle orientation related to the

particle geometry. Instead, one can use the concept of inertia

tensor defined by Pena et al. [47], by which the distribution

of mass of particles can be correctly obtained. Consequently,

the procedure used in this study to investigate the changes in

the orientation of particles is only an approximation and not

unique. The similarity between polygon-shaped and ellipti-

cal particles is considered intentionally only for comparison

of the results with those of simulations with elliptical parti-

cles in the literature [48]. The geometry of particles is shown

in Fig. 4. The aspect ratio (the ratio of the major axis length

to the minor axis length) of all ellipses is 1.5. The particle

sizes represented by the major axis length include 4.5, 5.0,

and 7.0 mm.

3.2 Fabrication of numerical specimens

In the present study, the specimens have the form of a circu-

lar region. This form of specimens originates from the idea

that the stress distribution within such geometry would be

more uniform compared to the specimens with four-edged

regions and thus, stress concentration and/or strain localiza-

tion inside the assembly is prohibited. Based on the particle

size and type distribution introduced for specimens, particles

are placed randomly inside the circular region. A particle is

laid down inside the region in condition that it has no overlap

with previously-laid particles. Furthermore, since inherently

anisotropic assemblies are aimed to be prepared, the code

is modified to place each particle provided that major axis

of the particle be oriented along a pre-defined direction i.e.,

bedding plane. It is noted that in the literature, there is another

numerical technique used to prepare inherently anisotropic

samples and that is the pluviation method, which is similar to

sand pluviation in real laboratory tests [8,49]. In this method,

the gravity force is considered in calculations and thus, a pack

of sand is deposited as sediment. It is obvious that the spec-

imen prepared by the pluviation method is very similar to

what happens in the nature. However, the simulation process

used in this paper is less time-consuming in comparison with

the pluviation method. In each specimen, whose diameter is

160 mm, about 2,000 particles can be stacked. The sample

diameter is large enough in order to neglect the effect of

particle size on test results (Dsample/Dparticle ≈ 21).

A scheme of the four initially-generated samples with bed-

ding plane of α = 0◦, 30◦, 60◦, and 90◦ with respect to the

horizontal is depicted in Fig. 5. At the initial state of the

sample generation, particles are sparsely positioned inside

the circular region. In order to reduce the gaps between par-

ticles and make the specimens denser, an initial isotropic

Fig. 4 Schematics of the geometry of particles used in simulations
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α = 0
o α = 30

o

α = 60
o α = 90

o

Fig. 5 Schemes of initially-generated numerical specimens with different bedding planes (α)

compaction is required. This compaction is performed by

radial movement of boundary particles towards the center of

the specimen. During this stage of simulation, the inter-par-

ticle coefficient (µs) is intentionally set to zero in order to

facilitate the compaction process. In addition, the rotational

damping of particles is assigned to a high value to restrict the

rotation of particles. The compaction continues until a small

amount of stress is mobilized inside the specimen, which

means that particles are in contact with each other. Hereaf-

ter, the specimens are ready for being tested under applied

loads.

3.3 Loading of specimens

Similar to what is performed in conventional laboratory tests

on soil samples, each numerical simulation test consists of

primary compression of the specimen under constant confin-

ing pressure followed by applying a deviatoric stress on the

assembly. All specimens are firstly compressed isotropically

under a confining pressure of 300 kPa. During the compres-

sion process, the isotropic loading continues until there is

no volume change along with numerical cycles. The value

of void ratio at the end of the isotropic compression pro-

cess is 0.252, 0.259, 0.260, and 0.253 for the specimens with

α = 0◦, 30◦, 60◦, and 90◦, respectively. The isotropically

compacted sample with α = 30◦ is shown in Fig. 6a for an

example. As the second stage of loading, the specimen is

loaded biaxially in such a way that the stress in the lateral

direction (1-1) remains constant and equals σ11 = 300 kPa,

while the top and bottom of the specimen is loaded vertically

along 2-2 axis by moving boundary particles with a con-

stant displacement rate proportional to the distance from the

center of the specimen. Accordingly, the specimen deforms

under such biaxial loading condition and the circular form

turns into an elliptical one, which is elongated horizontally

(Fig. 6b).
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(a) 

(b) 

2

1

2

1

1 1

2

2

Fig. 6 Presentation of numerical specimens under a confining pressure

of 300 kPa, b biaxial compression test (at axial strain of 16 %)

The values of DEM parameters used in the simulations

are shown in Table 1. During loading stages, the inter-parti-

cle coefficient is set to µs = 0.5. This value corresponds to

the friction angle of quartz sand measured in laboratory [50].

The value of other parameters is chosen tentatively based

on experiment and empirical trials so that reasonable results

can be derived from simulations. The values of parameters

are also well consistent with those reported in DEM-based

researches in the literature [48,51]. It is important to point out

that the behavior of 2-D numerical particles might be differ-

ent from those of real 3-D sand particles. For instance, void

ratio values obtained in 2-D simulations are much smaller

than those in 3-D simulations. However, the mechanisms

obtained in either real tests or 2-D simulated tests have been

found to be analogous. As a consequence, the application

Table 1 DEM parameters used in simulations

Parameter Value

Vertical axial strain rate 0.003

Time step increment (�t) 1.2 × 10−5 s

Particle density 2, 500 kg/m3

Inter-particle friction angle (ϕµ) 26.6◦

Cohesion between particles (C) 0.0 kPa

Normal spring constant (kn) 2.0 × 108 N/m

Tangential spring constant (ks) 2.0 × 108 N/m

Viscous translational dumping coefficient (αm) 10,000

Viscous rotational dumping coefficient (αI ) 10,000

of 2-D DEM analyses can help us to investigate the behav-

ior of such discrete assembles more qualitatively rather than

quantitatively.

4 Simulation results

The results obtained from the simulations can be investigated

from two different aspects as macroscopic and microscopic

points of view.

4.1 Macroscopic behavior

In soil mechanics, it is a common practice to study the soil

behavior by means of shear strength and compressibility

characteristics, which are mainly influenced by stress level

and density. In granular soils, shear strength is usually known

by the so-called internal friction angle (φ) which is mobi-

lized during shear deformation. By referring to the applied

stress tensor on the specimens and using the conventional

Mohr-Coulomb failure criterion, the mobilized internal fric-

tion angle (φmob) can be obtained:

Sinφmob =
σ22 − σ11

σ22 + σ11
(8)

where σ11 and σ22 are minor (in the horizontal direction) and

major (in the vertical direction) principal stresses, respec-

tively. Sinφmob can be interpreted as stress ratio too. Fig-

ure 7a presents the variation of mobilized shear strength of all

numerical specimens in terms of Sinφmob against the axial

strain (vertical strain in the tests). As shown, although the

initial condition of all samples regarding the confining pres-

sure and void ratio is the same, they show different manners

in stress ratio variation. It is obvious that this difference in

behavior arises from the initial fabric condition. According

to this graph, the stress ratio increases rapidly until a small

axial strain of 2 % and thereafter, the response differs. In

the sample with α = 0◦, Sinφmob continues to grow and

reaches a peak value in the axial strain of 7 %, while this
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Fig. 7 Variation of a shear strength and b volumetric strain against

axial strain for samples with different bedding planes (α)

growth in other samples is much lower; Sinφmob continues

to increase gradually with some fluctuations in the samples

with α = 30◦ and 60◦, but the growth has stopped in the

sample α = 90◦ and instead, the shear strength falls along

with the axial strain.

Regarding the effect of inherent anisotropy on deforma-

tional characteristics, the variation of volumetric strain versus

axial strain is plotted in Fig. 7b. All samples behave con-

tractively first, but they start to dilate afterwards. Although

the dilative behavior of all samples initiates just before the

mobilized shear strength reaches the peak value, the samples

reflect different dilative behaviors. For example, the most ini-

tial densification occurs for α = 0◦ and the volume expan-

sion initiates at about ε22 = 3 %, while the other samples

start to dilate at very small axial strain level. By following

the variation of the volume change, on the other hand, it can

be found out that among the dilative behavior of samples, the

sample with α = 0◦ has the greatest degree of dilation. This

tendency in the deformational behavior has been observed

too in numerical simulations performed by Mahmood and

Iwashita [48] and Sazzad and Suzuki [51].
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Fig. 8 Relationship between peak shear strength and bedding angle

for samples with oval and angular particles

The variation of the peak value of Sinφmob with respect

to the change of bedding angle is summarized in Fig. 8. As

can be seen, the peak stress state is obtained maximum for

α = 0◦ and it decreases as the bedding angle increases.

In the same figure, the result of another series of DEM-

based simulations is presented [48,51]. In this series, sev-

eral plane strain tests were simulated under lateral pressure

of 300 kPa. The particles were elliptical with the aspect ratio

and particle size similar to this paper. According to Fig. 8,

both series of simulations have the same trend in the varia-

tion of maximum value of Sinφmob. Nevertheless, the values

corresponding to the tests in this paper are obtained higher

than those with elliptical particles. The difference in results

can be explained by considering the effect of interlocking

phenomenon among angular particles. According to Lambe

and Whitman [42], the value of the mobilized friction angle

can be interpreted as the inter-particle friction angle plus the

degree of interlocking whose value depends on the particle

size and shape. Therefore, it is expected that a higher fric-

tion angle be obtained for angular particles in comparison

with rounded particles. The effectiveness of particle shape

on the shear strength has been found by many researches

either in experimental [52,53] or numerical simulated tests

[47,54,55].

4.2 Microscopic behavior

The macroscopic mechanical behavior of a granular mate-

rial is intrinsically dependent on the evolution of microstruc-

tures during shear deformation. The observed variations in

the mobilized shear strength and dilatancy can be well inter-

preted as a reflection of fabric evolution during loading. In

the following sections, it is aimed to study different behaviors

observed in inherently anisotropic samples from microme-

chanical point of view.
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Fig. 9 Contact normals

distribution at different axial

strains with different bedding

planes

α = 0
o α = 30
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4.2.1 Observational investigations

The significance of anisotropy in granular materials orig-

inates generally from preferred contact normals, preferred

alignment of particles, and their associated voids. By study-

ing fabric evolution during plane strain tests [21] on sands

and biaxial compression tests on rod particles [17,56], dra-

matic changes in the number of contacts, particle inclination,

and generation of large voids were figured out.

Contacts between particles play the leading role in the

global behavior of granular materials since applied forces are

supported by means of these connections. Figure 9 presents

a graphical distribution of contact normals generated among

the particles at different axial strain levels during the biax-

ial compression tests. Contact normals indicate the normal

direction of contact planes between two particles. They are

depicted as straight lines with different colors and thick-

nesses, which represent the magnitude of forces normal-

ized by the maximum value obtained in all tests. The lines

become darker and thicker as the magnitude of the contact

force increases. Before the biaxial compression test starts i.e.,

ε22 = 0, the contact normals are distributed directionally in

each sample although the samples have been loaded under

an isotropic condition. It is found out that the majority of

contact normals are oriented along the bedding angle. This

is more recognizable in the internal parts of the samples. In

addition, there is a uniformity found among the contacts con-

cerning the magnitude. From a micromechanical standpoint,

such spatial distribution in contacts signifies the concept of

‘inherent anisotropy’ in granular materials. By applying devi-

atoric stress along 2-2 axis, the initial order in contacts alters

gradually during shear deformation. By comparing the dis-

tribution of contact normals, it is seen that new contacts are

generated along the bedding plane of particles. Furthermore,

the existing contact forces become greater in such a way that

continuous chains of contact normals are formed tending to

be aligned in vertical direction along major principal stress.

Stronger contact chains are formed sooner at the lateral parts

of the specimens close to the boundary, because they are

shorter in length and thus, they can transfer the applied stress

more efficiently in relation to long chains inside the samples.

The evolution found in the contact distribution is referred to

as ‘induced anisotropy’, which is the consequence of genera-

tion and/or disappearance of contacts. This evolution justifies
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the variation of mobilized shear strength shown in Fig. 7a.

For instance, by comparing the contact normal distribution at

different strain levels in the sample α = 0◦, it is clear that it

has the largest amount of strong contacts at ε22 = 8 %. This

finding agrees well with the peak value of mobilized shear

strength around this level of deformation. For other sam-

ples, this comparison might be visually difficult and such

microscopic observations are studied later quantitatively in

following sections.

The contact anisotropy either existed at the initial condi-

tion or induced during the loading process is owed to the

particles arrangement within the samples. Figure 10 illus-

trates the position of particles related to each other at axial

strain levels of ε22 = 2, 4, 8, and 16 %. In order to follow

the particle arrangements within the assemblies and similar

to the graphical method used for contacts, the particles are

colored by different degrees of darkness depending on the

amount of applied forces; the darker particles support bigger

forces. In Fig. 10a, the particles loaded by less than average

value are omitted, while Fig. 10b presents the arrangement

of particles which are loaded higher than half of the maxi-

mum force value. From the onset of loading, it can be figured

out that the particles tend to create microstructures in the

form of columns along vertical direction in order to transmit

the applied deviatoric stress. During loading, there are some

columns that come into existence, collapse, are shortened,

or even are regenerated. In the sample with α = 90◦, the

development of such microstructures is generally scattered

within the medium during loading, while the development

pattern is different in other samples. It can be seen that the

side particles are the first ones to accept applied stresses and

then the development of column-like structures is distrib-

uted towards the center of the assemblies. The density (the

number per volume) of such microstructures is found to be

higher in the sample with α = 0◦ compared to other sam-

ples, which becomes the highest at about the axial strain of

6–8 %. According to the particle arrangement patterns seen

in Fig. 10a, b, the column-like structures become shortened

or disappear in assemblies with α = 60◦ and 90◦, which jus-

tifies the lower shear strength of assemblies. However, there

is a high concentration of force chains in the assembly with

α = 0◦. This phenomenon, in addition to the contact distri-

bution already described in Fig. 9, can justify the peak shear

strength observed in α = 0◦ at the above mentioned axial

strain range.

By comparing the density of column-like structures in

Fig. 10a with that in Fig. 10b, it can be seen that the number

of particles partaken in the force chains is reduced if the par-

ticles with forces lower than half of the maximum value are

neglected. This indicates that although the particles carry-

ing above average load (Fig. 10a) appear to form a network

of forces, the majority of particles belongs to a weak net-

work and rather, stronger force chains are more shortened and

scattered through the medium (Fig. 10b). The quantification

of the density, length, and the distribution of such force chains

needs to define a criterion in terms of factors such as the num-

ber of incorporated particles and the magnitude of carrying

forces [57–59]. This subject is out of scope of this study and

it can be considered as an open issue to be addressed in future

works.

By focusing on the evolution of columns during load-

ing process, as already explained in the Sect. 1, arrays of

gaps can be found to be generated among microstructures. It

can be recognized that although the size and location might

differ, the distribution of such voids throughout the sample

does not change abruptly during different loading stages (It

is reminded that only high-stressed particles are considered

here). There is an exception and that is for the sample α = 0◦.

From the beginning of loading in this sample, the develop-

ment of microstructures continues and the initial gaps are

closed and replaced by new columns until the axial strain

of 8 %. Hereafter, it seems that such progressive trend is

switched off and in turn, the columns seem to buckle which

result in large openings between them. Such happening can

be figured out easily at the axial strain of 16 %. Paying atten-

tion to the macroscopic deformational behavior of the sample

α = 0◦, as already discussed, one can consequently interpret

the contractive behavior as well as the following dilation of

the sample. The reduction in volume directly corresponds to

the construction of columns and filling voids. However, the

occurrence of column buckling motivates the dilative behav-

ior. This explains why the dilative behavior of samples takes

place after the peak stress state. It can be seen that the slope

of the volumetric strain versus axial strain curve of this sam-

ple (α = 0◦) starts to augment at the axial strain of 8 %

(Fig. 7b), which corresponds the start of the post peak stress

state (Fig. 7a). This point of behavior coincides with the initi-

ation of columns buckling and the generation of large voids.

As mentioned before, these observations agree well with the

findings on real sand tests in laboratory [20,21].

As a complementary standpoint about the microscopic

inspections, it is focused on the stability of column-like

microstructures within assemblies. As explained before in

the Sect. 1, the formation of such column-like structures has

been already proved by researchers. Here, it is tried to justify

the observed difference in the distribution pattern of such

structures within inherently-anisotropic granular materials

and its relation to the mechanical behavior. The difference

in response of assemblies arises from the local and global

stability of such columns. The local stability relates to the

alignment of a particle with respect to the loading direction.

According to Fig. 11a, a particle with the horizontal long axis

under a couple of forces (F) remains in a steady state against

rotation, while for a similar particle with vertical align-

ment, there is a high tendency to rotate because of a torque

(M) initiated from a small eccentricity of forces (d). As a
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Fig. 10 Presentation of loaded

particle arrangements inside the

samples with different bedding

planes. Dark particles are highly

loaded and less-loaded particles

are light gray. a Particles with

forces lower than average value

are omitted. b Particles with

forces lower than half of

maximum value are omitted
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Fig. 11 a Stability of a horizontal and vertical particle under a couple of forces; b Schemes of a simple model for microstructures as a column

and the relationship among critical loads (Pcr) and width of buckled columns

consequence, it can be found that the sample with α = 90◦

rarely contains continuous long columns. Regardless of such

local instability, on the other hand, the geometry of gener-

ated granular columns plays an important role in the global

stability of such structures. Consider three column-like struc-

tures with the same length L, according to Fig. 11b, which

are constructed by stacking of similar particles with B1 ×B2

dimensions. The column-like structure, whose particles are

horizontally oriented, has the largest width (B1) while the

structure slims as the particle bedding angle increases so that

the column with vertical particles has the least width (B2).

As already known for a structural problem, the buckling load

(Pcr ) of a column increases with the width (W). Accordingly,

the columns generated in the sample with α = 0◦ are more

stable than those in other samples.

4.2.2 Fabric anisotropy

In the previous section, the evolutions happened in the fabric

within the inherently-anisotropic assemblies were described

graphically. Hereafter, it is aimed to study the fabric change

from quantitative point of view.

As mentioned before, one of the factors causing the fabric

to be anisotropic is the distribution of particle orientation.
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Fig. 12 Polar distribution of long axis of particles with respect to the horizontal within inherently-anisotropic assemblies

Figure 12 shows the angular distribution of particle orienta-

tion for initial condition and at the end of the biaxial test. The

graphs present the portion of particles (the ratio of the num-

ber of particles to the total number of particles) with respect

to the angle from the horizontal. A particle is considered in

the numeration if its long axis is oriented within five-degree

intervals. Generally, in a granular material, in which the par-

ticles are randomly positioned, there is an isotropic distribu-

tion of particle orientation through the sample and thus, the

graph forms close to a circle. However, as seen in Fig. 12,

such distribution in inherently-anisotropic assemblies has a

wing-like form along the direction of bedding plane. Regard-

less of the direction of anisotropy, the initial distribution of

all samples is analogous and the maximum portion is around

0.11. Nevertheless, such repartition during shear deforma-

tion changes in different manners depending on the initial

bedding angle. Such induced change can be figured out by

comparing the initial orientation distribution with that at the

end of loading process. The direction of anisotropy is without

change in the cases α = 0◦ and 90◦, but the distributed num-

ber of particles has been altered. Such evolution has taken

place more significantly for α = 90◦ as a 50 % reduction

in the maximum portion. It is reminded that this alteration

observed in the fabric corresponds to the rotation of particles

which can be interpreted as a consequence of the buckling

of columns already described in the previous section (also

refer to Fig. 11a). In the sample α = 30◦, a reverse tendency

is found, which indicates that the portion of particles com-

pared to the initial condition remains almost constant, but

the direction of anisotropy is rotated clockwise. Similarly,

the evolutions observed in the sample α = 60◦ includes the

clockwise rotation of the particle inclination anisotropy as

well as the reduction in the number of particles in a specific

direction.

123



496 E. Seyedi Hosseininia

α = 0
o α = 30

o

α = 60
o α = 90

o

0

0.1

0.2

0.3

initial

peak

0

0.1

0.2

0.3

initial

peak

0

0.1

0.2

0.3

initial

peak

0

0.1

0.2

0.3

initial

peak

Fig. 13 Polar distribution of contact normals at initial state (thin line) and peak stress state (thick line) for different bedding angles (α)

The importance of contacts in a granular material origi-

nates from the fact that forces are carried by contact between

particles. To show the arrangement of contacts, an angular

distribution similar to that of particle orientation is used. The

distribution of contact normal orientation is determined as

the fraction of all assembly contact normals that falls within

the orientation intervals of five degrees. Figure 13 shows the

polar histograms of contact normals for initial and peak stress

states of the tests for different bedding angles. It can be said

that the normal contact anisotropy is highly dependent on the

orientation of particles since the direction of contact normal

anisotropy varies from one assembly to another assembly.

Moreover, by comparing these two states, it seems that the

histograms deform like being widened/shortened from initial

to peak stress state.

In order to quantitatively follow the degree of contact nor-

mal anisotropy during the loading process, the change in

the form of histograms can be studied by introducing major

principal direction of fabric anisotropy (θc) and coefficient

of contact normal anisotropy (ac). The parameter θc indi-

cates the angle between the long axis of the histogram with

respect to the loading axis (vertical direction). The meaning

of the parameter ac becomes clear if it is noted that the num-

ber of contacts oriented along the major principal direction

of anisotropy (θc) is proportional to 1 + ac while the num-

ber of contacts oriented along the perpendicular direction

is proportional to 1 − ac. In other words, the parameter ac

indicates the elongation of histograms and can be defined by

ac = (A1 − A2)/(A1 + A2), in which A1 is the length of the

axis of the histogram along the major principal direction and

A2 is that along the perpendicular direction. The value of ac

varies from zero to one. If the histogram has the form of a

circle, the ac value is zero, which corresponds to an isotropic

distribution. However, the value of ac increases and closes to
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one if the circle deforms as a peanut, which indicates a high

degree of anisotropy condition.

By assuming that the data of a polar histogram for contact

normals (like what presented in Fig. 13) be approximated by

a second-order Fourier series, the parameters ac and θc can

be determined by using least square regression of histogram

data as follows:

ac =

√

A2
s + A2

c

θc =
1

2
tan−1

(

As

Ac

)

(9)

In the above equations, As = 1
Nc

Nc
∑

i=1

Sin2θi and Ac =

1
Nc

Nc
∑

i=1

Cos2θi , where θi indicates the orientation of i th con-

tact normal from the loading axis (reminded that Nc is the

number of total contacts). This procedure is described in

greater details by Rothenburg [43] and Rothenburg and Bath-

urst [60].

The variation of contact normal anisotropy coefficient (ac)

and the major principal direction of fabric anisotropy (θc)

versus axial strain for all samples are shown in Fig. 14.

According to Fig. 14.a, the initial value of the anisotropy

coefficient ac is the same for all samples (ac = 0.5). This

means that all samples have the same degree of anisotropy

and a unique distribution of contacts exists within all sam-

ples regardless of dissimilar bedding planes. This is expected

since at the end of compaction, all samples have the same con-

dition regarding the compaction state (or void ratio) as well as

stress level (or confining pressure). However, the variation of

the anisotropy coefficient (ac) follows different manners dur-

ing shear deformation. In the sample α = 0◦, the anisotropy

coefficient increases with axial strain up to the peak value of

around one and then it falls a little and remains constant up

to the end of the test. The increasing trend in the anisotropy

coefficient suggests the phenomenon in which, new contacts

are generated along the anisotropy direction (perpendicular

to the bedding plane) and disintegration of contacts in the lat-

eral direction. Similarly, the parameter ac in the sample with

α = 30◦ increases monotonically from the onset of loading

and it reaches a constant value at large axial strain of 10 %, but

smaller than that in the sampleα = 0◦. The least change in the

fabric anisotropy belongs to the sample with α = 60◦ since

the coefficient ac stays almost constant at around 0.5 dur-

ingthe shear deformation. Finally, for the sample α = 90◦,

it can be seen that the contact normal anisotropy coefficient

always has a decreasing trend which gradually closes to zero

at larger axial strains. As explained before, the growth in ac,

like what happens in the samples with α = 0◦ and 30◦, indi-

cates that the number of contacts along a direction intensifies

with respect to other directions. Reversely, the reduction of

ac for the sample α = 90◦ implies that the contacts between
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Fig. 14 Variation of anisotropy parameters along with axial strain

within all bedding angles: a normal contact anisotropy coefficient; b

direction of normal contact anisotropy

particles have the tendency to be distributed isotropically

within the assembly. The variation of rotation of anisotropy

direction is presented in Fig. 14b. As can be seen, the initial

value of θc coincides with the initial bedding angle for all

assemblies. However, different trends can be observed in the

orientation of principal direction of fabric anisotropy during

loading process. The anisotropy principal direction (θc) does

not change significantly in α = 0◦, while it has a decreas-

ing trend in other cases. In the assembly with α = 30◦, it

falls rapidly to 15◦ at small axial strain of about 5 % and it

becomes constant up to the end of the test. In the assembly

with α = 60◦, the reduction in θc continues to the end of

the test, which implies the most change in the direction of

anisotropy among other samples. In this sample, the princi-

pal direction of anisotropy rotates 30◦ towards the loading

axis. Paying attention to the fact that the anisotropy coef-

ficient in this sample remains constant, but the anisotropy

direction rotates towards the loading axis, suggests that the

number of new forming contacts along the loading direction

is the same as the number of disintegrated contacts in the lat-

eral direction and these two phenomena happen concurrently.

The direction of anisotropy in the assembly with α = 90◦

has a total reduction of 20◦ from the start point accompa-

nying with some fluctuations, which indicates the instability
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of particles arrangements discussed before. The same trend

in the variation of the contact normal anisotropy parameters

is observed in numerical simulations with elliptical particles

performed by Mahmood and Iwashita [48].

4.2.3 Force anisotropy

In the previous section, only the number of contacts in a

polar distribution is considered as fabric anisotropy. In a sim-

ilar way, the magnitude of contact forces with respect to the

contact orientation is investigated in terms of normal and tan-

gential force components. To do so, the magnitude of contact

forces including normal ( fn) and tangential ( ft ) components

are determined for each contact and the average value within

angular intervals �θ is calculated. The polar distribution of

average normal contact force f̄n(θ) and average tangential

contact force f̄t (θ) are calculated as follows:

f̄n(θ) =
1

Nc(θ)

Nc(θ)
∑

i=1

f i
n , f̄t (θ) =

1

Nc(θ)

Nc(θ)
∑

i=1

f i
t (10)

In the above equations, Nc(θ) is the number of contact

normals whose direction belongs to the range of θ ∈

[θ − �θ/2, θ + �θ/2]. By plotting the average contact

forces in polar coordinates, the angular distribution can be

obtained. In order to compare the magnitudes in different

states of loading, the value of average (normal and tangen-

tial) contact forces is normalized by the global average nor-

mal contact force ( f̄0) throughout the sample:

f̄0 =
1

2π

Ng
∑

i=1

f̄n(θi )�θ (11)

where Ngindicates the number of angular intervals. Figure 15

shows the plots of polar distribution of normalized average

normal contact force ( f̄n(θ)/ f̄0) at initial and peak stress

states for all assemblies by considering angular intervals

(�θ) of five degrees. The histogram of all samples at the ini-

tial state seems to have approximately a circular form, which

indicates that the magnitude of average normal contact force

is almost the same in all directions. This is expected since

all samples were initially compacted under isotropic condi-

tion. The histograms, however, are elongated, at the peak

stress state, along the loading axis and slimed along the hor-

izontal direction. In addition, the long axis of all histograms

is oriented along the loading axis, regardless of the bedding

angle. This evolution in the normal force anisotropy suggests

the development of new contacts as well as the increase in the

magnitude of normal forces along the loading axis in relation

to those in the horizontal direction.

In order to trace the variation of normal contact force

anisotropy during shear deformation, a coefficient of nor-

mal contact force anisotropy (an) as well as major principal

direction of normal force anisotropy (θn), similar to what is

done for contact orientation, are defined based on the histo-

gram data. By considering a second-order Fourier expression

for polar distribution of average normal contact force com-

ponent, the related anisotropy parameters an and θn can be

calculated by using least square regression of histogram data:

an =

√

F2
s + F2

c

θn =
1

2
tan−1

(

Fs

Fc

)

(12)

where Fs = 1

f̄0

∑Ng

i=1 f̄n(θi )Sin2θi and Fc = 1

f̄0

∑Ng

i=1 f̄n(θi )

cos 2θi . Figure 16 presents the variation of the parameters an

and θn for all samples against the axial strain. According

to Fig. 16a, the initial value of the normal force anisotropy

coefficient (an) is not zero for any samples, but has a very

small value, which arises from the bedding angle of par-

ticles. In the sample α = 0◦, the parameter an increases

gradually and reaches a peak value and then it falls accom-

panying by some fluctuations. On the contrary, the anisotropy

coefficient in other samples rises quickly and reaches a peak

value. Afterwards, although it slightly varies up and down as

the axial strain increases, the general value remains constant

till the end of the test. As a general view, the value of an

has greater value as the bedding angle decreases. In fact, the

rise and fall observed in the an value during the loading pro-

cess correspond respectively to the generation and collapse

of microstructures described before. For instance, by paying

attention to the first fall in the sample with α = 0◦, it implies

that the reduction in an coincides with the reduction observed

in the shear strength as well as the high degree of dilation.

As already explained, this point corresponds to the bulking

of column-like structures. However, along with the loading

process and by rearrangement of particles, new columns are

generated and therefore, the parameter an increases again.

The same phenomena happens in other assemblies but the

rate of generation/disintegration of force chains is smaller

in comparison with α = 0◦ and thus, smaller rise and fall

can be seen in the variation of an . By looking at Fig. 16b, it

can be seen that the direction of normal force anisotropy has

abruptly rotated towards the loading axis i.e., θn = 0, as soon

as the loading process begins. The initial direction of normal

force anisotropy coincides with the direction perpendicular

to the bedding angle, though.

The same strategy is applied in studying the tangential

component of contact forces within the samples. Figure 17

depicts the polar distribution of the average tangential con-

tact force normalized by the global average normal contact

force ( f̄t (θ)/ f̄0) for all samples for the peak stress state. The

initial tangential contact force inside the samples is close

to zero, because the initial loading relates to an isotropic

compaction and no shear deformation occurs. As a conse-
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Fig. 15 Distribution of the normalized average normal contact force ( f n(θ)/ f 0) at initial (thin line) and peak stress state (thick line) for different

bedding angles

quence, no shear stress is mobilized among particles. For

the peak stress state, however, it can be found out that the

polar distribution of tangential force is paraded by four leaps

instead of having a peanut-like form such as happened for

normal contact force distribution. The reason is clear if it is

reminded that the direction of the tangential contact force is

perpendicular to the normal contact force and thus, the dis-

tribution of tangential contact force differs. The inclinations

of these leaps show the directions along which, high shear

forces are concentrated. Furthermore, it can be seen that the

polar distribution of contact tangential force is symmetric in

α = 0◦ and 90◦, but it has a nonsymmetrical form in the

samples with α = 30◦ and 60◦. This is due to the fact that

the orientation of particles within the assemblies (i.e., bed-

ding plane) influences the direction of the planes pertaining

to maximum mobilized shear stress. Within the samples with

α = 0◦ and 90◦, where the particles alignment is symmet-

rical with respect to the loading axis, the shear planes are

to be distributed symmetrically, while the non-symmetrical

pattern of particles inclination in assemblies α = 30◦ and 60◦

causes to disturb the balance among shear planes generated

among particles.

To follow quantitatively the changes of the anisotropy in

tangential contact force distribution, the same procedure used

for the normal contact force distribution is taken into consid-

eration. By assuming that the polar distribution of average

tangential contact force be approximated by a second-order

Fourier expression, the coefficient of tangential contact force

anisotropy (at ) and the relating principal direction of anisot-

ropy (θt ) can be defined as:
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Fig. 16 Variation of normal contact force anisotropy parameters along

with axial strain within all bedding angles: a normal contact force anisot-

ropy coefficient; b direction of normal force anisotropy

at =

√

T 2
s + T 2

c

θt =
1

2
tan−1

(

Ts

Tc

)

(13)

where Ts = 1

f̄0

Ng
∑

i=1

f̄t (θi )Sin2θi and Tc = 1

f̄0

Ng
∑

i=1

f̄t (θi )

cos 2θi . Figure 18 presents the variation of the parameters

at and θt versus the axial strain. As shown in Fig. 18a, there

is a similar trend in the variation of at coefficient for all sam-

ples. It reaches a peak value at a small axial strain and then

it slightly decreases towards the end of the test. The varia-

tion of at in α = 0◦ is a little different, where at is fully

mobilized at larger axial strain and the following reduction

becomes more compared to other samples. No relation can

be detected between the peak value of at coefficient and the

bedding angles. The variation of the corresponding principal

direction of anisotropy (θt ) is plotted in Fig. 18b. It explains

that the rotation of tangential force anisotropy direction takes

place at the beginning of the loading process. The principal

direction of tangential force anisotropy (θt ) rapidly orients

along loading axis (θt = 0) for the cases α = 0◦ and 90◦,

while it is inclined 10 degrees clockwise with respect to the

loading axis in other samples (α = 30◦, 60◦). As a con-

sequence, by comparing the variation of θt with that of θn

(Fig. 16b), it is concluded that the principal directions of

normal and tangential contact forces are not coincident for

α = 30 and 60◦. It is reminded again that this non-coinci-

dence is because of the non-symmetrical pattern of particles

orientation with respect to the loading axis within these two

assemblies.

5 Conclusions

Naturally deposited soils show anisotropy in their mechanical

behavior, which is a consequence of particle alignment along

the bedding plane, contacts and associated voids between

particles. Such initial condition signifies an inherent anisot-

ropy in the fabric of granular materials. As a macroscopic

point of view, the inherent anisotropy influences mechanical

characteristics of soils including shear strength and deforma-

bility. It is obvious that the difference found in the mechanical

behavior arises from microscopic evolutions in the fabric of

granular media. Consequently, an investigation on the fabric

change during the loading process is necessary for a bet-

ter understanding of mechanical behavior. Another sort of

anisotropy induced in the granular medium can be found

during the shear deformation which justifies different trends

observed in the mechanical behavior of granular assemblies.

In the present paper, a series of biaxial compression tests

were carried out by applying the numerical DEM. The sim-

ulations consisted of four inherently-anisotropic assemblies

with bedding angles of α = 0◦, 30◦, 60◦, and 90◦. In these

simulations, mechanical behavior of assemblies was studied

from both macro and micromechanical points of view. By

keeping in mind that sand grains are angular in shape, the

main characteristic of this study was to consider the particles

geometry as arbitrary convex polygons, while there are other

simulations of granular assemblies in this filed with ellip-

tical/oval particles. The main conclusions are summarized

below:

(1) As already observed in experiment, the bedding plane

of particles inside granular materials influences both

shear strength and deformability. The peak shear

strength of assemblies decreases as the bedding angle

increases. In addition, the shear strength of angular par-

ticles is higher than that of rounded particles, which

signifies the effect of particle shape and interlocking

phenomenon among particles. The dependency of dila-

tive behavior with regard to the bedding angle follows

the same tendency.

(2) From a micromechanical standpoint, the peak value in

shear strength relates to the existence of strong force

chains within the samples. During the loading process,

not only the number of contacts increases along the
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Fig. 17 Distribution of normalized average tangential contact force ( f s(θ)/ f 0) at peak stress state for different bedding angles (α)

loading axis, but also the magnitude of normal con-

tact forces augments. This is verified by comparing the

polar distributions of contacts and force contacts whose

shapes tend to be elongated in direction of the loading

axis.

(3) Based on simulations, applied loads on the granular

materials are transmitted via column-like structures

generated along the loading axis. As a consequence,

the global behavior of assemblies is a function of the

behavior of such force chains. The generation/disinte-

gration of force chains justifies the increase/reduction

of stress state in the assemblies. Moreover, the macro-

scopic dilative behavior of granular assemblies under

shear does not only result from the buckling of force

chains but also from the breakage of the interlocking

between particles. This explains why dilative behavior

takes place after the peak stress state.

(4) It is found out that the initial distribution of elon-

gated particles and associated voids varies during shear

deformation. The particles tend to be inclined in such

a way that the long axis be oriented perpendicular to

the loading axis.

(5) There is a tremendous difference in the development

of the number of contact normals within inherently-

anisotropic samples. According to the initial bedding

angle of particles, contact anisotropy may be intensi-

fied (in α = 0, 30◦), remains unchanged (in α = 60◦),

or the contacts tend to be distributed isotropically in the

medium (α = 90◦) during shear deformation. In other

words, the degree of anisotropy in the normal contacts

amplifies with the deviation of the loading axis from

the bedding plane of particles. However, the evolu-

tion of normal/tangential contact force anisotropy fol-

lows almost the same trend during the loading process.
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Fig. 18 Variation of tangential contact force anisotropy parameters

along with axial strain within all bedding angles: a tangential contact

force anisotropy coefficient; b direction of tangential force anisotropy

Normal contact force anisotropy is always mobilized

to a peak value and then it tends to become constant

accompanying by some fluctuations, while the tangen-

tial contact force anisotropy gradually decreases to the

end of the loading process after reaching the peak value.

(6) The principal direction of normal contact anisotropy

rotates gradually towards the loading axis along with

shear deformation. Among all, the assembly in which

the loading axis is perpendicular to the average bed-

ding plane (α = 0◦), has the least change, while the

assembly with α = 60◦ indicated the most rotation in

the direction of normal contact anisotropy. On the other

hand, the direction of normal/tangential force anisot-

ropy abruptly changes and is inclined along the load-

ing axis in all assemblies. This sudden rotation implies

the rapid mobilization of stresses among particles. Fur-

thermore, in contrast to the normal contact force, the

distribution of tangential (shear) contact force is not

symmetric within the assemblies where the bedding

plane is neither parallel nor perpendicular to the load-

ing axis.
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