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Abstract. Air pollution variability is strongly dependent on

meteorology. However, quantifying the impacts of changes

in regional climatology on pollution extremes can be diffi-

cult due to the many non-linear and competing meteorolog-

ical influences on the production, transport, and removal of

pollutant species. Furthermore, observed pollutant levels at

many sites show sensitivities at the extremes that differ from

those of the overall mean, indicating relationships that would

be poorly characterized by simple linear regressions. To ad-

dress this challenge, we apply quantile regression to observed

daily ozone (O3) and fine particulate matter (PM2.5) levels

and reanalysis meteorological fields in the USA over the past

decade to specifically identify the meteorological sensitivi-

ties of higher pollutant levels. From an initial set of over 1700

possible meteorological indicators (including 28 meteorolog-

ical variables with 63 different temporal options), we gener-

ate reduced sets of O3 and PM2.5 indicators for both summer

and winter months, analyzing pollutant sensitivities to each

for response quantiles ranging from 2 to 98 %. Primary co-

variates connected to high-quantile O3 levels include temper-

ature and relative humidity in the summer, while winter O3

levels are most commonly associated with incoming radia-

tion flux. Covariates associated with summer PM2.5 include

temperature, wind speed, and tropospheric stability at many

locations, while stability, humidity, and planetary boundary

layer height are the key covariates most frequently associ-

ated with winter PM2.5. We find key differences in covariate

sensitivities across regions and quantiles. For example, we

find nationally averaged sensitivities of 95th percentile sum-

mer O3 to changes in maximum daily temperature of approx-

imately 0.9 ppb ◦C−1, while the sensitivity of 50th percentile

summer O3 (the annual median) is only 0.6 ppb ◦C−1. This

gap points to differing sensitivities within various percentiles

of the pollutant distribution, highlighting the need for sta-

tistical tools capable of identifying meteorological impacts

across the entire response spectrum.

1 Introduction

Poor air quality is projected to become the most impor-

tant environmental cause of premature human mortality by

2030 (WHO, 2014). Long-term exposure to high levels of

ozone (O3) has been linked to increased risk of respira-

tory illness, while chronic exposure to elevated fine partic-

ulate matter (PM2.5) is associated with lung cancer, respi-

ratory disease, and cardiovascular disease (e.g., Dockery et

al., 1993; Jerrett et al., 2009; Krewski et al., 2009; Pope III

et al., 2009). In addition to these consistently documented

risks of chronic exposure, there is some evidence that acute

exposures to pollution may themselves carry risks to human

health above and beyond those of the long-term mean expo-

sures (Bell et al., 2005). Thus, high pollution events may be

responsible for a larger fraction of annual acute mortality. In

addition, particularly extreme events may hinder day-to-day

activities, and require the implementation of drastic tactical

air pollution control measures (e.g., the temporary banning

of vehicles with even-numbered license plates from driving

in Paris during the spring of 2015). Despite the lack of an ob-

served threshold concentration for detrimental impacts of air

pollution (e.g., Dockery et al., 1993), ambient air-quality reg-

ulations are typically implemented as thresholds, with penal-

ties for exceedances. For example, in the USA, pollution

standards for O3 and PM2.5 include limits on not only mean
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annual values (in the case of PM2.5) but also on thresholds

for high annual values (equivalent to the averaged 98th or

99th percentiles for PM2.5 and O3, respectively). Thus, pre-

dicting and understanding potential changes in extreme air

pollution episodes is central to both air pollution policy and

human health concerns.

A changing climate may modulate air quality, with impli-

cations for human health. Pollutant formation, transport, life-

time, and even emissions all depend, to a certain degree, on

local meteorological factors (Jacob and Winner, 2009; Tai et

al., 2010), meaning that changes in the behaviors of these

factors will often lead to changes in pollutant levels and ex-

posure risks. Understanding the relationships between me-

teorological variability and observed pollutant levels will be

critical to the development of robust pollution projections,

as well as sound pollution control strategies. However, while

straightforward sensitivity analyses using long-term averages

and simple linear regressions provide valuable information

on mean pollutant behavior, they are insufficient for analyses

of extreme behaviors. Drivers and sensitivities characteris-

tic of average pollutant responses will not necessarily be re-

flected throughout the entire pollutant distribution. To evalu-

ate these relationships statistically, alternative methodologies

must be used.

Previous studies examining the impact of meteorology on

pollution levels have addressed the problem using a variety

of tools. Modeling sensitivity studies offer a direct means of

comparing the impacts of large-scale scenarios or individu-

ally adjusted parameters, allowing for a degree of compari-

son and replication that is impossible using only observations

(e.g., Hogrefe et al., 2004; Mickley et al., 2004; Murazaki

and Hess, 2006; Steiner et al., 2006; Heald et al., 2008).

From such output, pollutant levels under multiple conditions

or scenarios can be evaluated more or less in the same way

that observed levels are, including the examination of global

burdens, regional patterns, or even local exceedance frequen-

cies as a function of meteorological changes. However, while

these tools are powerful, it can be difficult to verify and un-

derstand projected changes due to the high degree of com-

plexity of these models. On the other hand, observation-

based examinations (e.g., Bloomer et al., 2009; Rasmussen

et al., 2012) are tied closely to the actual underlying physi-

cal processes producing changes in pollutant levels, but are

naturally limited in terms of identifying and quantifying the

impacts of individual drivers – it is difficult to separate the

impacts of different meteorological factors without the bene-

fit of multiple sensitivity comparisons afforded by models.

Ordinary least-squares (OLS) regressions are effective

tools for identifying trends and sensitivities in the distri-

bution of pollution levels as a whole, especially for well-

behaved data showing uniform sensitivities. Previous studies

have analyzed the impacts of changes in weather and climate

on O3 and PM2.5 levels (e.g., Brasseur et al., 2006; Liao et

al., 2006), finding connections between specific meteorologi-

cal conditions and mean pollutant response. In particular, the
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Figure 1. Daily maximum 8 h O3 vs. maximum daily temperature

for an example site in Essex County, MA (JJA, 2004–2012). An or-

dinary least-squares regression line (a) captures the general trend,

but is unable to represent the increase of variability in the distri-

bution with increasing temperature. Using individual quantile re-

gressions ranging from 5th to 95th percentiles (b), the increased

sensitivity of higher quantiles to increased temperatures becomes

apparent.

sensitivity of surface O3 levels to changes in climate – the so-

called “climate change penalty” (Wu et al., 2008) – has been

examined in multiple studies worldwide (e.g., Bloomer et al.,

2009), but previous examinations of individual meteorolog-

ical sensitivities have typically produced single, monovari-

ate estimates for changes in O3 given changes in each driver

(e.g., temperature). However, when the variability of a given

response is itself a function of the independent variable, as in

Fig. 1a, the information provided by such regressions is less

valuable for describing the specific response across the distri-

bution – especially at the extremes (defined here as pollutant

levels below the 5th quantile or above the 95th quantile). If

the sensitivities of high O3 extremes to temperature tend to

be higher than those of median to low O3 days (as is the case

at many polluted locations), a single sensitivity value would

underestimate the increase in high O3 event frequencies and

magnitudes, given rising temperatures.

This situation is one common example of a distribution

that might be better characterized through the use of more

advanced statistical tools, such as quantile regression (QR)

(Koenker and Bassett Jr., 1978). A semi-parametric estima-

tor, quantile regression seeks to minimize the sum of a linear

(rather than quadratic) cost function, making it less sensi-
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tive to outliers than OLS regression. Unweighted, this sim-

ple change produces a conditional median (or 50th quantile

regression), rather than the conditional mean of OLS regres-

sion. Applying appropriately chosen weights to the positive

and negative residuals of this cost function then targets spe-

cific percentiles of the response, allowing for the quantifi-

cation of sensitivity across nearly the entire response dis-

tribution. An example of this regression performed across

a broad range of percentiles is shown in Fig. 1b, including

the 5th quantile in black, the 50th quantile in yellow, and the

95th quantile in red.

Here, we apply multivariate QR to an analysis of meteoro-

logical drivers of O3 and PM2.5, with the goal of identifying

the covariates most correlated with changes in peak pollu-

tant levels throughout the USA, and how these differ from

the median response. Such a statistical examination of his-

torical observations can provide a valuable reference point

for the evaluation of model-predicted extremes, as well as a

platform for short-term pollutant projections.

2 Methodology

2.1 Inputs

We use O3 and PM2.5 measurements from the US En-

vironmental Protection Agency’s (EPA) Air Quality Sys-

tem (AQS) network, including daily peak 8 h average mea-

surements of O3 and daily mean PM2.5 levels. All stations

with at least 150 valid maximum daily 8 h averages between

2004 and 2012 are included in this study, totaling 1347 sta-

tions for summer O3, 675 stations for winter O3, 647 stations

for summer PM2.5, and 636 stations for winter PM2.5 (loca-

tions and 95th percentile concentrations shown in Fig. 2).

Meteorological variables are taken from the National Cen-

ters for Environmental Prediction (NCEP) North Ameri-

can Regional Reanalysis (NARR) product (Mesinger et al.,

2006). With a spatial resolution of 32 km and 8 output fields

per day (representing 3-hourly averages), NARR output pro-

vides a reasonable spatial and temporal match for each of the

AQS stations of interest. While the NARR product represents

modeled output and includes its own errors and biases when

compared to observations, it allows for the consistent use of

many variables at high spatial and temporal resolution, most

of which would not be available at all included AQS stations

examined here. NARR reanalyses have been used in previ-

ous examinations of meteorological air pollution drivers with

some success (e.g., Tai et al., 2010).

2.2 Meteorological variable generation

As an initial step towards understanding the impacts of me-

teorology on pollutant extremes, we construct a large set of

possible meteorological covariates, including NARR meteo-

rological variables for a range of time frames. By extending

the initial scope of possible drivers, we attempt to capture
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Figure 2. Location of AQS stations included in this study. The mag-

nitude of each station’s 95th percentile measurement is indicated by

color.

the important factors and interactions, including not only ef-

fects that were important at all sites, but also those that stood

out only in particular regions or types of locations. To this

end, we begin by considering as many potential indicators as

possible, gradually trimming the list down to a final set to

be used in the multivariate quantile regressions. We use the

3-hourly NARR output to reconstruct hourly resolution di-

urnal cycles for each meteorological variable at each station

through time series cubic splines and bilinear interpolation of

the gridded fields to station latitudes and longitudes. In some

cases regional means were included, primarily due to insuf-

ficient variability in individual cell values for that variable at

some sites.
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In addition to the raw variables available through NARR

output, we calculate several derived parameters. The synop-

tic recirculation of air has been linked to elevated pollutant

concentrations at many sites around the world, especially

in coastal regions where diurnal wind patterns are prone to

recirculation (Alper-Siman Tov et al., 1997; St. John and

Chameides, 1997; Yimin and Lyons, 2003; Zhao et al., 2009).

When air masses are returned to a site with ongoing emis-

sions, the buildup of precursor concentrations may generate

exceptionally high pollutant levels. To measure this effect we

calculate a daily recirculation potential index (RPI) from sur-

face wind speeds based on the ratio between the vector sum

magnitude (L) and scalar sum (S) of wind speeds over the

previous 24 h (Levy et al., 2009):

RPI = 1 −

(

L

S

)

. (1)

A high RPI (close to 1) indicates that, regardless of individual

hourly wind-speed magnitudes, the total displacement of air

over the previous 24 hours was low, potentially leading to a

pollutant buildup. Meanwhile, a very low RPI (close to 0)

indicates steady, consistent wind, advecting air masses away

from a location.

Stagnation, or the relative stability of tropospheric air

masses, is another meteorological phenomenon previously

cited as a driver of pollutant extremes (Banta et al., 1998;

Jacob and Winner, 2009; Valente et al., 1998). While some

of the raw meteorological fields (e.g., wind speed and pre-

cipitation) are already themselves good indicators of local

stagnation, lower-tropospheric stability (LTS), the difference

between surface and 700 hPa potential temperatures, is also

calculated as a reflection of temperature inversion strength

in the lower troposphere (Klein and Hartmann, 1993). Tem-

perature inversions, in which the daytime pattern of air being

warmer near the Earth’s surface is reversed, generally lead

to stable, stagnant conditions well-suited for the buildup of

pollutants such as O3 and PM2.5. This phenomenon can be

particularly pronounced in areas with geographical barriers

to horizontal transport, such as the basins of Los Angeles

and Salt Lake City (Langford et al., 2010; Pope 3rd, 1991).

From the selected set of raw and derived NARR meteoro-

logical fields (Table 1), we generate a range of temporal vari-

ables for each individual meteorological variable, including

extrema and means for each 24 h day, as well as for 8 h day-

time and previous 8 h nighttime ranges. To include possible

long-term impacts of these meteorological variables, each of

the 9 daily values are then extended into 3- and 6-day max-

ima, minima, and means, as well as a 1-day delta variable to

show 24 h change, resulting in 63 total temporal options for

each listed meteorological variable.

2.3 Fire proximity metric

Biomass burning emissions can impact pollutant concentra-

tions (e.g., Streets et al., 2003) with indirect correlations to

daily meteorological variability, making it a potentially con-

founding factor when performing analyses using meteorolog-

ical variables alone. To help examine and quantify the likely

impact of fires on observed pollutant levels, we create a sim-

ple fire metric to represent the spatial and temporal proximity

of each site to satellite-observed burn locations. Using out-

put from the Moderate Resolution Imaging Spectroradiome-

ter (MODIS) Global Monthly Fire Location Product (Giglio

et al., 2003; Justice et al., 2002), we estimate the total fire

proximity impact for each site by applying spatial and tempo-

ral decays to burn detection confidence values, and summing

these values across all detected pixels through the equation

F = log

(

∑

i

1

r

1

2t
conf

)

. (2)

Here, the fire proximity index F is a function of the dis-

tance (r) and number of elapsed days (t ; ranging from 0

to 6) separating a station from a MODIS-detected burn pixel

with a given confidence value (conf), summed over all nearby

burn pixels (i). The resulting proximity metric does not take

transport, precipitation, or any other meteorological variables

into account, simply producing higher values for stations

near burning (or recently burned) locations. A comprehen-

sive treatment of biomass burning emissions and transport

requires accurate information on many complex factors, in-

cluding fuel type, burn intensity, and smoke injection heights

(Val Martin et al., 2010; Wiedinmyer et al., 2011), and fully

representing these factors to generate a robust estimate for

the influence of fire emissions goes well beyond the scope of

this work. However, considering both the stochastic nature

of large fire events and the importance of biomass burning

on air-quality variability, we use this cumulative proximity

metric as an intermediate measure.

2.4 Meteorological variable selection

Combining the 63 described temporal options with all cho-

sen raw and derived meteorological variables results in over

1700 possible pollutant indicators, making variable selec-

tion problematic. With driver identification an important goal

of this work, we initially keep the selection procedure as

open as possible, maximizing the first sweep of candidates

and only eliminating possible drivers after thorough evalua-

tion (Fig. 3). However, indiscriminate inclusion of additional

variables opens the strong likelihood of problems related to

overfitting and multicollinearity. Furthermore, for the sake of

comparison between stations, we aim for a single set of indi-

cator variables for the entire set of observation sites included,

making selection on a station-by-station basis impractical.

For these reasons we utilize a stepwise multivariate approach

based on combining covariate rankings at individual stations

into a single selection metric. To reduce the computational

cost of variable selection initially we use a testing subset of

stations, including 10 stations (with varying degrees of mean

Atmos. Chem. Phys., 15, 10349–10366, 2015 www.atmos-chem-phys.net/15/10349/2015/
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Table 1. Meteorological fields used in variable selection procedure. Each NARR field shown was included using nine different possible

daily values (24 h max/min/mean, 8 h daytime max/min/mean, previous 8 h nighttime max/min/mean), as well as longer term (3- and 6-day)

aggregates and 1-day deltas of those daily values. Variables marked “9x9” represent regional means, and were generated by averaging the

9 × 9 square of NARR grid cells centered around each station location (roughly 290 km per side).

NARR variables1

air.2m 2 m air temperature pres.sfc surface pressure

air.sfc_9x9 surface air temperature (regional) rhum.2m 2 m relative humidity

apcp accumulated total precipitation shum.2m 2 m specific humidity

crain_9x9 binary precipitation flag (regional) tcdc_9x9 total column cloud cover (regional)

dlwrf downward long-wave radiation flux tke.hl1_9x9 turbulence kinetic energy

dswrf downward shortwave radiation flux tmp.700 700 hPa temperature

hcdc_9x9 high-level cloud cover (regional) uwnd. 500 500 hPa zonal wind speed

hgt.850 850 hPa geopotential height uwnddir.10m normalized 10 m wind direction

hpbl planetary boundary layer height vvel.700 700 hPa vertical velocity

lcdc_9x9 low-level clouds (regional) vvel.hl1 lowest level vertical velocity

lftx4 best lifted index vwnd.500 500 hPa meridional wind speed

mcdc_9x9 midlevel cloud cover (regional) vwnddir.10m normalized 10m wind direction

prate precipitation rate wspd.10m 10 m wind speed

Derived variables

fire fire proximity metric

lts2 lower-tropospheric stability

rpi3 recirculation potential index

Temporal options

max 24 h maximum value

min 24 h minimum value

mean 24 h mean value

daymax/min/mean as above, but using only 08:00 to 16:00 LT

nightmax/min/mean as above, but using only preceding night: 08:00 to 16:00 LT

diff change from previous day

3daymax/min/mean max/min/mean of previous 3 days

6daymax/min/mean max/min/mean of previous 6 days

1 Mesinger et al. (2006), 2 Klein and Hartmann (1993), and 3 Levy et al. (2009).

pollutant levels) from each of the 10 EPA regions (shown in

Figs. 4, 5, 7, and 8). We then use observed pollutant levels

(maximum 8 h average O3 and daily average PM2.5) from

each of these 100 stations to evaluate and select key indi-

cators from the full set of possible meteorological variables

included. Meteorological variable selection is performed in-

dependently for ozone and PM2.5, as well as for summer and

winter seasons.

We select meteorological indicators using 90th percentile

quantile regressions evaluated with the Bayesian information

criterion (BIC) metric, a statistical tool closely related to the

Akaike information criterion (AIC) and similarly based on

the likelihood function (Schwarz, 1978; Lee et al., 2014).

BIC evaluates the likelihood of a given set of indicators rep-

resenting the best set possible, given a set of associated re-

sponses (in this case, daily pollutant levels), with lower BIC

values indicating a stronger statistical model (i.e., the set

of predictive meteorological indicators being evaluated). To

perform stepwise variable selection, we quantify the bene-

fit (via BIC) of adding each individual variable candidate to

6. Sum inverted 
variable ranks across 

all stations

At Each Station

2. Trim highly 
correlated options

3. Begin variable 
selection, starting 
with only "time" in 

master list

4. Perform stepwise 
variable selection on 
remaining candidates 

using QR and BIC

5. Rank selected 
variables by order 

added

7. Add variable with 
greatest sum to 

master list

Repeat until no 
variable's sum of 

inverted ranks 
exceeds minimum

1. Start with all 
covariate candidates

8. Eliminate 
candidate variables 
showing collinearity 
with new master list

Figure 3. Flowchart of variable selection procedure described in

Sect. 2.4.
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the list of selected variables in turn. Large reductions in BIC

indicate a more-important variable, while small reductions

(1BIC < 2) indicate a less-important variable. Unlike other

goodness of fit metrics such as the coefficient of determina-

tion R2, BIC values say nothing about the overall strength

of the predictive model as a whole, but rather serve to com-

pare the relative effectiveness of multiple statistical models

attempting to explain the same set of results. However, again

unlike R2, both BIC and (to a lesser extent) AIC penalize

the inclusion of extraneous indicators, reducing the chance of

overfitting. While there is some discussion within the statisti-

cal literature regarding the strengths of BIC vs. AIC, both are

considered versatile, robust tools in the evaluation of statisti-

cal models (Burnham and Anderson, 2004; Yang, 2005), and

applicable to quantile regression if errors are assumed to fol-

low an asymmetric Laplace distribution (Geraci and Bottai,

2007). Note that while the 90th percentile of pollution lev-

els is lower than the 95th quantile targeted later in this study,

the slightly reduced value is chosen to improve robustness

during the initial variable selection phase.

We begin variable selection by using only time (measured

in days elapsed) as a predictor variable, accounting for any

linear trend in pollutant behavior over the course of the ob-

served period (Fig. 3, step 3). From there, we identify the

most impactful temporal option (daily maximum, mean, min-

imum, etc.) available for a single meteorological variable

(e.g., surface temperature). We perform stepwise variable se-

lection at each station independently, selecting the candidate

temporal option producing the greatest reduction in BIC (and

therefore greatest improvement in the statistical model), and

continuing until no further improvement is possible (step 4).

We then rank the final set of chosen variables at each sta-

tion by order of selection (step 5), invert those ranks, and

sum these inverted ranks over all 100 test stations (step 6).

This sum represents an overall importance metric, and will

be large for variables that either appear somewhat valuable

at many stations, or that appear to be exceptionally valuable

at just a few stations. We then add the single temporal op-

tion with the greatest summed total to the master list of se-

lected variables. With a new indicator chosen we filter the

remaining candidates (step 8), eliminating poor performers

(those selected at too few sites in the previous round) or those

exhibiting collinearity with the current master list (R2
≥ 0.6

relative to previously selected covariates). After this pruning

process we start the selection routine again for all remaining

candidates, using time and all previously selected variables

as fixed covariates in the evaluation process. We repeat this

cycle until no temporal candidates exhibiting summed ranks

higher than our chosen threshold remain for the current me-

teorological variable, after which the temporal variable se-

lection starts anew with the next meteorological parameter.

Once temporal variable options have been filtered down for

each individual meteorological covariate through this selec-

tion process, we gather all selected variables together and

repeat the same procedure using the combined set of approx-

imately 300 candidates, finally arriving at trimmed a down

set of less than 20 meteorological indicators for each pollu-

tant species and season (Table 2, top). The selection process

is somewhat sensitive to the percentile used for the regres-

sion, as evidenced by the different variables selected using

the 50th percentile rather than the 90th (Table 2, below).

While most high-ranked meteorological variables show up

using both selection processes, there are noticeable differ-

ences, especially in the temporal options chosen.

Through this routine, variables can stand out for selection

by being either moderately important at many sites, or by

being very important at fewer sites. By adjusting the thresh-

old parameter for variable selection, the scope of variable in-

clusion can be tuned to a certain extent. Higher thresholds

end the selection process sooner, as fewer and fewer new

variables are ranked highly at enough stations to meet the

summed value requirements, while lower values allow the

process to continue adding less important variables. In this

work we identify and compare both a concise “core” set of

indicators (variables with summed inverse ranks of at least 2)

and a “full” set of indicators (variables with summed inverse

ranks of at least 1).

It should be noted that the NARR fields used to provide our

input meteorological covariates likely exhibit intrinsic errors

and biases which will certainly affect the predictive power of

our models, as well as the strength of our variable selection

process itself. Variables which are better represented (e.g.,

temperature) will have an advantage compared to other po-

tentially important variables with greater uncertainties, such

as precipitation.

2.5 Quantile regression

The final sets of indicator variables represent those covariates

most broadly associated with changes in high pollutant levels

due to meteorological factors at the 100 chosen test sites. Us-

ing these selected meteorological variables, we next perform

linear multivariate quantile regression to identify sensitivities

for percentiles from 2 to 98 % at each station in the full set of

AQS sites. From these regressions we collect summer (JJA)

and winter (DJF) quantile sensitivities of O3 and PM2.5 to

each meteorological variable for each AQS station.

3 Results

To assess relative covariate importance across the USA we

normalize quantile sensitivities to standard deviations of pol-

lutant and indicator fluctuations and rank them in relation

to each other at each site. Top-ranking covariates for any

given station, then, are those whose variabilities (in normal-

ized units of standard deviations) are most responsible for

variability in the observed pollutant. Figures 4, 5, 7, and 8

show each variable’s frequency of appearing as the first or

second most important indicator by this metric, with simi-
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Top Covariates: Summer O3
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1

2

34

5

6

78

9

10 1
2

3

4

5

6

7

8

9

10

Figure 4. Frequency at which normalized 95th percentile QR coefficients for selected variables were in the top two out of all included

variables (above) for summer O3, and box plots of normalized regression coefficients for top three covariates in each region (below). Specific

meteorological variables (shown in legend) have been grouped into categories shown on the x axis of the bar plot. Colors on inset box plots

correspond to legend in above panel, and gray dots indicate the fraction of stations showing a statistically significant relationship (p ≤ 0.05)

to the indicated covariate in that region. EPA Region numbers are inset on top-right of box plot panels.

lar variables grouped together into columns. We compare the

covariates most associated with the 95th and 50th percentile

of pollutant concentrations, finding similar, though not iden-

tical, frequencies between top performers for the two quan-

tiles.

3.1 Summer O3

In the summertime, covariates linked to high-percentile O3

are dominated by a positive correlation with temperature at

most sites (Fig. 4, top panel), consistent with previous mod-

eling sensitivity conclusions (Jacob and Winner, 2009). Al-

together, 49 % of the analyzed sites show maximum daily

surface air temperature as the meteorological variable with

the greatest normalized slope relative to observed maximum

8 h average O3 concentrations, and it is within the top five

most influential variables at 79 % of all sites. Underlying rea-

sons for the dominance of temperature as a driver of observed

O3 include a positive correlation with biogenic emissions of

isoprene (a potential precursor of O3), a negative correlation

with the lifetime of peroxyacetyl nitrate (PAN; an important

reservoir species for NOx and HOx radicals), and an asso-
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Top Covariates: Winter O3
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Figure 5. Same as Fig. 4, but for winter O3.

ciated correlation between higher temperatures and bright,

stagnant conditions (Jacob and Winner, 2009).

While maximum daily surface temperature stands out as

the covariate with the highest normalized impact on daily

summer O3 levels, many other variables also play important

roles, especially in the south and southeast regions (Fig. 4,

bottom panels). Water vapor generally reduces O3 levels un-

der pristine conditions, removing dissociated excited oxygen

atoms and producing the hydroxyl radical (OH). Under pol-

luted conditions this negative effect competes with increased

O3 production as a result of OH reacting with carbon monox-

ide (CO) or volatile organic compounds (VOCs), O3 precur-

sors common to highly polluted environments. These two

effects combine to produce generally weak correlations be-

tween humidity and O3 in model perturbation studies (Ja-

cob and Winner, 2009). In this work, however, relative hu-

midity (RH) has a strong negative relationship with O3 in

many locations, particularly in the south, consistent with pre-

vious analyses of observed sensitivities (e.g., Camalier et al.,

2007). A negative correlation with temperature and a posi-

tive correlation with cloudy, unstable conditions may explain

the stronger associations found in the observations relative

to those of model perturbation studies. Stability, in the form

of turbulent kinetic energy (TKE) is also a strong performer

at many sites, though less so for the 95th percentile than

for the 50th. Finally, while fire proximity stands out at rel-

atively few stations as a dominant driver of median O3 levels
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Table 2. Selected covariates for O3 and PM2.5 using 90th percentile (above) and 50th percentile (below) quantile regressions. “Core”

covariates (in bold) were selected using a minimum threshold for summed inverted ranks of at least 2, with remaining covariates added by

rerunning the selection procedure including all core variables and a relaxed selection threshold of 1.

Summer O3 Winter O3 Summer PM2.5 Winter PM2.5

Elected via 90th percentile QR

rhum.2m_mean dswrf_mean.6daymax air.2m_max hpbl_mean

vwnddir.10m_mean wspd.10m_mean vwnddir.10m_mean vwnddir.10m_mean

air.2m_max vwnddir.10m_mean lftx4_daymin tke.hl1_9x9_daymax.3daymean

crain_9x9_daymean rhum.2m_min uwnddir.10m_mean.3daymean wspd.10m_nightmax

fire fire wspd.10m_max.3daymean rhum.2m_mean

uwnddir.10m_mean rpi_max air.sfc_9x9_nightmin.6daymean shum.2m_daymax.6daymin

air.sfc_9x9_min.6daymin hpbl_daymax fire crain_9x9_nightmean

pres.sfc_daymax air.sfc_9x9_nightmin.6daymean crain_9x9_max.6daymean lts_min.3daymin

tke.hl1_9x9_max dlwrf_daymax.6daymin vwnddir.10m_daymean.6daymean uwnddir.10m_mean.3daymean

dswrf_daymin.3daymean crain_9x9_max apcp_nightmax dswrf_ max.3daymean

hpbl_max uwnddir.10m_daymean rpi_nightmin lftx4_nightmin.6daymin

tcdc_9x9_mean tcdc_9x9_mean vvel.hl1_nightmax.6daymax wspd.500_min

dswrf_min.6daymin lts_nightmax.3daymin hpbl_nightmax.6daymax tke.hl1_9x9_max.6daymin

vwnd.500_daymax.3daymean lftx4_min.diff rpi_nightmax.6daymin vwnd.500_max.diff

shum.2m_max.diff lcdc_9x9_nightmin.6daymax tcdc_9x9_max.6daymax tcdc_9x9_max.diff

wspd.10m_daymin.3daymin shum.2m_min.diff wspd.10m_min.6daymax

hpbl_daymin.6daymin lts_nightmin.6daymin

pres.sfc_min.diff mcdc_9x9_nightmax.3daymin

apcp_daymin.3daymax

Selected via 50th percentile QR

rhum.2m_mean dswrf_mean air.2m_max hpbl_mean

air.2m_max wspd.10m_mean air.sfc_9x9_nightmin.6daymax vwnddir.10m_mean

dswrf_daymin.3daymean dswrf_daymean.diff crain_9x9_nightmax wspd.10m_daymax.3daymax

vwnddir.10m_mean vwnddir.10m_mean wspd.10m_max.3daymean crain_9x9_nightmax

crain_9x9_daymean lts_daymin vwnddir.10m_mean wspd.10m_nightmax

fire shum.2m_min lftx4_mean rhum.2m_mean

tke.hl1_9x9_daymax uwnddir.10m_mean lts_daymin uwnddir.10m_mean

uwnddir.10m_daymean.3daymean crain_9x9_daymax uwnddir.10m_daymean.3daymean wspd.10m_max.3daymin

air.sfc_9x9_daymin.3daymean dswrf_min.3daymin shum.2m_daymean.diff rpi_max

rpi_max fire crain_9x9_max.6daymean uwnddir.10m_nightmean.3daymean

lts_mean air.sfc_9x9_mean.6daymean rpi_max dswrf_daymin.6daymax

dswrf_min.6daymin hpbl_daymax vwnd.500_min lftx4_nightmin.3daymean

vwnd.500_min hcdc_9x9_daymax vwnd.500_daymax.6daymax shum.2m_nightmin.6daymean

hpbl_nightmean.3daymin pres.sfc_nightmin.6daymean pres.sfc_max fire

vvel.hl1_mean.6daymean rpi_nightmax.6daymean hgt.850_max.6daymax

pres.sfc_mean.diff air.sfc_9x9_nightmin.diff

rhum.2m_max.diff lts_daymax.6daymin

vwnd.500_min.diff mcdc_9x9_nightmax.3daymin

(50th percentile), it appears to be important at far more sites

when examining higher O3 levels (95th percentile).

While the top covariate frequencies shown in Fig. 4 can

help identify dominant meteorological factors overall, they

do not indicate spatial distributions or sensitivity magnitudes.

The bottom panel of Fig. 4 and top panel of Fig. 6 address

these aspects of selected top covariates, showing where each

tends to drive pollutant variability, as well as how the sensi-

tivity magnitudes are distributed overall. Spatially, the tem-

perature sensitivity of 95th percentile O3 levels appears to be

most directly associated with coastal areas, though the strong

negative relationship between relative humidity and O3 in the

south likely includes temperature effects (Fig. 4, bottom pan-

els). In general, the sensitivities of O3 to changes in temper-

ature are greater for higher O3 quantiles, as shown by the in-

creasing and flattening distributions for 95th quantile regres-

sion sensitivities compared to 50th and 5th quantile values

(Fig. 6, upper left panel). In fact, quantile regression coeffi-

cients for the 95th percentiles averaged 0.9 ppb ◦C−1, 50 %

greater than mean 50th percentile sensitivities. This differ-

ence again highlights the importance of temperature in de-

termining extreme O3 events, since increased temperatures

could be expected to positively affect the magnitudes of high

O3 days even more than would be expected based on av-

erage days. By comparison, downward shortwave radiation

flux also shows up as a positive driver of high O3 levels, but

displays much more consistent sensitivities across O3 quan-

tiles (Fig. 6, upper right panel).
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Figure 6. Spatial and frequency distributions for key covariates of summer (top panels) and winter (bottom panels) O3. Maps show 95th per-

centile O3 sensitivities to selected meteorological variables at stations where that variable was most important (defined as being one of the

top two normalized covariates). Below each map, histograms show the distribution of sensitivities for the 5th (gray), 50th (yellow), and

95th (red) percentiles at all sites.

3.2 Winter O3

O3 levels are generally lower at all percentiles during

the winter months compared to the summer months, with

95th percentile O3 levels almost halved at some sites. As

seen in Fig. 5, temperature is almost completely absent from

the top ranks of O3 indicators during the winter. Instead,

variables related to incoming radiation flux are most impor-

tant at many sites, especially for 95th percentile O3 levels.

This indicates the relative importance of consistently clear

skies for O3 production during the coldest months, a rela-

tionship that appears consistently across quantiles and re-

gions (Fig. 5, bottom panels). Among the incoming radiation

metrics, the 6-day maximum of daily mean shortwave radi-

ation flux showed up as the top covariate most often, with

consistently positive correlations evenly distributed spatially

(Fig. 6, lower right panel). Sensitivities are slightly greater,

on average, for higher quantiles, and stand out as particularly

strong at stations in Wyoming, an area previously highlighted

for its dangerously high winter O3 levels (e.g., Schnell et al.,

2009). As with summer O3, downward shortwave radiation

flux (DSWRF) again has a generally positive influence on

winter O3, with some increase in sensitivity at higher quan-

tiles. Planetary boundary layer height (HPBL) (Fig. 6, lower

Atmos. Chem. Phys., 15, 10349–10366, 2015 www.atmos-chem-phys.net/15/10349/2015/



W. C. Porter et al.: Investigating the observed sensitivities of air-quality extremes to meteorological drivers 10359

Top Covariates: Summer PM2.5
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Figure 7. Same as Fig. 4 but for summer PM2.5.

left panel), wind, and specific humidity show up as top co-

variates at many sites as well, but more so for median quan-

tile regressions than for 95th percentiles, while fire proximity

becomes increasingly important at the higher quantiles.

3.3 Summer PM2.5

Figure 7 shows that mean daily temperature is also a key

player in predicting summertime PM2.5, with greater sen-

sitivities at the highest concentration percentiles. While the

previously discussed sensitivities of O3 to temperature shown

in Fig. 6 are the greatest along both the northeast coast and

Southern California, PM2.5 sensitivities to temperature peak

entirely in the east (Fig. 9, upper left panel). One possi-

ble reason for this spatial difference in PM2.5 temperature

sensitivity is the regionality of PM2.5 speciation, especially

in terms of competing sensitivities of nitrate and sulfate

aerosol (Dawson et al., 2007). While concentrations of ni-

trate aerosol (and, to a lesser extent, organics) are generally

reduced by higher temperatures due to increased gas phase

partitioning, sulfate aerosol concentrations can increase at

higher temperatures because of increased rates of oxidation.

Sulfur emissions are far higher in the east than in the west,

offering a likely explanation for the differing sensitivities of

PM2.5 to temperature between the regions.

In addition to temperature, 95th percentile PM2.5 shows

strong sensitivities to wind speeds and tropospheric stabil-

ity at many sites, emphasizing the importance of transport

and stagnancy for extreme PM2.5 events, particularly those

www.atmos-chem-phys.net/15/10349/2015/ Atmos. Chem. Phys., 15, 10349–10366, 2015
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Top Covariates: Winter PM2.5
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Figure 8. Same as for Fig. 4 but for winter PM2.5.

in highly polluted regions (Fig. 7, bottom panels). A total

of 3-day average wind speed stood out among covariates at

many sites throughout the east and midwest regions, and in-

fluences tended to be of higher magnitude for high-quantile

PM2.5 levels than for medians or low quantiles (Fig. 9, upper

right panel). Positive correlations for this metric may be as-

sociated with areas whose extremes were governed primarily

by transport, rather than production. Also increasingly im-

portant for higher quantiles of fine particulate matter was fire

proximity, with over twice as many sites including this metric

in the top drivers for 95th percentile PM2.5 as for 50th per-

centile PM2.5.

3.4 Winter PM2.5

Unlike O3, winter PM2.5 levels in the USA are often compa-

rable to (or even greater than) those of the summer months at

many sites (Fig. 2). Compared to other seasons and species,

the dominant covariates of winter PM2.5 are more consis-

tently distributed between a few key variables (Fig. 8, top

panel). Temperature is apparently less of a factor during cold

months, rarely appearing among the top normalized indi-

cators, and metrics related to stagnation stand out as im-

portant covariates associated with pollution events. Among

meteorological covariates associated with increased winter

PM2.5, stability metrics (TKE and LTS), relative humidity,

and HPBL, stood out as key variables at the most sites, with

Atmos. Chem. Phys., 15, 10349–10366, 2015 www.atmos-chem-phys.net/15/10349/2015/
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Figure 9. Same as Fig. 6 but for PM2.5.

wind and rainfall also important at many locations. Top co-

variates were particularly consistent in selection and magni-

tude in the northeast (regions 1, 2, and 3), as shown by the

tight, nearly identical distributions (Fig. 8, bottom panels).

Turbulence had a consistently negative influence on winter

PM2.5, especially for high response quantiles (Fig. 9, lower

left panel).

Compared to factors connected to median PM2.5 levels, the

two included tropospheric stability indicators (3-day average

of max. daily TKE and 3-day minimum LTS) showed ex-

ceptionally strong sensitivities among covariates of 95th per-

centile levels, suggesting that PM2.5 extremes in the win-

tertime are particularly sensitive to persistently stable con-

ditions (Fig. 9, lower right panel). Sites in Colorado and

Utah, some of which are well-known for episodes of severely

reduced winter air quality, stand out in this regard, with

95th quantile sensitivities to LTS over 4 times those of other

site averages.

4 Discussion

4.1 Differences in quantile sensitivities

The differences between typical 5th, 50th, and 95th per-

centile sensitivities shown in Figs. 4, 5, 7 and 8, help to il-

lustrate the ways in which meteorological impacts on pollu-

tants can vary in magnitude across the response distribution.

These differences can be more clearly quantified and com-

pared by measuring the slope of a QR regression itself as a

function of the percentile (Fig. 10). Using the full range of

www.atmos-chem-phys.net/15/10349/2015/ Atmos. Chem. Phys., 15, 10349–10366, 2015
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Figure 10. Normalized pollutant concentration sensitivities to meteorological covariates (0.0 = uniform sensitivity across quantiles). Values

shown here are the weighted least-squares regressions performed on normalized QR coefficients as a function of quantile for covariates with

a mean sensitivity change of at least 0.05, by species and season. Colors of bars show mean normalized sensitivities (roughly equivalent to

slopes expected from an ordinary least-squares regression), while magnitudes of bars show mean change across quantiles, averaged over all

stations. Error bars indicate standard error of the mean.

normalized QR output gathered, from 2 to 98 %, we perform

weighted least-squares regressions for each selected variable

at each station. The resulting slope for each regression (in

normalized units of standard deviations) can be interpreted

as a measure of change in sensitivity across the pollutant dis-

tribution, with high values representing strong positive differ-

ences in sensitivity, and low values representing strong neg-

ative differences. In other words, a zero slope implies that

the response of a pollutant to a given meteorological covari-

ate is relatively uniform regardless of the pollutant’s concen-

tration, while a positive slope implies that responses at the

high extremes tend to be greater than those of lower per-

centiles. To put these changes in context, the overall mean

sensitivity for each variable is shown in color. Quantifying

the extent to which these differences in quantile sensitivi-

ties might impact the response distributions themselves is be-

yond the scope of this work, but the magnitudes of sensitivity

differences relative to the mean sensitivities themselves sug-

gest large differences between mean and extreme behavior.

For example, the sensitivity change of summer O3 to max-

imum air temperature is shown to be roughly equivalent to

the mean sensitivity itself. Thus, a location showing a mean

increase of 1 ppb O3
◦C−1 might exhibit an increase of only

0.5 ppb O3
◦C−1 at the 5th percentile, but a much larger in-

crease of 1.5 ppb O3
◦C−1 at the 95th percentile. This could

clearly have important consequences for the resulting O3 dis-

tribution, given increasing temperatures.

For summertime O3 and PM2.5, temperature stands out as

a covariate that not only has a strong positive impact on con-

centrations (indicated by the bright red color), but also ex-

hibits even stronger impacts on high-percentile pollutant lev-

els than on lower percentile levels at most stations. On the

other hand, while HPBL also strongly impacts summertime

O3, the change in sensitivity between low and high quantiles

is generally small, indicating a variable whose impact on O3

is relatively unchanging across pollutant percentiles. Besides

temperature’s connections to summer O3 and PM2.5, the key

meteorological factors associated with winter PM2.5 stand

out for having highly quantile-specific sensitivities. The sen-

sitivity of PM2.5 to relative humidity, LTS, HPBL, and TKE

are all greater for high PM2.5 quantiles than they are for low

ones, highlighting the importance of characterizing the full

pollutant response to meteorological covariates, especially

for winter PM2.5.
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Figure 11. Ordinary least-squares coefficient of determination (R2) between observed pollutant concentrations and the reduced set of mete-
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(JJA is summer, DJF is winter). Red circles indicate median values using the full set of variables, for comparison. Refer to Table 2 for the
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4.2 Overall predictive power of statistical models

The variables identified here were not selected based on their

suitability for ordinary least-squares regression, but they do

show considerable skill at predicting pollutant levels using

this methodology, explaining over half of the variability at

most sites (Fig. 11). Predictive skill for summertime O3 is

greatest in east, south, and midwest (regions 2 through 6)

and least in the Pacific southwest and mountain and plain

regions (regions 8 and 9). Winter O3 R2 values are generally

slightly lower than those of the summer months, especially

in the Pacific northwest and US south central regions, though

this may be partly explained by reduced O3 variability overall

in the winter months.

PM2.5 shows a strong split between the relatively well-

modeled northeast and the less-accurately represented mid-

west and southwest. These results compare favorably to pre-

vious attempts to predict PM2.5 using meteorological indica-

tors (Demuzere et al., 2009; Tai et al., 2010). Tai et al. (2010),

for example, find multivariate linear regression capable of

explaining less than 50 % of PM2.5 variability in the north-

eastern USA. Almost half of the stations in those same re-

gions showed adjusted R2 values of greater than 60 % using

our method, despite the indicators being chosen to optimize

high quantile regressions rather than OLS regressions. Re-

gional differences in meteorological predictive power in this

work are also comparable to those of Tai et al. (2010), who

found high R2 values in the northeast and Pacific northwest

(regions 2, 3, and 5), and lower values in the south and moun-

tain and plain regions (regions 6 and 8).

4.3 Pollutant variability and trend

It is apparent that relatively simple meteorological processes,

chosen for their influence on high percentiles of O3 and

PM2.5, are also capable of explaining a large fraction of daily

pollutant variability. There are a number of possible sources

for the remaining variability, including day-to-day fluctua-

tions in pollutant precursor emissions and highly localized

meteorological patterns. While the nationwide variable se-

lection process of this study proved capable of identifying

indicators that are broadly effective at predicting daily pol-

lutant levels in many locations, specific features relevant to

individual stations (e.g., direction and distance of upwind

emission sources) may not be adequately represented by

the globally selected variables. Variability in local emission

sources themselves, either due to sporadic local events or dif-

ferences in weekend vs. weekday emissions, may also play

an important role at some sites. This analysis is also sub-

ject to uncertainties in the NARR product and the pollutant

observations, as well as discrepancies between local station

conditions and the grid-averaged NARR output.

Another important consideration in the analysis of these

results is the nonstationarity of both pollutant concentra-

tions and sensitivities. As a result of the implementation

of widespread emissions controls, concentrations of O3 and

PM2.5 have decreased dramatically in many of the most pol-

luted areas in the USA. Since 2004, mean summertime O3

levels at the sites used in this study have decreased by an

average of 0.14 ppb per year, while 95th percentile O3 lev-

els have decreased by 0.58 ppb per year. Stations that started

with exceptionally high O3 levels (mean summertime levels

greater than 80 ppb) have seen even more dramatic decreases,

www.atmos-chem-phys.net/15/10349/2015/ Atmos. Chem. Phys., 15, 10349–10366, 2015
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with means falling by 0.63 ppb per year and 95th percentile

levels falling by 1.3 ppb year.

To a certain extent, these changes in pollution levels over

time are accounted for in our analysis through the inclusion

of time (measured in days since the start of the analyzed

record) as an indicator variable. However, changes in meteo-

rological sensitivities themselves as a function of decreas-

ing emissions are not accounted for. To assess how these

decreases in emissions and overall pollution levels might

have affected meteorological sensitivities, the analyses above

were repeated using 4-year subsets of the full data record:

2004–2007 and 2008–2012, showing a widespread reduction

in sensitivities over time, presumably due to changes in pre-

cursor emissions. For example, 95th percentile sensitivities

of summertime O3 to temperature were 13 % lower in the

years 2009–2012 relative to 2004–2007, consistent with pre-

viously reported declines in temperature sensitivity (Bloomer

et al., 2009). In all, we see average absolute differences in

95th percentile sensitivities among each station’s top two

covariates of 22 %, with most changes representing reduc-

tions in sensitivity. Despite these differences, the qualitative

features of our analysis (including sign of sensitivities and

differences between pollutant quantiles) are consistent over

time.

5 Conclusions

This analysis demonstrates that air quality over the past

decade was highly sensitive to meteorology, and that this sen-

sitivity varied across pollutant type (O3 vs. PM2.5), season,

and concentrations (50th vs. 95th percentiles). These differ-

ences offer insights into the key drivers behind extreme pol-

lution event frequencies in the observed record beyond sim-

ple conditional means, highlighting the meteorological co-

variates most associated with changes in the highest pollutant

levels.

We find that temperature is a dominant covariate at most

stations in the summer for both O3 and PM2.5, with rela-

tive humidity, stability, and radiation flux also key covari-

ates relating to O3, and wind, stability, and rain often effec-

tive for predicting high PM2.5 levels. O3 variability during

winter months is determined largely by changes in incom-

ing radiation, while winter PM2.5 extremes are most com-

monly affected by stagnation, humidity, and HPBL. We show

substantial regional variation in these results, suggesting that

while classes of meteorological drivers of extreme air quality

are generally consistent, specific factors leading to air-quality

exceedances are local.

Climate change in coming decades is likely to induce a

response in regional air pollution. The sensitivities of O3

and PM2.5 to changes in meteorological patterns are, in gen-

eral, stronger for higher pollution percentiles, meaning that

changes to certain factors (most notably temperature, wind

speed, HPBL, and tropospheric stability) are likely to affect

the magnitude and frequencies of pollutant extremes more

drastically than they affect more moderate pollution levels.

This effect suggests that regional changes to climate could

have more significant impacts on the frequencies of extreme

O3 and PM2.5 events than would be suggested by bulk sensi-

tivities from OLS regressions.

This analysis framework offers new ways to investigate

both the observed and simulated air-quality responses to cli-

mate. Through quantile regression, the selection and ranking

of key predictors of pollutant variability can be evaluated ro-

bustly, focusing not on the mean behavior of a heavy-tailed

pollutant distribution, but rather the sensitivities closer to the

tail itself. Furthermore, the comparison of observed sensi-

tivities to those simulated by regional or global air-quality

models could identify key model biases relevant to the pro-

jection of future air quality, potentially providing insights on

the underlying mechanistic reasons for those biases.
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