Investigating the Potential of Energy-savings
Using a Fine-grained Task Based Programming
Model on Multi-cores

Alexandru Tordan®, Artur Podobas?, Lasse Natvig!, and Mats Brorsson?

! Norwegian University of Science and Technology
Trondheim, Norway
Email: {iordan,lasse}@idi.ntnu.no
2 KTH Royal Institute of Technology
Stockholm, Sweden
Email: {podobas, matsbror}@kth.se

Abstract. In this paper we study the relation between energy-efficiency
and parallel executions when implemented with a fine-grained task-centric
programming model. Using a simulation framework comprised of an ar-
chitectural simulator and a power and area estimation tool, we have
investigated the potential energy-savings when employing parallelism on
multi-cores system. In our experiments with 2 - 8 multi-cores systems,
we employed frequency and voltage scaling in order to keep the relative
performance of the systems constant and measured the energy-efficiency
using the Energy-delay-product. Also, we compared the energy consump-
tion of the parallel execution against the serial one. Our results show
that through judicious choice of load balancing parameters, significant
improvements of around 200 % in energy consumption can be acheived.

Keywords: Task Based Programming, energy-efficiency, multi-cores

1 Introduction

At the start of the new millennium, with performance being limited by high
power budgets and heat dissipations requirements, the superscalar paradigm
reached the point of diminishing returns. Faced with the constraint of the power
wall [13], hardware developers were in need of new ways to efficiently use the
ever increasing transistor count predicted by Moore’s law.

Multi-core architectures have been a natural solution for the power wall:
several less complex and significantly less "power hungry” cores are integrated
on a single processor. Processors like Sun’s Niagara T1 and T2, Tilera’s Tile64
or IBM’s Cyclops-64 use less complex cores, with shallow pipelines and simpler
branch prediction, and lower clock speeds than previous CPU generations. Scal-
ing down frequency (f) and supply voltage (Vaq) has a large effect on the chip’s
dynamic power, as shown by the relation: powergynamic ~ ded - f. Developing
parallel applications, that can take advantage of such chips has the potential of
reducing energy consumption while still providing high performance.

This paper is a initial study of the impact of load-balancing on energy-
efficiency in parallel executions. We use a very simple test scenario in which
we increase the number of cores while proportionally decreasing their working
speed. The applications in our experiments are developed using a paradigm called
Task Based Programming (TBP). TBP organizes an application as a set of com-
putational units (called tasks) that are scheduled across different cores. Parallel
applications developed with TBP are known to handle irregular dependencies
on input sets well and can adapt to varying computational load [17]. The base
concept of the TBP model is that the programmer should identify and annotate
pieces of code (tasks) which can be executed concurrently with other tasks, while
the complexity of the hardware is abstracted away from him/her.

Generally, parallelization of applications has a cost of added overhead that
sometimes scales badly, and this can increase the amount of energy that is used.
In our study we employed a rather simple core design which we did not modify
as we scaled up the number of cores. Our goal was not to find a way to develop
a multi-core that was highly energy-efficient, but to investigate the potential
to save energy by parallel executions. We used voltage and frequency scaling to
keep the relative performance of the systems constant and to maintain the chip’s
power requirements under realistic values.

The rest of this paper is organized as follows: in Section 2 we give a brief
introduction to power metrics, TBP and Wool library. Section 3 outlines the
experimental methodology used in our experiments and Section 4 discusses our
results. Section 5 presents related work and Section 6 describes our plans for
future work. Section 7 concludes the paper.

2 Background

2.1 Power metrics

A well known metric that can balance performance and power requirement is
Performance’ /Watt. The N parameter is used to increase or decrease the im-
portance of the Performance component of the metric. For N = 1, this metric
is used in the Green 500 list to rank world’s most energy-efficient supercomput-
ers [2].

Industry standard benchmarks like EnergyBench (for embedded systems)
and SPECpower (for servers and multi-processor computers) use customized
metrics to report on energy-efficiency. For example, SPECpower ranks a system
using ssj_ops/Watt metric (stands for server side Java operations performed per
Watt). This is a derived form of the Performance/Watt metric and it represents
the number of the executed SPEC operations divided by the average power of
the system.

Another frequently used metric is the Energy-delay-product (EDP). When
comparing scenarios that do not alter instruction count, this metric is equiv-
alent to the reciprocal of Performance? /Watt. Offering equal weight to energy
consumption and performance, EDP ensures a balanced energy-efficiency com-
parison among the test systems. Since our focus is on studying the trade-off of

energy-savings and performance on multi-core systems, we choose to use EDP
for our experiments.

2.2 Task Based Programming

A task, which can be fine-grained or coarse-grained, is a section of the code that
performs some operations over a set of parameters [16]. Task Based Programming
(TBP) is a programming paradigm that allows the parallelization of applications
that can be divided in multiple tasks. TBP comes in contrast with data paral-
lelism where the same operations are executed by different nodes (or cores) with
different data [15]. Using TBP model, the programmer should identify pieces of
code (tasks) to be executed concurrently with other tasks.

TBP libraries, like Intel’s TBB [3] and Cilk++ [1] increases the produc-
tivity of programmers since details like distribution of work to a set of cores
and message passing between parallel processes are abstracted away from the
programmer. Membarth et al. [20] performed a comparative study of several
frameworks for parallel programming on multi-cores. Their results showed that
TBP libraries like Intel’s TBB and Cilk++ not only perform better than other
frameworks like OpenMP or OpenCL, but also have a wide usability and provide
a better productivity for the programmer.

2.3 The Wool library

Our approach involves a lightweight TBP library called Wool [12]. Wool is a
work-stealing parallel library that was designed with the ability to scale well
with small tasks (smaller than a hundred cycles). These characteristics make
Wool very efficient in dealing with work imbalance and also assure that it has
very low overheads. The comparative study in [21] shows that Wool outperforms
some other parallelization libraries (like Cilk++ or OpenMP) in terms of cycle
costs for parallelization and task management operations.

Wool uses special data structures called task queues to store, manage and
schedule the tasks for each worker thread. This differs from other models such
as the GCC version of OpenMP which have one global queue containing all the
tasks. Private queues generally improve performance of the system, since the
locking-contention usually is much smaller compared to global queues. However,
distributed queues face the challenge of balancing the work among them. More
details and examples about Wool can be found in [12] and [21].

In Wool, load-balancing is implemented through the randomly task stealing
technique. When a worker thread empties its own task queue, the stealing mech-
anism sweeps through all available worker queues to find available tasks to steal.
Because making a task stealable adds an overhead, the programmer can control
the number of stealable tasks per queue. In this way, the programmer has control
over the load-balancing of the application.

Another scenario when task stealing is employed is when a worker is trying
to synchronize with one of its children, and finds it stolen. In order to prevent

threads from being idle a technique called leap-frogging is used. More details
about this technique can be found in [22].

3 Experimental setup

3.1 Architectural simulations

Using the M5 simulator [7], we performed full-system simulations of several
multi-core platforms. In a full-system simulation, the target system is able to
run its own operating system and in our experiments we used the 2.6.27 Linux
kernel. This type of simulation also makes it possible to record the behavior
of all key components of the system: core, cache hierarchy, memory controller,
main memory.

The basis for our modeled CPU is the Alpha 21364 processor from DEC. The
choosing of this model was motivated by the fact that Alpha ISA is the most
stable one for full-system multi-core simulations in M5 [6]. A second reason is
that the 21364 was also validated in McPAT [19] (more details in section 3.2). In
all multi-core systems simulated we used the same processor architecture with all
parameters kept constant, except the three main parameters: number of cores,
supply voltage and core frequency. We assumed voltage and frequency scaling
at chip level so that we keep the power requirement under realistic values. We
used the formula core_frequency = single_core_frequency / number_of-cores to
maintain constant the relative performance of the test systems.

The maximum number of cores we simulated was limited only by the values
for core frequency and Vi, (the way we calculated our voltage scaling values
is described in section 3.2). The minimum value for Vy; we could assign was
2.3 % Vi, [18] and in our case this limit is 0.19 x 2.3 = 0.44 V.

The original 21364 has a clock frequency of 1.2 GHz and was produced in 180
nm technology. We assumed a 65 nm process technology and by linear scaling,
similarly to Li and Martinez [18], we can determined the single-core frequency
at 3.32 GHz. However, using this frequency for the single-core system and then
scaling down V4 results into voltage values very close to the 2.3 x V;;, limit. For
such low values of Vg4 the chip’s leakage current increases significantly and the
static power can become dominant. To alleviate this we chose to assign a lower
core frequency of 2 GHz to the single-core system. Since the speed of the cores
does not affect the way they process the applications, just the execution time,
the trends presented in our results are the same for both sets of experiments (the
ones with a single-core running at 3.32 GHz and the ones with the single-core
running at 2 GHz).

Table 1 lists the main characteristics of our experiments. Further details
about M5’s architectural parameters and characteristics listed in Table 1 and
Table 2 can be found in [6] and [7].

The modeled system uses a cache hierarchy with split data and instruction
private L1 caches. All cores share a 2 MB on-chip L2 cache through a common
bus and implement a MOESI cache coherence protocol. Details about the cache
hierarchy are given in Table 2.

Table 1. Main characteristics of modeled processor core

Parameter Value
Process technology 65 nm
Nominal Vgq 1.1 /089 /082 /0.78/0.76 /0.74 /0.73 / 0.72 V
Vin 0.19V
Type of execution Out-of-Order
Instruction set Alpha
No. Cores 1/2/3/4/5/6/ 7/ 8 cores
Clock frequency 2000 / 1000 / 666 / 500 / 400 / 333 / 285 / 250 MHz
Fetch/issue/commit width 4 /4 / 4 insts./cycle
Inst. window size (Int / FP) 20 / 15 entries
4 integer ALUs
Functional units Hinteger multiply / divide
1 FP multiply/divide

Table 2. Cache parameters

Cache Size |Assoc.|Block size| Access MSHRs Banks
(bits) | (bits) |latency|Targets / MSHR

L1 private iCache |32 KB| 2 64 2 4 MSHRs /4 tgts 1

L1 private dCache(32 KB| 4 64 2 4 MSHRs /4 tgts 1

L2 shared Cache |2 MB 4 64 10 4 MSHRs /4 tgts 4

3.2 Power estimations

Our simulation framework includes a power and area estimation tool called Mc-
PAT [19]. Developed in collaboration by HP-labs and the University of Notre
Dame, McPAT models all major system components of a computer system (in-
cluding in-order and out-of-order cores, network-on-chip, shared and private
caches, memory controllers). Using information from the ITRS 2007 roadmap [4],
McPAT supports design space exploration for single and multi-core architectures
ranging from 90 nm to 22 nm production technology.

According to the Process Integration, Devices, and Structures chapter in
ITRS 2007, there are 3 types of circuit logic: high performance (HP), low op-
erating power (LOP) and low standby power (LSTP). HP devices include chips
of high complexity and performance such as the microprocessors for desktop
or server computers. LOP devices include relatively high-performance mobile
circuits, like those in notebooks. LSTP devices are typically intended for low
performance applications like cellular phones. We performed our estimations for
the 65 nm technology and the HP device type.

McPAT is able to report both dynamic and static power. Dynamic power for
each system component is defined as: powergynamic ~ AF-C 'ded~ f, where AF is
the activity factor, C' is the total load capacitance, Vg4 is the supply voltage and
f is the clock frequency. AF is estimated using access statistics and component’s
characteristics provided by the architectural simulation of that component. The

capacitance is computed with analytic models for each basic circuit block that
makes up the system component. In addition to the dynamic power component
McPAT also estimates the leakage power. As described in [19] the leakage current
is estimated using MASTAR [5] and data from Intel.

The developers of McPAT validated the Alpha 21364 processor model we used
in our simulations against published data. As the results in [19] show, McPAT
is able to estimate the power requirements of the Alpha 21364 with an average
error of 21 % (this value is highly influnced by the fact that validation was done
for peak power and not average power).

In order to correlate the values for frequency and voltage scaling we resorted
to a report from Intel [10] documenting this relation (in steps of 200 MHz) for
three Pentium processors. From that report we extracted an average voltage
step of 0.052 V per 200 MHz. This represents 3.88 % of the 1.34 V nominal
voltage used for that family of processors. Since we simulated CPUs in the 65
nm technology process which has a 1.1 V nominal voltage [4], we calculated the
voltage scaling step as 3.88 % of this nominal voltage for a frequency step of 200
MHz. By subtracting each core frequency in Table 1 from the single-core value
and dividing the result by 200, we calculated the number of frequency steps. We
used this number of steps to proportionally reduce Vy4. The resulting voltage
values for each multi-core configuration we simulated are reported in Table 1.

3.3 Benchmarks

In our experiments we used a subset of the Barcelona OpenMP Task bench-
mark Suite (BOTS) [11]. BOTS is a benchmark compilation assembled by the
Barcelona Supercomputing Center (BSC) to assess the performance of task-
based programming models. Some of the kernels come from other benchmark
collections (like FFT or strassen) and the others were written by the team at
BSC (like sparselu). For our experiments, we changed the default OpenMP par-
allelization to a Wool implementation. This change was motivated by our wish
to use a lightweight library with a low parallelization overhead. To allow for rea-
sonable simulation times (from 12 hours to 2 days), the workloads we used are
generally smaller than real-life problem sizes. Table 3 lists the size of the work-
loads we used in our experiments. The benchmarks have been cross-compiled for
the Alpha ISA using a cross-compiler (consisting of gce-4.3.2 and glibe-2.6.1) [6].
All benchmarks have been compiled using the flags: -O3 -static -pthread. A brief
description of the BOTS subset that we used is given in section 4.

Table 3. Input workloads used in experiments

Alignment | FFT Fib |nQueens| SparseLU Strassen
512x512| 40’th | 13x13 100x100 1024x1024
Input|20 proteins| matrix |element| board | sparse matrix | matrix
of floats of 20x20 blocks

4 Results

The main two issues that need to be addressed in order to improve a system’s
energy-efficiency when running parallel applications are parallel overhead and
load imbalance. In order to quantify the effect of the two causes on energy
consumption, we performed experiments in which we altered Wool’s ability to
deal with load imbalance. By controlling the number of tasks that each worker
queue is allowed to mark as stealable, we also controlled the task distribution
across worker threads. Taking into consideration that an imbalanced task-tree
will also force the worker threads to perform more ”"management operations”
(search for task to steal, successful/unsuccessful steals), modifying the number
of stealable tasks also has effect on the overhead. We covered a wide range of
testing points, from a minimum of 1 stealable task to 10000. There were some
benchmarks (alignment and sparselu) for which the load imbalance for low values
of stealable tasks was so large that its execution required an unreasonable long
simulation time. For these applications we reduced the test range. For reasons
of space limitations for this paper, Table 4 only lists the lowest EDP values and
the corresponding number of stealable tasks. For the same reason, we do not
report or discuss performance-orientated metrics like speed-ups.

Alignment is a protein alignment benchmark that is based on the Myers
and Miller algorithm. In a master-slave manner, all the tasks in its execution
are spawned by the main worker thread (the thread that is used to start the
program). The children tasks, which do not spawn any other tasks, need to be
available for the other workers. That is why the number of stealable task has a
big effect on the energy-efficiency of the system executing this benchmark. All
the other threads need to steal work from the main thread and a low number
of stealable task leads to race contention among them. Our experiments showed
a progressive decrease in EDP as the number of stealable tasks increased up
to a threshold of around 200 tasks. After this point the improvements come
at a much slower pace. For the stealability parameters listed in Table 4, the
workload is almost perfectly balanced, and the energy consumption for all multi-
core executions is below the single-core one (see Fig.1)

Fibonacci is a recursive benchmark that calculates the Fibonacci series of a
given value n. The workload in the tasks are fine-grained, with leaf-nodes having
only a single if and return statement. Using a recursive, divide-and-conquer
approach, this application creates a very extensive task-tree which means that
there is enough work for every worker. This application has good improvements
when parallelized, with the workload evenly balanced among the workers even
for low values of stealable tasks.

FFT calculates the Discrete Fourier Transform of a matrix in a recursive
manner using the Cooley-Turkey algorithm. It showed good results when par-
allelized and all multi-core executions had an energy consumption under the
single-core one (see Fig.1).

nQueens is a search-and-prune benchmark that generates all solution for the
nQueens problem. It ”builds” the solutions row by row and each valid posi-
tion of a queen spawns a new task. Like Fibonacci, this is another application

that benefits little from large numbers of stealable tasks. However nQueens does
not generate a very large task-tree. The main worker thread starts the work
by spawning a task for each valid position of a queen on the first row of the
chessboard. The other workers steal these tasks and begin working with them.
Since these tasks are coarse-grained, the workers need to steal fewer in order to
keep busy. This application did not show improvements in energy consumption
for all multi-core systems, as will be discussed later in the section.

SparseL U calculates the LU matrix factorization and the algorithm is fairly
unbalanced. Just like Alignment, SparseLU spawns a relative small number of
tasks and the challenge is to schedule them in a balanced manner among the
worker threads. With the right number of stealable tasks (see Table 4), the work-
load imbalance is solved and the multi-core executions register a lower energy
consumption than the single-core one.

Strassen is a parallel matrix multiplication algorithm. The algorithm sub-
divides the array into smaller arrays, and performs matrix multiplication on
them. Like nQueens, Strassen showed partial improvements on energy-savings
when parallelized. The parallel matrix multiplication executed faster on 2 and 3
cores compared to the 1 core system, but lost this advantage as the core count
increased. Again, the reasons for this will be discussed later in the section.

Using the values for number of stealable tasks listed in Table 4, we performed
a comparison of the parallel execution against the serial one. With these values,
the performance of each benchmark on the multi-core systems is at a maximum
(at least from the load-balancing point of view), so we only measured Energy
for this study. Fig.1 presents this comparison. As you can see, for most config-
urations, the parallel executions show a higher energy-efficiency (marked by a
lower energy) than the serial one. The biggest improvement recorded is for Fi-
bonacci which shows a 239 % decrease in energy consumption when comparing
the 3-cores execution to the single-core one. However, after a certain point the
descendant trend of energy consumption stops for all benchmarks. There are
three reasons for this behavior.

First, as the number of cores grows — so too are the scheduling and task
management overheads. We recorded maximum increases of 52 % (for Strassen)
in instruction count going from 2 cores to 8 cores.

Second is the less than linear algorithmic speedup of the parallel programs. In
addition to this, the work stealing mechanism can induce stalls and serialization
into execution. There are situations when a worker thread is forced to wait
the completion of a task that was stolen from him. The leap-frogging technique
can alleviate this problem only if the stolen task spawns children. A simple
quantification of these behaviors can be made by examining the increase in
execution time: 20 % increase when going from 2-cores to 8-cores for Strassen.

Third reason is the increase in static power as we scale down V4. Frequency
and voltage scaling have a positive impact on dynamic power (when increas-
ing the core count from 2 cores to 8, all executions showed an average of 43 %
decrease of dynamic power), but they have the opposit effect on static power
(leakage power to be more precise). Leakage power is influenced mainly by fabri-

Table 4. Best EDP values for multi-core test systems

2 cores |3 cores |4 cores |5 cores |6 cores|7 cores|8 cores
Alignment EDP 40.76 | 34.98 | 38.57 | 45.99 | 49.89 | 59.41 | 62.19
No. of steals| 900 900 1000 900 1000 900 900
Fibonacci EDP 218.5 [161.56 | 177.29 | 199.53 | 201.73 | 211.81 | 224.92
No. of steals 3 4 4 4 4 3 4
FET EDP 217.36 | 181.28 | 172.94 | 205.42 | 222.66 | 245.46 | 267.35
No. of steals| 900 1500 3000 3500 7000 | 10000 | 10000
nQueens EDP 1453.35(1498.70|1708.82(1978.66(2239.21|2581.41|2829.59
No. of steals 4 5 5 6 9 9 7
SparseLU EDP 79.39 | 53.83 | 58.06 | 64.09 | 71.58 | 80.46 | 88.50
No. of steals| 200 200 900 900 900 900 1000
Strassen EDP 37.85 | 37.79 | 37.45 | 46.52 | 56.11 | 69.11 | 83.32
No. of steals 9 100 90 90 900 900 900

cation parameters of the transistors (gate thickness, gate material etc.) but also
by Vaq and Vi, (the voltage at which the transistor is viewed as switched ”"on”).
As we scale down V;; and we get closer to the V4, the leakage current increases
and so is the static power. All multi-core configurations recorded an increase of
135 % of static power, when going from 2-cores to 8-cores.

5 Related work

There is a large body of work that focus on using parallel execution to improve
performance and not energy consumption. What has got little interest thus far,
at least to our knowledge, is quantifying the effect of TBP parallelization on
energy efficiency on multi-core systems.

Li and Martinez [18] make a detailed power-performance exploration of paral-
lel applications running on chip-multiprocessors. Using an analytical model, they
perform extensive design space explorations to find the best multi-core config-
uration and also run simulations to verify the validity of the analytical results.
They conclude that through judicious choice of parallelism’s granularity and
voltage/frequency scaling values, parallel computing can improve performance
while maintaining or even reducing the power budget.

Contreras and Martonosi [9] make a study of Intel’s Threading Building
Blocks (TBB) and try to characterize some of the overheads associated with it.
They emphasize the fact that this framework helps the programmer by abstract-
ing away the complexity of the hardware. They also propose an improvement
to TBB’s task stealing mechanism in order to limit the parallelization overhead.
Even though the focus of the authors is on performance, their implementation
can also have a beneficial effect on the energy-efficiency of the system.

Sangyeun and Melhem [8] use an analytic framework to study the interplay
between parallelism of an application, its performance and energy consumption.
Their result demonstrate the advantage (quantified in energy or EDP) that can

alignment

w
v
T T T

-
I
S

T T T T

nqueens

Joules
e NN
NI
538838
T
N R
« HEEA

sparselu
T

o
S
T T T

-
=)
T T T

No. cores

Fig. 1. Energy consumption comparison

be gained from employing dynamic voltage and frequency scaling to execute
the serial and parallel part of an application at different levels of frequency and
voltage. Also they study the scenario when individual processors can be turned
off when not in use. Even if it assumes an simplified environment, this work
provides valuable theoretical insights into energy-aware resource management.

There is a number of papers that is very relevant for the future development
of our study. However, since they are not directly related to the current stage of
the research, they are referenced in the next section.

6 Future work

We want to extend our experiments towards a larger number of cores and at the
same time change the processor model. We are currently investigating an ARM
model which is a much recent and scalable multi-core architecture. Also, a 4-core
ARM Cortex-A9 evaluation board is commercially available and that makes it
possible to validate our model and also to do experiments with both simulation
and real execution.

‘We also plan to do a more detailed characterization of the specific mechanisms
employed by Wool. Future work will focus on a detailed quantification in terms
of EDP of Wool’s load-balancing technique and possibly a comparison with other
techniques (basic waiting, parking, etc. [12]).

Another approach to study the relation between task based parallelization
and energy consumption is to use performance counters to track the behavior of
real multi-cores. Weissel and Bellosa [23] and Goel et.al. [14] have been exploring
power modeling with the use of performance counters. It is a long term goal for
us to use similar approaches for achieving increased understanding of the energy
issue, our models and their accuracy.

7 Conclusions

Although our study assumes a simplified environment and a simple test sce-
nario we think it provides valid insights into how energy-efficiency and par-
allel execution relate. By integrating an architecture simulator (M5) with a
power and area estimation tool (McPAT), we have put in place a framework for
performance/power experiments. Using this framework, we studied the energy-
efficiency of multi-core platforms running several BOTS benchmarks parallelized
with the Wool library. Our experiments show improvements of the FDP met-
ric when the parallel workload is balanced correctly for each benchmark and
configuration.

Our experiments also show the potential for energy-efficiency improvements
of parallel executions on multi-cores compared to the serial version of the same
application on a single-core system. However, these improvements do not come
for free. Task synchronization and management overhead, sub-linear speedups
and increase in leakage power become more and more significant as the number
of cores grows.

In all, we think the results we have found so far are promising and motivates
for further research into energy-efficiency through parallelization.

References

1. Cilk++: A quick, easy and reliable way to improve threaded performance. http:
//software.intel.com/en-us/articles/intel-cilk-plus/.

2. The Green 500 list. http://www.green500.o0rg/.

3. Intel Threading Building Blocks. http://software.intel.com/sites/products/
documentation/hpc/tbb/getting_started.pdf.

4. International Technology Roadmap for Semiconductors 2007 Edition. http://
www.itrs.net/links/2007itrs/ExecSum2007 .pdf.

5. International Technology Roadmap for Semiconductors 2007 Edition, The Model
for Assessment of CMOS Technologies and Roadmaps (MASTAR). http://wuw.
itrs.net/models.html.

6. The M5 Simulator System webpage. http://www.mbsim.org/wiki/index.php/
Main_Page.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

N.L. Binkert, R.G. Dreslinski, L.R. Hsu, K.T. Lim, A.G. Saidi, and S.K. Reinhardt.
The M5 simulator: Modeling networked systems. IEEE Micro, 26(4), 2006.

S. Cho and R. G. Melhem. On the interplay of parallelization, program perfor-
mance, and energy consumption. IEEE Transactions on Parallel and Distributed
Systems, 21(3):342 —353, 2010.

G. Contreras and M. Martonosi. Characterizing and improving the performance of
Intel Threading Building Blocks. In IEEE International Symposium on Workload
Characterization, pages 57-66, 2008.

Intel datasheet. Intel Pemtium M processor on 90 nm process with 2-MB
L2 cache. http://download.intel.com/support/processors/mobile/pm/sb/
30218908 .pdf.

A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguade. Barcelona OpenMP
Tasks Suite: A Set of Benchmarks Targeting the Exploitation of Task Parallelism
in OpenMP. In Proceedings of the 2009 International Conference on Parallel Pro-
cessing, pages 124-131, Washington, DC, USA, 2009. IEEE Computer Society.
Karl-Filip Faxén. Wool - A work stealing library. SIGARCH Computer Architecture
News, 36(5):93-100, 2008.

S.H. Fuller and L.I. Millett. Computing Performance: Game Over or Next Level?
Computer, 44(1):31 —38, jan. 2011.

B. Goel, S.A. McKee, R. Gioiosa, K. Singh, M. Bhadauria, and M. Cesati. Portable,
scalable, per-core power estimation for intelligent resource management. In Inter-
national Green Computing Conference, pages 135 —146, aug. 2010.

W. D. Hillis and G. L. Steele, Jr. Data parallel algorithms. Commun. ACM,
29:1170-1183, December 1986.

C. Kessler and J. Keller. Models for parallel computing: Review and perspectives.
In Proceedings of PARS, pages 13—29, 2007.

M. Korch and T. Rauber. A comparison of task pools for dynamic load balancing of
irregular algorithms: Research articles. Concurr. Comput. : Pract. Ezper., 16(1):1-
47, 2004.

J. Li and J.F. Martinez. Power-performance considerations of parallel computing
on chip multiprocessors. ACM Trans. Archit. Code Optim., 2:397-422, December
2005.

S. Li, J.H. Ahn, R.D. Strong, J.B. Brockman, D.M. Tullsen, and N.P. Jouppi.
McPAT: An integrated power, area, and timing modeling framework for multi-
core and many-core architectures. In Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, 2009.

R. Membarth, F. Hannig, J. Teich, M. Koérner, and W. Eckert. Frameworks for
multi-core architectures: a comprehensive evaluation using 2D/3D image regis-
tration. In Proceedings of the 24th International Conference on Architecture of
Computing Systems, pages 62—73, 2011.

A. Podobas, M. Brorsson, and K.F. Faxén. A comparison of some recent task-based
parallel programming models. In Third Workshop on Programmability Issues for
Multi-Core Computers, 2009.

D. B. Wagner and B. G. Calder. Leapfrogging: a portable technique for imple-
menting efficient futures. In Proceedings of the fourth ACM SIGPLAN symposium
on Principles and practice of parallel programming, PPOPP ’93, pages 208-217,
New York, NY, USA, 1993. ACM.

A. Weissel and F. Bellosa. Process cruise control: event-driven clock scaling for
dynamic power management. In Proceedings of the International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems, CASES ’02, pages
238-246, New York, NY, USA, 2002. ACM.

