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Abstract: Solar is a significant renewable energy source. Solar energy can provide for the world’s
energy needs while minimizing global warming from traditional sources. Forecasting the output of
renewable energy has a considerable impact on decisions about the operation and management of
power systems. It is crucial to accurately forecast the output of renewable energy sources in order to
assure grid dependability and sustainability and to reduce the risk and expense of energy markets
and systems. Recent advancements in long short-term memory (LSTM) have attracted researchers to
the model, and its promising potential is reflected in the method’s richness and the growing number
of papers about it. To facilitate further research and development in this area, this paper investigates
LSTM models for forecasting solar energy by using time-series data. The paper is divided into two
parts: (1) independent LSTM models and (2) hybrid models that incorporate LSTM as another type of
technique. The Root mean square error (RMSE) and other error metrics are used as the representative
evaluation metrics for comparing the accuracy of the selected methods. According to empirical
studies, the two types of models (independent LSTM and hybrid) have distinct advantages and
disadvantages depending on the scenario. For instance, LSTM outperforms the other standalone
models, but hybrid models generally outperform standalone models despite their longer data training
time requirement. The most notable discovery is the better suitability of LSTM as a predictive model
to forecast the amount of solar radiation and photovoltaic power compared with other conventional
machine learning methods.

Keywords: solar irradiance forecasting; renewable energy; photovoltaic power forecasting; long
short-term memory; hybrid model; deep learning

1. Introduction

The primary focus of the energy industry in recent years has been on reducing carbon
emissions by shifting to renewable energy sources. Excessive carbon emissions negatively
affect the environment, leading to further global warming and climate change. Additionally,
industrialization has substantially accelerated the growth of the world’s demand for energy,
causing the supply of nonrenewable energy sources, such as coal, natural gases, and
petroleum, to be increasingly constrained. Given this circumstance, many countries have
crafted and subsequently implemented policies and strategies associated with the energy
sector. In 2015, the USA and China jointly issued a statement addressing climate change.
The statement emphasized new domestic policy commitments aimed at achieving 100%
dependency on renewable energies [1]. Furthermore, the European Union plans to use
renewable energy sources to generate 30% of electricity by 2030 and 100% of electricity by
2050 [1,2].

Among the promising renewable energy types, solar energy is the most recognized
and widely used around the world. This situation is especially true among countries with
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developed economies [2]. Regarding the incorporation of renewable energy sources into
grids, the majority of studies have concentrated on the development of photovoltaic (PV)
systems rather than the incorporation of other forms of renewable energy, such as wind
energy, biomass, and other forms. However, the characteristics of solar energy, such as
uncertainty, fluctuation, and randomness, may lead to dynamic instability and unpre-
dictability of solar PV power output [3,4]. Given this difficulty, techniques for accurately
predicting the amount of solar irradiance should be pursued to provide important deci-
sion support to power-dispatching systems. More importantly, the search for appropriate
methods can considerably minimize the running cost of power systems [5].

Solar energy is gaining popularity as a renewable energy source due to its environ-
mental benefits and abundance. However, integrating solar energy into the power grid
is challenging due to its intermittent and uncertain nature. To accurately forecast solar
irradiance and PV power output, it is crucial to consider parameters such as spatial and
temporal correlations, which affect the accuracy of the predictions. Spatial correlations
refer to the relationship between the geographical location of PV systems and the weather
patterns of that region. On the other hand, temporal correlations refer to the time-series
relationship of the solar irradiance and PV power output data. Other parameters, such as
cloud cover, atmospheric conditions, and the time of day, can also influence the forecasting
accuracy. Therefore, incorporating these parameters into forecasting models is crucial.

In forecasting studies, there are several major techniques that have been applied,
such as statistical methods, physical methods, machine learning methods, and ensemble
methods [4,6]. Commonly, the performance of each technique depends on the forecast
horizons and input parameters. Forecasting analysis parameters such as spatial–temporal
(spatial and temporal refer to space and time, respectively) correlation play a main role
in improving the accuracy and require large-scale datasets [7]. Further investigations
of spatial and temporal correlation, which combines with other solar data sources, are
important for solar energy forecasting such as PV power generation forecasts [8,9] because
having a large size of the dataset may lead to high accuracy despite its complexity.

Several studies have demonstrated the ability of long short-term memory (LSTM)
methods to improve the forecasting accuracy of time-series statistical techniques. Nonethe-
less, to the best of our knowledge, no research has been conducted to comprehensively
review LSTM either as a standalone model or as part of a hybrid model with respect to
solar irradiance forecasting and PV power forecasting. The aim of this study is to analyze
LSTM and hybrid models (i.e., those with LSTM) and compare their performance with
those of other solar irradiance forecasting and PV power forecasting techniques as a means
of gaining insights into their various mechanisms and applications. The main contributions
of this review are as follows:

• Analyze and compare the relevant papers that have been proposed and discussed
LSTM models on solar irradiance prediction.

• Identify better models among standalone and hybrid models of LSTM to predict solar
irradiation and PV power by comparing the features of prediction parameters.

• Discuss in depth regarding the characteristics and mechanism of LSTM and how it is
able to integrate with other methods to improve the performance of solar prediction
accuracy.

The remainder of the paper is organized as follows: Section 2 describes the previous
studies about solar irradiance and PV power forecasting techniques. Sections 3 and 4
present an in-depth discussion of the history of LSTM and hybrid models. Section 5
summarizes the evaluation metrics used to demonstrate the performance of the forecasting
models. Section 6 provides an examination of relevant published studies in terms of several
characteristics. Section 7 summarizes the findings of this study.

2. Related Works

Technological advancements have contributed significantly to the adoption of machine
learning (ML) and ensemble methods for forecasting solar irradiance with high accuracy.
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Among them, deep learning (DL) algorithms have enabled the mining of multilayer in-
formation from PV power series in addition to improving forecasting accuracy [10,11].
However, extant models underestimate the effects of weather on PV power output, and
they cannot effectively capture the short-term variations in PV power across different
climates. Significant fluctuations in solar PV power output occur on cloudy and wet days,
and historical PV data representing these days cannot be used for forecasts. Interestingly,
hybrid DL models may be used to solve these problems [11].

Guermoui et al. [12] compared different hybrid models according to their respective
characteristics and ranked their performance. They classified the hybrid models into six
types: general ensemble learning, cluster-based ensemble learning, decomposition-based
ensemble learning, decomposition–clustering-based ensemble learning, evolutionary-based
ensemble learning, and residual-based ensemble learning. In their study, the hybrid
models outperformed the standalone models. However, the performance comparison was
somewhat insufficient because the models were reviewed by simply focusing on their
various characteristics using metric assessments.

Kumari et al. [13] reviewed standalone models (i.e., LSTM, convolutional neural net-
work (CNN), gated recurrent unit (GRU), recurrent neural network (RNN), and deep neural
network (DNN) models), and a hybrid model (CNN–LSTM), which have been recently
used to forecast solar irradiance in terms of their working mechanisms and benefits and
drawbacks. According to their simulation results, LSTM outperforms the other standalone
models as evidenced by its low root mean square error (RMSE). However, the performance
of solar irradiance forecasting can be further improved by integrating LSTM into a hybrid
model (i.e., CNN–LSTM); this hybrid model is superior even to the standalone models in
terms of error reduction. Kumari et al. [13] suggested comparing CNN–LSTM with other
hybrid models.

Rial et al. [14] comprehensively reviewed DL models in terms of their ability to forecast
the time-series data of solar irradiance and PV power. They examined published studies
pertaining to three standalone models (RNN, LSTM, and GRU) and a hybrid model (CNN–
LSTM) to assess each model’s contributions. They also compared the performance of the
models in terms of their characteristics, such as accuracy, input data, forecasting horizon,
season and weather type, and training time. The results of their performance analysis
showed that LSTM outperforms the other standalone models in terms of RMSE. However,
the hybrid model (CNN–LSTM) obtained the highest accuracy among the models studied
in terms of forecasting solar irradiance and PV power. Meanwhile, Tawn and Browell [15]
focused on the accuracy of very short-term solar power forecasting by examining several
approaches, including image-based, probabilistic, and ML methods. Different assessment
metrics, such as the mean absolute error (MAE) and RMSE, were used to evaluate the
performance of the forecasting models.

Ahmed et al. [16] assessed state-of-the-art models used for PV solar power forecasting.
Their input correlational analysis showed that solar irradiance is strongly linked to PV
production, further suggesting the urgent need to study weather and cloud motion. They
found that normalization, wavelet transform, and generative adversarial networks, which
are used for network training and forecasting, are the best approaches to clean forecasting
data. They also highlighted the ability of genetic algorithms and particle swarm optimiza-
tion to optimize inputs and network parameters. Then, they reviewed the use of established
performance measures (MAE, RMSE, and mean absolute percentage error (MAPE)) and
recommended the incorporation of economic utility indicators. Finally, on the basis of
their evaluation and comparative results, they classified the modeling methodologies into
physical, statistical, artificial intelligence (AI), ensemble, and hybrid approaches.

Wang et al. [17] explored the use of AI for solar energy prediction—a topic that is
rarely reviewed—by examining previously published studies that attempted to review the
contributions of different models. Undeniably, their research has contributed considerably
to the taxonomic research of existing AI-based solar power prediction models. In their study,
taxonomy is defined as the systematic grouping of solar energy forecasting methodologies,
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optimizers, and forecasting frameworks based on their differences and similarities. In AI
systems for solar energy prediction, ML, DL, and fuzzy logic are all commonly used. Their
work showed that the performance of a predictive model (i.e., DL-based LSTM, with low
RMSE) is better than those of other models. Meanwhile, Dodiya and Shah [18] proposed the
use of DL in the development of solar PV energy. Some of the DL models they investigated
were the multilayer perceptron (MLP), CNN, LSTM, GRU, RNN, support vector machine
(SVM), and deep RNN–LSTM. They also discussed the application areas, model types, and
MAPEs and summarized the related studied models.

LSTM models has also been applied on various domains in terms of prediction models.
Noman Khan et al. [19] proposed a forecasting model to predict the renewable energy
(RE) generation for short-term horizons. The proposed model was an AB-Net model, a
hybrid model of autoencoder (AE) and bidirectional long short-term memory (BiLSTM).
The input data deployed were solar and wind power generation data. For the solar
dataset, the input variables for the 3 years and 10 months data were inclined irradiance,
surrounding temperature, and surface temperature, while the input variables of the wind
dataset were power, wind speed, wind direction, surface air pressure, air temperature,
and air density. The performance of the proposed model for both solar and wind datasets
have outperformed the fine-tuning metaheuristic algorithm (FTMA), which was used for
comparative study. Other than that, a short-term electricity load prediction model has been
studied by Fath et al. [20], where the prediction accuracy was obtained by evaluating the
performance of several ensemble learning algorithms and deep learning methods. The
household power consumption dataset was used as input for the proposed model. From
the result, multiple LSTM (M-LSTM) has outperformed other models such as LSTM and
BiLSTM for different horizons: minutely, hourly, daily, and weekly.

In summary, the studies cited above generally discussed the LSTM model and related
hybrid models in various domains; as illustrated in Table 1, some of these studies failed
to provide enough details about the models. Nonetheless, as the LSTM model has been
demonstrated to be capable of predicting solar power, the standalone and hybrid models
of LSTM, as well their uncovered and partially covered criteria (see Table 1), should be
further investigated.

Table 1. Summary of related works of solar energy predictions.

Ref.
Criteria

LSTM Hybrid Model Evaluation Metrics Analysis of Past Studies

[8] X −
√

X

[9] −
√ √

X

[10]
√

−
√ √

[11] − −
√ √

[12] X −
√ √

[13] −
√ √ √

[14] − − −
√

Note: X means not covered, −means partially covered, and
√

means fully covered.

3. LSTM

The feed-forward neural network (FFNN), also known as MLP, is a fundamental
type of deep learning architecture. In Figure 1, we can see the structure of the MLP with
its three layers, namely, the input layer, hidden layer, and output layer. The input layer
receives the input data, the hidden layer processes the input and produces an intermediate
representation, and the output layer produces the final output. This figure helps to illustrate
the basic structure of the MLP, which is important to understand as it forms the basis for
more complex deep learning models. MLPs are utilized frequently in power systems as a
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method for protecting transmission lines, detecting faults in transformers, and monitoring
online voltage stability [21].
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In the context of forward neural networks (FNNs), data travels from the input layer
to the output layer via the hidden layers arranged between them, as shown in Figure 1.
Figure 2 illustrates the information being sent linearly from one side of the diagram to the
other side, but the lines never return to any particular node or layer. In addition, a certain
node only receives input once, and never again after that. This pattern of information
sharing indicates that an FNN involves memory loss, with only the most recent input and
training instructions remembered. Thus, unless prior information is supplied, the strategy
supplied by FNNs is not beneficial for forecasting or prediction.
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Figure 2 shows a comparison between RNNs and FNNs, with loops shown in the
hidden layers (blue circles) of the former. In the hidden layers, information is repeated
several times, implying memory gain, as shown in Figure 3. The decision regarding the
handling of data is determined based on the current state input and the prior output. For
example, the irradiation data of a particular date or time can be anticipated by inputting
the result from the previous time step into the current time step [14,21]. This scheme can
also be adopted for other data types. Furthermore, in contrast to FFNNs, RNNs are more
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similar to human synapses, as humans tend to learn in progressive sequences rather than
random sequences [23]. Thus, the RNN is the optimal choice for predictive models.

Processes 2023, 11, x FOR PEER REVIEW  6 of 21 
 

 

 

Figure 2. RNN vs. FNN [19]. x: input, y: output, w: h: hidden layer, w: loop. 

 

Figure 3. Structure of an RNN with unfolded architecture [19]. 

LSTM is a type of RNN. Therefore, similar to the RNN, an LSTM network can per‐

form calculations with a sufficient number of network elements. Figure 4 shows the struc‐

ture of the LSTM cell, which consists of three different gates: the forget gate, input gate, 

and output gate. The memory cell, which acts as a collector of state  information,  is the 

distinguishing element of LSTM networks. When the input gate is triggered, new infor‐

mation is collected in the cell; by contrast, when the forget gate is triggered, previous in‐

formation is erased. In the feedback loop, the sigmoid function determines which infor‐

mation should be forgotten or retained  in the memory cell, and the hyperbolic tangent 

function controls the input and output to the cell. The combination of these functions al‐

lows the LSTM to selectively remember or forget information, making it effective in han‐

dling  time‐series data and generating predictions.  In LSTM networks,  the  latest cell  is 

propagated to the final step only when the output gate is triggered. This LSTM‐specific 

cell behavior prevents the gradients trapped  in the cell from rapidly disappearing; this 

feature implies the better performance of LSTM in handling time‐series data and generat‐

ing predictions compared with other RNN designs [24]. 

Figure 3. Structure of an RNN with unfolded architecture [19].

LSTM is a type of RNN. Therefore, similar to the RNN, an LSTM network can perform
calculations with a sufficient number of network elements. Figure 4 shows the structure of
the LSTM cell, which consists of three different gates: the forget gate, input gate, and output
gate. The memory cell, which acts as a collector of state information, is the distinguishing
element of LSTM networks. When the input gate is triggered, new information is collected
in the cell; by contrast, when the forget gate is triggered, previous information is erased. In
the feedback loop, the sigmoid function determines which information should be forgotten
or retained in the memory cell, and the hyperbolic tangent function controls the input
and output to the cell. The combination of these functions allows the LSTM to selectively
remember or forget information, making it effective in handling time-series data and
generating predictions. In LSTM networks, the latest cell is propagated to the final step
only when the output gate is triggered. This LSTM-specific cell behavior prevents the
gradients trapped in the cell from rapidly disappearing; this feature implies the better
performance of LSTM in handling time-series data and generating predictions compared
with other RNN designs [24].
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4. Hybrid Models

A hybrid model combines a DL model with another DL model. In this study, a hybrid
model refers to LSTM combined with other DL or ML methods to improve forecasting
accuracy. Hybrid models involve two important characteristics: spatial features and
temporal features. Most of the studies in the literature we reviewed used LSTM and
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combined it with CNN to forecast solar irradiance and PV power. CNNs can be regarded
as FFNNs. Figure 5 shows the CNN structure, which consists primarily of a convolutional
layer, a pooled layer, and a fully connected layer [14]. In the convolutional layer, the
convolution operation is deployed to extract features from previous layers [26]. Through
this process, an activation function is used to generate the output of feature maps. To reduce
the parameters of the CNN, the mean and maximum values of pooling for the selected
area in feature maps are evaluated in the pooling layer [22,26]. Then, the combination of
the feature maps obtained after going through the process in convolutional and pooling
layers generates the input data for the fully connected layer [26]. Lastly, the output can be
obtained through the calculation of final output vector [26].
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Take CNN–LSTM and LSTM–CNN as examples of hybrid models. The arrangement
of the two inputs (i.e., spatial and temporal features) for extracting historical data differs
between the two hybrid models, as shown in Figures 6 and 7. The LSTM network is
commonly used to extract temporal feature information from historical data, whereas the
CNN is used to extract spatial feature information.
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5. Evaluation Metrics

In the forecasting domain, evaluation metrics play a crucial role in describing the
performance of DL models. Measurements provide feedback about prediction accuracy,
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and they enable models to be improved until a desired level of accuracy is achieved [27].
Numerous evaluation measures are available for determining predictive accuracy. Table 2
presents the evaluation measures typically used in sun irradiation and PV power forecasting.
In the formulas, Xpred, Xmeas, and n denote the projected values at each time point, the
measured values at each time point, and the sample size of a period, respectively.

Table 2. Evaluation metrics.

Evaluation Metric Equation

Error Error = Xpred − Xmeas

MAE 1
n

n
∑

i=1

∣∣∣Xpred − Xmeas

∣∣∣
MAPE 1

n

n
∑

i=1

∣∣∣Xpred−Xmeas
Xmeas

∣∣∣× 100

MBE 1
n

n
∑

i=1

(
Xpred − Xmeas

)
rMBE ∑n

i=1(Xpred−Xmeas)
∑n

i=1 Xmeas
× 100

rRMSE
√

1
n ∑n

i=1(Xpred−Xmeas)
2

1
n ∑n

i=1 Xmeas
× 100

RMSE
√

1
n

n
∑

i=1

(
Xpred − Xmeas

)2

MAE quantifies the average size of error in a set of forecasts based on the absolute
value. When the absolute sign is eliminated, the evaluation metric becomes the mean
bias error (MBE), which captures the average prediction bias, whose positive and negative
values represent overprediction and underprediction, respectively [28]. Meanwhile, RMSE
is used as a metric to quantify the departure from the measurement. The lower the RMSE,
the better the prediction.

MAPE is a well-known forecasting metric for assessing prediction accuracy, as it can
explain the forecast variability of real-world datasets [16]. When mean values differ by
location or system, directly comparing the assessment metrics may result in miscalculations.
In these instances, percentage-based or relative measures, such as MAPE and relative RMSE
(rRMSE), provide much more accurate information [28]. The smaller the values of MAE
and MAPE, the better the performance of the prediction algorithm [16].

6. Analysis of Past Studies

In this section, the characteristics necessary for solar irradiance forecasting and PV
power forecasting are discussed. The characteristics investigated in this work are accuracy,
types of input data, forecast horizon, type of season and weather, and training time.

6.1. Accuracy

The accuracy of DL models in forecasting solar irradiance and PV power can be
evaluated using performance metrics. Most of the past reviews applied the error metrics
of RMSE, MAE, MAPE, and so on. In the present review, the performance of standalone
and hybrid LSTM models are evaluated based on RMSE, which is the most accessible error
metric in the published papers. Tables 3 and 4 present the reviewed studies related to solar
irradiance forecasting and PV power forecasting, respectively.
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Table 3. Solar irradiance forecasting.

Ref. Forecast Horizon Time Interval Model Input Parameter Historical Data
Description Error Metrics

[1] Ahead by 1 h Hourly LSTM–CNN

• Temperature
• Wind speed
• Wind direction
• Relative humidity
• Precipitation
• Solar zenith angle
• Dew point
• Pressure
• Cloud type
• Clear-sky global horizontal

irradiance (GHI)
• GHI

1 January 2015 to 31
December 2019 (5 years)

Average RMSE:
Los Angeles:
57.983 W/m2

San Diego: 47.826 W/m2

San Francisco:
66.023 W/m2

[29]

• Ahead by 15 min
• Ahead by 30 min
• Ahead by 45 min
• Ahead by 60 min
• Ahead by 75 min
• Ahead by 90 min

Hourly MSCA–CLSTM GHI 2018 (1 year)

Average RMSE:
Columbus: 0.0177 W/m2

San Antonio:
0.0183 W/m2

Detroit: 0.0183 W/m2

[30]

• Ahead by 15 min
• Ahead by 30 min
• Ahead by 45 min
• Ahead by 60 min
• Ahead by 75 min
• Ahead by 90 min

15 min CNN–LSTM

• Average solar irradiance
• Average ambient

temperature
• Average relative humidity

1 January 2016 to 1
January 2017

RMSE (6 steps):
5.79–34.89 W/m2

[31]
Multiple forecast

horizon
(1 day to 8 months)

30 min CLSTM GSR 1 January 2006 to 31
August 2018

RMSE (W/m2):
1 day: 8.189

1 week: 16.011
2 weeks: 14.295
1 month: 32.872
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Table 3. Cont.

Ref. Forecast Horizon Time Interval Model Input Parameter Historical Data
Description Error Metrics

[26] Ahead by 1 h Hourly CNN–LSTM

• GHI
• Dew point temperature
• Solar zenith angle
• Wind speed
• Wind direction
• Precipitable water
• Relative humidity
• Temperature

1 January 2006 to 31
December 2012

Average MAE:
Dallas: 41.88 W/m2

San Jacinto: 52.00 W/m2

Zapata: 43.66 W/m2

Moore: 37.26 W/m2

Lamb: 37.20 W/m2

[32] Ahead by 1 h Hourly CEEMDAN-CNN–
LSTM Solar irradiance 6 year data Average RMSE:

38.49 W/m2

[33] Ahead hourly every day Hourly LSTM

• Temperature
• Dew point
• Humidity
• Visibility
• Wind speed
• Weather type

• March 2011 to
August 2012

• January 2013 to
December 2013
(30 months)

RMSE: 76.245 W/m2

[34] Ahead by 1 h Hourly LSTM
• Wind speed
• Wind direction
• GHI

2000 to 2014 Average 24-h RMSE:
80.0 W/m2

Table 4. PV power forecasting.

Ref. Forecast Horizon Interval Data Model Input Variables Historical Data
Description Size PV Power (kW) Error Metrics

[35]
• Ahead by 7.5 min
• Ahead by 15 min
• Ahead by 30 min

7.5 min CNN-ALSTM

• PV power
• PV module temperature
• Current
• Voltage

October 2014 to
September 2018 N/A

Overall RMSE:
7.5 min: 1.30
15 min: 1.40
30 min: 2.04
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Table 4. Cont.

Ref. Forecast Horizon Interval Data Model Input Variables Historical Data
Description Size PV Power (kW) Error Metrics

[36]

• Ahead by 10 min
• Ahead by 30 min
• Ahead by 60 min
• Ahead by 90 min
• Ahead by 120 min
• Ahead by 150 min
• Ahead by 180 min

10 min 5D CNN–LSTM

• Active power generated
• Average phase current
• AC voltage generated
• Direct radiationGlobal

radiation
• Diffuse radiation
• Temperature
• Humidity
• Wind speed
• Barometric pressure

1 year data
(2019–2020) 1.70

RMSE:
10 min: 0.0830
30 min: 0.2257
60 min: 0.4593
90 min: 0.7289

120 min: 1.0588
150 min: 1.4438
180 min: 2.0570

[37] 1 day 15 min BCLSTM + IFFS Numerical weather prediction
(NWP) data

1 January 2017 to 31
December 2018

(2 years)
N/A RMSE: 0.1075 kW

[38]

• Ahead by 7.5 min
• Ahead by 15 min
• Ahead by 30 min
• Ahead by 60 min

7.5 min ALSTM • PV power
• PV module temperature

October 2014 to
September 2018 20.0

Overall RMSE:
7.5 min: 1.39
15 min: 1.60
30 min: 1.81
60 min: 2.09

[10] Ahead by 1 h 5 min WPD–LSTM

• PV power output
• GHR
• Diffuse horizontal

radiation
• Ambient temperature
• Wind speed
• Relative humidity

1 June 2014 to 12 June
2016 26.5 Average RMSE:

0.2357
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Table 4. Cont.

Ref. Forecast Horizon Interval Data Model Input Variables Historical Data
Description Size PV Power (kW) Error Metrics

[39] N/A 5 min LSTM–CNN

• Current phase average
• Active power
• Wind speed
• Weather temperature,

Celsius
• Weather humidity
• Global horizontal

radiation
• Diffuse horizontal

radiation
• Wind direction

Half-year data
(53,280 samples) N/A RMSE: 0.621

[40] Ahead by 1 h Hourly PCA–LSTM

The dataset has 49 features

• Temperature
• Humidity
• Sun exposure angle
• Light amplitude
• Time
• Season and other

characteristics

The first 24 historical
data points N/A NRMSE: 0.0472%

[41]

• Ahead by 15 min
• Ahead by 30 min
• Ahead hourly
• Ahead daily
• Ahead weekly
• Ahead monthly

15 min Auto-LSTM • PV power
• Weather data 2014–2015 (2 years) 1.30

Daily forecasting
RMSE:

Smart meter 1: 4.4414
Smart meter 2: 7.1925

[42] Ahead hourly 15 min LSTM PV power 13 January 2010 to 29
January 2010 20,000 RMSE (ahead by

1 h): 0.841
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Table 4. Cont.

Ref. Forecast Horizon Interval Data Model Input Variables Historical Data
Description Size PV Power (kW) Error Metrics

[43] Ahead by 1 h Hourly DRNN–LSTM

• PV power
• Temperature
• Humidity
• Wind speed

1 January 2018 to 1
February 2018 106.60 RMSE: 7.536

[44] Ahead by 1 day Every 1 min or
5 min LSTM PV power One month N/A Average RMSE: 0.512

[45] Ahead by 1.5 h 15 min Stacked LSTM PV power
1 September 2016 to

31 January 2019
(84,768 observation)

N/A RMSE:
0.09394

[46] Ahead by 1 h Hourly LSTM-FC

• Temperature
• Humidity
• Weather
• Wind direction
• Wind speed

1 January 2018 to 31
December 2018 N/A RMSE:

2.5605

[47] Ahead by 1 day 5 min EMD-SCA-LSTM

• PV power
• GHI
• Relative humidity (RH)
• Diffuse horizontal

irradiance (DHI)
• Air temperature (AT)

1-year data (2017) 5.83

RMSE:
0.5283 kW

MAE:
0.3063 kW

R2:
0.9210
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6.2. Types of Input Data

The two types of models for providing input data in solar irradiance forecasting and
PV power forecasting are the endogenous and exogenous models [14]. Each of the two
models requires different types of input data; however, inadequate selection of input data
may magnify the forecasting error [45]. The differences between the endogenous and
exogenous models are explained with examples below.

For the exogenous model, a hybrid CNN–LSTM model was proposed for short-term
global horizontal irradiance (GHI) prediction, i.e., ahead by 1 h [26]. The datasets of
34 locations in TX, USA, were applied to the proposed model for training and testing uses,
in which the locations represent different climate zones. The input parameters were hourly
GHI, dew point temperature, solar zenith angle, wind speed, wind direction, precipitable
water, relative humidity, and temperature. The MAE, nMAE, RMSE, nRMSE, and R results
indicate that CNN–LSTM outperforms the other models, namely, the standalone persistence
model, SVM, artificial neural network (ANN), CNN, and LSTM models, and the hybrid
CNN–ANN and ANN–LSTM models.

Jalali et al. [29] proposed the GHI forecasting model in designing the automated deep
CNN–LSTM architecture to specifically produce the hybrid MSCA–CLSTM model. They
used the endogenous model with the GHI dataset covering the whole year of 2018 and
the three locations of Columbus, Detroit, and San Antonio, USA, with intervals of 1 h for
each dataset. In their work, 75% of the data were allocated for training and the remaining
25% of the data were applied to the test set. Then, the performance of MSCA–CLSTM was
analyzed and compared with those of other methods, such as the auto-LSTM, XGBF–DNN,
LSTM, CLSTM, DWT–CLSTM, MEA–ANN, and SCA–CLSTM models. The prediction
accuracy of CNN–LSTM was higher than those of other models in terms of MAE, RMSE,
and Pearson metrics.

Using PV power and meteorological data as inputs, Zhou et al. [47] proposed the
hybrid model of LSTM with empirical mode decomposition (EMD) and a sine cosine
algorithm (SCA) to predict the PV power output. The application of EMD and SCA reduces
the impact of the noise data and enhances the accuracy and stability of the proposed model,
respectively. Using one year of data from 2017, the input parameters selected were PV
power, GHI, RH, DHI, and AT. In this research, there were five case studies that were
compared on their performance, where each case study has different input variables. The
performance of case study that consists of PV power output and GHI is better than other
case studies in terms of RMSE and MAE values of 0.5283 kW and 0.3066 kW, respectively.
The proposed model, EMD-SCA-LSTM was then applied to predict the PV power output
using PV power and GHI as inputs. The proposed model has outperformed other prediction
models such as LSTM, Gaussian process regression with active learning (AGPR), and EMD-
SCA-ELM, with an RMSE value of 0.5283 kW.

6.3. Forecast Horizon

The forecast horizon is significant in predicting the solar irradiance and PV power
output in the future, as each forecast horizon affects the accuracy of the entire forecast. The
models or forecasting techniques to be adopted depend on the requirement of the forecast
horizon range [48]. Forecasting horizons can be categorized into four types [2,45]:

1. Very short-term forecast (ahead by 1 min to several minutes);
2. Short-term forecast (ahead by 1 h or several hours to 1 day or 1 week);
3. Medium-term forecast (ahead by 1 month to 1 year); and
4. Long-term forecast (ahead by 1–10 years).

Bhatt et al. [30] proposed three different DL models to forecast short-term solar irradi-
ance. The proposed hybrid CNN–LSTM model employed the sliding window technique to
convert the input variables into 12-step lag datasets for training the model. A comparative
analysis of CNN, LSTM, and CNN–LSTM was performed with 15 min intervals for all six
time-step horizons, i.e., ahead by one step (15 min) up to six steps (90 min). As shown in
Table 5, CNN–LSTM outperforms the standalone models in terms of MAE, RMSE, MAPE,
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and R2. The values of the error metrics increased with the progression of step time. Thus,
the hybrid model is better than the standalone models.

Table 5. Summary of error metrics for LSTM, CNN, and CNN–LSTM.

Step
Ahead

MAE (W/m2) RMSE (W/m2) MAPE (%) R2

LSTM CNN CNN–
LSTM LSTM CNN CNN–

LSTM LSTM CNN CNN–
LSTM LSTM CNN CNN–

LSTM

1 6.61 6.51 3.83 10.43 9.82 5.79 10.19 11.29 7.50 0.998 0.998 0.999

2 12.15 11.69 7.32 20.46 18.09 11.71 51.74 37.45 19.64 0.993 0.994 0.997

3 18.39 16.73 10.61 31.12 26.41 18.18 28.62 52.21 31.87 0.984 0.988 0.994

4 24.16 21.81 13.68 40.33 34.53 23.48 70.51 91.84 50.08 0.974 0.979 0.99

5 31.21 27.26 17.01 52.5 43.11 29.25 30.99 52.79 55.47 0.957 0.969 0.985

6 36.89 32.38 20.07 62.27 50.99 34.89 44.81 127.29 59.28 0.942 0.957 0.979

6.4. Type of Season and Weather

Because each season and weather type significantly affects the solar radiation rates,
the performance of forecasting models may also be influenced. Li et al. [10] performed
1 h ahead PV power forecasting at 5 min intervals and subsequently proposed wavelet
packet decomposition (WPD) integrated with LSTM. They broke down the original PV
power series into sub-series by employing WPD. After categorizing the LSTM networks
into four independent networks, each of the independent LSTM networks was developed
for the sub-series representing each of the four seasons. Then, to improve the accuracy
of the proposed model, they applied the linear combination method to multiple single
networks. Finally, the performance of the proposed model was compared with those of the
benchmark models, namely, LSTM, RNN, GRU, and MLP. Table 6 shows the results of their
work. The low MBE, MAPE, and RMSE scores of WPD–LSTM indicate that their proposed
model outperforms the benchmark models across different seasons and weather in the 1 h
ahead category.

Table 6. Error metrics of PV power forecasting across different seasons and weather.

Season Types of
Weather Error WPD–LSTM LSTM GRU RNN MLP

Winter

Sunny
(Day 1)

MBE (kW) −0.0055 −0.0058 0.1588 −0.0085 −0.0284
MAPE (%) 1.7526 1.7744 2.1019 2.633 5.5833

RMSE (kW) 0.2466 1.2541 1.2399 1.2468 1.1944

Cloudy
(Day 2)

MBE (kW) 0.1127 −0.0497 0.0184 −0.0901 0.2429
MAPE (%) 1.7365 0.1276 1.9913 2.7622 6.1295

RMSE (kW) 0.1773 1.1279 0.2206 0.2868 0.6075

Rainy
(Day 3)

MBE (kW) −0.0214 −0.1913 0.1651 −0.3158 −0.0495
MAPE (%) 6.7328 8.4150 10.8690 9.3110 10.7191

RMSE (kW) 0.4374 2.2336 2.0876 2.1223 1.9916

Spring

Sunny
(Day 4)

MBE (kW) 0.1425 −0.0239 0.0377 −0.0240 0.3277
MAPE (%) 2.0973 1.3243 2.0199 3.1087 6.8559

RMSE (kW) 0.2250 0.1643 0.2456 0.3431 0.7173

Cloudy
(Day 5)

MBE (kW) −0.0675 0.1165 0.5523 0.0711 −0.2168
MAPE (%) 8.1383 15.3881 14.9651 13.0762 15.4708

RMSE (kW) 0.1453 0.2759 0.6452 0.4222 0.3312

Rainy
(Day 6)

MBE (kW) 0.0566 0.2304 0.5502 0.0674 0.1121
MAPE (%) 3.8080 9.9553 14.8235 11.3013 8.3763

RMSE (kW) 0.2807 0.8107 1.0036 0.8604 0.7572
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Table 6. Cont.

Season Types of
Weather Error WPD–LSTM LSTM GRU RNN MLP

Summer

Sunny
(Day 7)

MBE (kW) 0.0481 0.1115 0.2936 −0.1382 0.3617
MAPE (%) 2.6031 8.4936 10.8292 8.8545 10.8997

RMSE (kW) 0.2664 0.9701 1.0748 0.8514 1.0822

Cloudy
(Day 8)

MBE (kW) 0.0183 0.2012 0.5218 −0.0583 0.1048
MAPE (%) 3.4360 13.0028 11.8370 14.8472 11.5344

RMSE (kW) 0.2382 0.8398 0.9323 0.8812 0.7810

Rainy
(Day 9)

MBE (kW) −0.0127 0.0924 0.4668 −0.2068 −0.3127
MAPE (%) 3.8936 9.8571 12.5799 16.0052 14.7068

RMSE (kW) 0.1253 0.3009 0.5805 0.4993 0.4479

Autumn

Sunny
(Day 10)

MBE (kW) −0.0799 −0.2050 0.0959 −0.1813 0.2752
MAPE (%) 2.0367 7.4015 8.3304 7.8951 8.3189

RMSE (kW) 0.1929 0.7395 0.8029 0.7778 0.7495

Cloudy
(Day 11)

MBE (kW) 0.0049 0.1174 0.5692 −0.1111 0.1729
MAPE (%) 3.7923 5.0279 9.9234 7.0087 14.4850

RMSE (kW) 0.2576 1.0540 1.2110 1.1365 1.0643

Rainy
(Day 12)

MBE (kW) 0.0029 −0.0799 0.1202 −0.3103 0.3244
MAPE (%) 4.3427 8.3508 9.3104 7.3294 14.8202

RMSE (kW) 0.3903 2.4216 2.3687 2.4275 2.4343

Gao et al. [32] conducted hourly predictions of solar irradiance by using the complete
ensemble empirical mode decomposition adaptive noise (CEEMDAN) and CNN–LSTM
models. CEEMDAN was used to break down the historical data into a set of constitutive
series for extracting data features. Six-year datasets from four locations (Los Angeles,
Denver, Hawaii’s Big Island in the USA, and Tamanrasset, Algeria) were collected and used
as input data. The four datasets were divided into the training set (4 years), validation set
(1 year), and testing set (1 year). Season affects the accuracy of solar irradiance forecasting;
thus, the dataset in their work was divided into four seasons prior to the prediction.
Thereafter, five different CEEMDAN-CNN–LSTM models were compared. CEEMDAN-
CNN–LSTM V was selected as the proposed model because of its ability to jointly utilize
CNN and LSTM to process the frequency features and time features. The average RMSE,
nRMSE, and MAE of the proposed model were 38.49 W/m2, 17.23%, and 20.50 W/m2,
respectively. The forecasting performance of the proposed model was better under different
climatic conditions compared with those of the other models (Table 7).

Table 7. Average RMSE, nRMSE, and MAE across four seasons.

Season Indicator
Methods

C-C-L C-L C-S C-B C-A LSTM SVM BP ARIMA Per.

Spring

RMSE
(W/m2) 42.87 56.76 64.97 64.46 79.88 79.63 84.62 82.20 112.46 126.76

nRMSE
(%) 17.88 25.46 29.15 28.92 35.84 35.72 37.96 36.87 50.45 56.87

MAE
(W/m2) 22.80 37.74 36.09 35.98 41.84 42.21 51.09 41.87 63.77 76.89

Summer

RMSE
(W/m2) 47.60 55.15 58.73 65.07 82.44 70.62 73.09 70.94 110.09 125.63

nRMSE
(%) 17.34 21.68 23.09 25.58 32.41 27.76 28.72 27.89 43.28 49.39

MAE
(W/m2) 26.80 36.76 37.60 39.44 43.09 39.12 41.14 35.66 65.76 80.06
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Table 7. Cont.

Season Indicator
Methods

C-C-L C-L C-S C-B C-A LSTM SVM BP ARIMA Per.

Autumn

RMSE
(W/m2) 37.59 47.19 47.76 50.86 69.79 54.86 59.71 55.49 103.07 122.39

nRMSE
(%) 17.65 19.59 19.83 21.11 28.98 22.78 24.79 23.04 42.79 50.81

MAE
(W/m2) 19.66 29.59 27.79 29.01 36.14 27.28 38.96 28.38 60.32 75.99

Winter

RMSE
(W/m2) 25.97 38.19 46.82 45.31 50.23 47.26 54.24 48.27 81.98 107.96

nRMSE
(%) 15.73 19.60 24.04 23.26 25.79 24.26 27.85 24.78 42.09 55.42

MAE
(W/m2) 13.25 22.14 28.33 23.69 25.65 20.18 32.44 21.86 41.92 64.54

Annual

RMSE
(W/m2) 38.49 49.87 55.10 57.07 71.72 64.37 68.93 65.57 102.61 121.75

nRMSE
(%) 17.23 21.85 24.14 25.00 31.42 28.20 30.20 28.73 44.96 53.34

MAE
(W/m2) 20.50 31.56 32.45 32.03 36.68 32.20 40.90 31.95 57.94 74.64

C-C-L: CEEMDAN–CNN–LSTM; C-L: CEEMDAN–LSTM; C-S: CEEMDAN–SVM; C-B: CEEMDAN–BPNN; C-A:
CEEMDAN–ARIMA; Per.: persistence.

6.5. Training Time

Training time is one of the most important indicators for evaluating the accuracy levels
of solar irradiance forecasting and PV power forecasting. The different DL models vary
in their processing time for achieving their respective best performances [14], especially
between the time required by standalone and hybrid models. In this section, several models
are compared to determine which among them is more efficient in predicting PV power in
terms of training time.

Kejun et al. [39] proposed the use of LSTM–CNN in PV power forecasting. A half-year
dataset with 5 min time intervals and consisting of 53,280 samples from the Alice Springs
PV system was utilized by the proposed model. Then, the accuracy of LSTM–CNN was
compared with that of LSTM, CNN, and CNN–LSTM. Their results showed that the hybrid
LSTM–CNN model outperformed the other models, with MAE, RMSE, and MAPE of 0.221,
0.621, and 0.042, respectively. In general, the operating times of hybrid models are longer
than those of standalone models because more time is needed to extract data, enabling
much higher prediction accuracy. As shown in Table 8, the proposed LSTM–CNN has
lower training and running times compared with CNN–LSTM in the hybrid model category.
For the standalone model, LSTM has a lower training time compared with CNN, but the
running time of LSTM is slightly longer than that of CNN.

Table 8. Training and running time for each model.

LSTM CNN CNN–LSTM LSTM–CNN

Training time (s) 70.490 787.494 983.701 871.606

Running time (s) 5.439 5.425 8.692 7.196

Tovar et al. [36] proposed a hybrid model in the form of a five-layer CNN–LSTM
model to forecast PV power in the short term. A one-year dataset, from 2019 to 2020, of
Temixco, Morelos, México, with 10 min intervals was used for the proposed model. About
80% of the data were used for training, and the remaining portions were employed to
forecast PV power. The forecast horizon range was set to be ahead by 10 and 180 min. Then,
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the proposed model was compared with the other competitive benchmark and hybrid
models, including the Ridge and Lasso linear regression methods, five-layer LSTM, and
two-layer CNN–LSTM. Their performance analysis showed the suitability of the five-layer
CNN–LSTM to accurately forecast short-term PV power, with MSE, RMSE, and MAE of
0.006897, 0.08304, and 0.05193, respectively. However, the time processing of the proposed
model was longer than those of the other models (Table 9).

Table 9. Time processing.

Model Time (s)

5D LSTM 9.1394
2D CNN–LSTM 8.0362
5D CNN–LSTM 69.1148

7. Future Directions

Deep learning models are more accurate than other ML models in predicting solar
irradiance and PV power. According to the literature we reviewed, LSTM is mainly used in
predicting solar irradiance and PV power in the very short-term and short-term forecast
horizons. However, there are several challenges for this review as listed below:

• In terms of comparing and analyzing the available source code, not all the reviewed
papers provided the data source codes; it is recommended for future works to find the
data sources to describe the data and analyze their differences.

• Regarding performance evaluation, it is difficult to compare accuracy efficiently be-
tween the prediction models due to several main factors such as different evaluation
metrics used, weather conditions of selected regions, forecasting horizons, size of
input parameters, and so on. Thus, it is suggested to find specific research papers that
discuss or review similar factors as mentioned, to compare the performance effectively.

• This paper has mostly reviewed very short-term and short-term forecast horizons
for solar irradiance and solar power forecasting (Tables 3 and 4). For future work,
it is recommended to expand the review on medium-term and long-term forecast
horizons by applying various combinations of DL and ML models to enhance the
existing hybrid models.

8. Conclusions

This review introduced DL models for estimating solar irradiance and PV power
generation. Separate evaluations were conducted for PV power and solar irradiance due
to their distinct output values. Solar irradiance can be compared across locations and
measured in power per unit area, while PV power production is influenced by solar panel
size and efficiency. DL models have advantages over traditional ML models for forecasting
time-series data. They have the potential to improve solar energy forecasting for more
efficient use of solar power. LSTM, CNN–LSTM, and LSTM–CNN models are widely used
for predicting solar energy, offering advantages over traditional ML models for time-series
forecasting. However, determining the best model for predicting solar irradiance and PV
power is challenging due to each model’s unique strengths and weaknesses. Overall, DL
models show promise for improving solar energy forecasting, but careful evaluation is
necessary to identify the most suitable model for each task. The findings derived from this
work can be summarized as follows:

• In terms of predicting solar irradiance, hybrid models outperform standalone models.
In particular, the evaluation measures of hybrid models are significantly lower than
those of standalone models. Among the hybrid models, CNN–LSTM requires complex
input data, such as images, because it includes a CNN layer.

• When evaluating model performance, training time must be considered. Because
hybrid models must extract two types of feature (i.e., spatial and temporal features),
they take a longer time to process data compared to standalone models.
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• The prediction accuracy for models that run a large batch size of data is lower when
compared to other prediction models that use small data batch sizes. This is because
more data are required to be extracted, and there is a more complicated process to
produce the most accurate prediction.
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