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ABSTRACT 

INVESTIGATING THE PREDICTIVE VALIDITY OF  

THREE MEASURES OF NUMBER SENSE 

May 2015 
 

BETHANY C. POLITYLO, B.S., UTICA COLLEGE 
 

M.Ed., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by:  Amanda M. Marcotte, Ph.D. 
 

Number sense has been identified as an important foundational skill in the development 

of later mathematics competence.  Although number sense has historically been difficult 

to define in the educational literature, operational definitions of the construct typically 

consist of a collection of early numeracy skills or “number sense components” such as 

quantity discrimination, rote counting, and one-to-one correspondence.  Consequently, 

assessments of number sense tend to measure a wide variety of these skills.  The purpose 

of this study was to investigate the predictive validity of three measures of number sense:  

the Test of Early Numeracy (TEN), Number Sense Brief Screener (NSB), and Early 

Numeracy Test (ENT).  This study also sought to identify which measure or combination 

of measures best predicted later mathematics achievement, as measured by the Test of 

Early Mathematics Ability, Third Edition (TEMA-3).  Number sense assessments were 

administered to participants at kindergarten entry and the TEMA-3 was administered at 

the end of kindergarten.  Data were analyzed using simple linear regression analyses, 

multiple regression analyses, and a procedure for comparing dependent correlations.  

Evidence for the predictive validity of each number sense measure was demonstrated; 
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however, statistically, no number sense measure emerged as the best predictor of later 

mathematics achievement.  The combination of the NSB with either the TEN or the ENT 

explained variation in TEMA-3 scores better than the NSB alone, but this finding may 

not be of clinical importance.  The concurrent and predictive validities of teacher rating 

of student number sense were also examined.  Results indicated that the TEN, NSB, and 

ENT all predicted TEMA-3 scores better than teacher rating of student number sense in 

the fall.  Teacher rating of student number sense in the spring explained 42% of variation 

in TEMA-3 scores.  Implications for practice and directions for future research are 

discussed. 
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CHAPTER 1 

 

STATEMENT OF THE PROBLEM 

Mathematics performance in the United States has suffered over the last several 

decades.  International statistics show that students in the U.S. perform well below that of 

other countries on mathematics achievement tests, and in addition, national statistics 

reveal that U.S. students are not currently making significant gains in mathematics (Kelly 

et al., 2013; National Center for Education Statistics [NCES], 2013; Provasnik et al., 

2012).  Although this poor performance is discouraging, it has served to draw attention 

toward the field of mathematics education and the importance of foundational 

mathematics skills.  Among the foundational skills found to be critical in the attainment 

of mathematics achievement is the faculty of number sense, which both the National 

Council of Teachers of Mathematics (2000) and the National Mathematics Advisory 

Panel (2008) have highlighted as a vital prerequisite to later success in mathematics.  A 

well-developed number sense allows students to understand number facts and algorithms 

more quickly, recognize errors, and ultimately perform mathematical computations with 

greater ease.  Several measures have been developed to assess the construct of number 

sense, and this study examined the predictive validity of three of the more widely used 

measures of number sense:  the Test of Early Numeracy (TEN; Clarke & Shinn, 2004b), 

the Number Sense Brief Screener (NSB; Jordan, Glutting, & Ramineni, 2008), and the 

Early Numeracy Test (ENT; Van Luit & Van de Rijt, 2005).   

Current State of Mathematics in the United States 

For the past several decades, the field of education has primarily been dominated 

by the research and promotion of all aspects of reading and literacy.  Researchers have 
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worked to identify the foundational skills predictive of later reading achievement, ways 

to assess those necessary skills, and ways to screen for students at risk for later reading 

failure (National Center on Response to Intervention, 2014; National Institute of Child 

Health and Human Development, 2000).  While this unwavering dedication to literacy is 

certainly of great importance, equivalent attention and resources need to be allocated to 

the study of mathematics.  In fact, mathematics researchers would likely benefit from the 

extensive research on reading and literacy, as this work could serve as a useful 

framework for mathematics researchers to focus on and examine effective mathematics 

practice.  This necessary focus on mathematics, however, has not occurred.  As a result, 

the United States is slowly beginning to lose its “peerless mathematical prowess” that 

was once present during the twentieth century (National Mathematics Advisory Panel 

[NMAP], 2008, p. xi).  International statistics clearly show that the U.S. performs well 

below that of other countries on assessments of mathematics achievement, and in 

addition, national statistical trends reveal that U.S. students are not currently making 

significant gains in mathematics (Kelly et al., 2013; NCES, 2013; Provasnik et al., 2012).   

Performance of U.S. students on the 2011 Trends in Mathematics and Science 

Study (TIMSS), which is designed to assess fourth and eighth graders from several 

different countries in mathematics and science, was less than adequate (Provasnik et al., 

2012).  In fourth grade, eight of fifty-seven participating countries outperformed the U.S. 

in mathematics, and U.S. performance was not measurably different from the 

performance of six other countries.  Eleven of fifty-six countries outperformed U.S. 

eighth graders in mathematics, while U.S. performance was not significantly different 

than the performance of twelve other countries.  In addition, the average performance of 
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U.S. eighth graders on the TIMSS in 2011 was not significantly different than average 

performance in 2007 (Provasnik et al., 2012).  Results from the 2012 Programme for 

International Student Assessment (PISA), which is an international test designed to assess 

the achievement of fifteen-year-olds in mathematics, science, and reading, revealed that 

U.S. students continue to struggle in mathematics when they reach high school.  U.S. 

performance on the mathematics portion of the PISA was significantly lower than the 

average performance of international students.  In fact, results indicated that students 

from twenty-seven of the PISA’s sixty-five participating countries outperformed U.S. 

students in the area of mathematics (Kelly et al., 2013).  Moreover, only nine percent of 

U.S. students performed at the top level of proficiency in mathematics on the PISA (in 

contrast, fifty-five percent of students from Shanghai, China performed at the top level) 

(Kelly et al., 2013).  U.S. performance on national mathematics assessments is no less 

concerning.  According to the National Assessment of Educational Progress, fourth grade 

students made no significant gains in mathematics between 2007 and 2009, and have only 

made small gains since 2009 (NCES, 2013).  In 2013, only 42% of students were 

considered proficient in fourth grade mathematics, and in eighth grade, only 35% of 

students were found to be proficient (NCES, 2013).   

Although this unsatisfactory performance is discouraging, it has served to draw 

much-needed attention towards the field of mathematics education.  Much like what has 

already been done with reading, researchers are now beginning to investigate the early 

foundational skills necessary for children to be proficient in mathematics.  These skills, 

as well as the importance of success in mathematics, were highlighted in 2008 as part of 

the Final Report of the National Mathematics Advisory Panel.  
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Importance of Success in Mathematics 

In response to the U.S.’s increasingly poor performance in the area of 

mathematics, President George W. Bush called for the creation of the National 

Mathematics Advisory Panel (NMAP) in 2006.  Members of this panel were instructed to 

recommend ways to “foster greater knowledge of and improved performance in 

mathematics among American students” while using the “best available scientific 

evidence” (NMAP, 2008, p. xiii).  Not only did the members of the panel make 

recommendations regarding the foundational skills, curricula, instructional practices, and 

teacher education necessary for proficiency in mathematics, they also emphasized the 

general importance of mathematics to future success in education and in life.  

Competence in mathematics is vital on both a national and individual level.  

Nationally, retirements and job growth in science, technology, engineering, and 

mathematics (STEM) fields are resulting in an increased demand for individuals with 

expertise in those areas (NMAP, 2008).  Instead of meeting that demand domestically, 

however, the U.S. is relying more and more on the skills of international scientists and 

engineers.  In fact, fewer and fewer U.S. citizens are earning degrees in STEM areas, and 

in turn, the U.S. is failing to produce enough individuals needed to fill the jobs available 

in the fields of science and technology.  According to the NMAP (2008), this outsourcing 

of jobs and dependence on the talent of other countries has threatened the U.S.’s 

economic security, as well as its role as a world leader.  Furthermore, the lack of U.S. 

independence in various STEM fields has most certainly led and will continue to lead to 

the slowing of this nation’s technological advances (NMAP, 2008). 
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Individual success in mathematics is equally as important as success at the 

national level.  Those who complete higher-level mathematics in high school (i.e., 

Algebra II and beyond) are more likely to go to college, graduate from college, and excel 

in the workplace.  For example, the majority of individuals who earn over $40,000 

annually have completed Algebra II or higher in high school (NMAP, 2008).  Students 

who enroll in higher-level mathematics courses in high school are more likely to attend a 

four-year college, and those who complete Algebra II in high school are more than twice 

as likely to graduate from college (NMAP, 2008).  Graduation from college, of course, 

leads to better job opportunities, benefits, and salaries.  Clearly, individual expertise in 

mathematics is of great importance, as it not only leads to personal benefits but will also 

likely lead to success in mathematics and other STEM fields at the national level. 

Defining and Measuring Number Sense 

 Due to the relationship between the completion of Algebra II and later success in 

college and in the workplace, the primary focus of the National Mathematics Advisory 

Panel (2008) was to identify and recommend methods by which educators and 

policymakers could prepare students for entry into and success in high school algebra.  

Members of the panel also recognized that mathematics is a hierarchical subject area, 

where complex skills often build on simpler, more foundational skills.  In order for 

students to be proficient in a higher-level subject like algebra, they must first master early 

arithmetic skills such as the understanding of numbers, fractions, operations, and 

measurement (National Council of Teachers of Mathematics [NCTM], 2000; NMAP, 

2008).  Many of these foundational skills – counting, knowledge of whole numbers, the 

ability to compare quantities, and fluency in basic computations – are taught and acquired 
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as early as preschool and mastered throughout the early elementary grades.  Perhaps most 

prominent among these foundational skills is the critical, yet abstract, faculty of number 

sense.  

Both the National Council of Teachers of Mathematics and the National 

Mathematics Advisory Panel have highlighted number sense as a vital prerequisite to 

success in mathematics (NCTM, 2000; NMAP, 2008).  Students who possess a strong 

sense of number are often better able to understand numbers and their relationships, use a 

variety of problem-solving strategies, recognize errors or impossible solutions, and 

ultimately perform mathematical computations with greater ease.   

For as much as number sense is touted as a critical skill, it has historically been 

poorly defined in the literature (Berch, 2005; Gersten, Jordan, & Flojo, 2005; Mcintosh, 

Reys, & Reys, 1992).  Educational definitions of number sense are often vague and 

overly extensive, containing abstract principles and far too many components.  As 

Gersten et al. (2005) have noted, number sense is a complex, intricate set of skills that 

“no two researchers have defined in precisely the same fashion” (p. 296).  In fact, Berch’s 

(2005) brief review of the literature found approximately thirty different definitions of 

number sense, ranging from the ability to estimate, to the understanding of number 

meanings, to the skill of having a non-algorithmic “feel” for numbers.  The NMAP 

(2008) defines number sense – among other things – as the ability to subitize, count, 

estimate, work with whole numbers and fractions intuitively, understand basic operations, 

and problem solve.  A more recent, comprehensive review of the number sense literature 

found forty studies containing thirty-four different proposed components of number 
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sense, including the ability to compare quantities, identify numbers, and count objects 

(Politylo, White, & Marcotte, 2011).   

While the vague and extensive definitions for number sense make it difficult to 

research, there is a growing consensus that the best way to observe and measure the 

construct is through the assessment of early numeracy skills (Chard et al., 2005; Clarke, 

Baker, Smolkowski, & Chard, 2008; Gersten & Chard, 1999; Lembke & Foegen, 2009).  

Much like phonemic awareness has been operationalized through the measurement of 

skills such as blending and segmenting the sounds of oral language, number sense has 

begun to be operationalized through the assessment of skills and behaviors that may 

represent the latent construct (Gersten & Chard, 1999; Methe et al., 2011).  These early 

numeracy skills include counting, one-to-one correspondence, cardinality, number 

identification, and other similar skills acquired before, during, and just after kindergarten.  

In many cases, early numeracy skills are identical to the several previously identified 

components of number sense, such as the ability to compare quantities, estimate, and 

manipulate numbers.  This significant overlap has led some researchers to view early 

numeracy skills and number sense interchangeably (Berch, 2005; Methe et al., 2011).  

Consequently, as will be seen in the following section, the number sense assessments that 

currently exist are essentially measures of early numeracy skills. 

Over fifteen assessments of number sense are currently used in both research and 

practice, most of which operationalize number sense through the measurement of early 

numeracy skills.  Some of these measures include the Number Knowledge Test (NKT; 

Okamoto & Case, 1996), the Number Sense Test (Malofeeva, Day, Saco, Young, & 

Ciancio, 2004), and the easyCBM measures (Alonzo, Tindal, Ulmer, & Glasgow, 2006).  
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As noted, many of these measures involve the assessment of early numeracy skills.  For 

example, the NKT is a test designed to measure children’s understanding of whole 

numbers and related concepts.  Skills assessed include rote counting, one-to-one 

correspondence, quantity comparison, simple computation, and more complex 

computation (Okamoto & Case, 1996).  The Number Sense Test is a similar measure of 

number sense created for use with preschool students, ages three through five.  This 

assessment includes six scales designed to evaluate students’ skills in the areas of 

counting, number identification, number-object correspondence, ordinality, comparison, 

and addition and subtraction (Malofeeva et al., 2004).  The easyCBM measures are more 

broad-based measures of number sense; at the kindergarten and first grade levels, these 

measures assess skills in the areas of number, operations, measurement, geometry, and 

algebra (Alonzo et al., 2006; Clarke et al., 2011).  Although initial research exists on each 

of these assessments, they appear to be less established and thus are not used frequently 

in research or practice.  (For a more comprehensive review of these and other number 

sense measures, see Chapter 2).   

The more popular measures of number sense, and thus those that appear more 

frequently in the literature, include the Test of Early Numeracy (TEN), the Number Sense 

Brief Screener (NSB), and the Early Numeracy Test (ENT).  The TEN is a set of 

individually administered curriculum-based measures designed to assess the early 

numeracy skills of students in kindergarten and first grade.  These measures consist of 

four fluency-based subtests that each take one minute to complete:  Oral Counting, 

Number Identification, Quantity Discrimination, and Missing Number (Clarke & Shinn, 

2004b).  The NSB is a 33-item, individually administered assessment intended for use 
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with kindergarteners and first graders (Jordan et al., 2008).  The measure includes items 

on one-to-one correspondence, number recognition and comparison, nonverbal 

calculation, and story problems.  Finally, the ENT is a 40-item, individually administered 

assessment designed to measure the early mathematical competence of students in 

preschool through grade one (Van Luit & Van de Rijt, 2005).  Originally developed by 

Dutch researchers, the assessment includes items on counting knowledge, concepts of 

comparison, seriation, classification, one-to-one correspondence, and general knowledge 

of numbers.   

While research has been conducted on the TEN, NSB, and ENT individually, no 

studies have compared the predictive qualities of these three assessments directly.  In 

other words, although preliminary research has been conducted on the reliability and 

validity of each measure in isolation, no study has compared the three assessments in an 

attempt to discern which, if any, is the best predictor of later mathematics achievement.  

Similarly, no studies have investigated whether or not certain combinations of the TEN, 

NSB, and ENT predict later mathematics achievement above and beyond that of just one 

measure.  In addition, few studies have replicated the findings that currently exist on the 

psychometric properties of each measure of number sense. 

Purpose of this Study 

Given the lack of extensive research on the TEN, NSB, and ENT, the primary 

purpose of this study was to more closely examine the predictive utility of these 

assessments in several different ways.  First, this study attempted to determine the 

predictive validity of each measure of number sense.  Based on prior research, it was 

hypothesized that there would be a positive relationship between performance on each 
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number sense measure and later performance on a mathematics achievement test.  This 

study also aimed to determine which of the three number sense measures, if any, was the 

best predictor of later mathematics achievement.   It was hypothesized that one of these 

measures would emerge as the more effective test for predicting later mathematics 

achievement.  Finally, this study attempted to ascertain if there was a particular 

combination of number sense measures that predicts later mathematics achievement 

better than any one number sense measure alone.  For example, does performance on the 

TEN and the NSB predict later mathematics achievement above and beyond performance 

on the NSB alone?  It was hypothesized that there are predictive measures of early 

numeracy that account for varying skills subsumed within the construct of number sense 

that can be modeled in a meaningful way so as to best predict later mathematics 

achievement.  Identifying the measure or measures that best predict later mathematics 

achievement upon entry to kindergarten could give teachers a powerful tool with which 

to screen all students and provide targeted instruction so as to prevent later mathematics 

difficulties. 

The final purpose of this study was to add to the literature base on the TEN, NSB, 

and ENT by replicating research that has already been conducted on these measures.  

Although a small body of research currently exists on each measure, few studies have 

replicated this work.  Furthermore, while the ENT is popular abroad, there has been no 

research on the measure in the U.S.  In addition to examining the predictive validity of 

each measure, this study also provided data to assess the inter-rater reliability of each 

assessment, as well as the relationship between performance on each measure and teacher 

rating of student number sense. 
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Research Questions and Hypotheses 

Predictive Validity of Number Sense Measures and Teacher Rating 

1. Is there a relationship between kindergarteners’ fall performance on each measure of 

number sense and spring performance on a mathematics achievement test? 

2. Which measure of number sense, administered in the fall of kindergarten, best 

predicts mathematics achievement in the spring of kindergarten? 

3. Is there a relationship between a teacher’s rating of a kindergartener’s number sense 

in the fall and that same kindergartener’s performance on a mathematics achievement 

test in the spring? 

This first set of research questions aimed to assess the predictive validity of each 

measure of number sense.  In addition, the predictive validity of teacher rating of number 

sense was examined.  It was hypothesized that there would be a strong positive 

relationship between fall performance on each measure of number sense and spring 

performance on a mathematics achievement test (i.e., the Test of Early Mathematics 

Ability, Third Edition [TEMA-3]).  Second, because the ENT is the most comprehensive 

measure of number sense and assesses the broadest range of early numeracy skills, it was 

hypothesized that the ENT would be the best predictor of later performance on the 

TEMA-3.  Finally, it was predicted that there would be a positive relationship between a 

teacher’s rating of a kindergartener’s number sense in the fall and that same 

kindergartener’s spring performance on the TEMA-3. 

Predictive Validity of Combinations of Number Sense Measures and Teacher Rating 

4. Is there a combination of number sense measures that predicts mathematics 

achievement above and beyond that of just one measure?  For example, does the TEN 
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and the NSB predict mathematics achievement above and beyond that of the NSB 

alone? 

5. Does performance on a number sense measure, combined with teacher rating of 

number sense, predict mathematics achievement above and beyond that of 

performance on a number sense measure alone? 

The next group of research questions examined the predictive validity of different 

combinations of number sense measures.  In addition, the predictive validity of a number 

sense measure plus teacher rating was examined.  It was hypothesized that all 

combinations of number sense measures created would predict mathematics achievement 

above and beyond that of just one measure alone.  In other words, it was predicted that all 

three number sense measures would predict mathematics achievement above and beyond 

that of any one measure alone; similarly, any combination of two number sense measures 

would predict mathematics achievement above and beyond that of any one measure.  

These hypotheses were developed due to the fact that all three measures of number sense, 

while assessing the same construct, all contain at least a couple of unique items which 

measure different early numeracy skills (e.g., the NSB is the only measure that assesses 

counting principles, and the TEN is the only measure that requires the student to identify 

the missing number in a sequence of three digits).  Finally, it was hypothesized that 

performance on a number sense measure combined with fall teacher rating of number 

sense would predict mathematics achievement above and beyond that of performance on 

a number sense measure alone. 
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Concurrent Validity of Teacher Rating 

6. Is there a relationship between a teacher’s rating of a kindergartener’s number sense 

in the spring and that same kindergartener’s mathematics achievement in the spring? 

The final research question assessed the concurrent validity of a teacher’s rating 

of student number sense.  It was hypothesized that there would be a positive relationship 

between a teacher’s rating of a kindergartner’s number sense in the spring and that same 

kindergartener’s spring performance on the TEMA-3. 
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CHAPTER 2 

 

LITERATURE REVIEW 

Historical Foundations of Number Sense 

Man, even in the lower stages of development, possesses a faculty which, for 
want of a better name, I shall call Number Sense.  This faculty permits him to 
recognize that something has changed in a small collection when, without his 
direct knowledge, an object has been removed from or added to the collection. 
(Dantzig, 1946, p. 1) 

 
 Although the term was only first used by mathematician Tobias Dantzig in the 

early twentieth century, there is evidence that “number sense” has existed for hundreds of 

thousands of years – long before numbers or numerals were ever documented or 

communicated through oral, symbolic, or written language.  As Dantzig (1946) notes, 

number sense is historically described as the innate ability to perceive small, concrete 

quantities without counting.  This faculty also allows for the ability to identify the 

difference in size between two small groups and to recognize when an element has been 

removed from or added to a group.  Given the intuitive nature of number sense, it is 

impossible to pinpoint exactly when the faculty developed.  Research conducted with a 

wide variety of animal species, however, suggests that number sense existed well before 

humans walked the planet (Dehaene, 1997; Ifrah, 1985; Rilling, 1993).  

 History brings with it many anecdotes describing the apparent mathematical 

prowess of various animals.  Perhaps the most familiar story is that of Clever Hans, a 

horse who could seemingly solve both simple and complex mathematical problems with 

the tapping of his hoof (Fernald, 1984).  Hans’ feats garnered much attention and 

skepticism during the early 1900s; his demonstrations in Germany were frequent and 

spectators often eagerly gathered to watch Hans flawlessly solve computation problems, 
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tell time, and add fractions.  Of course, a series of rigorous experiments by psychology 

graduate student Oskar Pfungst eventually demystified Hans’ abilities (Fernald, 1984).  

Hans was not, in fact, able to add, subtract, or solve any kind of mathematics problems on 

his own.  His mathematical intelligence was simply a reflection of his owner’s 

knowledge, as when Hans arrived at the correct answer to a particular problem, his owner 

would unconsciously tilt his head back ever so slightly.  Hans was sensitive to this small 

movement and he learned to stop tapping his hoof when he saw this signal, thereby 

making it appear that he had solved the problem on his own (Fernald, 1984).   

While the Clever Hans phenomenon left the scientific community suspicious of 

animal intelligence for many years, it also fueled a strong interest in researching the true 

mathematical abilities of animals (Dehaene, 1997).  Countless studies have been 

conducted investigating the numerical competence of animals (Dehaene, 1997; Rilling, 

1993), and several highlight the notion that animals do indeed possess an ability to 

recognize, manipulate, and distinguish between small quantities of number.  Some of the 

first experimental studies that revealed animals’ understanding of number were 

conducted by Otto Koehler in the mid 1900s.  Koehler worked with birds, and his 

experiments demonstrated a bird’s ability to recognize and discriminate between 

quantities (Koehler, 1951).  In one of his seminal studies, his subjects – a raven named 

Jacob and a grey parrot named Geier – were presented with five boxes.  Each box had a 

different number of dots printed on it, ranging from two to six.  On the ground, there was 

also a pattern of dots ranging in quantity from two to six.  Both birds learned to only open 

the box that showed the same number of dots that was also on the ground (Koehler, 

1951).  In other experiments, Koehler trained birds to eat exactly five mealworms from a 
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row of jars containing zero, one, two, or three mealworms.  During the training phase, the 

birds would be shooed away after eating five of the worms.  Eventually, the birds learned 

to eat exactly five worms and then walk away on their own (Koehler, 1951).  Koehler 

ultimately concluded that while birds do not have the ability to count or name numbers, 

they do appear to demonstrate “unnamed thinking;” in other words, birds are able to 

construct internal representations of small quantities of number without the use of 

language (Koehler, 1951). 

Abilities similar to those found in Koehler’s birds have also been demonstrated in 

rats.  Beginning in the 1950s, Francis Mechner, an American psychologist, began 

investigating the numerical competence of rats.  Using Skinner boxes, Mechner (1958) 

trained rats to press two levers in order to receive food.  Essentially, in order to receive 

food pellets, the rats had to press the first lever a specified number of times (e.g., either 4, 

8, 12, or 16 times) and then press the second lever once.  Mechner found that the rats 

became quite adept at pressing the first lever the approximate number of times needed.  

Rats who needed to press the first lever four times, generally pressed it four or five times; 

those who needed to press the first lever eight times also generally did so.  An interesting 

point is that as the number of required presses increased (e.g., 12 or 16), the rats became 

less precise with their presses.  Rats who were required to press the lever 16 times, for 

example, sometimes pressed the lever anywhere from 12 to 24 times (Mechner, 1958).  

Much like Koehler’s studies showed, Mechner’s findings support the notion that animals 

are able to approximate at least small quantities of number.  Larger quantities, however, 

appear more difficult for animals to discriminate between and internally represent.    
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More recent research has shown that pigeons and rats are not the only species 

with a seemingly innate sense of number.  Woodruff and Premack’s (1981) work with 

chimpanzees demonstrated that chimps are not only able to recognize small, whole 

number quantities, but they are also able to discriminate between fractional quantities 

such as one quarter, one half, and three quarters.  Woodruff and Premack’s experiment 

was set up as such:  a chimp was shown a sample (e.g., food, circular wooden disks, glass 

jars filled with blue-colored water) and would then have to select one stimulus from a set 

of two that correctly matched the sample.  For example, the chimp might have been 

presented with a sample consisting of two glasses filled completely with water.  Then, 

two stimuli would be presented:  a tray with three apples and a tray with two apples.  To 

answer the trial correctly, the chimp would have to choose the tray with two apples.  

Researchers found that the chimps were remarkably good at selecting the correct 

stimulus, even when the size, shape, and type of stimuli or sample changed.  One 

particular chimp, Sarah, was even adept at matching fractions.  When presented with a 

sample of a half-filled glass, for example, Sarah could consistently select the correct 

stimulus that showed half an apple or half a wooden disk.  The same was true for the 

fractions one quarter and three quarters.   Woodruff and Premack (1981) concluded that 

while chimps can recognize and discriminate between small whole numbers, they also 

appear to have a basic understanding for part-whole relationships and analogical 

reasoning.    

 Basic numerical competence has been demonstrated in lions, dolphins, and 

parrots, as well.  By using playback of either one or three lions roaring, McComb, Packer, 

and Pusey (1994) discovered that prides of lions would often approach the playback of a 
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single lion roaring in order to defend their territory, but they tended not to approach the 

playback of three lions roaring unless the size of their pride was much larger.  It seems 

“numerical assessment skills” such as the ability to discern the relative size of a group are 

helpful in contributing to the overall survival and fitness of lions and other species 

(McComb et al., 1994).  An understanding of the relative size of different groups has also 

been shown in dolphins.  When presented with two sets of objects, dolphins have been 

successfully trained to select the set with the fewest number of objects, even when the 

sets change in number and the objects are novel (Kilian, Yaman, Von Fersen, & 

Güntürkün, 2003).  In addition, Kilian et al. (2003) found that dolphins could 

discriminate between slightly larger numbers such as five and six.   

Perhaps the most advanced mathematical abilities demonstrated by an animal 

have come from Alex, an African Grey parrot who had been the subject of several studies 

in the fields of cognition and communication (Pepperberg, 2006).  In Pepperberg’s (2006) 

study, Alex, who was previously trained to label quantities up to six using the English 

language, showed that he could complete basic addition problems.  When asked “How 

many nuts total?” after being shown two nuts under one cup and one nut under another 

cup, Alex could consistently respond with three, even when the addends changed.  

Overall results from the study indicated that Alex could correctly solve a great variety of 

addition problems with sums up to six.  Pepperberg (2006) concluded that with training, 

animals can have expanded numerical capacities that develop much like those found in 

young children. 

Given society’s impressive advances in mathematics over recent centuries, it is 

hard to believe that humans’ concept of number was once as primitive as that of animals.  
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History suggests, however, that that was indeed the case:  humans’ understanding of 

number was first limited to a type of number sense that was no more advanced than the 

numerical competence demonstrated by the animals previously described.  

Anthropological studies have illustrated that several groups of isolated, indigenous 

peoples are not able to represent numbers greater than three or four (Dantzig, 1946; 

Gordon, 2004; Ifrah, 1985; Pica, Lemer, Izard, & Dehaene, 2004).  People from tribes in 

remote areas of Australia, Africa, Brazil, and the Torres Strait, for example, all have 

number words for one, two, and sometimes three or four, but no words for five, six, ten, 

and so on.  For quantities beyond the number three or four, these people use words 

meaning “many” or “a multitude” (Gordon, 2004; Ifrah, 1985; Pica et al., 2004).  This 

speaks to the notion that much like animals, humans possess a rudimentary number sense 

that only allows for the ability to perceive and distinguish between small quantities of 

number.  Without the ability to count, numbers larger than three or four become, as 

Dehaene (1997) describes, “fuzzy” approximations. 

The difficulty in perceiving numbers greater than three or four is reflected 

throughout history.  In nearly all societies, from the Mayans to the Romans to the 

Chinese, the first three or four numerals have always been represented by several 

instances of the same symbol (Dehaene, 1997; Ifrah, 1985).  In Roman societies, the 

numbers one, two, and three, were represented by one, two, or three bars (i.e., I, II, III).  

In Mayan societies, these numbers were represented by dots (i.e., , , ) (Dehaene, 

1997).  After the numbers three or four, however, all societies begin to represent numbers 

by using more abstract symbols.  For the Romans, the number five was denoted by “V,” 

and for the Mayans, five was represented by a long horizontal line.  Why not simply use 



 20 

five bars or dots to denote the number five?  The answer once again goes back to the 

notion that without the ability to count, humans were unable to automatically perceive 

and recognize five dots as representative of the quantity “five.”  Any quantity greater 

than three or four, then, was simply understood as “many” and could only be expressed in 

imprecise approximations (Dehaene, 1997; Ifrah, 1985).   

As Dantzig (1946) notes, this inability to precisely perceive larger numbers did 

not render “primitive” peoples incapable of working with and understanding larger 

quantities of number.  He provides an excellent illustration of how concepts of equality 

and quantity discrimination can be understood without counting: 

We enter a hall.  Before us are two collections:  the seats of the auditorium, and 
the audience.  Without counting, we can ascertain whether the two collections are 
equal and, if not equal, which is greater.  For if every seat is taken and no man is 
standing, we know without counting that the two collections are equal.  If every 
seat is taken and some in the audience are standing, we know without counting 
that there are more people than seats (Dantzig, 1946, pp. 6-7).   
 

This concept of one-to-one correspondence – where one item in a set is matched to one 

item in another set – is one of the first documented number methods used by people who 

lived tens of thousands of years ago (Dantzig, 1946; Ifrah, 1985).  In order to calculate 

the total number of sheep in a herd without counting, for example, a shepherd might 

make a notch in a bone for every sheep that he owns.  If he wants to check to see if all of 

the sheep are present in the future, he simply has to match each sheep with each notch.  If 

he finds that there are as many sheep as there are notches, he knows his whole herd is 

present (Ifrah, 1985).  Archaeologists have found evidence of this method dating back to 

the Upper Paleolithic period, which occurred at least 30,000 years ago.  Of course, 

historians agree that undocumented number systems involving the use of the body likely 

existed before matching or tallying methods, although it is not possible to pinpoint 
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exactly when those systems began.  Number systems that utilize the body, which are still 

used by indigenous peoples such as the islanders of the Torres Strait, involved touching 

various parts of the body in a specific, fixed sequence in order to communicate certain 

quantities.  To communicate what modern-day society would consider “seven,” for 

example, one might touch all five fingers of the right hand, followed by touching the 

right wrist and right elbow (Ifrah, 1985).  In addition to those utilizing the body and 

notching, other forms of ancient, concrete number systems involved the use of pebbles, 

clay tokens, and strings.  None of these methods, however, required the use of number 

words, written numerals, or any abstract understanding of number whatsoever.   

Eventually, with the advent of number words and then written numerals, the shift 

from concrete to abstract and much more complex number systems began (Dantzig, 

1946; Ifrah, 1985).  Although a comprehensive analysis of this shift from concrete to 

abstract is beyond the scope of this review, it is important to note that no matter how 

advanced society’s number systems have become, they all began with a basic concept of 

number, much like that of animals, and much like the “number sense” described by 

Dantzig (1946).  Without this primitive, seemingly innate sense of number, humans 

would not have been able to develop the ability to estimate, count, or calculate, nor would 

they have been able to accomplish the impressive mathematical advancements that have 

been made to date. 

Modern-Day Number Sense 

Does this ancient faculty of number sense exist in humans today, just as it did tens 

of thousands of years ago?  Are humans today able to perceive small quantities of 

number without counting, or recognize differences between two sets of items?  As 
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Dantzig (1946) points out, counting has become “such an integral part of our mental 

equipment that psychological tests on our number perception are fraught with great 

difficulties” (p. 4).  Experiments conducted within the last few decades, however, have 

examined humans’ basic concept of number without the confounding issue of counting.  

These experiments have primarily been carried out with participants who do not yet know 

how to count or calculate – infants. 

Numerical Abilities of Infants 

 In 1980, psychologists Starkey and Cooper conducted one of the first truly 

rigorous experiments that supported the notion that humans are born with a primitive 

sense of number.  In their study, Starkey and Cooper (1980) assessed whether infants 

ages 16 to 30 weeks could detect the difference between small quantities of number:  two 

and three, and then four and six.  First, during the habituation phase, two dots were 

shown to an infant on a screen several times.  These dots changed in position on different 

slides.  Next, the infant was shown a slide with three dots.  Experimenters found that the 

infants fixed their gaze on the slide with three dots significantly longer than the two-dot 

slides they were habituated to.  Consequently, researchers concluded that the infants 

detected a change in the quantity of the dots.  To be sure infants were not gazing at the 

three-dot slides for a longer length of time simply because there were more items on the 

screen to look at, Starkey and Cooper (1980) also tested infants in the reverse direction.  

In other words, infants were first habituated to three dots and then shown a slide of two 

dots.  Researchers found that the infants looked significantly longer at the two-dot slide, 

suggesting that they were once again able to detect a difference in the number of dots 

shown (Starkey & Cooper, 1980).  Interestingly, the infants did not appear to detect a 
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change in the slides that shifted from four dots to six dots, which supports the idea that 

the primitive number sense does not extend beyond very small quantities such as three or 

four.  Of note is that Starkey and Cooper (1980) did not refer to the infants’ numerical 

abilities as number sense.  Instead, they concluded that part of an infant’s numerical 

competence is the ability to subitize, or instantly “distinguish among arrays containing 

fewer than four items” (Starkey & Cooper, 1980, p. 1033). 

 In a follow-up study, Starkey, Spelke, and Gelman (1983) investigated whether 

infants’ early numerical abilities were purely visual, or if infants could detect 

relationships between sets of visual and auditory items.  In this experiment, infants six to 

eight months old were shown two screens, one containing a set of two items and the other 

containing a set of three.  While looking at the screens, the infants then heard either two 

or three drumbeats, which originated from a speaker in the middle of the two screens.  

What Starkey et al. (1983) found was that the infants gazed significantly longer at the 

two-item screen when they heard two drumbeats, and they also gazed longer at the three-

item screen when hearing three drumbeats.  Researchers concluded that an infants’ 

numerical competence is not solely a visual modality (Starkey et al., 1983).  More recent 

studies using this same paradigm have demonstrated that infants who are only a few 

hours old will similarly gaze at a visual array that matches an auditory sequence for 

significantly longer than an array that does not match the auditory stimulus (Izard, Sann, 

Spelke, & Streri, 2009). 

 Xu and Spelke (2000) later challenged the idea that infants can only understand 

quantities up to three or four.  In their study, they showed that six-month-old infants 

could discriminate between larger numerosities.  Employing methods previously 
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described, infants were habituated to slides that all showed eight dots.  Then, the infants 

were shown a sequence of slides containing either eight dots or sixteen dots.  The infants 

did not pay much attention to the slides with eight dots, but their gaze was fixed 

significantly longer on those slides showing sixteen dots (Xu & Spelke, 2000).  Likewise, 

infants who were habituated on sixteen dots were now more interested in the slides 

showing eight dots.  In an additional experiment, Xu and Spelke (2000) changed the ratio 

of dots from 1:2 (i.e., 8 dots and 16 dots) to 2:3 (i.e., 8 dots and 12 dots).  Infants were 

unable to discriminate between sets of 8 dots and sets of 12 dots, suggesting that they can 

only detect differences between larger numerosities when the ratio of difference between 

the sets is quite large.  A related study by Lipton and Spelke (2003) provided similar 

evidence:  six-month-old infants could only discriminate between large quantities when 

they differed by a ratio of at least 1:2.  Interestingly, though, Lipton and Spelke (2003) 

found that nine-month-old infants were able to discriminate between sets that differed in 

quantity by a ratio of 2:3, but not when they differed by a ratio of 4:5.  Researchers 

concluded that an infant’s sense of number appears to develop in precision during the 

first months of life, long before verbal development or formal teaching of any kind 

(Lipton & Spelke, 2003).  

 Is the numerical competence of infants limited to noticing differences between 

two sets of quantities?  Wynn’s (1992) seminal study on addition and subtraction in 

infants illustrated that a young person’s early numerical abilities clearly extend beyond 

that of quantity discrimination.  Participants in Wynn’s study were four- to five-month-

old infants placed in front of a display area to watch addition and subtraction problems 

concretely acted out.  First, the experimenter would place a Mickey Mouse toy in the 
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display case.  Then, a small screen would rise up to cover the toy.  From the side of the 

screen, where the infant could still see, a second identical toy was placed behind the 

screen.  Wynn configured the experiment to have one of two outcomes when the screen 

dropped:  (1) the expected/possible outcome of two toys behind the screen, or (2) the 

unexpected/impossible outcome of one or three toys behind the screen (for the impossible 

outcomes, the experimenter would remove or add a toy through a trap door, out of view 

from the infant) (Wynn, 1992).  Results indicated that the infants spent significantly more 

time studying the unexpected/impossible outcomes than the expected/possible outcomes.  

The same was true when the infants were presented with possible and impossible 

outcomes of a basic subtraction problem.  Essentially, the infants were surprised when 

one plus one did not equal two, suggesting that infants have some type of mechanism that 

allows them to understand the processes behind simple calculations.  In fact, Wynn 

(1992) went so far as to conclude that “humans innately possess the capacity to perform 

simple arithmetical calculations, which may provide the foundations for the development 

of further arithmetical knowledge” (p. 750). 

 Given the host of numerical skills present at birth, Starr, Libertus, and Brannon 

(2013) wanted to investigate whether the acuity of an infant’s number sense – or 

Approximate Number System (ANS) – predicts later mathematics development.  To test 

the acuity of the ANS, Starr et al. (2013) placed infants in front of two screens.  One 

screen showed an array of dots that stayed constant in number, but the size and placement 

of the dots varied.  The other screen showed an array of dots that changed in number.  

Infants who looked longer at the screen with the dots that changed in number were said to 

have greater ANS acuity, as these infants were detecting the change in the number of dots 
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(Starr et al., 2013).  Approximately three years later, Starr et al. (2013) tested these same 

infants using a variety of standardized early mathematics and general intelligence 

assessments.  Researchers found that children who performed better on the standardized 

assessments had better ANS acuity as infants.  This was the case even after controlling 

for general intelligence.  While Starr et al.’s (2013) study provided evidence for the 

relationship between primitive number sense and later mathematics development, the 

researchers were quick to caution that this relationship is not clear-cut or one-directional.  

Although ANS acuity appears to be a predictor of later mathematics development, it 

explains only a small proportion of the variance, suggesting that many other factors affect 

the mathematics achievement of young children.  Additionally, Starr et al. (2013) 

acknowledged that the relationship between ANS acuity and mathematics development is 

likely bidirectional; ANS acuity may contribute to mathematics development just as 

much as mathematics development affects ANS acuity.  Although further research is 

certainly needed, Starr et al.’s (2013) study did support the notion that (1) an innate 

number sense or Approximate Number System exists in the first years of life and (2) 

these innate number skills are in some way related to later mathematics development.    

Number Sense and the Approximate Number System in Early Childhood 

Evidence indicates that infants are born with some level of numerical competence, 

often in the form of the ability to distinguish between sets consisting of different 

quantities.  As Lipton and Spelke (2003) demonstrated, this number sense or 

Approximate Number System (ANS) appears to become more precise over time.  Nine-

month-old infants, for example, can discriminate between sets that differ in quantity by a 

ratio of 2:3, but six-month-old infants cannot.  Does number sense or the ANS continue 
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to develop in precision over the course of early childhood, or does this faculty cease to 

further develop after a certain age?  Working with three- to six-year-olds, as well as with 

adults, Halberda and Feigenson (2008) sought to answer these questions.  In their study, 

participants sat in front of a screen that showed, for example, the following sequence:  (1) 

X slices of pizza followed by the phrase “Here are Big Bird’s pieces of pizza;” (2) Y 

slices of pizza followed by the phrase “Here are Grover’s pieces of pizza;” and (3) X and 

Y slices of pizza (on separate sides of the screen) followed by the phrase “Who has more 

pieces of pizza?”  Each part of the sequence was shown on the screen for exactly two 

seconds.  Participants chose which character had more pieces of pizza by pressing a 

yellow key for Big Bird and a blue key for Grover.  Participants were given feedback on 

every trial.  As they hypothesized, Halberda and Feigenson (2008) found that number 

sense in children appears to increase in precision over time, before and after formal 

mathematics instruction begins.  Three-year-olds were able to accurately discriminate 

between sets differing by a ratio of 3:4, four-year-olds 4:5, and five- and six-year-olds 

5:6.  Adult participants were able to consistently discriminate between sets differing by a 

ratio of 10:11 (Halberda & Feigenson, 2008).  Interestingly, a study by Cantlon and 

Brannon (2006) uncovered similar findings with rhesus monkeys; much like humans, 

rhesus monkeys were readily able to discriminate between smaller ratios but had 

difficulty accurately discriminating between larger ratios.  The researchers concluded that 

the acuity of the ANS does indeed increase over time, both before and during formal 

mathematics instruction in school.  In fact, although additional research is needed in this 

area, they estimated that the ANS does not fully develop until the preteen years (Halberda 

& Feigenson, 2008).  
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 A similar, follow-up study by Libertus, Feigenson, and Halberda (2011) found a 

significant relationship between preschoolers’ acuity of the ANS and their performance 

on an assessment of early mathematics ability.  These findings still held true even when 

controlling for age and verbal skills (i.e., vocabulary size).  While research strongly 

suggests there is a link between the ANS and mathematics ability, it remains unclear 

whether the precision of the ANS predicts mathematics performance; like Starr et al. 

(2013) cautioned, Libertus et al. (2011) acknowledged that the relationship is most likely 

bidirectional, and/or that both mathematics performance and ANS acuity are mediated by 

additional, unknown factors.       

 Piazza et al. (2010) provided further evidence of the relationship between number 

acuity and mathematics performance.  Using methods much like those of Halberda and 

Feigenson (2008) in which participants had to choose which array of dots was larger 

without counting, Piazza et al. (2010) revealed two main findings.  First, as prior research 

has demonstrated, the ANS becomes more precise over time.  Adults were able to 

discriminate between arrays differing by smaller ratios while kindergarteners were only 

able to discriminate between arrays differing by large ratios.  Second, Piazza et al. (2010) 

found that students who had previously been identified as dyscalculic had significantly 

impaired number acuity when compared to normally developing peers.  In essence, 

students who had previously identified learning disabilities in mathematics were less 

adept at discriminating between two sets of arrays; these results remained true even when 

controlling for age, IQ, and reaction times.  These findings lend additional support to the 

notion that the ANS, which is arguably present at birth, matures over time and is strongly 

related to a student’s level of success with traditional mathematical concepts.  Those with 
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a less precise number sense may be at risk for developing a later learning disability in 

mathematics (Piazza et al., 2010). 

Taken together, research over the last several decades suggests humans are indeed 

born with a primitive sense of number, much like the one Dantzig (1946) described many 

years ago.  This number sense, or ANS, allows for the detection of differences between 

two sets of quantities, even just hours after birth.  The ANS then matures over the course 

of infancy, childhood, and adolescence so that more subtle differences between quantities 

can be detected.  As several studies have demonstrated, there also appears to be a strong 

link between number sense acuity and later success in more traditional mathematics tasks 

(Halberda & Feigenson, 2008; Libertus et al., 2011; Piazza et al., 2010; Starr et al., 

2013).  Although it remains uncertain whether there is a direct, causal relationship 

between ANS acuity and mathematics achievement, the relationship between the two has 

potential implications for educators.  If educators can assess a child’s number sense early 

in their schooling and subsequently intervene to improve the precision of a child’s ANS, 

then this increased precision may be one of the factors that contributes to success and 

achievement in mathematics later in life.   

Number Sense within the Field of Education 

Thus far, this review has largely focused on the definition, development, and 

acuity of number sense through the lens of developmental and cognitive psychology.  As 

evidenced by the studies previously reviewed, developmental and cognitive psychologists 

define number sense much like it was originally understood.  To these researchers, 

number sense is characterized by an innate understanding of approximate numerical 

magnitudes and involves the ability to automatically discriminate between sets comprised 
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of different quantities.  This number sense, or Approximate Number System (ANS), 

develops over time and is related to an individual’s later success with traditional 

mathematical concepts (Halberda & Feigenson, 2008; Libertus et al., 2011; Piazza et al., 

2010; Starr et al., 2013).  Given the link between the ANS and future performance in 

mathematics, combined with U.S. students’ overall poor performance in mathematics as 

of late, interest in this intriguing faculty of number sense has recently spread from the 

realms of developmental and cognitive psychology to the field of education.  Educators 

are now beginning to recognize number sense as a critical prerequisite to later success in 

mathematics (NCTM, 2000; NMAP, 2008).  Consequently, attempts to define, measure, 

and teach the construct have become commonplace among researchers and practitioners 

in the field of education.  As will be seen, however, educators have typically taken a 

much different approach than cognitive psychologists in defining and measuring the 

faculty of number sense. 

Defining and Operationalizing the Construct of Number Sense 

While researchers in the fields of developmental and cognitive psychology 

conduct their research using the original, parsimonious definition of number sense, the 

definitions used in the field of education are much more complex, and at times, quite 

nebulous.  For as much as the field of education touts number sense as a critical skill, it 

has historically been poorly defined in the literature (Berch, 2005; Gersten et al., 2005; 

Mcintosh et al., 1992).  Educational definitions of number sense are often vague and 

overly extensive, containing abstract principles and far too many components.  As 

Gersten et al. (2005) have noted, number sense (within the field of education) is a 

complex, intricate set of skills that “no two researchers have defined in precisely the 
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same fashion” (p. 296).  In fact, Berch’s (2005) review of the literature revealed 

approximately thirty different definitions and components of number sense, ranging from 

the ability to estimate, to the understanding of number meanings, to having a non-

algorithmic “feel” for numbers.  It remains unclear as to why definitions of number sense 

differ so greatly among cognitive and educational researchers, although Berch (2005) 

hypothesizes that for educators, the expansive definitions of number sense are simply 

incredibly engrained in the materials, curricula, and assessments already widely used in 

the field.  Complex definitions of number sense, for example, appear in the National 

Council of Teachers of Mathematics’ Principles and Standards for Mathematics, in 

mathematics textbooks, and on various national and international assessments (Berch, 

2005).   

Although definitions of number sense vary considerably, there do appear to be 

two main definition types: conceptual and operational.  Educational researchers who have 

attempted to define number sense conceptually tend to look at number sense as a broad, 

intuitive construct.  As a result, these researchers have collectively acknowledged that 

when number sense is viewed conceptually, it is an intricate, abstract skill that is quite 

difficult to observe, measure, and even understand.  Various models for breaking down 

the complexity of the construct have been proposed (Greeno, 1991; Mcintosh et al., 1992; 

Okamoto & Case, 1996), yet even with these conceptual frameworks, the vague and 

elusive nature of the faculty remains.  Several examples of conceptual definitions of 

number sense exist in the literature on mathematics education.  Howden (1989) wrote the 

following:  

Number sense can be described as good intuition about numbers and their 
relationships.  It develops gradually as a result of exploring numbers, visualizing 
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them in a variety of contexts, and relating them in ways that are not limited by 
traditional algorithms. (p. 11)   

 
Similarly, Sowder (1989) described number sense as a “well-organized conceptual 

network that enables a person to relate number and operation properties… number sense 

is not a body of knowledge; rather it is a way of thinking” (p. 4).  In their most recent 

edition of Principles and Standards for School Mathematics, the National Council for 

Teachers of Mathematics (2000) paraphrased Sowder (1992) and took a more conceptual 

approach in defining number sense, as well: 

Central to this Standard [of Number and Operations] is the development of 
number sense – the ability to decompose numbers naturally, use particular 
numbers like 100 or ½ as referents, use the relationships among arithmetic 
operations to solve problems, understand the base-ten number system, estimate, 
make sense of numbers, and recognize the relative and absolute magnitude of 
numbers. (p. 32) 

 
Despite the variability found among conceptual definitions of number sense, they all tend 

to define the construct more broadly while alluding to the intuitive, complex nature of the 

faculty.  While conceptual definitions are valuable in helping educators gain a general 

understanding of number sense, they are not entirely useful in helping educators and 

researchers to observe, assess, and teach number sense.  How would one, for example, 

objectively measure a student’s intuition about numbers and their relationships?  For 

educational researchers and practitioners, operational definitions of number sense are 

much more useful in the observation and assessment of this complex, latent construct.  

 Similar to conceptual definitions, operational definitions of number sense differ 

greatly.  They do, however, share a common theme:  operational definitions of number 

sense typically consist of a collection of foundational mathematics or early numeracy 

skills.  These early numeracy skills, often referred to as “components” of number sense, 
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are easy to assess and include skills such as quantity discrimination, one-to-one 

correspondence, and rote counting.  Although researchers have generally agreed that the 

best way to measure the complex construct of number sense is through the assessment of 

these early numeracy skills or number sense components, there is still a lack of consensus 

regarding which components actually represent the construct in a meaningful way (Berch, 

2005; Chard et al., 2005; Clarke et al., 2008; Gersten & Chard, 1999; Howell & Kemp, 

2005, 2006, 2009; Lago & DiPerna, 2010; Lembke & Foegen, 2009; Methe et al., 2011; 

Politylo et al., 2011).  In fact, a recent, comprehensive review of the number sense 

literature found forty studies containing thirty-four different proposed components of 

number sense (Politylo et al., 2011).  These components ranged from the ability to 

estimate and count to skills involving an understanding of equivalency and sequencing.  

The number sense component that appeared most frequently in the literature was quantity 

discrimination, or the ability to compare magnitudes (this component appeared in thirty-

five of the forty studies reviewed; Politylo et al., 2011).  Interestingly, quantity 

discrimination is often assessed through asking an individual which of two sets is larger; 

this skill is consistent with the original definition of number sense detailed by Dantzig 

(1946) and is the skill most often used by cognitive and developmental psychologists to 

assess number sense.  Other frequently-cited components of number sense included 

estimation, rote counting, simple computation, and number identification.  Table 1 

includes a small sample of studies from the number sense literature and shows the wide 

range of components used in operationalizing the construct. 
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Table 1:  Range of components used in operationalizing number sense. 

Study Components of Number Sense 

Aunio, Niemivirta, et 
al. (2006) 

Quantity discrimination, classification, one-to-one 
correspondence, seriation, rote counting, structured counting, 
resultative counting, applied computation 

Chard, Clarke, Baker, 
Otterstedt, Braun, & 
Katz (2005) 

Rote counting, counting on, skip counting, number 
identification, number writing, quantity discrimination, 
missing number 

Clarke & Shinn 
(2004b) 

Rote counting, number identification, quantity 
discrimination, missing number 

Howell & Kemp 
(2005) 

Rote counting, counting on, quantity discrimination, number 
recognition, sequencing, matching numerosity, cardinality, 
subitizing, one-to-one correspondence, comparing spoken 
numbers 

Jordan, Glutting, & 
Ramineni (2008) 

Enumeration, rote counting, counting principles, number 
recognition, number knowledge (which number comes 
before/after), quantity discrimination, nonverbal calculation, 
simple computation, applied computation 

Malofeeva, Day, 
Saco, & Ciancio 
(2004) 

Rote counting, number identification, one-to-one 
correspondence, ordinality, estimation, quantity 
discrimination, part-whole relationships, simple computation 

National Mathematics 
Advisory Panel 
(2008) 

Subitizing, rote counting, estimation, simple computation, 
quantity discrimination; “advanced type of number sense” 
includes understanding of place value, composition and 
decomposition of whole numbers, number properties (e.g., 
associative), application of principles when problem solving 

Yang, Hsu, & Huang 
(2004) 

Quantity discrimination, estimation/use of benchmarks, 
assessing reasonableness of answer, understanding effect of 
operations on numbers 

 
Given the wide range of components used to operationalize number sense, Howell 

and Kemp’s (2005, 2006, 2009) line of research attempted to establish a consensus in the 

educational community regarding which components actually comprise the construct.  

Using a modified Delphi procedure, which is an anonymous survey method, Howell and 

Kemp (2005) disseminated a series of questionnaires to twelve Australian educational 
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researchers in an effort to garner their expert opinion on number sense.  Participants were 

given a list of twenty-five number sense skills and were asked to rate how strongly they 

agreed that a given component was an essential measure of number sense at the time of 

school entry.  A second round of questionnaires asked which skills were essential 

components of number sense after the first year of schooling; this questionnaire included 

the original twenty-five skills, plus eleven additional, advanced skills.  At the time of 

school entry, the highest-ranked skills included one-to-one correspondence, matching 

numerosity, and rote counting.  After one year of schooling, respondents agreed that 

sequencing numerals, number recognition, and making equivalent groups – among other 

skills – were essential components of number sense.  Perhaps not surprisingly, however, 

respondents only reached a full consensus on ten of the thirty-six proposed components.  

For the remaining components, some respondents agreed they were essential parts of the 

number sense construct and others disagreed.   

When Howell and Kemp (2006, 2009) expanded their study and distributed their 

survey to international researchers, similar results were found.  Although international 

respondents agreed on a handful of components (e.g., cardinality, quantity discrimination, 

matching numerosity), they did not reach a consensus on the majority of the skills 

proposed.  Although Howell and Kemp were unsuccessful in establishing a consensus 

within the educational community regarding the true components of number sense, their 

research did serve to highlight the ongoing debate over the construct as well as the 

attention that is now being paid to early numeracy skills.  

Survey methods like the ones used by Howell and Kemp are just some of the 

ways researchers have attempted to make sense of the many components of number 
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sense.  Other researchers have taken a factor analytic approach in their quest to better 

understand the construct.  Jordan, Kaplan, Oláh, and Locuniak (2006), for example, 

conducted factor analyses in an attempt to (1) identify which components fit into the 

overall construct of number sense and (2) better understand the relationships between the 

components.  Jordan et al. (2006) began by assessing the performance of over 400 

kindergarten students on a variety of number sense tasks over four time points during the 

school year:  September, November, February, and April.  Skills evaluated included 

various types of counting (e.g., rote counting, counting on, determining if another’s 

counting was correct or incorrect), knowledge of numbers (e.g., what number comes 

before 6?), patterns, number recognition, estimation, simple computation problems, and 

applied computation problems.  Following data collection, the researchers conducted an 

exploratory factor analysis.  After reviewing the results, Jordan et al. (2006) proposed a 

two-dimensional model of number sense.  This two-dimensional model emerged across 

all four time points, both at the beginning and end of the kindergarten year.  “Basic 

number skills” fell in the first dimension of the model and included skills such as 

counting, number recognition, and estimation.  The second dimension of the model 

consisted of more advanced skills such as simple and applied computation problems.  

Jordan and her colleagues felt that these two dimensions represented the lower and higher 

order number sense skills originally proposed by Berch (2005); lower order skills may be 

related to an innate sense of number and quantity, while higher order skills are often 

learned after traditional mathematics instruction and help to contribute to a more 

developed number sense (Berch, 2005; Jordan et al., 2006).   
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Lago and DiPerna (2010) carried out a similar study in which they tested over 200 

kindergarteners on a variety of number sense skills (e.g., estimation, counting, 

measurement concepts) as well as on rapid automatic naming (RAN) skills.  Testing took 

place in the spring, after students had received several months of formal instruction in 

kindergarten mathematics.  Results from their exploratory factor analysis revealed a two-

factor model.  Quantity discrimination, counting aloud, number identification, 

measurement concepts, and nonverbal calculation loaded on the first factor, while the 

RAN activities loaded on the second factor.  These two factors, albeit separate, were 

moderately correlated (r = -0.60; students who performed well on the number sense tasks 

took less time naming stimuli on the RAN activities).  The authors acknowledged that 

while rapid naming and number sense skills appear to be separate constructs, the two 

might fall under a higher order factor related to mathematics (Lago & DiPerna, 2010).  

Interestingly, the skills of estimation and counting objects did not load on either of the 

two factors found.  The researchers hypothesized that estimation may represent a higher 

order skill, which is why it did not fit with the more basic number skills of the first factor.  

Perhaps if more skills were tested, a third factor would have emerged.  As for the skill of 

counting objects, the unusual set-up of the counting objects task may have affected 

student scores, thus partially explaining why this skill did not load on either factor (Lago 

& DiPerna, 2010). 

While survey methods and factor analyses have certainly led the educational 

community to a better understanding of number sense, the community remains unsure 

regarding how exactly to define the construct.  Despite this ongoing disagreement, the 

majority of researchers and practitioners do agree that the best way to operationalize the 
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faculty is through the assessment of a variety of number sense components or early 

numeracy skills.  As a result, the number sense assessments currently used in research 

and practice are all measures of different early numeracy skills, or number sense 

components.  As will be described in the following section, some of these measures 

assess a great variety of early numeracy skills, while others only assess three or four.   

Number Sense Measures 

A review of the literature reveals that there are over fifteen measures of number 

sense currently used in research and practice.  Many of these measures are explicitly 

described as tests of number sense, while others are labeled as assessments of early 

numeracy skills.  Regardless of the language used, all of the measures do assess some 

combination of number sense components previously described.  The following selection 

of measures will be reviewed below, as they provide an excellent example of the range of 

number sense components found in various assessments:  Clements’ (1984) measures of 

numerical abilities, the Number Knowledge Test (Okamoto & Case, 1996), the Number 

Sense Test (Reys et al., 1999), the Number Sense Test (Malofeeva et al., 2004), the Early 

Numeracy Test (Van Luit & Van de Rijt, 2005), the Number Sense Brief Screener 

(Jordan et al., 2008), and the Test of Early Numeracy (Clarke & Shinn, 2004b). 

Clements’ Measures of Numerical Abilities 

Clements (1984) was one of the earliest researchers to create a battery of tasks 

measuring the numerical competence of preschoolers.  Although not specifically named a 

test of number sense, Clements’ collection of tasks includes many of the skills and 

components thought to operationalize the number sense construct.  The battery, which 
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was used as a pre- and post-test measure in a study investigating the effects of two 

mathematics instruction techniques, consists of ten subtests and fifty-nine items.   

The first subtest of Clements’ battery is called Rational Counting and simply 

requires children to count various sets of objects.  The next subtest, Choosing More, is a 

classic quantity discrimination task in which children select the greater of two verbally 

presented numbers (e.g., which is greater, 5 or 9?) and then identify the set with the 

greater number of objects.  Just After, Just Before, and Between is the third task which 

asks participants to choose the set of objects that includes one more than the presented set 

and then one less than the presented set.  Children then had to identify the set that fit in 

between two presented sets.  In the Counting On and Counting Back task, participants 

must determine the correct number of objects in a set after objects are added to and taken 

away from the set.  The fifth task is a one-to-one correspondence activity in which 

children create a row of seven blocks.  For the Identity Conservation subtest, participants 

are required to judge the number of blocks in a set after they have been scattered.  

Equivalence Conservation involves judging whether two sets of the same number of 

objects are still equal after they had been scattered or moved.  The final two subtests 

require children to solve both verbal and concrete word problems. 

Although no evidence exists for the validity of these tasks, Clements (1984) did 

report on the reliability of the measures.  Internal consistency was computed using 

coefficient alpha and was quite high; reliability coefficients ranged from 0.95 for the pre-

test to 0.97 for the post-test.  The wide variety of number sense components assessed by 

Clements’ ten tasks is impressive, however the large number of items and length of time 

necessary to administer all ten tasks makes Clements’ measures difficult to use as a 
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screening tool.  Nevertheless, Clements’ number tasks have served an important role:  

they were one of the first collections of assessment activities related to the construct of 

number sense and they have also influenced the development of other, more recently-

created measures. 

Number Knowledge Test 

Developed by Okamoto and Case (1996), the Number Knowledge Test (NKT) 

assesses a range of skills and is designed to measure a child’s understanding of the whole 

number system.  According to Gersten et al. (2005), the NKT is one of the most 

comprehensive number sense measures currently available, although the test does not 

appear to be used in practice very frequently.  The NKT is based on the idea that children 

progress through four developmental levels as they begin to understand number, quantity, 

and numerical operations.  These developmental levels are as follows (Okamoto & Case, 

1996):     

• Level 1, Predimensional:  Children are expected to count by rote and to quantify 
globally but not to connect number and quantity. 

• Level 2, Unidimensional:  Children are expected to have constructed a mental 
counting line that integrates their understanding of numbers and quantities. 

• Level 3, Bidimensional:  Children are expected to be able to work simultaneously 
with two mental counting lines.  This means that they can keep track of "ones" 
and "tens" while adding or subtracting and understand the relation between them. 
It also means that they can use one counting line to compute the distance between 
two points on another counting line, thus constructing the notion of a 
mathematical "difference."  

• Level 4, Integrated Bidimensional:  Children can extend their understanding of 
tens and ones to the full number system.  They can also integrate "carrying" or 
"borrowing" with their mental addition and subtraction and can understand the 
way in which one difference and another can be related. (pp. 226-227) 

 
The NKT itself is organized into four separate sections that correspond with the 

developmental levels outlined above.  Students who answer more than half of the 

problems correctly on the first level are permitted to move onto the next level, and so on.  
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Skills assessed on the predimensional level include counting, simple calculation, and 

quantity discrimination.  The next level assesses similar skills, such as more complex 

computation problems, additional quantity discrimination items, naming which number is 

bigger or smaller, and counting backwards.  The third level of the NKT involves 

computation and quantity discrimination with two-digit numbers.  This level also asks 

children to identify, for example, how many numbers there are between two and six.  The 

fourth and final level builds on the third level in asking similar but more complex 

problems.  Children are also asked questions such as “What number comes 10 numbers 

after 99?” and “What is the smallest 5-digit number?” 

 Baker, Gersten, Katz, Chard, and Clarke (2002) investigated the predictive 

validity of the NKT with later performance on the Stanford Achievement Test, Ninth 

Edition (SAT-9).  Researchers found that spring of kindergarten performance on the NKT 

significantly predicted SAT-9 scores in the spring of first grade.  Specifically, NKT 

performance in kindergarten predicted the total score on the SAT-9 (r = 0.73), the score 

on the Problem Solving subtest of the SAT-9 (r = 0.64), and the score on the Procedures 

subtest (r = 0.69).  Unfortunately, additional studies exploring the technical adequacy of 

the NKT have not been conducted. 

Number Sense Test (A) 

In an effort to explore and compare the number sense of students from Australia, 

Sweden, Taiwan, and the United States, Reys et al. (1999) created the Number Sense Test 

(NST).  The test is based on six different components of number sense.  Researchers 

described the first component as an understanding of the meaning and size of numbers.  

Reys et al. (1999) measured this component through quantity discrimination items, such 
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as “How does 2/5 compare in size to 1/2?” (p. 62).  The second component, 

understanding the use of equivalent representations of numbers, is assessed via questions 

that ask students to show different ways a number, such as a fraction, can be represented.  

The next component of number sense measured by the NST is the understanding of the 

meaning and effect of operations; these items ask students to explain, for example, why a 

number divided by a decimal results in a larger number.  The fourth component’s items 

tap into a student’s understanding of equivalent expressions, while the fifth component’s 

items look at a student’s ability to count and compute flexibly.  Finally, the sixth number 

sense component involves the use of measurement benchmarks in estimation.  Items 

assessing this skill ask students to estimate with the help of a benchmark or anchor. 

 The NST was created for use with both national and international students ranging 

in age from eight to fourteen.  The number of test items vary based on which age group is 

being tested (variation is from thirty to forty-five items), and test reliability was reported 

to range from 0.72 to 0.85.  Evidence supporting the validity of the NST has not been 

reported.  While items on the NST cover a wide variety of number sense components, 

these items are clearly more suitable for the assessment of number sense in older children 

and youth.  As a result, the use of the NST as a screening measure for early intervention 

purposes would likely not be appropriate.  The NST does, however, provide an excellent 

example of a number sense assessment that exists for more advanced students. 

Number Sense Test (B) 

Five years after Reys et al. (1999) developed their Number Sense Test, Malofeeva 

et al. (2004) created a measure of the same name.  After analyzing various definitions of 

number sense and previously created measures, Malofeeva et al. (2004) developed a 
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Number Sense Test designed to measure the early numeracy skills of preschoolers, ages 

three through five.  The test consists of six scales:  Counting, Number Identification, 

Number-Object Correspondence, Ordinality, Comparison, and Addition-Subtraction.  

The Counting scale includes tasks requiring children to count forwards and backwards, 

identify mistakes in others’ counting, and name the number that comes before and after a 

given number.  The Number Identification scale asks children to both verbally and non-

verbally identify various numbers.  On the Number-Object Correspondence scale, 

participants are given several tasks that “measure their ability to assign a unique number 

word to each counted object” (Malofeeva et al., 2004, p. 652).  For the Ordinality scale, 

children are required to name the position of an object as first, second, third, and so on.  

The Comparison scale consists of various quantity discrimination tasks (e.g., the child is 

shown two sets of objects and is asked to name which pile is bigger), and the Addition-

Subtraction scale requires the student to complete very simple, concrete computation 

problems. 

Researchers reported that the internal consistency for the Number Sense Test as a 

whole was 0.98, while coefficient alpha for the separate scales ranged from 0.88 to 0.95. 

Discriminant validity was also demonstrated, as the six scales were highly correlated with 

themselves but were not as highly correlated with other measures used in the study (e.g., 

a vocabulary measure).  Malofeeva et al. (2004) acknowledged that in addition to being 

normed, the technical adequacy of the Number Sense Test needs to be further 

investigated.  Although the Number Sense Test does not currently appear to be used in 

practice, it does show a great deal of promise, as it is appropriate for use with children as 

young as three years old and it also surveys a breadth of number sense components.  
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Consequently, the Number Sense Test could be a valuable tool for identifying students 

who are struggling in mathematics very early on in their education. 

Early Numeracy Test 

Originally developed in by Dutch researchers and later translated into Finnish, 

Chinese, Spanish, and English, the Early Numeracy Test (ENT; Van Luit & Van de Rijt, 

2005) is widely used among international researchers of mathematics education.  The 

test, which is designed to assess young children’s number sense and early mathematical 

competence, consists of eight different components:  (1) concepts of comparison; (2) 

classification; (3) correspondence; (4) seriation; (5) using counting words; (6) structured 

counting; (7) resultative counting; and (8) general knowledge of numbers (Van de Rijt, 

Van Luit, & Pennings, 1999; Van Luit & Van de Rijt, 2005).  The concepts of 

comparison component assesses the understanding of concepts like most, least, higher, 

and lower.  The classification activities ask the child to group objects based on 

similarities and differences.  Correspondence tasks require the child to utilize one-to-one 

correspondence skills.  The seriation component involves ranking objects or pictures 

from high to low, more to less, or thick to thin.  On the using counting words task, the 

child must count forwards and backwards as well as count on from a given number.  

Structured counting tasks involve counting objects and also subitizing, while resultative 

counting activities ask the child to count objects such as blocks without pointing to or 

moving them.  Finally, the general understanding of numbers component requires 

children to apply mathematics skills to solve real-life problems depicted in drawings 

(e.g., You have nine marbles. You lose three marbles.  How many marbles do you have 

left?). 
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 Some evidence of technical adequacy exists for the Dutch and Finnish versions of 

the ENT.  Analysis of the original Dutch version of the ENT revealed that the test is 

internally consistent, as coefficient alphas for each test component ranged from 0.91 to 

0.94 (Van de Rijt et al., 1999).  Internal consistency for the Finnish version of the test 

was reported to be 0.90 (Aunio, Hautamäki, Heiskari, & Van Luit, 2006), while internal 

consistency for the English version of the test was reported as 0.83 (Van de Rijt et al., 

2003).  Van de Rijt et al. (1999) stated that because no similar early mathematics 

assessments exist in the Netherlands, information on the validity of the Dutch version of 

the ENT was not available.  The original test was, however, developed using expert 

judgment, factor analysis, and item response theory (Van de Rijt et al., 1999).  Aunio and 

Niemivirta (2010) demonstrated preliminary evidence for the predictive validity of the 

Finnish version of the ENT.  Kindergarten students’ scores on the ENT explained 

approximately half of the variance in the mathematics performance of those same 

students in first grade.  Aside from one report of internal consistency from Van de Rijt 

and her colleagues, no additional research has been published on the reliability and 

validity of the English version of the ENT.   

Number Sense Brief Screener 

The Number Sense Brief Screener (NSB) was developed over the course of 

several years, as researchers sought to create a measure that would identify mathematics 

difficulties in children in kindergarten and first grade (Jordan et al., 2006; Jordan, 

Kaplan, Locuniak, & Ramineni, 2007; Jordan et al., 2008).  When determining what 

number sense components to assess as part of the NSB, Jordan and her colleagues (2006) 

focused on skills that were not only validated by research but also skills that appeared in 
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elementary school math curricula.  Ultimately, items selected for inclusion on the NSB 

assessed the following six components:  counting knowledge and principles, number 

recognition, number comparisons, nonverbal calculation, story problems, and number 

combinations (Jordan et al., 2008; Jordan, Glutting, & Ramineni, 2010).  The counting 

knowledge and principles items asks students to rote count, count objects, and identify 

whether another person’s counting strategies are correct or incorrect.  Number 

recognition requires children to identify a variety of two- and three-digit numbers.  

Number comparisons involves quantity discrimination tasks in which students must 

determine which number is larger or smaller.  The nonverbal calculation tasks ask 

students to solve various computation problems using colored chips.  Finally, story 

problems and number combinations require students to solve a number of simple 

computation problems (e.g., “how much is two and one?”) (Jordan et al., 2008; Jordan, 

Glutting, & Ramineni, 2010). 

Research regarding the psychometric properties of the NSB has been relatively 

extensive as well as promising.  Jordan, Glutting, Ramineni, and Watkins (2010) 

administered the NSB to kindergarteners in September, November, February, and April 

and noted that the test-retest reliability of the measure ranged from 0.78 to 0.86.  Test-

retest reliability in first grade ranged from 0.80 to 0.84 (Jordan, Glutting, & Ramineni, 

2010; Jordan, Glutting, Ramineni, & Watkins, 2010).  Analysis of the assessment’s 

internal consistency revealed a coefficient alpha of 0.84 (Jordan et al., 2008).  In terms of 

validity, this measure has been shown to predict mathematics achievement in both first 

and third grades.  Performance on the NSB at the beginning of first grade was predictive 

of later performance on the mathematics subtests of the Woodcock-Johnson III (r = 0.72 
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at end of first grade; r = 0.70 at end of third grade) (Jordan, Glutting, & Ramineni, 2010).  

In addition, the NSB was shown to predict mathematics performance above and beyond 

that of other factors such as age, vocabulary, perceptual reasoning skills, and working 

memory in both first and third grades (Jordan, Glutting, & Ramineni, 2010).  Jordan, 

Glutting, Ramineni, and Watkins (2010) also demonstrated that kindergarten 

performance on the NSB was predictive of third grade performance on a high-stakes state 

test, while Jordan et al. (2008) showed that kindergarten performance on the NSB was 

predictive of third grade performance on the Math Achievement subtest of the 

Woodcock-Johnson III (r = 0.65).  Divergent validity has been demonstrated, as well, as 

the NSB was poorly correlated with measures of reading achievement such as the Test of 

Word Reading Efficiency (Jordan et al., 2008). 

Test of Early Numeracy 

Of all the number sense assessments reviewed in this section, the Test of Early 

Numeracy (TEN; Clarke & Shinn, 2004b) is perhaps the measure most widely used in 

practice in the United States.  The TEN, which was originally a collection of tasks known 

as the Early Mathematics Curriculum-Based Measures, was created in response to the 

field of education’s recent emphasis on the importance of number sense development in 

young children (Clarke & Shinn, 2004a).  Although curriculum-based measures in 

mathematics already existed (e.g., M-CBM), researchers noted that these measures were 

not entirely useful in early identification; by the time M-CBM could be used, struggling 

students were often already in mid to late first grade.  Thus, the TEN was also developed 

to provide educators a tool for the early identification of mathematics difficulties in 

young children (Clarke & Shinn, 2004a). 
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The TEN is a set of curriculum-based measures designed to assess the number 

sense skills of students in kindergarten and first grade.  These measures consist of four 

brief subtests:  Oral Counting, Number Identification, Quantity Discrimination, and 

Missing Number (Clarke & Shinn, 2004b).  Oral Counting requires students to correctly 

count up from zero and name as many digits as they can in one minute.  In Number 

Identification, students are given a sheet of paper with numbers ranging from one to ten 

and are asked to name as many numbers as possible in one minute.  Quantity 

Discrimination requires students to choose which of two presented numbers is bigger.  

Finally, in Missing Number, students must orally identify the missing number from a 

sequence of three digits; for example, students see “7 __ 9” and must be able to identify 

that the missing number is eight (Clarke & Shinn, 2004b).  

A great deal of evidence exists supporting the technical adequacy of the TEN 

(Clarke & Shinn, 2004a, 2004b).  Thirteen-week test-retest reliability was reported to 

range from 0.79 to 0.85 across subtests.  Interrater reliability for each of the subtests was 

very high and ranged from 0.98 to 0.99.  Clarke and Shinn (2004a, 2004b) also reported 

that alternate form reliability ranged from 0.78 to 0.93.  Concurrent validity has been 

demonstrated for the TEN, as well; the subtests correlated well with other measures of 

early mathematical skills such as the Number Knowledge Test (r = 0.70 to 0.80, fall of 

first grade administration) and the Woodcock-Johnson III’s Applied Problems subtest (r 

= 0.64 to 0.71, fall of first grade administration).  First graders’ performance on the TEN 

in the fall was also moderately predictive of spring performance on M-CBM (r = 0.56 to 

0.70) and on the Applied Problems subtest of the Woodcock-Johnson III (r = 0.72 to 

0.79) (Clarke & Shinn, 2004a, 2004b).  It is important to note that the psychometric 
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properties outlined above are based on the administration of the TEN to first graders.  A 

small number of studies have investigated the reliability and validity of TEN probes 

administered in kindergarten.  Chard et al. (2005), for example, found preliminary 

evidence for the concurrent and predictive validity of the TEN kindergarten probes with 

the Number Knowledge Test (r = 0.50 to 0.69), while Martinez, Missall, Graney, Aricak, 

and Clarke (2009) demonstrated evidence for the predictive validity of the kindergarten 

probes with the Stanford 10 Achievement Test (r = 0.31 to 0.46).  In addition, Baglici, 

Codding, and Tryon (2010) reported that the alternate-form reliability of the winter 

kindergarten probes ranged from 0.84 to 0.91.  These researchers also discovered that 

scores obtained on the Missing Number subtest in the winter of kindergarten significantly 

and uniquely predicted M-CBM scores in the spring of first grade (r = 0.46; Baglici et al., 

2010).  

Importance of Assessment, Early Identification, and Predictive Validity 

While measures of number sense clearly differ in terms of the breadth and depth 

of skills assessed, all of the measures do share a common purpose: to identify children 

who are experiencing – or are at risk for experiencing – difficulties in mathematics.  The 

importance of assessing a child’s number sense for the purpose of early identification 

simply cannot be overstated.  Both the National Council of Teachers of Mathematics and 

the National Mathematics Advisory Panel have highlighted number sense as a vital 

prerequisite to later success in mathematics (NCTM, 2000; NMAP, 2008).  A well-

developed number sense allows students to understand number facts and algorithms more 

quickly, use novel problem-solving strategies, recognize errors, and ultimately perform 

mathematical computations with greater ease.  Those students who enter school with a 
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poorly developed sense of number are at a greater risk of not only struggling in 

mathematics during the elementary years, but also experiencing failure in mathematics 

later in life (NMAP, 2008; National Research Council, 2001).  Early identification 

through assessment is, of course, the first step in preventing this failure.  As Jordan and 

her colleagues noted (2006), “if children’s learning needs can be identified early on, we 

may be able to design interventions that prevent failure in math” (p. 154).   

Early identification of students with a weak sense of number would not be 

possible without psychometrically sound measures designed to assess the construct.  As 

this review outlined in the previous section, several assessments of number sense 

currently exist, although the amount of evidence demonstrating the reliability and validity 

of their uses for young children varies.  Despite this variability, many measures do 

possess what is arguably one of the more important psychometric properties of a 

screening measure:  predictive validity.  Predictive validity is demonstrated when 

performance on one measure significantly predicts future performance on one or more 

criterion measures.  Of the assessments previously reviewed, researchers have shown 

varying degrees of predictive validity in the Number Knowledge Test (NKT), Early 

Numeracy Test (ENT), Number Sense Brief Screener (NSB), and the Test of Early 

Numeracy (TEN).  Kindergarten performance on the NSB, for example, has been shown 

to predict mathematics achievement in third grade (Jordan, Glutting, Ramineni, and 

Watkins, 2010).  Predictive validity has also been demonstrated for the Finnish version of 

the ENT, as kindergarteners’ scores on the ENT explained 47% of the variance in their 

classroom math grades at the end of first grade (Aunio & Niemivirta, 2010).  Studies 

investigating the psychometric properties of the TEN have found evidence for the 
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predictive validity of this assessment, as well.  Kindergarten performance on the TEN has 

been significantly correlated with later performance on the NKT, Stanford 10 

Achievement Test, and M-CBM probes (Baglici et al., 2010; Chard et al., 2005; Martinez 

et al., 2009).     

Why is predictive validity so important?  In the case of number sense assessment, 

predictive validity serves to assure researchers and educators that the assessment in 

question actually measures skills that contribute or are related to future mathematics 

development and success.  As a result, if a measure possesses predictive validity, 

researchers and educators can feel confident in using that assessment as a screening tool 

to identify children who may have difficulties in mathematics later in life.  In addition, as 

Gersten, Clarke, Haymond, and Jordan (2011) note, “assessments that show evidence of 

predictive validity can inform instructional decision-making” (p. 3).  Alternatively, if a 

number sense assessment failed to demonstrate predictive validity, then it would not be 

measuring skills that contributed to or were related to later success in mathematics.  A 

measure lacking in predictive validity would most likely not be very useful as a screening 

instrument for early identification purposes. 

Summary 

As this review has shown, a wealth of research has been conducted on number 

sense since Tobias Dantzig first coined the term in the early twentieth century.  Over the 

past several decades, researchers have demonstrated that a wide range of animals – from 

birds to dolphins to chimps – possess an innate sense of number; they have shown that 

this same innate number sense also exists in human infants; and they have uncovered 

links between children’s early number sense abilities and their later success in higher-
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level mathematics.  Despite this abundance of research, the construct of number sense 

remains a somewhat nebulous one.  While developmental and cognitive psychologists 

tend to define number sense the same way it was originally described by Dantzig (i.e., the 

ability to identify a difference in size between two small groups and to recognize when an 

element has been removed or added from a group), the definitions of number sense used 

in the field of education are much more complex, vague, and varied.  Some educational 

researchers define number sense more broadly and conceptually; for example, Howden 

(1989) described number sense as having a “good intuition about numbers and their 

relationships” (p. 11).  Many others, however, have defined the construct operationally.  

Operational definitions of number sense typically consist of a collection of early 

numeracy skills or “number sense components” such rote counting, quantity 

discrimination, number identification, and one-to-one correspondence. 

 Although there remains a lack of consensus regarding exactly how to define 

number sense, research suggests that a well-developed number sense is a vital 

prerequisite to later success in mathematics (NCTM, 2000; NMAP; 2008).  Without this 

well-developed sense of number, students are at a greater risk of struggling and failing in 

mathematics (NMAP, 2008; National Research Council, 2001).  As a result, researchers 

have developed various number sense assessments in recent years in an effort to screen 

for and identify children who may be at risk for later failure in mathematics.  These 

measures include, but are not limited to, Clements’ measures of numerical abilities, the 

Number Knowledge Test, the Number Sense Test, the Early Numeracy Test, the Number 

Sense Brief Screener, and the Test of Early Numeracy.  While Gersten et al. (2005) states 

that “research on valid early screening measures of subsequent mathematics proficiency 
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is in its infancy” (p. 293), the need for these types of measures is clear.  If researchers can 

determine which number sense assessment best predicts later success in mathematics, 

then practitioners would have a powerful tool for screening and identifying young 

children who are at risk for experiencing difficulties in mathematics.  Ideally, this early 

identification would then lead to early intervention, which may in turn prevent later 

failure in mathematics. 

 This study was conducted in an effort to investigate the predictive validity of 

three of the more widely used measures of number sense:  the Early Numeracy Test 

(ENT), the Number Sense Brief Screener (NSB), and the Test of Early Numeracy (TEN).  

Although preliminary evidence for the predictive validity of these three measures 

currently exists, no studies have compared the predictive qualities of these measures 

directly.  As a result, this study sought to identify which measure or combination of 

measures best predicts later mathematics achievement.  If one or more measures can be 

identified as the best predictor(s) of later mathematics achievement, then educators would 

be equipped with an important and valid tool to be used in the early identification of 

mathematics difficulties.  In addition, this study was designed to add to the extant 

literature on the ENT, NSB, and TEN.  While a small body of research currently exists on 

each measure, few studies have replicated this work.  Furthermore, while the ENT is 

popular abroad, there has been no research conducted on the measure in the United 

States. 
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CHAPTER 3 

 

METHODOLOGY 

Participants and Setting 

A Priori Analyses 

This study was conducted during the 2012-2013 school year in a suburban school 

district in Western Massachusetts.  The school district’s superintendent and special 

education director gave the researcher permission to conduct the study in two elementary 

schools, each enrolling approximately 75 kindergarteners for a total of 150 possible 

participants. 

In order to determine if a sample size of 150 participants would be sufficient to 

conduct significance tests, a priori power analyses were conducted for each statistical 

method used in the study.  The alpha level was held constant at 0.05 across all analyses.  

The statistical software R (R Development Core Team, 2012) was used to conduct the a 

priori analysis for a simple linear regression.  Results revealed that given a sample size of 

150 participants, there would be adequate power (0.98) for detecting a moderate effect 

size.  The power analysis software G*Power (Faul, Erdfelder, Lang, & Buchner, 2009) 

was used to conduct the a priori analysis for comparing dependent correlations with a 

common index.  This analysis showed that given a sample size of 150 participants, there 

would be sufficient power (0.79) for detecting a small to moderate difference in 

correlations.  To evaluate whether there would be adequate power to conduct multiple 

regression analyses given a sample size of 150, a final a priori analysis was conducted 

using G*Power.  Results from the analysis indicated that there would be sufficient power 

(0.97) to detect a small to moderate effect size.  
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Recruitment 

Three days before the school year began, each participating school held 

kindergarten orientation sessions for parents and students.  During these orientation 

sessions, the researcher and school principal presented the research study to parents, 

answered questions, and distributed consent forms further describing the study (Appendix 

A).  School staff translated consent forms for parents who spoke a language other than 

English.  Parents were given the option to immediately return the consent form at the 

orientation session or return the form to school with their child by the first day of school.  

Parents who did not return the consent form were called by the researcher and reminded 

to submit the form as soon as possible.  All parents were assured that participation in the 

study was voluntary, and that they could withdraw permission for their child’s 

participation at any time.  Of the 148 kindergarteners enrolled in the two elementary 

schools during the 2012-2013 academic year, 112 were given permission to participate.   

Before testing began, verbal assent was obtained from each participant.  

Kindergartners were given a brief overview of each testing activity and were asked if 

they wanted to participate.  After listening to a description of the first assessment, one 

student chose not to participate and was consequently excluded from the sample. 

Participant and School Characteristics 

While consent was obtained for 112 kindergarteners, seven students moved out of 

the district mid-year, two students were non-English speakers, and one student chose not 

to participate.  Thus, participants were ultimately 102 kindergarteners from both general 

and special education.  Non-English speaking students were excluded from the sample as 

this study aimed to assess mathematical skills, not understanding of the English language.  
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All assessments used required an understanding of the English language and the majority 

of assessment items involved a verbal response in English. 

As noted, this study took place in two mid-sized, suburban elementary schools in 

Western Massachusetts.  The first elementary school serves approximately 350 students 

in kindergarten through grade four.  During the 2012-2013 academic year, 55% of the 

student body was female and 45% was male.  In terms of ethnicity, 86% of the students 

were white, 5% Asian, 4% multiracial, 3% Hispanic, and 2% African American.  

Approximately 26% of the students in the school were eligible for free or reduced-price 

lunch and 7% received special education services (Massachusetts Department of 

Elementary and Secondary Education [DESE], 2013).  The second elementary school 

serves approximately 400 students in kindergarten through grade four.  During the 2012-

2013 academic year, 51% of the student body was female and 49% was male.  In terms of 

ethnicity, 88% of the students were white, 5% Hispanic, 3% multiracial, 2% Asian, and 

2% African American.  Approximately 36% of the students in the school were eligible 

for free or reduced-price lunch and 13% received special education services 

(Massachusetts DESE, 2013).   

Both participating schools operate under a response-to-intervention (RTI) 

framework and utilize a three-tired service delivery model.  Students in the first tier (i.e., 

all students) receive high-quality instruction from evidence-based curricula and their 

progress is measured three times per year through universal benchmarking.  At the time 

of this study, the participating kindergarten classrooms were using Scott Foresman-

Addison Wesley’s enVisionMATH curriculum.  Kindergarteners’ progress in mathematics 

was measured in the fall, winter, and spring using the Test of Early Numeracy (TEN) 
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curriculum-based measures.  If students were not making effective progress in the 

curriculum, they received small group mathematics interventions three times per week for 

one half hour, administered by the district’s primary preventionists.  This represents the 

second tier of services.  Of this study’s 102 participants, nine received additional support 

in mathematics from the primary preventionists at some point during the school year.  

Students who continued to struggle in the curriculum despite primary prevention support 

were then referred for a special education evaluation.  If a student was found eligible, 

special education services in mathematics – the third and highest tier of services – were 

provided.  Four of the 102 participants in this study received special education services in 

mathematics during the 2012-2013 academic year. 

Independent Variables 

 Although the Test of Early Numeracy, Number Sense Brief Screener, and Early 

Numeracy Test were described in the previous chapter, they will again be briefly 

reviewed here.  The following descriptions revisit each tool’s psychometric properties 

and also provide more specific information regarding the administration procedures for 

each measure. 

Test of Early Numeracy 

The first number sense measure administered to students was the Test of Early 

Numeracy (TEN).  The TEN is a set of individually administered curriculum-based 

measures designed to assess the early numeracy skills of students in kindergarten and 

first grade.  These measures consist of four subtests that each take one minute to 

complete:  Oral Counting, Number Identification, Quantity Discrimination, and Missing 

Number (Clarke & Shinn, 2004b).  Oral Counting requires the student to correctly count 



 58 

up from zero and name as many digits as he or she can in one minute.  In Number 

Identification, students are given a sheet of paper with numbers ranging from 1 to 10, 

randomly arranged in an 8 by 7 array, and are asked to name as many numbers as 

possible in one minute.  Quantity Discrimination requires students to choose which of 

two presented numbers is bigger.  Finally, in Missing Number, students must orally 

identify the missing number from a sequence of three digits; for example, students see “7 

__ 9” and must be able to identify that the missing number is eight (Clarke & Shinn, 

2004b).  It is important to note that the TEN is the screening assessment typically used by 

the participating schools for universal benchmarking and progress monitoring.   

Clarke and Shinn (2004a, 2004b) have provided evidence that the TEN is both 

reliable and valid for the assessment of the early numeracy skills of first graders.  The 

subtests of the TEN have a thirteen-week test-retest reliability ranging from 0.79 to 0.85.  

Interrater reliability ranges from 0.98 to 0.99.  Clarke and Shinn (2004b) also reported 

alternate form reliability ranging from 0.78 to 0.93.  Concurrent validity has been 

demonstrated for the TEN, as well; the subtests correlate well with other measures of 

early mathematical skills such as the Number Knowledge Test (r = 0.70 to 0.80, fall of 

first grade administration) and the Woodcock-Johnson III’s Applied Problems subtest (r 

= 0.64 to 0.71, fall of first grade administration) (Clarke & Shinn, 2004b).  First graders’ 

performance on the TEN in the fall was also moderately predictive of spring performance 

on mathematics curriculum-based measures (M-CBM; r = 0.56 to 0.70) and on the 

Applied Problems subtest of the Woodcock-Johnson III (r = 0.72 to 0.79) (Clarke & 

Shinn, 2004b).  A small number of studies have investigated the reliability and validity of 

TEN probes administered in kindergarten, as well.  Chard et al. (2005) found preliminary 
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evidence for the concurrent and predictive validity of the TEN kindergarten probes with 

the Number Knowledge Test (r = 0.50 to 0.69), while Martinez et al. (2009) demonstrated 

evidence for the predictive validity of the kindergarten probes with the Stanford 10 

Achievement Test (r = 0.31 to 0.46).  In addition, Baglici, Codding, and Tryon (2010) 

reported that the alternate-form reliability of the winter kindergarten probes ranged from 

0.84 to 0.91.  These researchers also discovered that scores obtained on the Missing 

Number subtest in the winter of kindergarten significantly and uniquely predicted M-

CBM scores in the spring of first grade (r = 0.46; Baglici et al., 2010).  

Number Sense Brief Screener 

The next number sense measure administered to participating kindergarteners was 

the Number Sense Brief Screener (NSB).  The NSB is a 33-item, individually 

administered assessment of number sense intended for use with kindergarteners and first 

graders (Jordan et al., 2008).  The measure includes items on rote counting, one-to-one 

correspondence, counting principles, number recognition, number comparison, nonverbal 

calculation, story problems, and simple computations.  Each item is marked either correct 

or incorrect, and no partial credit is given for any item.  The NSB is untimed and takes 

approximately 15 minutes to administer.   

 Plenty of evidence exists supporting the technical adequacy of the NSB.  Jordan, 

Glutting, Ramineni, and Watkins (2010) administered the NSB to kindergarteners four 

separate times throughout the course of one year and reported the test-retest reliability of 

the measure to range from 0.78 to 0.86.  Coefficient alpha was reported as 0.84, 

demonstrating acceptable internal consistency (Jordan et al., 2008).  In terms of validity, 

this measure has been shown to predict mathematics achievement in both first and third 
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grades.  Performance on the NSB at the beginning of first grade was predictive of later 

performance on the mathematics subtests of the Woodcock-Johnson III (r = 0.72 at end of 

first grade; r = 0.70 at end of third grade) (Jordan, Glutting, & Ramineni, 2010).  

Kindergarten performance on the measure was also predictive of scores on a high-stakes 

state test administered in third grade (Jordan, Glutting, Ramineni, and Watkins, 2010).  In 

addition, Jordan et al. (2008) showed that kindergarten performance on the NSB was 

predictive of third grade performance on the Math Achievement subtest of the 

Woodcock-Johnson III (r = 0.65).  Divergent validity has been demonstrated for the NSB, 

as well, as the measure does not correlate well with a test of reading achievement (Jordan 

et al., 2008). 

Early Numeracy Test 

The third and final number sense measure given to participants was the Early 

Numeracy Test (ENT).  Originally developed by Dutch researchers and later translated 

into Finnish, Chinese, Spanish, and English, the ENT is a 40-item, individually 

administered assessment designed to measure the early mathematical competence of 

students in preschool through first grade (Van Luit & Van de Rijt, 2005).  The 

assessment measures eight components of early mathematical competence: (1) concepts 

of comparison; (2) classification; (3) correspondence; (4) seriation; (5) using counting 

words; (6) structured counting; (7) resultative counting; and (8) general knowledge of 

numbers.  Each item is marked either correct or incorrect, and no partial credit is given 

for any item.  The ENT is untimed and takes approximately 30 minutes to administer.  

The test is also available in two alternate forms. 
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 Analysis of the original Dutch version of the ENT revealed that the test was 

internally consistent, with coefficient alphas for each component ranging from 0.91 to 

0.94 (Van de Rijt et al., 1999).  Internal consistency for the Finnish version of the test 

was reported to be 0.90 (Aunio, Hautamäki, et al., 2006), while internal consistency for 

the English version of the test was reported as 0.83 (Van de Rijt et al., 2003).  Van de Rijt 

et al. (1999) stated that because no similar early mathematics assessments exist in the 

Netherlands, information on the validity of the ENT is not available.  The original test 

was, however, developed using expert judgment, factor analysis, and item response 

theory (Van de Rijt et al., 1999).  Aunio and Niemivirta (2010) demonstrated preliminary 

evidence for the predictive validity of the Finnish version of the ENT; kindergarteners’ 

scores on the ENT explained approximately half of the variance in the mathematics 

performance of those same students in first grade.  Aside from the one report of internal 

consistency from Van de Rijt and her colleagues, no additional research has been 

published on the reliability and validity of the English version of the ENT.   

Teacher Rating 

In addition to measuring participants’ number sense directly, classroom teachers 

were given a simple rating scale and were asked to rate the number sense of each 

participant at both the beginning and end of the school year (Appendix B).  On the rating 

scale, teachers were given a definition of number sense from the National Mathematics 

Advisory Panel (2008) and were then asked to rate the number sense of each participant 

to the best of their ability on a Likert scale that ranged from 1 to 10.  One represented a 

poorly developed number sense and ten represented a well-developed number sense. 
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Criterion Measure 

Mathematics achievement was measured using the Test of Early Mathematics 

Ability, Third Edition (TEMA-3; Ginsburg & Baroody, 2003).  The TEMA-3 is an 

individually administered, norm-referenced test intended for use with children ages 3 

years 0 months to 8 years 11 months.  The assessment has two parallel forms with 72 

items each.  Items on each form are designed to assess skills in the domains of number, 

number comparison, numeral literacy, number facts, simple calculation, and general 

understanding of mathematical concepts.  Each item is marked either correct or incorrect, 

and no partial credit is given for any item.  If students receive a score of zero on five 

consecutive items, the test is discontinued.  The TEMA-3 is untimed and takes 

approximately 30 to 40 minutes to fully administer. 

 Given the well-established nature of the TEMA-3, the assessment possesses 

sound psychometric properties.  Test-retest and alternate form reliabilities are both above 

0.80 (Ginsburg & Baroody, 2003).  The test is also internally consistent, as all reported 

reliability coefficients fall above 0.92.  Concurrent validity has been demonstrated by 

correlating the TEMA-3 with other popular measures of early mathematics abilities.  The 

TEMA-3 correlates well with the Young Children’s Achievement Test (r = 0.91) and the 

Math Calculation subtest of the Diagnostic Achievement Battery (r = 0.83).  Moderately 

strong correlations are also reported for the Basic Operations subtest of the Key Math 

assessment (r = 0.63) and the Woodcock-Johnson III Tests of Achievement (r = 0.55) 

(Ginsburg & Baroody, 2003). 
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Procedures 

Training of Data Collectors 

Prior to the first phase of data collection, six school psychology graduate students 

were trained in the administration and scoring of the three number sense measures.  

During each training session, trainees were given a brief overview of the study and were 

then instructed on how to administer, score, and check the administration integrity of 

each number sense measure.  Trainees then paired off and practiced administering the 

number sense measures together; that is, one trainee acted as the student and also checked 

administration integrity while the other administered and scored the number sense 

assessment.  Each trainee practiced administering the assessments until administration 

integrity exceeded 90% on three consecutive administrations.  At the conclusion of each 

training session, trainees were sent an electronic copy of the assessment instructions, 

probes, protocols, and integrity checklists for review.   

Training on the criterion measure occurred in the spring before the second phase 

of data collection.  During these spring training sessions, five school psychology graduate 

students and one school counseling graduate student were instructed on how to 

administer, score, and check the administration integrity of the criterion measure, the 

TEMA-3.  Trainees again paired off and practiced administering the TEMA-3 together; 

one trainee acted as the student and also checked administration integrity while the other 

administered and scored the assessment.  Each trainee practiced administering the 

TEMA-3 until administration integrity exceeded 90% on three consecutive 

administrations.  At the conclusion of each training session, trainees were given a copy of 

the TEMA-3 test protocol, instructions, and integrity checklists for review.   
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Data Collection 

The first phase of data collection began in mid September, during the first full 

week of kindergarten, and lasted two consecutive weeks (Table 2).  During this phase, the 

TEN, NSB, and ENT were individually administered to each participating kindergarten 

student over the course of three different testing sessions.  Teacher rating scales were also 

distributed and collected during this phase.   

Table 2:  Timeline of fall data collection. 

 Activity 

Week 1 Distribute teacher rating scales 
Administer TEN 
Administer NSB 

Week 2 Administer ENT 
Collect teacher rating scales 

  
Fall data collection began with the administration of the TEN.  Test administrators 

followed the standardized instructions for all four of the minute-long TEN subtests and 

recorded the student’s score and number of errors after each administration.  Although 

alternate forms exist for the TEN, the same forms were given to all kindergarteners as 

part of this study.  After the TEN was administered to all participating kindergarteners, 

data collectors then administered and scored the NSB during a separate, second testing 

session.  Over the course of the second week of fall data collection, the final number 

sense measure, the ENT, was administered and scored according to the standardized 

instructions.  While two alternate forms are available for the ENT, Form A was 

administered to all participants in this study.   

Fall assessment administration was purposely not counterbalanced in order to 

ensure that the amount of time between each assessment was the same for each 

participant.  In other words, students who were administered the TEN first were then 
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administered the NSB first, and so on.  Data collectors pulled students for testing 

alphabetically so that order of testing remained consistent and easy to track.  

The second and final phase of data collection began in late May, lasted two 

consecutive weeks, and ended approximately two weeks before the last day of school 

(Table 3).   During this phase, the criterion measure, the TEMA-3, was individually 

administered to each participating kindergarten student according to standardized 

instructions.  The same teacher rating scales that were distributed during fall data 

collection were also distributed and collected during this phase.  To again ensure equal 

amounts of time between each testing session, students who were tested first in the fall 

were tested first in the spring. 

Table 3:  Timeline of spring data collection. 

 Activity 

Week 1 Distribute teacher rating scales 
Begin administering TEMA-3 

Week 2 Finish administering TEMA-3 
Collect teacher rating scales 

 
Administration Integrity and Inter-rater Reliability 

Administration integrity and inter-rater reliability were checked for 23% of the 

test administrations.  For approximately one out of every five assessment administrations, 

a secondary data collector was present to (1) ensure administration integrity via an 

integrity checklist, and (2) simultaneously and independently score the assessment along 

with the primary data collector.  Administration integrity checklists already existed for 

the TEN (Clarke & Shinn, 2004b) and were created by the researcher for the NSB, ENT, 

and TEMA-3 (Appendix C).  The secondary data collector simply used an extra test 

protocol to simultaneously and independently score the assessment for inter-rater 

reliability purposes. 



 66 

Administration integrity was calculated using the following formula:  (Number of 

steps completed correctly)/(Total number of steps) x 100%.  Results indicated that both 

the fall and spring measures were administered with a high degree of integrity.  

Administration integrity for the subtests of the TEN ranged from 97% to 99%, while the 

administration integrity for the NSB and ENT averaged 99%.  Integrity of administration 

for the criterion measure, the TEMA-3, averaged 96%.  

Inter-rater reliability was calculated using a standard response-by-response or 

point-by-point agreement formula where the number of agreements was divided by the 

number of agreements plus the number of disagreements (i.e., Inter-rater Reliability = 

Agreements/(Agreements + Disagreements)).  Inter-rater reliability for the subtests of the 

TEN ranged from 0.90 to 0.97, suggesting a high level of agreement between raters 

across subtests.  Inter-rater reliability for the NSB and ENT was 0.98 and .99, 

respectively.  Inter-rater reliability for the TEMA-3 was 0.99, which also indicated a very 

high level of agreement between raters for this measure.   

Data Analytic Plan 

Calculating a TEN Composite Score 

As previously described, the Test of Early Numeracy (TEN) consists of four 

separate subtests:  Oral Counting, Number Identification, Quantity Discrimination, and 

Missing Number.  While each of these subtests can be administered and scored 

independently, all four subtests are typically administered together when the TEN is 

being used for screening purposes.  In an effort to determine the predictive validity of the 

TEN as a whole, as opposed to the predictive validity of each separate subtest, a 

composite score was calculated for the TEN.  Several methods were considered for 
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creating this composite score (Appendix D); however, all methods produced composite 

scores that were highly correlated with one another and thus the simplest method was 

chosen to create the composite score.  This method involved summing the scores 

obtained on each of the four subtests to create the overall TEN composite score.  For 

example, if a student scored a 50 on Oral Counting, 25 on Number Identification, 10 on 

Quantity Discrimination, and 5 on Missing Number, the student’s TEN composite score 

would be 90. 

Preliminary Analyses 

Prior to conducting the analyses related to the primary research questions, data 

were screened using SPSS (Version 22.0) to determine if the underlying assumptions of 

simple linear and multiple regression analyses would be met.  More specifically, the 

assumptions of normality, linearity, and homoscedasticity were assessed by examining 

histograms, scatterplots, Q-Q plots, plots of the residuals versus predicted values, and 

skew and kurtosis statistics.  Multicollinearity among independent variables was also 

assessed through examination of the correlation matrix and variance inflation factors 

(VIF).  Univariate outliers were identified using two methods:  (1) visually inspecting 

boxplots for each univariate distribution and (2) converting each variable’s raw scores to 

z scores.  Z scores beyond ±3.29 were considered outliers (p < 0.001; Tabachnick & 

Fidell, 2001).  Bivariate outliers were identified through the calculation of Mahalanobis 

distances for each multiple regression analysis. 

Primary Analyses 

Following the preliminary analyses, a number of additional statistical analyses 

were conducted in order to answer this study’s primary research questions.  All analyses 
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were run in SPSS, aside from the analysis that involved comparing dependent 

correlations.  This particular analysis was conducted using R’s ‘psych’ package (R 

Development Core Team, 2012; Revelle, 2013).  One-tailed significance tests were used 

for all regression analyses. 

Simple linear regression analyses were conducted to examine the relationship 

between kindergarteners’ fall performance on each number sense measure and spring 

performance on the TEMA-3.  A simple linear regression was also used to assess the 

relationship between fall teacher rating of number sense and spring performance on the 

TEMA-3.  To determine which number sense measure best predicted later mathematics 

achievement, dependent correlations between performance on the number sense measures 

and the TEMA-3 were compared using the methods described in Steiger (1980).  

Multiple regression analyses were then run to examine whether or not certain 

combinations of number sense measures and/or fall teacher rating of number sense 

predicted mathematics achievement above and beyond that of just one measure (e.g., did 

the TEN and the NSB predict mathematics achievement above and beyond that of the 

NSB alone?).  Finally, a simple linear regression was used to determine if there was a 

significant relationship between spring teacher rating of number sense and spring 

performance on the TEMA-3.  
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CHAPTER 4 

 

RESULTS 

Summary of Purpose 

The purpose of this study was to investigate the predictive utility of three 

measures of number sense:  the Test of Early Numeracy (TEN), Number Sense Brief 

Screener (NSB), and Early Numeracy Test (ENT).  It was hypothesized that there would 

be a positive relationship between fall performance on each number sense measure and 

spring performance on a mathematics achievement test, the Test of Early Mathematics 

Ability, Third Edition (TEMA-3).  This hypothesis was tested using simple linear 

regression analyses.  It was also hypothesized that the ENT would emerge as the best 

predictor of number sense, as it is the most comprehensive measure of number sense and 

assesses the broadest range of early numeracy skills.  This hypothesis was tested using 

the methods described in Steiger (1980) for comparing dependent correlations.  In 

addition to examining the predictive utility of each number sense measure, this study 

analyzed the predictive validity of teacher rating of student number sense in the fall.  It 

was predicted that there would be a positive relationship between fall teacher rating of 

number sense and spring performance on the TEMA-3.  This prediction was tested using 

a simple linear regression analysis. 

This study also aimed to determine if certain combinations of number sense 

measures predicted mathematics achievement above that of just one measure.  It was 

hypothesized that all possible combinations of number sense measures would predict 

mathematics achievement above and beyond that of just one measure.  This hypothesis 

was developed due to the fact that all three measures of number sense, while assessing 
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the same construct, all contain at least a few unique items that measure different early 

numeracy skills.  It was also hypothesized that performance on a number sense measure 

combined with teacher rating of number sense would predict mathematics achievement 

above and beyond that of performance on a number sense measure alone.  These 

predictions were tested through multiple regression analyses.   

Finally, this study sought to examine the relationship between a teacher’s rating 

of a kindergartener’s number sense in the spring and that same kindergartener’s 

performance on a mathematics achievement test in the spring.  It was hypothesized that 

there would be a positive relationship between these variables; a simple linear regression 

was used to test this hypothesis. 

Screening for Assumptions 

Data were screened for normality, linearity, homoscedasticity, outliers, and 

mulicollinearity in an effort to determine if the underlying assumptions of simple linear 

and multiple regression analyses would be met.  Normality for each univariate 

distribution was assessed via the visual inspection of histograms and Q-Q plots 

(Appendices E and F, respectively) as well as analysis of skew and kurtosis statistics 

(Table 4).  Results revealed that each independent variable was approximately normally 

distributed, aside from a slightly non-normal distribution for teacher rating of number 

sense in the spring due to a small negative skew (-1.07).  The distribution of the 

dependent variable, the TEMA-3, was somewhat non-normally distributed due to a slight 

positive skew (1.02) and moderately high kurtosis (3.88).  Closer examination of this 

distribution showed that two outliers were likely the cause of the positive skew and heavy 
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tails.  Despite this skewness and kurtosis, data were considered normal enough to conduct 

the intended analyses without negative consequences. 

Table 4:  Descriptive statistics for independent and dependent variables. 

Variable Min. Max. Mean Std. deviation Skewnessa Kurtosisb 

Independent Variables 
     TEN Composite 10 201 97.41 46.44 0.07 -0.78 
     NSB 8 33 17.67 5.73 0.37 -0.52 
     ENT 7 36 19.68 6.48 0.33 -0.46 
     T. Rating (Fall) 2 10 6.91 1.92 -0.63 0.17 
     T. Rating (Spring) 2 10 7.59 2.06 -1.07 0.68 
Dependent Variable 
     TEMA-3 17 71 35.84 8.73 1.02 3.88 
aThe standard error of the skewness was 0.24. 
bThe standard error of the kurtosis was 0.47. 
 

Linearity was evaluated through the visual inspection of scatterplots showing the 

relationship between the dependent variable and each independent variable (Appendix 

G).  Scatterplots revealed linear relationships in all cases.  Homoscedasticity was tested 

by creating a plot of the residuals versus predicted values for each simple linear 

regression model (Appendix H).  Results indicated consistent error variance around the 

regression line for each model, and thus the assumption of homoscedasticity was 

satisfied. 

Multicollinearity among independent variables was first assessed through 

examination of the correlation matrix, which showed correlations between independent 

variables ranging from 0.39 to 0.83 (Table 5).   

Table 5:  Correlation matrix. 

 
TEN 

Composite NSB ENT 
T. Rating 

(Fall) 
T. Rating 
(Spring) TEMA-3 

TEN Composite 1.00 0.81 0.83 0.49 0.66 0.73 
NSB  1.00 0.78 0.45 0.65 0.78 
ENT   1.00 0.39 0.63 0.71 
T. Rating (Fall)    1.00 0.58 0.43 
T. Rating (Spring)     1.00 0.65 
TEMA-3      1.00 
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Variance inflation factors (VIF) were also examined.  These factors did not exceed 4.0 in 

any of the multiple regression analyses run. 

Univariate outliers were identified using two methods:  (1) visually inspecting 

boxplots for each univariate distribution and (2) converting each variable’s raw scores to 

z-scores and comparing the z-scores to a critical value of ±3.29 (p < 0.001; Tabachnick & 

Fidell, 2001).  Analysis of the boxplots and z-scores did not indicate any outliers for the 

TEN Composite, NSB, or ENT distributions.  Boxplots of fall and spring teacher rating 

of number sense identified three and five outliers, respectively.  The z-scores for these 

outliers did not, however, exceed ±3.29, and thus these outliers were not removed from 

the sample.  A boxplot of the TEMA-3 distribution identified three outliers, but only one 

of these three outliers exceeded the critical value of ±3.29.  Further examination revealed 

that the extreme score was simply due to this particular participant performing very well 

on the assessment and was not the result of an error in data entry or unstandardized 

administration of the assessment.  Consequently, this outlier was not removed from the 

sample.  The calculation of Mahalanobis distances for each multiple regression analysis 

did not reveal any bivariate outliers.  

Research Question One 

Is there a relationship between kindergarteners’ fall performance on each 

measure of number sense and spring performance on a mathematics achievement test? 

Simple linear regression analyses were conducted to determine if there was a 

significant relationship between fall performance on each number sense measure and 

spring performance on the TEMA-3.  It was hypothesized that there would be a positive 

relationship between fall performance on each measure of number sense and spring 
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performance on the TEMA-3.  Analyses revealed positive and strong relationships 

between fall performance on each number sense measure and spring performance on the 

TEMA-3, with standardized regression coefficients (R) ranging from 0.71 to 0.78 (Table 

6).  In addition, results indicated that each regression model was significant (p < 0.001), 

suggesting that the TEN Composite, NSB, and ENT each significantly predict later 

performance on the TEMA-3.  A closer examination of the R2 values showed that each 

number sense measure also explained approximately half of the variability in TEMA-3 

scores.  The NSB explained the most variance, with an R2 value of 0.61, while the ENT 

explained the least variance (R2 = 0.50).   

Table 6:  Simple linear regression analyses between TEMA-3 and each number sense 
measure (TEMA-3i = β0 + β1(Predictori) + εi). 

Predictor 

Unstandardized 
Coefficients 

R R2 t p 

95% Confidence 
Interval for β 

β SE Lower Upper 

TEN Composite 0.14 0.01 0.73 0.54 10.80 <0.001 0.11 0.16 
NSB 1.19 0.10 0.78 0.61 12.40 <0.001 1.00 1.38 
ENT 0.95 0.10 0.71 0.50 9.99 <0.001 0.76 1.14 

 
Research Question Two 

Which measure of number sense, administered in the fall of kindergarten, best 

predicts mathematics achievement in the spring of kindergarten? 

To determine which of the three number sense measures best predicts later 

mathematics achievement, dependent correlations between performance on the number 

sense measures and the TEMA-3 were compared using the methods described in Steiger 

(1980).  Since the ENT is the most comprehensive measure of number sense and assesses 

the broadest range of early numeracy skills, it was hypothesized that the ENT would be 

the best predictor of later performance on the TEMA-3.  Results from the analysis 

showed no significant differences in the correlations between the TEN Composite, NSB, 
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and ENT and the TEMA-3.  In other words, no single number sense measure predicted 

later mathematics achievement significantly better than the others (Table 7).  

Table 7:  Comparing dependent correlations. 

Comparison 

Correlation 
with TEMA-3 

(A) 

Correlation 
with TEMA-3 

(B) t p 

TEN Composite (A) vs. NSB (B) 0.73 0.78 1.17 0.24 
TEN Composite (A) vs. ENT (B) 0.73 0.71 0.70 0.49 
NSB (A) vs. ENT (B) 0.78 0.71 1.77 0.08 

 
 Although no number sense measure emerged as the best predictor of later 

mathematics achievement in a statistical sense, the NSB has advantages over the other 

measures.  For example, according to anecdotal evidence gathered from data collectors, 

this measure was the simplest to administer, easiest to score, and appeared to be the most 

engaging to students.  As a result, the NSB was treated as the “best” measure when 

conducting analyses for research questions four and five.  

Research Question Three 

Is there a relationship between a teacher’s rating of a kindergartener’s number 

sense in the fall and that same kindergartener’s performance on a mathematics 

achievement test in the spring? 

A simple linear regression analysis was conducted to determine if there was a 

relationship between fall teacher rating of number sense and spring performance on the 

TEMA-3.  It was hypothesized that there would be a positive relationship between a 

teacher’s rating of a kindergartener’s number sense in the fall and that same 

kindergartener’s spring performance on the TEMA-3.  The analysis revealed a positive, 

moderately strong relationship between fall teacher rating of number sense and later 

mathematics achievement (R = 0.43; Table 8).  Additionally, results indicated the 
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regression model was significant (p < 0.001), suggesting that fall teacher rating of 

number sense significantly predicts later performance on the TEMA-3.  The R2 value, 

however, showed that fall teacher rating explained only 19% of the variability in TEMA-

3 scores. 

Table 8:  Simple linear regression analyses between TEMA-3 and fall teacher rating of 
number sense (TEMA-3i = β0 + β1(Fall Ratingi) + εi). 

Predictor 

Unstandardized 
Coefficients 

R R2 t p 

95% Confidence 
Interval for β 

β SE Lower Upper 

Fall rating 1.97 0.41 0.43 0.19 4.81 <0.001 1.16 2.78 

 
Given that fall teacher rating of number sense predicted performance on the 

TEMA-3, exploratory analyses were conducted to determine if there was a significant 

difference in the way fall teacher rating predicted TEMA-3 performance compared to the 

way the number sense measures predicted TEMA-3 performance.  That is, does a 

teacher’s rating of a student’s number sense in the fall predict later mathematics 

achievement better than the TEN Composite, NSB, and/or ENT?  Using the methods 

described in Steiger (1980) for comparing dependent correlations, the correlation 

between fall teacher rating and the TEMA-3 was compared to the correlations between 

each number sense measure and the TEMA-3.  Results revealed that the TEN Composite, 

NSB, and ENT all predict TEMA-3 performance significantly better than fall teacher 

rating of number sense (Table 9). 

Table 9:  Comparing dependent correlations between the TEMA-3 and fall teacher rating 
of number sense versus the TEMA-3 and the number sense measures. 

Comparison 

Correlation 
with TEMA-3 

(A) 

Correlation 
with TEMA-3 

(B) t p 

Fall Teacher Rating (A) vs.  
TEN Composite (B) 

0.43 0.73 4.27 <0.001 

Fall Teacher Rating (A) vs. NSB (B) 0.43 0.78 5.04 <0.001 
Fall Teacher Rating (A) vs. ENT (B) 0.43 0.71 3.43   0.001 
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Research Question Four 

Is there a combination of number sense measures that predicts mathematics 

achievement above and beyond that of just one measure?   

Multiple regression analyses were conducted to determine if certain combinations 

of number sense measures predict mathematics achievement above that of just one 

measure.  It was hypothesized that each combination of number sense measures created 

would predict mathematics achievement above and beyond that of just one measure 

alone.  For these analyses, the proposed method was to place the best predictor of number 

sense (as determined by the results from research question two) in the model first, 

followed by different combinations of the other two number sense measures.  Although 

the results from research question two showed that no number sense measure emerged as 

the best predictor of later mathematics achievement in a statistical sense, it was 

determined that the NSB could be considered the best measure when comparing the three 

measures qualitatively.  As a result, the NSB was placed in each regression model first 

when creating combinations of number sense measures. 

Results indicated that all three models predicted mathematics achievement above 

that of just the NSB alone (Table 10).  
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Table 10:  Multiple regression analyses of different combinations of number sense 
measures. 

Predictor 

Unstandardized 
Coefficients 

t p 
R2/ 

(R2 Change) β SE 

TEMA-3i = β0 + β1(NSBi) + β2(TEN Compositei)  + εi 

Constant 15.91 1.74 9.12 <0.001 
0.64/ 
(0.03) 

NSB 0.81 0.16 5.24 <0.001 
TEN Composite 0.06 0.02 2.99 0.002 
      

TEMA-3i = β0 + β1(NSBi) + β2(ENTi)  + εi 

Constant 13.53 1.81 7.48 <0.001 
0.63/ 
(0.02) 

NSB 0.89 0.15 5.92 <0.001 
ENT 0.34 0.13 2.54 0.005 
      

TEMA-3i = β0 + β1(NSBi) + β2(TEN Compositei) + β3(ENTi) + εi 

Constant 14.94 1.93 7.74 <0.001 
0.64/ 
(0.03) 

NSB 0.75 0.17 4.50 <0.001 
TEN Composite 0.04 0.02 1.91 0.03 
ENT 0.18 0.16 1.16 0.125 

 

The first model, which included both the NSB and the TEN Composite as predictors, 

explained 64% of the variance in TEMA-3 scores.  This reflected a 3% change in R2 

values, and demonstrated that the combination of the NSB and the TEN Composite 

predicted performance on the TEMA-3 better than the NSB alone.  In other words, in this 

model, the TEN Composite explained a significant amount of variation in TEMA-3 

scores that was not already accounted for by the NSB (p = 0.002).  The next model, 

which included the NSB and the ENT as predictors, predicted TEMA-3 performance 

above and beyond that of just the NSB, as well (R2 = 0.63; R2 change = 0.02).  Similar to 

the first model, the ENT in this model explained a significant amount of variation in 

TEMA-3 scores that was not already explained by the NSB (p = 0.005).  The final model, 

which included all three measures of number sense, also predicted TEMA-3 scores above 

that of just the NSB, although a closer examination of the results reveals some interesting 

findings.  The R2 and the change in R2 values for this model were 0.64 and 0.03, 
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respectively.  These values were no different than the values obtained from the first 

model, which contained only the NSB and TEN Composite.  Consequently, the addition 

of the ENT to the NSB and TEN Composite did not explain the variance in TEMA-3 

scores any better than the combination of those two measures alone (p = 0.125).  The R2 

values for the third model were, however, slightly different than those obtained in the 

second model containing the NSB and ENT (R2 values differed by 0.01).  The addition of 

the TEN Composite to the NSB and ENT explained significantly more of the variance in 

TEMA-3 scores than just the NSB and ENT alone (p = 0.03). 

 While the above analyses answer the proposed research question, they do not 

reveal which early numeracy skills are associated with each assessment or which specific 

number sense components may be explaining the variance in TEMA-3 scores.  

Consequently, a content analysis of each number sense assessment was conducted in 

order to identify the overlapping and unique number sense components measured by each 

test (Table 11). 
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Table 11:  Content analysis of each number sense assessment. 

Number Sense Component TEN NSB ENT 

Oral counting X X X 
Quantity discrimination X X X 
Number identification X X  
Missing number X   
One-to-one correspondence  X X 
Non-verbal computation	   	   X	   X	  

Verbal computation	   	   X	   X	  

Knowledge of number line  X  
Counting principles  X  
Skip counting   X 
Counting on   X 
Counting backwards   X 
Resultative counting   X 
Concepts of comparison    X 
Classification   X 
Seriation   X 
Ordinality   X 
Subitizing   X 

 

Of the 18 different skills measured by the assessments, only two of the skills – oral 

counting and quantity discrimination – were found on all three measures.  Number 

identification was shared by the TEN and NSB, while one-to-one correspondence, 

nonverbal computation, and verbal computation were skills shared by the NSB and ENT.  

In terms of skills that were unique to each test, missing number was found only on the 

TEN.  Knowledge of the number line and counting principles were unique to the NSB.  

The ENT assessed the broadest range of skills and had nine unique components ranging 

from skip counting to seriation to subitizing.   

The previous multiple regression analyses showed that combinations of the NSB 

with the other number sense measures explained more variance in TEMA-3 scores, above 

and beyond that of just the NSB.  This additional explained variance could be due to the 

fact that the TEN and ENT each measure unique components that the NSB does not.  For 
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example, adding the TEN to a model with the NSB resulted in a 3% change in R2 values.  

It is possible that the missing number task, which is the one unique component of the 

TEN, was responsible for this additional explained variance.  To investigate this further, 

an exploratory multiple regression analysis was conducted to determine which 

component(s) of the TEN were responsible for the change in R2 values.  In this analysis, 

the NSB was entered into the model first, followed by all four subtests of the TEN:  Oral 

Counting (OC), Number Identification (NI), Quantity Discrimination (QD), and Missing 

Number (MN).  The Holm-Bonferroni sequential procedure was then used to correct for 

multiple comparisons and control for family-wise error.  Results indicated that in addition 

to the variance explained by NSB, OC and MN also explained a significant amount of the 

variance in TEMA-3 scores (p = 0.005 and 0.011, respectively), while QD and NI did not 

(p = 0.15 and 0.34, respectively; Table 12). 

Table 12: Multiple regression analysis using NSB and TEN subtests as predictor 
variables. 

	  Predictor 

Unstandardized 
Coefficients 

t p α = 0.05/n 
R2/ 

(R2 Change) β SE 

TEMA-3i = β0 + β1(NSBi) + β2(OCi) + β3(NIi) + β3(QDi) + β4(MNi) + εi 

Constant 16.61 2.09 7.93 <0.001  

0.66/ 
(0.05) 

NSB 0.72 0.16 4.40 <0.001  
OC 0.12 0.04 2.67 0.005 0.0125 
MN	   0.34	   0.15	   2.33	   0.011	   0.0167 

QD -0.11 0.10 -1.04 0.15 0.025 

NI 0.02 0.05 0.43 0.34 0.05 

 
Research Question Five 

Does performance on a number sense measure, combined with fall teacher rating 

of number sense, predict mathematics achievement above and beyond that of 

performance on a number sense measure alone? 
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A multiple regression analysis was used to ascertain whether the combination of a 

number sense measure, plus fall teacher rating of number sense, would predict TEMA-3 

performance above that of the number sense measure alone.  It was hypothesized that the 

combination of the two variables would predict later mathematics achievement above that 

of performance on a number sense measure alone.  Once again, because the NSB was 

considered to be the best number sense measure in a qualitative sense, one regression 

model was created in which the NSB was entered into the model first, followed by fall 

teacher rating of number sense.  Results indicated that the addition of the fall teacher 

rating to the model resulted in a 1% change in R2; however, fall teacher rating of number 

sense did not explain a significant amount of additional variance in TEMA-3 scores (p = 

0.14; Table 13).  The change in R2 was most likely simply due to another predictor 

variable being added to the model. 

Table 13:  Multiple regression analysis combining NSB with fall teacher rating of 
number sense (TEMA-3i = β0 + β1(NSBi) + β2(Fall Ratingi)  + εi). 

Predictor 

Unstandardized 
Coefficients 

t p 
R2/ 

(R2 Change) β SE 

Constant 12.87 2.22 5.79 <0.001 
0.62/ 
(0.01) 

NSB 1.12 0.11 10.47 <0.001 

Fall T. Rating 0.47 0.32 1.49 0.14 

 
Research Question Six 

Is there a relationship between a teacher’s rating of a kindergartener’s number 

sense in the spring and that same kindergartener’s mathematics achievement in the 

spring? 

A simple linear regression analysis was conducted to determine if there was a 

significant relationship between spring teacher rating of number sense and spring 

performance on the TEMA-3.  It was hypothesized that there would be a positive 
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relationship between spring teacher rating of number sense and performance on the 

TEMA-3.  Analyses revealed a moderately strong, positive relationship between spring 

teacher rating of number sense and spring mathematics achievement (R = 0.65; Table 

14).  Additionally, results indicated the regression model was significant (p < 0.001), 

suggesting that concurrent validity exists and that spring teacher rating of number sense 

significantly predicts spring performance on the TEMA-3.  The R2 value also showed that 

spring teacher rating explained 42% of the variability in TEMA-3 scores. 

Table 14:  Simple linear regression analysis between TEMA-3 and spring teacher rating 
of number sense (TEMA-3i = β0 + β1(Spring ratingi) + εi). 

Predictor 

Unstandardized 
Coefficients 

R R2 t p 

95% Confidence 
Interval for β 

β SE Lower Upper 

Spring rating 2.76 0.32 0.65 0.42 8.53 <0.001 2.12 3.40 
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CHAPTER 5 

 

DISCUSSION 

The overall purpose of this study was to investigate the predictive validity of three 

measures of number sense – the Test of Early Numeracy (TEN), Number Sense Brief 

Screener (NSB), and Early Numeracy Test (ENT) – and to establish which measure, if 

any, best predicts later mathematics achievement.  This study was also designed to 

determine if a particular combination of number sense assessments predicts future 

mathematics achievement significantly better than any one assessment alone.  The 

relationship between performance on each number sense measure and teacher rating of 

number sense was examined, as well.  In addition, the final purpose of this study was to 

add to the literature base on the psychometric properties of the TEN, NSB, and ENT by 

replicating research that has previously been conducted on these measures.   

Summary of Findings 

This study provided solid evidence for the predictive validity of the TEN, NSB, 

and ENT.  As hypothesized, performance on all three number sense measures in the fall 

of kindergarten significantly predicted performance on a measure of mathematics 

achievement, the Test of Early Mathematics Ability, Third Edition (TEMA-3), in the 

spring of kindergarten.  In fact, analyses revealed strong positive relationships between 

each number sense measure and later performance on the TEMA-3, as standardized 

regression coefficients ranged from 0.71 to 0.78.  These findings are consistent with those 

of previous studies and suggest that number sense assessments, administered at the very 

beginning of kindergarten, are indeed predictive of future success in mathematics.  Prior 

research on the TEN has demonstrated that performance on the kindergarten measures is 
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predictive of later performance on a range of other assessments such as the Number 

Knowledge Test, Stanford 10 Achievement Test, and mathematics CBM probes (Baglici 

et al., 2010; Chard et al., 2005; Martinez et al., 2009).  The same is true for the NSB, as 

previous research has shown that kindergarten performance on the NSB predicts third 

grade performance on a high-stakes state test and on standardized measures of 

mathematics achievement, such as the Math Achievement subtest of the Woodcock-

Johnson III (Jordan et al, 2008; Jordan, Glutting, Ramineni, & Watkins, 2010).  Scores on 

the NSB at the beginning of first grade were also predictive of scores on the mathematics 

subtests of the Woodcock-Johnson III at the end of first and third grades (Jordan, 

Glutting, & Ramineni, 2010).  Less evidence exists for the predictive validity of the ENT, 

although kindergarten scores on the Finnish version of the assessment were predictive of 

overall first grade mathematics performance (Aunio & Niemivirta, 2010).  This study was 

the first to provide evidence for the predictive validity of the English version of the ENT.  

Although correlations between each number sense measure and the TEMA-3 

differed slightly, there were no significant differences in the way each measure predicted 

later mathematics achievement.  In other words, no number sense measure emerged as 

the best predictor of future success in mathematics – the TEN, NSB, and ENT all 

predicted performance on the TEMA-3 similarly.  This finding was inconsistent with one 

of the hypotheses of this study, as it was believed that the ENT would emerge as the best 

predictor of mathematics achievement.  Of the three number sense measures utilized in 

this study, the ENT was the most comprehensive in that it assessed the broadest range of 

number sense components.  These results demonstrate, however, that a more 

comprehensive number sense assessment may not always result in a better screening 
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instrument.  The TEN, for example, only assesses four components of number sense.  

Despite this brevity, results indicated that the TEN predicted later mathematics 

achievement just as well as the ENT, which assesses over ten different components.  

These findings suggest that it may not matter how many number sense components are 

assessed, but rather which number sense components are assessed.  

While the dependent correlations between each number sense measure and the 

TEMA-3 did not differ significantly, it may be important to investigate the differences in 

the way the NSB and ENT each predicted TEMA-3 scores with a larger sample.  In this 

study, the correlation between the NSB and the TEMA-3 was 0.78, and the correlation 

between the ENT and the TEMA-3 was 0.71.  This difference in predictive validity was 

not significant, but did result in an observed p-value of 0.08.  Consequently, this same 

comparison should be tested with a larger sample size, as more power could result in 

significant findings.  Of course, even if statistical significance between the NSB and ENT 

were detected with a larger sample size, this would not necessarily demonstrate clinical 

significance.  Practitioners may, for example, be less concerned with small statistical 

differences in predictive validity and more concerned with the qualitative features of the 

assessments, such as ease of administration and scoring. 

 In the case of this study, the qualitative features of each assessment were one of 

the only factors that set the assessments apart.  While statistical analyses did not reveal 

any one measure as being the best predictor of later mathematics achievement, an 

informal review of each assessment resulted in the NSB emerging as the “best” measure 

in a qualitative sense.  Anecdotal evidence from data collectors who administered all 

three measures (n = 6) suggested that of the three number sense assessments utilized in 
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this study, the NSB was considered the simplest to administer and easiest to score.  In 

addition, data collectors reported that the NSB appeared to be the most engaging to 

students.  Data collectors also noted that the TEN was more difficult to administer with 

integrity due to its timed nature, while the ENT was described as somewhat lengthy and 

tedious for young children. 

 Just as previous research on the TEN, NSB, and ENT had not compared the 

predictive validity of these three measures directly, no studies had examined the 

predictive validity of different combinations of these measures, either.  Findings from this 

study indicate that certain combinations of number sense measures predict mathematics 

achievement above and beyond that of just one measure alone.  Performance on the NSB 

and TEN, for example, predicted TEMA-3 performance better than performance on the 

NSB alone.  The combination of the NSB and TEN together explained 64% of the 

variance in TEMA-3 scores, while the NSB alone explained 61% of the variance in 

TEMA-3 scores.  Similar results were found with the combination of the NSB and ENT, 

as these two measures together explained variation in TEMA-3 scores better than the 

NSB alone (R2 change = 0.02).  A subsequent content analysis, which identified the 

overlapping and unique skills assessed by each number sense measure, suggested that this 

additional explained variance was most likely due to the fact that each measure assesses 

at least one unique early numeracy skill that the others do not.  The TEN, for example, is 

the only measure that assesses students’ ability to identify the missing number in a string 

of three digits (e.g., 7 __ 9).  The ENT measures fourteen different number sense 

components, nine of which are unique to the ENT and include skills such as subitizing, 

seriation, and classification.  
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While the content analysis suggested that Missing Number, the unique component 

of the TEN, was solely responsible for the additional variance explained by the 

combination of the TEN and NSB, a multiple regression analysis further investigating 

this notion revealed some interesting findings.  When the NSB was placed into a 

regression model first, followed by all four subtests of the TEN, results showed that in 

addition to the variance explained by the NSB, both Missing Number and Oral Counting 

also explained a significant amount of the variance in TEMA-3 scores, while Number 

Identification and Quantity Discrimination did not.  Consistent with the conclusions made 

from the content analysis, the multiple regression analysis demonstrated that in this 

model, Missing Number explained a significant amount of the variance in TEMA-3 

scores.  Interestingly, Oral Counting also significantly contributed to the change in R2, 

even though counting aloud was a skill already measured by the NSB.  This particular 

finding is likely due to the fact that the skill of oral counting is assessed in greater depth 

and is weighted much more heavily on the TEN than on the NSB.  On the TEN, students 

are given one minute to count as high as they can, with 100 as the limit.  Their score is 

the highest number they reach at one minute, minus any errors (e.g., if a student counts to 

47 in one minute but makes one error, their oral counting score would be 46).  On the 

NSB, however, there is only one item that addresses oral counting.  On this item, students 

are asked to count to ten.  If they do this successfully, they receive one point; if they are 

unable to count to ten successfully, they receive zero points.  Thus, the ability to count 

aloud represents approximately one quarter of the items on the TEN, compared to one 

thirty-third of the items on the NSB.  In addition, the TEN allows for a more precise 

measurement of the skill, while the NSB only assigns an all-or-nothing score.  
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Unfortunately, this type of skill analysis was not possible to conduct with the ENT or 

NSB, as these assessments do not consist of separate subtests, but rather only contain one 

or two items that measure each number sense component.  Regardless, these results again 

support the notion that it may not matter how many number sense components are 

assessed, but rather which number sense components are assessed and at what depth. 

Finally, it should also be noted that the combination of all three number sense 

measures did not explain variation in TEMA-3 scores any better than the combination of 

the NSB and TEN.  The combination of all three measures did, however, explain 

variation in TEMA-3 scores slightly better than the combination of the NSB and ENT.  

When placed in a model with the NSB and TEN, the ENT did not explain any significant 

variance in TEMA-3 scores.  The addition of the TEN to a model already containing the 

NSB and ENT, however, did explain significantly more of the variance in TEMA-3 

scores than just the NSB and ENT alone. 

These results were somewhat consistent with this study’s hypotheses.  Since a 

combination of two or three measures would assess an increasingly broader range of 

number sense components, it was hypothesized that each combination of number sense 

measures created would predict mathematics achievement above that of just one measure 

alone.  Findings supported this hypothesis in that combining the NSB with one other 

measure of number sense resulted in a model that predicted later mathematics 

achievement better than the NSB alone.  Findings were contrary to this hypothesis in that 

adding a third measure to the model did not always further explain the variability in 

TEMA-3 performance.  The ENT, for example, does not appear to measure any unique 

components that contribute to later mathematics achievement beyond that already 
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assessed by the combination of the NSB and TEN.  The addition of the TEN to the NSB 

and ENT, however, does create a model that explains significantly more of the variance 

in TEMA-3 scores. 

 Once again, the issue of clinical significance must be kept in mind when 

considering these findings.  Although the combinations of the NSB and TEN and NSB 

and ENT explained performance on the TEMA-3 better than the NSB alone, these 

combinations of two number sense measures only explained two to three percent more of 

the variance in TEMA-3 scores (e.g., NSB alone explained 61% of the variance in 

TEMA-3 scores, while the combination of the NSB and TEN explained 64% of the 

variance).  While this change is statistically noteworthy, one has to wonder about its 

clinical significance or practical importance.  Educators are not likely to administer two 

entire number sense assessments simply because administering two assessments predicts 

later mathematics achievement slightly better than one assessment.  Instead, practitioners 

are more likely to administer one assessment that is reliable, valid, simple, and brief. 

 In addition to investigating the predictive validity of different measures of number 

sense, this study also examined the concurrent and predictive validity of teacher rating of 

number sense.  Consistent with hypotheses, a significant positive relationship was found 

between teacher rating of number sense in the spring and TEMA-3 scores, thereby 

providing evidence for the concurrent validity of teacher rating of student number sense.  

Teachers appear to have a fairly strong understanding of their students’ number sense 

skills in the spring of kindergarten, as their rating of student number sense explained 42% 

of the variation in TEMA-3 scores.  Teacher rating of student number sense in the fall 

also significantly predicted spring performance on the TEMA-3; however, the fall rating 
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only explained a relatively small percentage (18%) of the variance in TEMA-3 scores.  

This was again in line with this study’s hypotheses.  Further examination of these results 

revealed that fall teacher rating of number sense did not predict later mathematics 

achievement as well as the number sense measures.  In fact, all three of the number sense 

assessments predicted TEMA-3 performance significantly better than fall teacher rating 

of number sense.  These results are not entirely surprising, as teachers completed the fall 

number sense ratings during the first two weeks of school and were not very familiar with 

their students or their ability levels.   

Furthermore, analysis of a model containing both the NSB and fall teacher rating 

of number sense showed that fall teacher rating did not explain a significant amount of 

variance in TEMA-3 scores.  This was contrary to hypotheses, as it was believed that 

teacher rating would add a unique component to the model not captured by a number 

sense assessment.  Although having teachers rate their students’ number sense skills at 

the very beginning of kindergarten would likely be better than the absence of any 

screening exercise, findings indicate that using a specific number sense assessment such 

as the TEN, NSB, or ENT would more accurately identify students who are at risk for 

struggling in mathematics.  In addition, because combining number sense measures did 

not yield clinically meaningful changes in predictive validity, the use of one assessment 

to screen for mathematics difficulties appears to be sufficient.  Although all three number 

sense measures predicted mathematics achievement similarly in a statistical sense, 

anecdotal evidence garnered from data collectors suggests that the NSB may be the 

“best” measure in a qualitative sense.  This measure was reportedly the easiest to 

administer and score, and also appeared to be the most engaging to students.    
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Limitations 

 A number of important limitations must be considered when interpreting the 

results of this study.  The design of this particular study involved the administration of 

several number sense assessments over a short period of time (two weeks) at the very 

beginning of the school year.  Multiple administrations of similar assessments may have 

threatened the internal validity of these results, as some students may have, for example, 

performed better on the ENT simply because they were exposed to similar questions on 

the TEN and NSB in the week prior, thus potentially skewing the predictive validity of 

the ENT.  The administration of the three assessments in the fall were purposely not 

counterbalanced in order to ensure that the amount of time between each assessment was 

the same for each participant; however, counterbalancing may have mitigated the 

potential effects of repeated testing.  Although students took each number sense test on a 

separate day, repeated testing could have also contributed to fatigue for some students.  

Fatigue on the latter tests (the NSB and ENT) may have influenced student performance 

on these assessments and consequently affected the findings regarding the tests’ 

predictive utility.  

 The fact that some students received additional instruction in mathematics beyond 

what was offered in the general education classroom is another notable limitation to the 

current study.  Over the course of the school year, nine students received intervention 

support in mathematics and four received specialized mathematics instruction via special 

education services.  While these students only represent approximately 10% of the 

overall sample, it is possible that this additional mathematics instruction may have 
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contributed to higher TEMA-3 scores for these students, thus affecting the predictive 

validity of the three number sense measures. 

An additional threat to the results of this study may be attributed to the attrition of 

ten students from the original sample of 112 kindergarteners.  Seven of these ten students 

moved out of the district mid-year, two students were non-English speakers, and one 

student chose not to participate.  The exclusion of these students from the final sample 

may have influenced the overall results of the study.  For example, if these students had 

remained in the sample, their inclusion may have provided analyses with more power to 

detect a smaller difference in the way each measure predicted later mathematics 

achievement.  It is possible, however, that the results might have remained the same even 

with the inclusion of these ten students. 

The way in which participants were recruited may have threatened the validity of 

this study, as well.  In order for students to participate, parents were required to complete 

and return a consent form describing the study.  In a way, this created a self-selected 

sample of kindergarteners.  It is possible that there was a difference between those 

parents who allowed their children to participate and those parents who chose not to have 

their children participate.      

One final limitation, and perhaps the most significant threat to the external 

validity of this study, was the resulting composition of this study’s sample.  Participants 

in this study were from two mid-sized, suburban elementary schools whose populations 

were not exceptionally ethnically or socioeconomically diverse.  In both schools, over 

85% of the student population was Caucasian and approximately one third of the student 

population was eligible for free or reduced-price lunch.  In addition, although a 
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significant portion of these schools’ student population is comprised of English language 

learners, few of these students were given consent to participate in the study.  As a result, 

the findings of this study may not be generalizable to schools that have more diverse 

student populations. 

Implications for Practice 

 While the need for reliable and valid measures of number sense and early 

numeracy skills is clear, research on the psychometric properties and predictive utility of 

these measures is arguably still in the preliminary stages.  The results of this study not 

only add to the growing literature base on the assessment of number sense and early 

numeracy skills, but they also provide important implications for practice.  Consistent 

with prior research (Aunio & Niemivirta, 2010; Baglici et al., 2010; Chard et al., 2005; 

Jordan et al., 2008; Jordan, Glutting, Ramineni, and Watkins, 2010; Martinez et al., 

2009), performance on the TEN, NSB, and ENT at the beginning of kindergarten 

predicted end-of-kindergarten performance on a standardized measure of mathematics 

achievement.  None of these measures, however, emerged as the “best” predictor of later 

mathematics achievement; the TEN, NSB, and ENT all predicted future success in 

mathematics similarly.  This information is valuable for practitioners for a number of 

reasons.  First, these results provide educators with assurance that the TEN, NSB, and 

ENT are all valid screening instruments that assess skills predictive of later success in 

mathematics.  Consequently, these three measures can all be used to identify students 

who may be at risk for experiencing later difficulties in mathematics.  The use of these 

measures for early identification purposes would then hopefully result in early 

intervention services for those students identified as at risk.  In addition, knowing that no 
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single number sense measure emerged as the best predictor of later mathematics 

achievement allows for practitioners to use the assessment that best fits their needs and 

the needs of their schools.  Educators who work with large student populations and are 

pressed for time might choose to use the TEN due to its brief administration time, while 

those practitioners interested in assessing a wider range of skills might use the NSB or 

ENT. 

 While statistical analyses revealed that certain combinations of number sense 

measures predicted mathematics achievement above that of just one measure, the 

difference in the way two measures predicted achievement versus one was clinically 

insignificant.  The small amount of information that a second measure might provide 

does not appear to outweigh the time and effort it would take to administer multiple 

assessments, let alone justify the extra time the student would be out of the classroom for 

testing purposes.  As a result, it is advisable that educators only give students one number 

sense measure during fall screenings, as the results of one assessment are likely to 

provide as much information as administering two or three measures. 

Although findings clearly support the use of either the TEN, NSB, or ENT for the 

purposes of screening students for mathematics difficulties, a closer examination of the 

results from this study provides practitioners with a window into the number sense skills 

most important for students at kindergarten entry.  As discussed, the number and depth of 

skills assessed on the TEN, NSB, and ENT varies greatly.  The ENT, for example, 

broadly assesses fourteen different number sense components, while the TEN measures 

four components in relatively greater depth.  Because all three number sense measures 

predict later mathematics achievement in the same way, it seems that kindergarteners’ 



 95 

performance on the four skills measured by the TEN – oral counting, number 

identification, quantity discrimination, and missing number – gives practitioners just as 

much information as their performance on the fourteen skills measured by the ENT.  In 

other words, students who have a solid grasp of a few very important skills at 

kindergarten entry (e.g., those skills that appear on the TEN) will most likely perform just 

as well on an end-of-kindergarten mathematics assessment as students who have a solid 

understanding of an incredibly broad range of early numeracy skills (e.g., subitizing, 

classification, seriation, ordinality).  As a result, practitioners should focus on helping 

their pre-kindergarten students build a solid, in-depth understanding of a few basic early 

numeracy skills, rather than a partial understanding of several early numeracy skills.  

This recommendation is consistent with National Mathematics Advisory Panel’s (2008) 

observation that mathematics is a hierarchical subject area whereby more complex skills 

are built on simpler, foundational skills.  In preschool and kindergarten, it appears most 

important to foster the development and mastery of foundational skills such as counting 

and number identification rather than attempt to teach a broad range of skills that may not 

contribute as significantly to later mathematics achievement. 

Finally, in terms of teacher perception of student number sense, findings from this 

study suggest that when making educational decisions for a student, teachers should not 

rely solely on their perception of that student’s number sense skills.  Although fall 

teacher rating of student number sense was predictive of mathematics achievement in the 

spring, analyses showed that the TEN, NSB, and ENT all predicted mathematics 

achievement significantly better than fall teacher rating.  In addition, the combination of a 

number sense measure (i.e., the NSB) with fall teacher rating did not predict later 
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mathematics achievement much better than the number sense measure alone.  Ultimately, 

these results demonstrate the value of administering assessments such as the TEN, NSB, 

and ENT that are specifically designed to measure number sense skills and that 

accurately predict later mathematics achievement.  Depending on teacher perception of 

student number sense alone is not likely to yield an accurate picture of which students 

may experience mathematics difficulties in the future.  

Directions for Future Research 

 The research base on number sense within the field of education – and on early 

mathematics skills as a whole – has grown substantially over the last several years 

(Gersten et al., 2011).  Despite this recent growth, additional research is needed in a 

number of key areas in order to continue expanding on what is currently known about 

early mathematics assessment and achievement.  Although the current study revealed a 

number of unique and interesting results, replicating the study with a larger sample that is 

more representative of the overall population would likely increase the generalizability of 

the results.  In addition, while studies investigating the predictive validity of a measure 

over the course of a year are useful, more longitudinal research is needed.  It would, for 

example, be interesting to determine if the TEN, NSB, and ENT predict mathematics 

achievement at the end of elementary school and even at the end of middle or high 

school.  Jordan and her colleagues (2008) did demonstrate that kindergarten performance 

on the NSB predicted third grade performance on a standardized mathematics 

achievement test, but no studies have looked at the predictive validity of the measure 

beyond third grade.  Similarly, longitudinal research on the predictive qualities of the 

TEN and ENT has not been conducted.  Replicating the current study using other, less 
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widely used measures of number sense may also be valuable in identifying an assessment 

that is the “best” predictor of later mathematics achievement.  Several additional 

measures of number sense and early numeracy currently exist, and inclusion of these 

measures into a similar study may result in one or two measures emerging as the better 

predictors of future success in mathematics. 

 Specific research on the predictive validity of different number sense components 

is needed, as well.  In other words, future studies should focus on which components of 

number sense have the strongest relationship with later mathematics achievement.  

Research in this area could reveal, for example, that proficiency in one-to-one 

correspondence is extremely predictive of later mathematics achievement, while simple 

computation is not.  Knowledge of which components are most closely related to later 

mathematics achievement would better inform the development and refinement of new 

and current number sense assessments. 

 While additional research on the predictive validity of different number sense 

components and assessments is necessary and useful, further investigation into the 

classification accuracy of these measures is also needed.  As Gersten et al. (2012) 

explain, classification accuracy is the “degree to which the screener provides correct 

classifications of children who require additional assistance” (p. 437).  Instruments with a 

high level of classification accuracy are both sensitive and specific.  Measures that are 

sensitive consistently identify students who actually need extra academic intervention, 

and measures that are specific do not misclassify students as needing intervention when 

in fact they do not (Gersten et al., 2012).  Number sense measures that have demonstrated 

predictive validity can only provide educators with a potential level of risk for any given 
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student; predictive validity cannot, however, tell educators which at-risk students will 

definitely develop difficulties in mathematics without intervention and which students 

will go on to succeed without any intervention (Gersten et al., 2012).  Thus, the need for 

determining the classification accuracy, sensitivity, and specificity of each number sense 

assessment is clear, yet the methods for examining classification accuracy are relatively 

new to educational research.  Recently, researchers in the field of early mathematics 

assessment have begun using receiver operating characteristic (ROC) curve analyses to 

examine classification accuracy and to identify cut scores for assessments that strike an 

ideal balance between sensitivity and specificity (Gersten et al., 2012; Jordan, Glutting, 

Ramineni, & Watkins, 2010).  Of the three number sense measures utilized in this study, 

researchers have investigated the classification accuracy of the NSB and TEN (Jordan, 

Glutting, Ramineni, & Watkins, 2010; National Center on Response to Intervention, 

2014).  An initial study examining the way the NSB predicted scores on a high-stakes 

state test showed that the screener had a fairly high degree of classification accuracy 

(AUC, which represents the area under the curve, was 0.80 when the NSB was 

administered in the fall of kindergarten) (Jordan, Glutting, Ramineni, & Watkins, 2010).  

The National Center on Response to Intervention (2014) has also reported preliminary 

information on the classification accuracy of the TEN when predicting later performance 

on curriculum-based measures in mathematics.  When the four subtests of the TEN were 

administered in in the fall of kindergarten, classification accuracy was generally good, as 

AUC values ranged from 0.85 to 0.87.  The Center’s Screening Tools Chart, however, 

denotes that there is “unconvincing evidence” regarding the classification accuracy of the 

TEN (National Center on Response to Intervention, 2014).  Consequently, additional 
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research on the classification accuracy of the TEN and other measures needs to be 

conducted.  Once more is understood about the classification accuracy of various number 

sense measures, practitioners will have even more useful information for determining 

which measure to use in the screening of early mathematics skills. 

 Of course, any future research on the assessment of number sense should be 

accompanied by research on interventions designed to improve the number sense and 

early numeracy skills of young children identified as at risk.  A small collection of these 

types of interventions currently exist, including Number Worlds (Griffin, 2004), 

numerical board games (Ramani & Siegler, 2008; Siegler, 2009), and explicit instruction 

in concepts such as number recognition, sequencing, and problem solving (Jordan, 

Glutting, Dyson, Hassinger-Das, & Irwin, 2012).  Each of these interventions has shown 

promise in fostering the number sense skills of young children, but further examination of 

their effectiveness is needed.  The development of a wider variety of evidence-based 

number sense interventions is imperative, as well.  As researchers begin to identify and 

construct number sense assessments with high levels of predictive validity and 

classification accuracy, evidence-based interventions targeting both broad and specific 

components of number sense need to be readily available to practitioners so that they may 

help support the needs of students at risk for future difficulties in mathematics. 

 
 
 
 

  



 100 

APPENDIX A 

PARENT/GUARDIAN CONSENT FORM 

Dear parent or guardian, 
 
My name is Bethany Politylo and I am currently a doctoral student in the School 
Psychology program at the University of Massachusetts Amherst.  My research interests 
lie in mathematics education, and as part of my dissertation, I am planning to administer 
four different mathematics assessments to the kindergarteners in your school district.  I 
am writing to request permission for your child to participate in my research study. 
 
About the study 

Much of the research in early mathematics education has highlighted the importance of a 
child’s “number sense” or early numeracy skills for future success in mathematics.  
Several measures that assess a child’s number sense currently exist, but none have been 
very well researched.  The purpose of my study is to analyze three different number sense 
assessments and determine which, if any, best predicts future success in mathematics.  
My hope is to find the number sense assessment that can best identify students who are 
struggling or succeeding in mathematics very early on; this way, teachers can provide the 
necessary and appropriate support to ensure that these students are successful in 
mathematics later in life. 
 
Assessments 

The three number sense assessments I am using in my study are individually 
administered and relatively brief.  The first assessment takes about 10 minutes to 
complete and involves counting, identifying numbers, simple calculations, and comparing 
quantities.  The second assessment takes about 20-25 minutes to complete and entails 
classifying objects, ordering from big to small, counting, and working with shapes.  The 
final number sense assessment involves similar tasks and takes only four minutes to 
complete.  This final assessment is one that the staff in your school district already 
administers to all kindergarteners.   
 
The three assessments described above will be administered in late September.  In May, I 
will give one final assessment of mathematics achievement.  This assessment is also 
individually administered, and takes about 30 minutes to complete.  Skills assessed 
include counting, identifying and manipulating numbers, and simple calculations.  All of 
the above assessments are essentially extensions of the activities and assessments that 
generally already occur in kindergarten. 
 
Confidentiality 

All assessment materials and scores gathered as part of this study will be kept strictly 
confidential.  Your school district will have access to student scores on the four-minute 
number sense assessment described above, as this is the assessment that the district 
normally administers to all kindergarteners.  All other assessment materials and scores 
will only be reviewed by myself and members of my dissertation committee.  In addition, 
because I am interested in overall performance on these assessments by a large group of 
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kindergarteners, your child’s individual scores will not be analyzed.  All data from this 
study will be compiled into a large data set; the data set will not contain student names, 
and as a result, there is no risk of your child’s scores being identified.  Any publications 
that result from this research will report the overall performance of all participants.  No 
student’s individual scores will be singled out and examined.  Results of the study will be 
made available to your school district. 
 

Participation 

Participation in this study is completely voluntary, and your child will not be penalized in 
any way if he or she does not participate.  In addition, you have the right to withdraw 
your permission for your child to participate at any time.   
 
Please fill out the form below and have your child return it to his or her classroom 

teacher by Friday, September 14. 

 
If you have questions or concerns regarding this study, please feel free to contact me at 
bpolityl@educ.umass.edu.  You may also contact Dr. Amanda Marcotte, my advisor and 
dissertation chairperson, at 413-545-7055 or amarcotte@educ.umass.edu.  
  
 
Sincerely, 
 
Bethany Politylo 
Doctoral Candidate, School Psychology 
University of Massachusetts Amherst 
bpolityl@educ.umass.edu 
 
 
------------------------------------------------------------------------------------------------------------ 
 
 
My child, ____________________________________, has / does not have (circle one) 
permission to participate in the mathematics research study described above. 
      
 
 
_______________________________________  ____________________ 
Parent/guardian signature     Date 
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APPENDIX B 

TEACHER RATING SCALE 

 
 

Dear _______________________, 

 

The National Mathematics Advisory Panel (2008) defines number sense as “… an ability 

to immediately identify the numerical value associated with small quantities (e.g., 3 

pennies), a facility with basic counting skills, and a proficiency in approximating the 

magnitudes of small numbers of objects and simple numerical operations.”   

 

The Panel also adds that “an intuitive sense of the magnitudes of small whole numbers is 

evident even among most 5-year-olds who can, for example, accurately judge which of 

two single digits is larger, estimate the number of dots on a page, and determine the 

approximate location of single digit numerals on a number line that provides only the 

numerical endpoints. These competencies comprise the core number sense that children 

often acquire informally prior to starting school. 

 

A more advanced type of number sense that children must acquire through formal 

instruction requires a principled understanding of place value, of how whole numbers can 

be composed and decomposed, and of the meaning of the basic arithmetic operations of 

addition, subtraction, multiplication, and division. It also requires understanding the 

commutative, associative, and distributive properties and knowing how to apply these 

principles to solve problems. This more highly developed form of number sense should 

extend to numbers written in fraction, decimal, percent, and exponential forms.” 

On a scale of 1 to 10, with 1 representing a poorly developed number sense and 10 

representing a well-developed number sense, please rate the current number sense of 

_________________ to the best of your ability by circling the appropriate number below. 

 
 

1 2 3 4 5 6 7 8 9 10 

Poorly 

developed 

number 

sense 

        Well-

developed 

number 

sense 

 
 
 

Thank you! 
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APPENDIX C 

ADMINISTRATION INTEGRITY CHECKLISTS 
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Your name: ______________________   Name of primary data collector: __________________________ 

Student name: ______________________ Classroom: ______________     Date + time: _______________  

Number Sense Brief Screener (NSB) 
Administration integrity checklist 

 
Please use the below checklist to assess the administration integrity of the NSB.   Do not 
discuss or share this checklist with primary data collector.  
 

Timeline Step 

X = completed 

accurately;  

O = completed 

incorrectly or 

did not complete 

Before testing 
Seated across from child  

Places scoring sheet out of view of child  

Items 1-2 
Gives standardized instructions for items 1-2  

Shows child picture of 5 stars  

Item 3 
Gives standardized instructions for item 3  

Stops child after he/she reaches 20 (if applicable)   

Items 4-7 

Gives standardized instructions for items 4-7  

Shows child picture of 5 dots  

Counts left to right with puppet  

Counts right to left with puppet  

Counts yellow dots then blue with puppet  

Counts first dot twice with puppet  

Items 8-11 
Gives standardized instructions for items 8-11  

Shows child numbers on separate pieces of paper  

Items 12-18 Gives standardized instructions for items 12-18  

Items 19-22 

Gives standardized instructions for items 19-22  

Gives child 2 pieces of card stock and 10 chips  

Models each item by adding/removing chips one at a time  

Items 23-33 Gives standardized instructions for items 23-33  

After testing 
Tallies number of correct responses   

Records score  
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Your name: ______________________   Name of primary data collector: __________________________ 

Student name: ______________________ Classroom: ______________     Date + time: _______________  

Early Numeracy Test (ENT) 
Administration integrity checklist 

 
Please use the below checklist to assess the administration integrity of the ENT.   Do not 
discuss or share this checklist with primary data collector.  
 

Timeline Step 

X = completed 

accurately;  

O = completed 

incorrectly or 

did not complete 

Before testing 

Seated across from child  

Places scoring sheet out of view of child  

Introduces test using standardized introduction  

Items 1-5 
Gives standardized instructions for items 1-5  

Shows child appropriate probes in binder for items 1-5  

Items 6-10 
Gives standardized instructions for items 6-10  

Shows child appropriate probes in binder for items 6-10  

Items 11-15 

Gives standardized instructions for items 11-15  

Shows child appropriate probes in binder for items 11-15  

Gives child 10 blocks for item 11  

Gives child 15 blocks for item 12  

Gives child paper and pencil for item 13  

Gives child paper pencil for item 14  

Items 16-20 

Gives standardized instructions for items 16-20  

Shows child appropriate probes in binder for items 16-20  

Gives child paper and pencil for item 19  

Items 21-25 
Gives standardized instructions for items 21-25  

Shows child appropriate probes in binder for items 22 + 24  

Items 26-30 

Gives standardized instructions for items 26-30  

Lays down 16 blocks in four rows of four blocks for  
item 26 

 

Lays down 9 blocks in a circle for item 27  

Lays down 20 blocks in a heap for item 28  
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Shows child appropriate probe in binder for item 29  

Lays down 17 blocks in a row for item 30  

Items 31-35 

Gives standardized instructions for items 31-35  

Gives child 15 blocks for item 31  

Lays down 20 blocks in a row for item 32  

Lays down 15 blocks in three rows of five for item 33  

Lays down 19 blocks in a heap for item 34  

Does not allow child to point out or touch blocks for items 

32-34 
 

Covers five blocks with hands then adds seven for item 35  

Items 36-40 
Gives standardized instructions for items 36-40  

Shows child appropriate probes in binder for items 36-40  

After testing 
Tallies number of correct responses   

Records score  
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Your name: ______________________   Name of primary data collector: __________________________ 

Student name: ______________________ Classroom: ______________     Date + time: _______________  

 
TEMA-3 

Administration integrity checklist 
 
Please use the below checklist to assess the administration integrity of the TEMA-3.   Do 
not record administration integrity for items that were not administered (i.e., student 
reaches basal/ceiling and thus those items need not be administered).  Do not discuss or 
share this checklist with primary data collector.  
 

Timeline Step 

X = 

completed 

accurately;  

O = 

completed 

incorrectly or 

did not 

complete 

Before testing 

Seated across from or next to child  

Places scoring sheet out of view of child  

Asks child how old s/he is and begins at appropriate item  

Items A1-A6 

(if applicable) 

Gives standardized instructions for items A1-A6  

Shows child appropriate probes in Picture Book for items A1, 

A4, + A6 
 

Uses 12 tokens and 3 cards for item A5  

Items A7-A14 

(if applicable) 

Gives standardized instructions for items A7-A14  

Shows child appropriate probes in Picture Book for items A7 

and A14 
 

Uses 12 tokens and 3 cards for item A8  

Uses 5 tokens for item A9  

Uses 10 tokens for item A10  

Uses 10 tokens for item A12  

Items A15-A21 

(if applicable) 

Gives standardized instructions for items A15-A21  

Gives child worksheet and pencil for item A15  

Uses 10 tokens for item A16  

Uses 10 tokens for item A17  

Shows child appropriate probes in Picture Book for item A18  
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Items A22-A31 

(if applicable) 

Gives standardized instructions for items A22-A31  

Shows child appropriate probes in Picture Book for items 

A23, A27, and A29 
 

Uses 12 tokens for item A25  

Uses 10 tokens for item A25, but does NOT let child use 

them 
 

Uses 25 tokens for item A28  

Gives child worksheet and pencil for item A30  

Items A32-A42 

(if applicable) 

Gives standardized instructions for items A32-A42  

Shows child appropriate probes in Picture Book for items 
A35, A37, A38, and A41 

 

Gives child worksheet and pencil for item A34  

Covers up problems quickly (after a couple seconds) for item 

A41 
 

Items A43-A56 

(if applicable) 

 

Gives standardized instructions for items A43-A56  

Shows child appropriate probes in Picture Book for items 

A43, A44, A46, A47, A50, A51, A53-A56 
 

Covers up problems quickly (after a couple seconds) for item 

A43 
 

Gives child worksheet and pencil for item A45  

Covers up problems quickly (after a couple seconds) for item 

A46 
 

Gives child worksheet and pencil for item A49  

Covers up problems quickly (after a couple seconds) for item 
A50  

 

Covers up problems quickly (after a couple seconds) for item 

A51 
 

Covers up problems quickly (after a couple seconds) for item 
A54 

 

Covers up problems quickly (after a couple seconds) for item 

A56 
 

Items A57-A72 

(if applicable) 

 

Gives standardized instructions for items A57-A72  

Shows child appropriate probes in Picture Book for items 
A58-A61, A66, and A70 

 

Covers up problems quickly (after a couple seconds) for item 

A61  
 

Gives child worksheet and pencil for item A62 and A63  

Gives child worksheet and pencil for item A63  

Gives child worksheet and pencil for item A69  

Covers up problems quickly (after a couple seconds) for item 

A70 
 

Gives child worksheet and pencil for item A71  
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Basal/ceiling 

rules 

Discontinues testing after ceiling is reached (five consecutive 

scores of zero) 
 

If necessary, after reaching discontinue criteria, tests 
backwards from starting point until basal is met (five items 

correct in a row) or until item A1 is reached 

 

  



 113 

APPENDIX D 

CALCULATING A TEN COMPOSITE SCORE 

 
Several methods for calculating a composite score for the Test of Early Numeracy (TEN) 
were considered and tested.  These methods are as follows: 
 

1. Sum the scores obtained on each subtest. 
2. Convert each subtest score to a proportion of items correct.  Sum the proportions. 
3. Convert the score on each subtest to a z-score.  Sum the z-scores. 
4. Conduct a Principal Components Analysis (PCA).  Use the resulting component 

score as the TEN composite score. 
 
The below correlation matrix shows the relationship between each of these new 
composite scores as well as their relationship with the criterion measure, the TEMA-3. 
 

 
TEN 
Sum 

TEN  
Proportion 

TEN  
z-score sum TEN PCA TEMA-3 

TEN Sum 1.00 0.99 0.99 0.99 0.73 
TEN Proportion  1.00 1.00 1.00 0.73 
TEN z-score sum   1.00 1.00 0.74 
TEN PCA    1.00 0.74 
TEMA-3     1.00 

    
Given the strong relationship between each of the methods, the simplest method of 
summing each subtest score was used to create the TEN composite score in this study.  
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APPENDIX E 

HISTOGRAMS OF INDEPENDENT AND DEPENDENT VARIABLES 
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APPENDIX F 

Q-Q PLOTS OF INDEPENDENT AND DEPENDENT VARIABLES 
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APPENDIX G 

SCATTERPLOTS OF INDEPENDENT VARIABLES WITH TEMA-3 
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APPENDIX H 

SCATTERPLOTS OF RESIDUALS VERSUS PREDICTED VALUES 
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