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Abstract

Among scientists who study scientific production, the relationship between the quantity 

of a scientist’s production and the quality of their work has long been a topic of empirical 

research and theoretical debate. One principal theoretical perspective on the quantity–qual-

ity relationship has been the equal odds baseline, which posits that a scientist’s number of 

high-quality products increases linearly with their total number of products, and that there 

is a zero correlation between a scientist’s total number of products and the average quality 

of those products. While these central tenets of the equal odds baseline are well known, it 

also posits a number of more specific and less discussed aspects of the quality–quantity 

relation, including the expected residual variance and heteroscedastic errors when quality 

is regressed on quantity. After a careful examination of the expected variance by means of 

a non-parametric bootstrap approach, we forward a further prediction based on the hetero-

scedasticity implied by the equal-odds baseline that we term the tilted funnel hypothesis, 

that describes the shape of a bivariate scatterplot when quality is regressed on quantity, as 

well as the change in the strength of slope coefficients at different conditional quantiles of 

the quality distribution. In this study, we empirically test the expected residual variance 

and the tilted funnel hypothesis across three large datasets (including approximately 1.5 

million inventors, 1800 psychologists, and 20,000 multidisciplinary scientists). Across all 

of the data sets, the results empirically supported the tilted funnel hypothesis, and therefore 

the results provided further evidence of the utility of the equal odds baseline.
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Introduction

The interplay of quantity of scientific productions (e.g., publications or patents) and the 

perceived quality of those scientific productions in the field (e.g., the number of received 

citations) is one of the most fundamental issues in research on scientific creativity (Feist 

1997; Lawani 1986; Simonton 1988). In general, the quantity–quality relationship has been 

studied to better understand the way that scientists’ productivity, or quantity of publica-

tions, may affect the influence that those publications have in the field—typically opera-

tionalized as citations—with researchers in this area at times uncovering a potential trade-

off between quality and quantity (Fischer et al. 2012), and at times identifying a trend in 

which productivity supports the quality of publications (often depending on the used oper-

ational definition of quality; see Michalska-Smith and Allesina 2017).

A classical theoretical model that has been perennially used to describe this relation is 

Simonton’s equal odds baseline in which the number of high-quality publications is con-

sidered to be a linear function of total publications (e.g., Simonton 1988, 2004, 2010). The 

equal odds baseline is a parsimonious model for the relation between quantity and qual-

ity of scientific productions that is based on several assumptions. For example, the equal 

odds baseline posits that scientists’ total publication output is uncorrelated with the aver-

age quality of those publications: a theoretical prediction that is testable empirically. Relat-

edly, Forthmann et al. (2020a) demonstrated how the equal-odds baseline can be derived 

from the assumption that average quality and total output are independent and introduced 

a structural equation modeling approach to assess the fit of the equal odds baseline for a 

given dataset by means of widely used fit indices and established cut-offs. In this work, 

we aim at extending the knowledge base related to the equal odds baseline by focusing 

on two aspects of residual variance. First, the expected residual variance under the equal 

odds baseline will be investigated. Second, it has been argued that the equal odds base-

line applies on average in the population (Simonton 2003a, b, 2004, 2009) which fits con-

ceptually well with correlational and conditional mean regression approaches. However, 

the equal odds baseline also predicts a skewed distribution of residual terms that exhibit 

dependence on quantity (e.g., Simonton 2010). Clearly, such residuals imply heteroscedas-

tic errors (i.e., non-constant variance across the values of quantity) in a regression context 

and, as a consequence, the question emerges if the proposed linear relationship between 

quantity and quality generalizes to the full conditional distribution of publication quality. 

Hence, the aim of this work is to thoroughly investigate the relationship between quantity 

and quality by means of quantile regression (Koenker 2005; Wenz 2019; Yu et al. 2003) 

which elegantly extends the focus on the conditional mean to the full conditional distribu-

tion of publication quality.

The equal odds baseline

The equal odds baseline (EOB) refers to the linear regression of the conditional mean of 

the number of hits H (i.e., the number of high-quality publications) on the total number 

of productions T (i.e., the total number of publications; see Simonton 1988, 2003a, 2004, 

2009, 2010). The prediction of the conditional mean corresponds well with Simonton’s 

assertion that the EOB theoretically works for the population average (Simonton 2003a, b, 

2004, 2009). A random shock term u is further added to the model to take individual devia-

tions from the average hit rate ρ into account (Cole and Cole 1967; Feist 1997):
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Equation  1 refers to the cross-sectional EOB. The EOB is illustrated by the red 

regression slope in Fig. 1a. Altogether N = 5000 data points adhering to the EOB were 

simulated for illustration purposes.1 This model further assumes that the hit-ratio H/T 

is uncorrelated with T (see also the red regression line in Fig. 1b) because a negative 

or positive correlation between these two variables implies a non-linear (i.e., quadratic) 

(1)H = �T + u.

Fig. 1  Bivariate Scatterplots for the relationship between z-standardized H (y-axis) and z-standardized T 

(x-axis) or z-standardized H/T (y-axis) and z-standardized T (x-axis). Subplots (a) and (b) are based on sim-

ulated data adhering to the EOB. Subplots (c) and (d) are based on simulated data adhering to the dual 

pathway theory of creativity (i.e., the EOB is violated). OLS = regression slope from ordinary least squares 

regression (predicting the conditional mean). QRMs = regression slopes from quantile regression to predict 

the .10, .30, .50, .70, an .90 quantiles of the conditional distribution. The R code to reproduce these plots 

are available in the Open Science Framework (https ://osf.io/2zgxn /)

1 All data in Fig. 1 were simulated according to a simulation setup used by Forthmann et al. (2020a, b). 

The exact parameters used in the simulation are available in the R script used to create Fig. 1. The R script 

is openly available in the Open Science Framework (OSF; https ://osf.io/2zgxn /).

https://osf.io/2zgxn/
https://osf.io/2zgxn/
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relation between H and T (Simonton 2003a, b, 2004). Hence, a test of the correlation 

between H/T and T is sensitive for deviations from the EOB (see Forthmann et al. 2019).

In addition, Forthmann et al. (2020a) have shown that ρ equals E(H)/E(T) when the 

EOB is derived from the assumption that H/T and T are independent. Importantly, H 

and T must be positive reals such that E(H), E(T), and E(H/T) exist (see Forthmann 

et al. 2020b), but no further assumptions (e.g., with respect to the distribution of T and 

H or the upper limit of ρ) are required and, thus, their derivation is very general. Forth-

mann et al. (2020a) further outlined an approach how the EOB can be tested by means 

of structural equation modeling (SEM). The advantage of that approach is the avail-

ability of common fit measures from the extensive SEM literature. Hence, the fit of the 

EOB to a given dataset—i.e., the practical value of the EOB—can be assessed by well-

established model fit thresholds for various indices (e.g., West et  al. 2012). Another 

important consequence from ρ = E(H)/E(T) is obtained for the residual variance. Insert-

ing ρ = E(H)/E(T) into the EOB, and taking into account that u is assumed to be uncor-

related with H and T, yields the following expression for the variance of H:

Hence, from Eq. 2 the expected residual variance when the EOB holds is obtained as

Importantly, the part in Eq. 3 relating to the linear predictor helps to understand devi-

ations from the EOB. It follows that residual variance will be larger than expected under 

the EOB, when the regression slope is smaller as compared to E(H)/E(T). This is, for 

example, the case when the correlation between H/T and T is negative (Forthmann et al. 

2020a, b). In the creativity research literature, a negative correlation between average 

quality and quantity is in accordance with a trade-off between quality and quantity (i.e., 

high-quality ideas require more cognitive effort and, hence, more time; e.g., Forthmann 

et al. 2020b; Guilford 1968) which is an idea that is also discussed and studied in rela-

tion to scientific productions (e.g., Fischer et  al. 2012; Michalska-Smith and Allesina 

2017). Analogously, residual variance will be smaller than expected under the EOB, 

when the regression slope is larger as compared to E(H)/E(T). This is, for example, 

the case when data adhere to the dual pathway theory implying a positive correlation 

between H/T and T (Forthmann et al. 2020a, b). The dual pathway theory of creativity 

(e.g., Nijstad et al. 2010) proposes two routes to achieve more original ideas on average: 

(a) The first route is via flexibility which refers to the number of conceptual categories 

from which ideas were generated (i.e., variety as a measure of diversity; see Stirling 

2007), and (b) the second route is via persistence which refers to ideational exhaus-

tion of each of the conceptual categories (i.e., the average number of ideas within each 

of the conceptual categories). Both routes imply both higher total ideas (i.e., T) and 

higher average originality (i.e., H/T) and, hence, the dual pathway theory implies that 

H/T is positively predicted by T (Forthmann et  al. 2019, a, b; Nijstad et  al. 2010; see 

also Fig. 1d).

Replacing expected values and variances of the random variables by sample esti-

mators in Eq.  2 allows constructing a test statistic Δ𝜎̂2

u

 for the difference between the 

observed and the expected residual variance under the EOB

(2)Var(H) = �
2
Var(T) + Var(u) =

(

E(H)

E(T)

)2

Var(T) + Var(u).

(3)Var(u) = Var(H) −

(

E(H)

E(T)

)2

Var(T).
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with s2

u
 being an estimate of the observed residual variance, 𝜎̂2

u
 being the expected variance 

under the EOB as quantified based on the sample means and variances of quality and quan-

tity, H̄ , T̄  , s2

H
 , and s2

T
 , respectively.

Influencing factors on the 1
�̂
2

u

 statistic

Analogous to the EOB illustration in Fig. 1, we used simple simulations to illustrate how 

the correlation between H/T and T (levels of absolute r values: .11, .29, .47, and .64), the 

average of T (20 vs. 50), and the average ρ (i.e., average H/T; levels: .22, .35, .5, .65, and 

.78 for ρ in the range from 0 to 1) influence the Δ
𝜎̂2

u

 statistic (see Fig. 2). Each point in 

Fig. 2 represents the Δ
𝜎̂2

u

 statistic based on 5000 simulated cases. The simulation setup is 

described in detail in Forthmann et al. (2020b). The full R script to run these illustratory 

simulations is available in the OSF repository (https ://osf.io/2zgxn /). It should be noted 

that for the sake of simplicity we do not distinguish in this work between random variables 

and realizations thereof by means of the used notation. When required the respective mean-

ing is made salient to the reader.

Expectedly, the size of the correlation between H/T and T influenced the deviation of the 

observed residual variance from its expected value under the EOB (see Fig. 2). The Δ
𝜎̂2

u

 sta-

tistic is positive and increases away from zero with stronger negative correlations between 

H/T and T (see top plots in Fig. 2), whereas negative and decreasing values away from zero 

were observed as positive correlations between H/T and T increase in strength (see bottom 

plots in Fig. 2). As noted above, this behavior of the Δ
𝜎̂2

u

 statistic depends on the variance 

attributable to the linear predictor that is either smaller (e.g., when the correlation between 

H/T and T is negative) or larger (e.g., when the correlation between H/T and T is positive) 

as compared to the expected value under the EOB. In addition, the Δ
𝜎̂2

u

 statistic deviates 

more from zero as the average T increases (compare the left and right plots in Fig. 2).

The pattern for Δ
𝜎̂2

u

 as a function of average ρ, however, seems to be more complex. 

For negative correlations between H/T and T and ρ ranging between 0 and 1 (see the top 

plot in Fig. 2), there is an interaction between the size of the correlation between H/T and 

T and average ρ. Specifically, the differences in Δ
𝜎̂2

u

 values between the levels of average 

ρ increase with the strength of the correlation between H/T and T (this pattern is most 

obvious in the top-right plot in Fig. 2), resulting in larger Δ
𝜎̂2

u

 values for higher average ρ. 

Importantly, for rather low values of average ρ (e.g., .22) the Δ
𝜎̂2

u

 statistic can yield com-

parable values for small (r = −  .11) and large (r = −  .64) deviations from the EOB when 

ρ ranges from 0 to 1 (see top-right plot in Fig.  2). Clearly, the lower the average ρ, the 

smaller the range of hit-ratios H/T (i.e., average ρ approaches its lower bound of zero) 

which in turn can limit the likelihood that negative correlations between H/T and T unfold 

in empirical data. This pattern is reversed for positive correlations between H/T and T (see 

bottom plots in Fig.  2). That is, Δ
𝜎̂2

u

 decrease away from zero as a function of both the 

strength of the correlation between H/T and T and average ρ. However, when average ρ 

approaches its upper limit of 1, Δ
𝜎̂2

u

 values become more comparable to each other (e.g., for 

average ρ of .50 and .65; see bottom-right plot in Fig. 2) and, finally, seem to turn back to 

zero when average ρ further approaches 1 (e.g., Δ
𝜎̂2

u

 is closer to zero for an average ρ of .78 

as compared to average ρ of .35 for the highest simulated correlation between H/T and T; 

see bottom-right plot in Fig. 2).

(4)Δ
𝜎̂2

u

= s
2

u
− 𝜎̂

2

u
= s

2

u
− s

2

H
−

(

H̄

T̄

)2

s
2

T
,

https://osf.io/2zgxn/
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Importantly, the overall illustration in Fig. 2 does not change when H/T is scaled by a 

factor of eight (i.e., ρ is not bounded above by 1) in the simulation (see additional material 

in the OSF: https ://osf.io/2zgxn /). This suggests that distributional properties of H/T and 

the conditional distribution f(H|T) help to explain the behavior of the Δ
𝜎̂2

u

 statistic more 

generally. Indeed, the simulated skewness of H/T varies as a function of average ρ with the 

highest positive skew observed for the lowest average ρ (i.e., average ρ = .22; skew ≈ 1.00) 

Fig. 2  The difference between the observed and expected residual variance is denoted by Δ
𝜎̂2

u

 and depicted 

on the y-axes for ρ values in the range of 0–1 (i.e., as in the original formulation of the equal-odds base-

line). The simulated correlation between H/T and T is depicted on the x-axes. Each plot includes different 

lines and symbols according to the level of the simulated average ρ (i.e., average H/T; see plot legends). 

Top negative correlations between H/T and T. Bottom positive correlations between H/T and T. Left average 

T = 20. Right average T = 50. The R code to reproduce this figure is available in the Open Science Frame-

work (https ://osf.io/2zgxn /)

https://osf.io/2zgxn/
https://osf.io/2zgxn/
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over the mid-level of both skew and ρ (i.e., average ρ = .50; skew ≈ .00) to the highest 

level of average ρ being associated with the lowest negative skew (i.e., average ρ = .78; 

skew ≈ − 1.00). A highly comparable pattern of average skewness coefficients as a function 

of average ρ results for the simulated conditional distributions f(H|T). In relation to this, it 

should further be mentioned that negative correlations between H/T and T tend to increase 

skewness, whereas positive correlations between H/T and T tend to decrease skewness. 

Hence, for ρ in general it can be concluded that deviations from the EOB as indicated by 

positive values of the Δ
𝜎̂2

u

 statistic (e.g., in the case of negative correlations between H/T 

and T) would be more pronounced the stronger the correlations and for negatively skewed 

distributions of H/T and f(H|T) as compared to positively skewed distributions of H/T and 

f(H|T). Likewise, for positive correlations between H/T and T, the size of the correlations in 

combination with the skewness of the distribution of H/T and the conditional distribution 

f(H|T) also matters: stronger correlations in combination with positively skewed over sym-

metric to slightly negatively skewed distributions of H/T and f(H|T) would be associated 

with decreasing values of the Δ
𝜎̂2

u

 statistic. However, when negative skewness coefficients 

for the distribution of H/T (and f(H|T)) further decrease, this is expected to result into a 

shifting back to zero for the Δ
𝜎̂2

u

 statistic.

Finally, the overall distribution of quality f(H) can be positively skewed even when all 

conditional distributions f(H|T) are negatively skewed because of the dependence between 

H and T. In fact, including negatively skewed f(H/T) and f(H|T) in the illustration above 

insured a more comprehensive treatment of the phenomenon. However, distributions of 

citation counts are commonly found to be positively skewed and simulated as such in the 

bibliometric literature (e.g., Blagus et al. 2015; Saam and Reiter 1999). In addition, also 

average citations per publication (i.e., the impact factor) commonly tend to be positively 

skewed. For example, Calver and Bradley (2009) found average citation per publication 

to be positively skewed for all journals (varying in number of publications over the period 

from 2000 through 2006) from which articles were cited. Hence, for empirical data, the 

distribution of H/T and most of the conditional distributions f(H|T) are expected to be posi-

tively skewed. Likewise, scientific productions of high creative quality are expected to be 

rare and this fits well with positively skewed citation counts as an indicator of creative 

quality.

The tilted funnel hypothesis: testing the relationship between quantity and quality 

by means of quantile regression

Moreover, it is important to note that H in the original formulation of the EOB is defined 

as a subset of T (e.g., the number of high-quality publications are a subset of a scientist’s 

total publications) which implies that the residuals can potentially vary between − T(1 − ρ) 

and T(1  −  ρ). Hence, residual variation is clearly constrained by T and therefore, the 

EOB implies heteroscedastic errors. In particular, the variance of residuals is expected to 

increase with T—a pattern that is known in the literature (e.g., Oswald and Johnson 1998). 

This line of argumentation is illustrated in Fig. 1a. These data were simulated according to 

the EOB and the scatter around the red regression line clearly follows the pattern of hetero-

scedasticity implied theoretically by the EOB. In relation to this, from the assumption that 

H/T is uncorrelated with T, it further follows that the conditional distribution dispersion 

would scale with the average hit rate ρ. These theoretical predictions suggest that, as com-

pared to the proposed linear relationship between quantity and quality when the conditional 

mean of quality is predicted, the linear slope to predict the median (i.e., the .50-quantile) 
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quality can be very similar, or deviate depending on the skewness of the conditional dis-

tributions of H. For example, in Fig.  1a; the black dashed regression line to predict the 

median of the quality outcome is almost identical to the solid red regression line predicting 

the mean of the quality outcome (for a comparable empirical finding see Michalska-Smith 

and Allesina 2017). In addition, the linear slopes to predict higher or lower quantiles as 

compared to the median are expected to differ from the slope at the median (see the regres-

sion lines to predict the .10, .30, .70, and .90 quantiles in Fig. 1a). Hence, when extending 

the EOB from the conditional mean of H to the full conditional distribution of H, a set of 

specific predictions result that we term the tilted funnel hypothesis.

Quantile regression allows for the examination of the linear relation between the predic-

tor variable and the outcome variable at multiple conditional quantiles across the distri-

bution of the outcome variable (Dumas 2018; Koenker 2005; Koenker and Bassett 1978; 

Wenz 2019; Yu et al. 2003). Quantile regression relies on a weighting procedure and con-

ditional quantile functions that assess the linear relation between the outcome variable and 

predictor variable at any given quantile of the outcome variable (Koenker and Bassett 1978; 

Wenz 2019). For example, an ordinary least squares regression between two variables may 

estimate a significant linear relation, yet a quantile regression assessing the same variables 

may show the linear relation is non-significant at specific quantiles across the distribution 

of the outcome variable, or vice versa. Hence, quantile regression provides a flexible and 

robust approach to study bivariate (and also multivariate) relationships. Indeed, this flex-

ible approach has also been used in the scientometrics literature. For example, Yu and Yu 

(2016) predicted all deciles of log-transformed average journal impact factor percentile by 

factors reflecting impact, citable articles, and half-life indices. Shideler and Araújo (2017) 

predicted the conditional median and the .95-quantile of citation rates of accepted manu-

scripts as a function of the number of needed reviewer requests. Moreover, the conditional 

quartiles of time spent on research and other activities were predicted by researcher’s age 

and other demographic characteristics by Kawaguchi et al. (2016).

Heterogeneity in quantile regression slopes is further inherently tied to the presence of 

heteroscedasticity (e.g., Wilcox and Keselman 2006). In case of homoscedasticity it must 

be the case that linear regression slopes to predict a conditional quantile q (with q being 

in the range from 0 to .50) and the conditional quantile 1 − q should not be significantly 

different (Wilcox and Keselman 2006). The EOB, however, implies heteroscedasticity 

(i.e., residual variation depends on T). Hence, the regression slopes obtained from quantile 

regression would be expected, based on the equal-odds baseline, to vary when quantity 

of publications is predicting quality of publications. Moreover, based on the equal odds 

assumption that H/T and T are uncorrelated, variation of the conditional distribution of H 

should scale with ρ. Consequently, when we extend the EOB to the full conditional distri-

bution, we would expect a tilted funnel shape for the bivariate scatterplot with H on y-axis 

and T on the x-axis. Larger positive linear coefficients are expected for higher quantiles and 

smaller positive linear coefficients for lower quantiles (See Fig. 1a for an illustration).

The tilted funnel metaphor is expected to be most apt in datasets that feature average 

hit rates around 50% (i.e., maximum variance for H/T when ρ ranges between zero and 

one), and when ρ approaches the hit rate limits (i.e., zero and one), the top or bottom of 

the funnel will narrow to a line. However, the described funnel shape is only in accord-

ance with the EOB when the full conditional distribution of H/T is independent from T (as 

it is illustrated in Fig. 1b). In relation to this, it should be noted again that the EOB can be 

derived based on the assumption that H/T and T are independent (Forthmann et al. 2020a). 

Hence, the ‘tilted funnel hypothesis’ implies that we need to test the relationship between 

H/T and T by means of quantile regression (predicting the conditional distribution of H/T) 
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and when the found coefficients are rather small (i.e., negligible) or non-existent we would 

conclude that the data are in accordance with that hypothesis, and the equal-odds baseline 

theory would be supported.

Aim of the current work

The overarching goal of this work was to thoroughly examine the EOB, (i.e., already 

known predictions based on the EOB and newly developed ones related to the residuals 

were under scrutiny). The diversity of scientists and variables in the datasets under investi-

gation provided the opportunity to examine the EOB in multiple scientific contexts. More 

specifically, we first aimed at establishing the fit of the data to the EOB by examining the 

following predictions based on previous literature:

• In cadence with Simonton (2003a, b, 2004), non-significant correlations between H/T 

and T were an indication that the EOB was supported.
• A positive correlation between H and T was expected as a necessary but not sufficient 

condition for support of the EOB.
• The model-data fit (i.e., the practical usefulness of the EOB) was investigated by means 

of the SEM approach outlined by Forthmann et al. (2020a).

• This approach is based on the prediction that, under the EOB, the intercept and 

slope in Eq. 1 should equal zero and the ratio of the mean of H and the mean of T, 

respectively (more details are described in the method section below).

In addition, the following novel predictions, developed in this work, were empirically 

tested:

• In support of the EOB, we expected that the Δ
𝜎̂2

u

 would be non-significant in each data-

set. In other words, the observed residual variance should not be significantly different 

from the expected residual variance under the EOB.
• In accordance, with previous findings on the distributions of citation counts, we 

expected a positively skewed distribution of H/T and a positively skewed conditional 

distribution f(H|T). Importantly, this expectation is not derived from the EOB. How-

ever, as mentioned-above, results related to this expectation help to understand the 

overall pattern of findings.
• In a quantile regression, the full conditional distribution of H/T should be unaffected by 

T (i.e., slopes should be near zero at all quantiles).
• Finally, when H is predicted by T by means of quantile regression, it is expected that 

linear regression slopes would vary, with a positive relationship between the order of 

the predicted quantile of H and the regression slopes. This prediction further implies 

heteroscedasticity of residuals resulting from ordinary least squares (OLS) regression 

with residual variation increasing with T.

• This heteroscedasticity will also be examined graphically (by means of bivariate 

scatterplots).
• This expectation is here termed the tilted funnel hypothesis.

Importantly, the tilted funnel hypothesis needs to be understood as an extension of the 

EOB from a relatively constrained situation in which the conditional mean of H is being 

predicted (as in OLS regression), to predictions about to the full conditional distribution of 
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H (as in quantile regression). Analogous to the correlation between H and T, it represents 

a necessary but not sufficient condition for the EOB. Hence, the tilted funnel hypothesis is 

regarded as subsequent, or downstream from, the EOB, and should not be considered an 

antecedent of the EOB, and therefore should not be studied in isolation from the nuanced 

predictions of the EOB.

Method

Data‑sources

Dataset 1: inventors

Dataset 1 was taken from the publicly available U.S. National Bureau of Economic 

Research (NBER) dataset (Hall et al. 2001). More precisely, we used data provided at the 

Havard dataverse (https ://libra ry.harva rd.edu/servi ces-tolin ear/harva rd-datav erse) which 

were created as part of the Harvard Patent Data Project (Lai et al. 2009; Li et al. 2014) in 

which each inventor was uniquely identified. This allowed us to analyze patent data at the 

level of individual inventors. We only used utility2 patents from the dataset and excluded 

data when forward citations were not available. Moreover, potential issues with data 

truncation were taken into account by using only data from inventors from whom patent 

data were available exclusively between the years from 1980 to 2003. Hence, inventors 

with available data prior to 1980 or past 2003 were excluded. Omitting the first five (i.e., 

1975–1979) and the last five years (i.e., 2004–2008) for which patent data were available 

has been identified as a useful strategy to prevent truncation problems with patent data 

(Dass et  al. 2017). This procedure resulted in a final sample of N = 1,520,967 inventors. 

The variables analyzed were the number of patents, the overall number of forward cita-

tions, and the average citations received over the window of observation (i.e., through 

2003). It should be mentioned that we used a subset of the used data here (also the scoring 

of quality was different) in previous work with a focus on other aspects of the EOB (Forth-

mann et al. 2019).

Dataset 2: psychological researchers

This dataset was provided by the Leibnitz Institute for Psychology Information (ZPID) for 

the purpose of the current research and was taken from Bauer et al. (2013a). This data has 

also been used by Bauer et al. (2013b) in a study on the relation between scientific success 

and both individual as well as organizational characteristics. Dataset 2 included publica-

tion and citation data from N = 1742 psychologists from German speaking countries. The 

dataset includes 81.6% of the target population of psychology researchers from German 

speaking countries in the fall of 2010. The variables analyzed from this dataset were the 

total number of publications and total citations.

2 A utility patent is typified by a novel or improved invention with a discernable benefit and use [Inventions 

Patentable, 35 U.S. Code § 101 (1952)].

https://library.harvard.edu/services-tolinear/harvard-dataverse
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Dataset 3: multi‑disciplinary scientists

Dataset 3 was obtained3 from Liu et al. (2018), a study that sought to model hot streaks 

within creative careers (Liu et  al. 2018). Specifically, the project examined increases in 

creative quality during specified time-periods for artists, directors, and scientists. The cur-

rent study specifically seeks to examine the relation between quality of scientific works and 

total scientific productions (T) and thus, the dataset containing N = 20,296 scientists was 

the only dataset we explored from Liu and colleagues’ project. Liu et al. (2018) obtained 

their sample by disambiguating and merging large-scale datasets obtained from Google 

Scholar and the Web of Science. Together these databases held roughly 46 million journal 

articles that were published as far back as 1900 (Liu et al. 2018), making for an incredibly 

diverse pool of scientists from myriad academic disciplines. This dataset was delimited to 

scientists having at least a 20-year career and at least 15 publications. The dataset featured 

a count of total publications for each individual scientist, and the total number citations 

each individual scientific production received after ten years.

Data analysis

The SEM approach to test the fit of the EOB to a given dataset (Forthmann et al. 2020a) 

was carried out by means of the lavaan package (Rosseel 2012) for the statistical soft-

ware R (R Core Team 2019). The intercept and slope of the simple linear regression of 

H on T (see Eq. 1) are fixed to zero and the ratio between the sample averages of H and 

T, respectively. This requires estimation of the mean and covariance structure for H and 

T (see the OSF for details: https ://osf.io/2zgxn /). The unweighted least squares estimator 

with Satorra–Bentler correction (1994) was used, which does not make the assumption of 

bivariate normality. Fit of the EOB to the data was evaluated by the scaled versions of the 

RMSEA, SRMR, CFI, TLI, and 𝛾̂ according to the model fit thresholds provided by West 

et al. (2012; see the notes on Table 2).

Next, the Δ
𝜎̂2

u

 statistic (see Eq. 4) was examined by means of a non-parametric bootstrap 

approach (Davison and Hinkley 1997) as it is implemented in the R package boot (Canty 

and Ripley 2019). We tested three different estimators for the residual variance: (a) the 

unbiased variance estimator (dividing by N − 1), (b) the maximum likelihood estimator 

(dividing by N), and (c) the mean sum of squares from the analysis of variance table of 

the linear regression in Eq.  1. None of these methodological variations changed any of 

the results and, hence, the pragmatic application of the unbiased variance estimator was 

chosen. Moreover, we tested the following other statistics to compare the observed residual 

variance and the expected residual variance: (a) the ratio of observed and expected residual 

variance, (b) the difference between the log-transformed observed and the log-transformed 

expected residual variance, (c) the log-transformed ratio of observed and expected resid-

ual variance, and (d) the ratio of log-transformed observed and log-transformed expected 

residual variance. The log-transformation was used with the intention to stabilize the 

variance of the resulting bootstrap sampling distributions. However, it turned out that the 

untreated difference as expressed by the Δ
𝜎̂2

u

 statistic performed best in terms of symmetry 

of the sampling distribution across the three datasets (for graphical checks see the OSF 

repository: https ://osf.io/2zgxn /). Hence, 95th percentile bootstrap intervals were used for 

3 The data is available to the public at: https ://lu-liu.githu b.io/hotst reaks /.

https://osf.io/2zgxn/
https://osf.io/2zgxn/
https://lu-liu.github.io/hotstreaks/
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statistical inference based on B = 1000 bootstrap samples. Evidence for the EOB would 

result when the bootstrap interval covers a value of zero.

We further used STATA 16 for regression analyses (StataCorp 2016). In particular, 

the quantile regression analysis was carried out with the quantile regression functions in 

STATA (e.g., StataCorp 2013). Parts of the STATA code were inspired by the code made 

openly available by Sebastian Wenz (2019). The indicators for H, H/T, and T in the respec-

tive datasets were all z-standardized prior to regression analyses. Initially, the conditional 

mean of H (and also of H/T) was predicted by T in an OLS regression. Each analysis only 

has one predictor, so the OLS regression coefficients (see Table 3 and Table 4) equal cor-

relations and can be interpreted as such. The .10, .30, .50, .70, and .90 quantiles of the 

conditional distribution of H will be predicted by T in a quantile regression to examine 

the assumed pattern of heteroscedasticity. In particular, we tested for significant differ-

ences between the slopes obtained at each of the five quantiles using the omnibus Wald-test 

(Koenker 2005). The relationship between H/T and T will also be assessed by means of 

quantile regression and the omnibus Wald-test with the same set of quantiles as mentioned 

above. All data preparation and analyses files can be found in the OSF repository (https ://

osf.io/2zgxn /).

Results

The means and standard deviations for the studied variables, for each of the three datasets 

included in this study, are shown in Table 1. Next, across the three datasets, correlations 

between total citations and total publications (r ranged from .59 to .77) were consistently 

found (see Table 3), which implies that scientists who had more products are likely to be 

cited more frequently. These findings are visualized by the red regression lines in Fig. 3a 

through c. These findings are in support of the theoretical position that quality is a lin-

ear function of quantity: a necessary but not sufficient condition for the EOB. Moreover, 

the strength of the correlation between average citations (H/T) and total number of scien-

tific productions (T) was relatively weak (r ranging from − .0004 to .07) across the three 

datasets (see Table 4). While the linear regression results for Dataset 2 were non-signifi-

cant, the linear regression results from Dataset 1 (β = .04, p < .001) and Dataset 3 (β = .07, 

Table 1  Descriptive statistics
Mean SD

Dataset 1 (N = 1,520,967)

 Average forward citations 7.60 12.87

 Total forward citations 20.81 56.43

 Total number of patents 2.47 3.67

Dataset 2 (N = 1742)

 Average citations 3.71 7.18

 Total citations 133.61 262.05

 Total publications 35.99 49.35

Dataset 3 (N = 20,296)

 Average citations after 10 years 26.08 31.30

 Total citations after 10 years 1555.76 2365.67

 Total publications 55.67 46.20

https://osf.io/2zgxn/
https://osf.io/2zgxn/
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Fig. 3  Bivariate Scatterplots for the relationship between z-standardized H/T (y-axis) and z-standardized T 

(x-axis). OLS = regression slope from ordinary least squares regression (predicting the conditional mean). 

QRMs = regression slopes from quantile regression to predict the .10, .30, .50, .70, an .90 quantiles of the 

conditional distribution. Top-row original scatterplots. Bottom-row scatterplots with truncated y-axis for 

better visual inspection of the regression slopes

Table 2  OLS and quantile regression summary: total scientific productions predicts average citations

***p < .001, **p < .01

OLS coefficients Standardized quantile coefficients Omnibus test 

for quantiles

Conditional 

mean

.1 .3 .5 .7 .9 F p

Predicting the average number of forward citations

Total number of patents

 Intercept: β0 .00 − .57*** − .47*** − .31*** − .012*** .82***

 Slope: β1 .04*** .042*** .082*** .09*** .086*** .032***

 R2 .0019 .0132 .0178 .0089 .005 .0004 2253.84 < .001

Predicting average number of citations

Total number of publications

 Intercept: β0 .00 − .49*** − .38*** − .24*** .009 .59***

 Slope: β1 − .0004 .036*** .049*** .055*** .084** − .0032

R2 < .00001 .0207 .0099 .007 .0033 < .00001 2.73 .028

Predicting average citations after 10 years

Total number of publications

 Intercept: β0 .00 − .63*** − .44*** − .24*** .06*** .80***

 Slope: β1 .07*** .066*** .09*** .09*** .092*** .083***

 R2 .0051 .0243 .0206 .0159 .0084 .0023 40.7 < .001



2510 Scientometrics (2020) 124:2497–2518

1 3

p < .001) produced statistically significant associations between average citations and total 

scientific productions.

In a next step, quantile regression was applied with the total number of scientific 

productions as the predictor variable and average quality as the outcome variable (see 

Table 2). Examining the regression slope at each quantile in Dataset 1 and Dataset 3, the 

strength increased incrementally from quantiles .10 (Dataset 1: β = .0424, p < .001; Dataset 

Table 3  Structural equation modeling and residual variance results

The bootstrap intervals were calculated based on the percentile method and B = 1000 bootstrap samples. 

Graphical checks of the sampling distributions of the Δ
𝜎̂2

u

 statistic are available in the OSF repository (https 

://osf.io/2zgxn /). Cut-off criteria for model fit according to West et al. (2012): RMSEA < .06; SRMR < .08; 

CFI > .95; TLI > .95; 𝛾̂ > .95

Dataset 1: inventors Dataset 2: psycho-

logical researchers

Dataset 3: multi-disci-

plinary scientists

Δ
𝜎̂2

u

− 380.10 10,013.98 − 501,254.60

95%-bootstrap interval [− 429.60, − 335.40] [− 2925, 24,939] [− 646,893, − 364,671]

Ratio between observed and 

expected residual variance

0.830 1.285 0.872

RMSEA .016 .019 .000

SRMR .045 .057 .066

CFI .924 .992 1.000

TLI .924 .992 1.001

𝛾̂ .999 .999 1.000

Table 4  OLS and quantile regression summary: total scientific productions predicts total citations

***p < .001

OLS coefficients Standardized quantile coefficients Omnibus test for 

quantiles

Conditional mean .1 .3 .5 .7 .9 F p

Predicting the total number of forward citations

Total number of patents

 Intercept: β0 .00 − .32*** − .24*** − .14*** .02*** .44***

 Slope: β1 .65*** .10*** .27*** .44*** .69*** 1.27***

 R2 .42 .05 .13 .21 .29 .42 27,824.99 < .001

Predicting total number of citations

Total number of publications

 Intercept: β0 .00 − .44*** − .33*** − .16*** .06*** .58***

 Slope: β1 .59*** .12*** .27*** .49*** .81*** 1.49***

 R2 .34 .08 .17 .24 .32 .44 73.22 < .001

Predicting total citations after 10 years

Total number of publications

 Intercept: β0 .00 − .47*** − .31*** − .16*** .06*** .59***

 Slope: β1 .62*** .21*** .35*** .49*** .68*** 1.18***

 R2 .39 .15 .23 .29 .34 .39 1211.77 < .001

https://osf.io/2zgxn/
https://osf.io/2zgxn/
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3: β = .0659, p < .001) to .50 (Dataset 1: β = .0902, p < .001; Dataset 3: β = .0967, p < .001), 

and then began to wane slightly at quantile .70 (Dataset 1: β = .0861, p < .001; Dataset 3: 

β = .0917, p < .01) until becoming substantially weaker at or leveling off at quantile .90 

(Dataset 1: β = .0324, p < .001; Dataset 3: β = .0826, p < .001). The highest slope for Data-

set 1—estimated when the conditional median was predicted—implied that one additional 

citation on average at the median required ≈ 3 more patents. Figure  3a displays all esti-

mated quantile regression slopes. The highest slope (absolute size) for Dataset 3—esti-

mated when the conditional .70 quantile was predicted—implied that one additional cita-

tion at the .70 quantile required ≈ 16 more publications. The omnibus Wald test between 

quantiles was significant for Dataset 1 and Dataset 3 (see Table  2), suggesting that the 

regression slope differed from each other. The pattern in Fig. 3a suggests that residuals in 

Dataset 1 were larger for lower values of T, whereas looking at the scatterplot for Dataset 

3 in Fig. 3c the regression lines for each conditional quantile are tightly clustered together 

(i.e., they appear almost in parallel to the OLS slope).

On average the quantile regression slopes for the prediction of average citations by total 

publications in Dataset 2 were somewhat smaller as compared to the other datasets. Coef-

ficients increased from quantiles .10 (β = .036, p < .001) to .70 (β = .084, p < .01), and then 

decreased at quantile .90 (β = −  .0032, p > .05). The highest slope (absolute size)—esti-

mated when the conditional .70 quantile was predicted—implied that one additional cita-

tion at the .70 quantile required ≈ 76 more publications. Looking at the quantile regression 

and linear regression lines depicted in Fig. 3b in relation to the distribution of scientists, 

the differences between quantiles is significant, but only in the slightest (see Table 2), and 

there is even evidence of quantile crossing between the .70 and .90 quantiles. This indi-

cates that there are scientists in lower quantiles of the total publication distribution that 

have higher average citations than their peers. All quantile regression slopes were rather 

small in size and the .9 standardized quantile coefficient was non-significant, meaning that 

any deviation from the EOB was not strong. The descriptive pattern of residuals in Fig. 3b 

suggests some larger absolute deviations for points above the OLS regression slope for 

smaller values of T.

As expected, the distribution of average quality was positively skewed across all datasets 

(Dataset 1: skewness = 7.55; Dataset 2: skewness = 11.78; Dataset 3: skewness = 12.30). In 

addition, the conditional distributions of H given T were positively skewed in all datasets. 

In Dataset 1 we found a positive range of skewness coefficients (1.21–8.47) for inventors 

with numbers of patents ranging between 1 and 50 (group sizes ranged between N = 47 to 

N = 882,941). For the other two datasets a binning procedure to create 20 equally sized 

groups for quantity was undertaken to examine the skewness of quality in these groups. 

Again, as expected, positive ranges of skewness were found for both datasets (Dataset 2: 

1.27–9.43; Dataset 3: 2.46–21.44).

The Δ𝜎̂2

u

 statistic was significantly different from zero as indicated by the respective 95% 

bootstrap intervals that did not cover zero for Dataset 1 and Dataset 3 (see Table 3). For 

Dataset 2, however, the interval covered a value of zero which implies that the observed 

and expected residual variance under the EOB did not significantly differ from each other 

(see Table 3). Descriptively, the observed residual variance for Dataset 2 was higher as the 

expected residual variance by a factor of 1.285 (which equals a reduction by a factor of 

.778). For Dataset 1 and Dataset 2 the observed residual variance was significantly smaller 

as compared to the expected residual variance by factors of .830 and .872, respectively (see 

Table 3). Hence, based on a metric free comparison of observed and expected residual var-

iance, the deviations from the EOB were comparable in descriptive terms across the three 

datasets. The significant differences found for Dataset 1 and Dataset 2 are likely because of 
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the very large sample sizes. The latter observation highlights the importance of quantifying 

the practical usefulness of the EOB to model the given datasets, via model-data-fit.

The SEM fit indices for Dataset 1 were acceptable (CFI and TLI) to excellent (RMSEA, 

SRMR, and 𝛾̂ ) which suggests adequate fit of the EOB to the inventor data (see Table 3). 

In addition, for the psychological and multi-disciplinary researcher datasets, the fit of the 

EOB to the data was excellent for all used fit indices (see Table 3). These findings under-

line the practical usefulness of the EOB as a parsimonious model that fits all of the datasets 

under investigation here. Among these datasets, the psychological researcher dataset was 

found to yield the strongest evidence in favor of the EOB (i.e., it is the dataset for which the 

highest number of expectations of the theory could not be refuted).

Tilted funnel hypothesis results

After establishing the general fit of the EOB to the data, we examined the tilted funnel 

hypothesis as a necessary but not sufficient condition of the EOB. Significant differences 

between the slopes across the five quantiles were found for all three datasets (Dataset 1: F 

[4, 1,520,965] = 27,824.99, p < .001; Dataset 2: F [4, 1740] = 73.22, p < .001; Dataset 3: F 

[4, 20,294] = 1211.77, p < .001). A closer look at the standardized coefficients exhibited a 

gradual increase in strength across the whole distribution for all three datasets (Dataset 1: 

.10 quantile β = .10, p < .001, .90 quantile β = 1.27, p < .001; Dataset 2: .10 quantile β = .12, 

p < .001, .90 quantile β = 1.49, p < .001; Dataset 3: .10 quantile β = .21, p < .001; .90 quan-

tile β = 1.18, p < .001). These findings suggest a 10% change of quality for a change of 

quantity by 1SD at the conditional .10 quantile, whereas the same change in quantity would 

result in a change between 1.2 and 1.5SD at the conditional .90 quantile (i.e., a change of 

up to 150%). Further, the pseudo R2 coefficients presented in Table 4 increase gradually 

over the quantile distribution for all datasets (Dataset 1: .10 quantile R2 = .05, .90 quan-

tile R2 = .42; Dataset 2: .10 quantile R2 = .08, .90 quantile R2 = .44; Dataset 3: .10 quantile 

R2 = .21, .90 quantile R2 = .39). The strength of the pseudo R2 coefficients, paired with the 

significant Wald test findings and evidence that demonstrated the changes in strength of the 

regression slopes, suggest that the linear relationship between quantity and quality does not 

hold constant when examining the full conditional distribution. The differences in slope 

between quantiles were depicted graphically in Fig. 4a–c for each of the datasets, respec-

tively. The quantile regression slopes are represented by the dotted lines, with the bottom 

line being the .10 quantile and the top being the .90 quantile. These findings are largely in 

accordance with the tilted funnel hypothesis, associated with the EOB.

Discussion

The EOB is a parsimonious theoretical model for the relation between quantity and 

quality of scientific productions. In this study, we began with a theoretical investiga-

tion, and simulation data demonstration, of the expected residual variance and the ways 

in which the EOB leads to the empirical phenomenon we describe as the tilted fun-

nel. The expected residual variance was examined by means of a bootstrap approach. 

Then, using three different large datasets related to the creative work of scientists, we 

used SEM methodology to show that the EOB was in fact a useful and well-fitting theo-

retical explanation of the covariance patterns in the data. After that, we used quantile 
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regression as a promising tool to examine the tilted funnel hypothesis as a theoretical 

extension of the EOB that takes the heteroscedastic nature of the bivariate relationship 

between quantity and quality into account.

In particular, we expected that when the total number of citations is predicted by the 

number of products (i.e., patents or publications), the regression slopes in a quantile 

regression would increase as a function of the predicted conditional quantile. Hetero-

scedasticity around the OLS regression line was further predicted to be in accordance 

with the pattern for quantile regression slopes. In contrast, when the average citations 

per product were predicted by the number of products, quantile regression slopes were 

closer to parallel across quantiles, and homoscedastic errors for the OLS regression 

were assumed. This set of hypotheses was coined the tilted funnel hypothesis to pro-

vide a metaphor for the expected shape of the bivariate scatterplot based on quantity 

(x-axis) and quality (y-axis). The tilted funnel hypothesis logically extends important 

predictions of the EOB theory: (a) the relationship is linear between total products and 

total citations, (b) the correlation between the average citation count per product and 

total products is zero, and (c) the residuals should be heteroscedastic in a specific way 

(i.e., variance of residuals around the OLS slope should increase with the number of 

products). We further expected and empirically found positively skewed distributions of 

Fig. 4  Bivariate Scatterplots for the relationship between z-standardized H (y-axis) and z-standardized T 

(x-axis). OLS = regression slope from ordinary least squares regression (predicting the conditional mean). 

QRMs = regression slopes from quantile regression to predict the .10, .30, .50, .70, an .90 quantiles of the 

conditional distribution
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H/T and f(H|T) which is well in accordance with the bibliometric literature (e.g., Blagus 

et al. 2015; Calver and Bradley 2009; Saam and Reiter 1999).

We tested the EOB and the tilted funnel hypothesis using both SEM and quantile regres-

sion methods for three datasets for a better generalization of the findings across scien-

tific domains. Dataset 1 and Dataset 2 comprised of inventors generating utility patents 

and psychological researchers from German-speaking countries, respectively. Dataset 3 

included researchers from multiple disciplines and with careers occurring across a large 

time span. All datasets were rather large which is important for the interpretation of the 

findings because, in the SEM analysis, sample sizes were substantially large to allow for 

the generalizability of the covariance patterns from the data to the populations of scientists 

being studied. The sample size also influenced the quantile regression analysis in that, with 

this large number of scientists in the data, the full phenomenon of the tilted funnel was able 

to be observed in the data, with no truncation of the range of the data due to sample size. 

The residual variance under the EOB was also studied from a theoretical and empirical 

point of view. It seems that the found deviations of the observed residual variance from 

the expected residual variance did not exceed an amount that prevented the data to fit the 

EOB in a SEM approach. Hence, all analyzed datasets displayed findings in accordance 

with the tilted funnel hypothesis and the EOB. That is, structural models formulated to 

correspond to the EOB fit the data well or excellently, and among other findings, a positive 

linear relationship between the number of citations and the number of products was found. 

In addition, the correlations between average citations per product and the total number of 

products were estimated to be very small: in the range from r = − .0004 to r = .07 (impor-

tantly, small or practically relevant effect sizes typically range from .10 to .20, especially at 

large sample sizes; Cohen 1988; Ferguson 2009).

The strongest deviation from this general pattern was found for the multi-disciplinary 

scientist dataset, where the correlation (r = .07) between average citations and total pub-

lications implied that 0.5% of the variation in average citations was explained by total 

publications, and these findings were further corroborated by the found deviation of the 

observed residual variance from the expected residual variance in the multi-disciplinary 

dataset. Hence, when taking model parsimony and these weak signs of deviations from 

the EOB into account, we think that it is fair to conclude that the tilted funnel hypothesis, 

and the EOB, appear to hold across all datasets and analyses included in this investigation. 

However, when interpreting the small deviations from the EOB that were found, for exam-

ple within the multi-disciplinary scientist dataset (i.e., based on the correlation between 

H/T and T and the Δ𝜎̂2

u

 statistic) or for the inventor dataset (i.e., based on the correlation 

between H/T and T, the Δ
𝜎̂2

u

 statistic, and a slightly deteriorated SEM fit of the EOB), one 

must take into account that Simonton’s theorizing (2010, p. 160) is based on “concepts, 

facts, theories, laws, hypothesis, formulas, principles, techniques, methods, problems, 

questions, goals”, and so forth that represent the ideas of a research domain (i.e., scien-

tometric researchers contribute to the field of scientometrics, for example). Quasi-random 

combinations of ideas in a research domain materialize into new scientific productions 

(Simonton 2009, 2010). Hence, observing the best fit of the EOB to the most homogene-

ous sample of researchers is well in accordance with Simonton’s theorizing. Moreover, one 

must conclude that the found (yet small) deviations in this study may be in accordance with 

the dual pathway theory of creativity (that assumes a positive correlation between H/T and 

T; see Nijstad et al. 2010): a theory that may warrant further investigation in the future.

Next, it was found that several specific predictions of the tilted funnel hypothesis were 

supported by the data. First, the quantile regression slopes increased clearly with the 

order of the predicted conditional quantiles of citation counts across all analyses. Second, 
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heteroscedasticity was clearly present for all examinations of the EOB by means of OLS 

regression. Third, the quantile regression slopes when predicting average citations were 

rather homogenous across quantiles and close to zero in magnitude and, hence, homosce-

dasticity of residuals for the OLS regressions when predicting average citations was found 

for almost all analyses (the exception was the inventor dataset).

Limitations

This study is limited in terms of how quality was scored in this study. In line with previous 

studies that are frequently cited in relation to the EOB (see Simonton 1988, 2003a, 2004, 

2009, 2010) we analyzed citation counts as a proxy of creative quality of scientific pro-

ductions. This view has been supported by other previous researchers (Davis 1987; Wang 

2016), but several other conceptions of quality exist that have a theoretical relationship to 

creativity. For example, there are indicators of originality based on keywords, referenced 

journals, or cited and citing papers (for an overview of several creative quality measures 

of scientific productions see Shibayama and Wang 2020). Hence, our study findings may 

not generalize to other reasonable operationalizations of quality of scientific productions. 

We argue that, in relation to the EOB, it has been a canonical choice to test the theory by 

means of citation counts. Thus, extending the presented findings here to other measures of 

creative quality is an important next step for future work.

It is further important to acknowledge that the EOB is formulated based on counts 

of high-quality productions (H) and not on citation counts. That is, H is the number of 

products that are considered to be of high-quality. Davis (1987) makes this distinction by 

dividing the total publications into those that were cited (H) and those that were not cited 

(T–H), for example. Hence, this can be understood as a weighting of products: high-quality 

products are weighted by 1 and low-quality products are weighted by zero. Summation of 

these product weights results in H. For total citation counts, however, the weighting is dif-

ferent because each product is weighted by its number of citations. This methodological 

issue partly explains differences between the simulated data in Fig. 1a (they are based on 

counts of high-quality productions) and Fig. 4 that depicts empirical data. The difference is 

observable mainly for points above the OLS line and rather low values of T. For instances 

where citation counts are used as the operationalization of H, the residuals are clearly not 

bounded by T(1 − ρ) and, hence, the pattern of residuals above the OLS line can be dif-

ferent from what would be expected for counts of high-quality products. Residuals below 

the OLS slope however are still bounded below because citation counts are also restricted 

to the range of positive integers. In relation to this, we argue that citation counts provide a 

richer source of information for this study as compared to dichotomization of citations by 

a median split (see Forthmann et al. 2019), for example. Dichotomization would make the 

data similar to the original equal odds model formulation, but important information in the 

data would be lost from the analysis.

A final note relates to varying levels of reliability of average citation scores. That is, 

the measurement precision of average citations increases with a scientist’s total number of 

products (Cronbach 1941; Dennis 1958; Forthmann et al. 2019) and the analysis used does 

not take this fact explicitly into account. Forthmann et al. (2019) have used meta-analyt-

ical statistical approaches to correct for this source of imprecision in the average citation 

measures, but in relation to quantile regression we are not aware of a statistical procedure 

that can handle this issue for citation counts. This lack of reliability was clearly visible in 

the current study in the regression analyses with average citations as dependent variable. 
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The large residuals for lower T values above the OLS regression lines in all bivariate scat-

terplots of Fig. 3 are clearly affected by this issue. Hence, one should take the results for 

average citations with caution because of potential effects of varying reliabilities of average 

scores on the slope estimates. Again, this is a very important observation to guide future 

studies on methodological approaches to investigate the relationship between quantity and 

quality of scientific productions.

Overall conclusion

The current study provides extended theorizing and empirical tests for the quantity–quality 

relationship of scientific productions. The assumptions of Simonton’s EOB were extended 

from a focus on the conditional mean of quality to the full conditional distribution of quality. 

Our extended hypotheses and findings suggest that the linear slope for the prediction of a 

conditional quantile of the quality (H) distribution increases as a function of quantile order. 

At the lower quantiles of the distribution of quality, the relationship between quantity and 

quality is smaller (in this study the linear slope estimates to predict the .10 quantile ranged 

between .10 and .22) and at the higher quantiles of the quality distribution, the relation-

ship is stronger (linear slope estimates to predict the .90 quantile ranged between 1.18 and 

1.60) as compared to the EOB coefficient (linear slope estimates to predict the conditional 

mean ranged between .59 and .77). We have also highlighted and thoroughly investigated 

the importance of heteroscedasticity and the expected residual variance in this regard. The 

existence of other measures of creative quality of scientific productions, the observed differ-

ences between counts of high-quality products and citation counts as measures of quality, 

and the issue with varying levels of reliability of average citations scores include promising 

possible ventures for future research. Given our findings, we contend that careful attention 

to the full conditional distribution of scientific quality can and should be a focus in scien-

tometrics research. As this empirical work progresses, we hypothesize that the tilted funnel 

will be apparent in more and more datasets related to the science of scientific production.
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