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Abstract

Background: Sleep traits are associated with cardiometabolic disease risk, with evidence from Mendelian

randomization (MR) suggesting that insomnia symptoms and shorter sleep duration increase coronary artery disease

risk. We combined adjusted multivariable regression (AMV) and MR analyses of phenotypes of unfavourable sleep on

113 metabolomic traits to investigate possible biochemical mechanisms linking sleep to cardiovascular disease.
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Methods: We used AMV (N = 17,368) combined with two-sample MR (N = 38,618) to examine effects of self-reported

insomnia symptoms, total habitual sleep duration, and chronotype on 113 metabolomic traits. The AMV analyses were

conducted on data from 10 cohorts of mostly Europeans, adjusted for age, sex, and body mass index. For the MR

analyses, we used summary results from published European-ancestry genome-wide association studies of self-

reported sleep traits and of nuclear magnetic resonance (NMR) serum metabolites. We used the inverse-variance

weighted (IVW) method and complemented this with sensitivity analyses to assess MR assumptions.

Results: We found consistent evidence from AMV and MR analyses for associations of usual vs. sometimes/rare/never

insomnia symptoms with lower citrate (− 0.08 standard deviation (SD)[95% confidence interval (CI) − 0.12, − 0.03] in

AMV and − 0.03SD [− 0.07, − 0.003] in MR), higher glycoprotein acetyls (0.08SD [95% CI 0.03, 0.12] in AMV and 0.06SD

[0.03, 0.10) in MR]), lower total very large HDL particles (− 0.04SD [− 0.08, 0.00] in AMV and − 0.05SD [− 0.09, − 0.02] in

MR), and lower phospholipids in very large HDL particles (− 0.04SD [− 0.08, 0.002] in AMV and − 0.05SD [− 0.08, − 0.02]

in MR). Longer total sleep duration associated with higher creatinine concentrations using both methods (0.02SD per

1 h [0.01, 0.03] in AMV and 0.15SD [0.02, 0.29] in MR) and with isoleucine in MR analyses (0.22SD [0.08, 0.35]). No

consistent evidence was observed for effects of chronotype on metabolomic measures.

Conclusions: Whilst our results suggested that unfavourable sleep traits may not cause widespread metabolic

disruption, some notable effects were observed. The evidence for possible effects of insomnia symptoms on

glycoprotein acetyls and citrate and longer total sleep duration on creatinine and isoleucine might explain some of the

effects, found in MR analyses of these sleep traits on coronary heart disease, which warrant further investigation.

Keywords: Mendelian randomization, Metabolomics, Sleep, Epidemiology

Background
Several systematic reviews and large biobank studies

have reported associations of self-reported insomnia

symptoms, short and long sleep duration, and chrono-

type (i.e. having an evening rather than morning prefer-

ence) with increased risk of cardiovascular disease, type

2 diabetes, and risk factors for these [1–9]. The mecha-

nisms underlying these associations are unclear, and it is

plausible that specific sleep traits may contribute to the

misalignment of various behavioural and internal physio-

logical processes, including aspects of metabolism that

causes adverse cardiometabolic health.

There is some evidence of poor sleep quality, shorter

sleep duration, and having an evening chronotype being

associated with higher triglyceride, total cholesterol and

low-density lipoprotein cholesterol (LDL-C) levels, and

lower high-density lipoprotein cholesterol (HDL-C) con-

centrations [10–12]. However, the extent to which these

associations are explained by confounding factors, such

as body mass index [11], is unclear. Beyond conventional

multivariable-adjusted regression analyses, we have pre-

viously demonstrated that sleep duration modifies the

associations of genetic variation with triglycerides, LDL-

C and HDL-C in a large sleep-gene interaction analysis,

suggesting that possible different biological mechanisms

underlie the associations of short and long sleep dur-

ation with these lipid traits [13]. However, these genetic

interaction analyses do not assess causality and, like pre-

vious multivariable-adjusted regression analyses, have fo-

cused on a limited number of lipid traits.

Mendelian randomization (MR) uses genetic variants

that are robustly associated with an exposure as an in-

strumental variable to obtain unconfounded effects of

that exposure on an outcome of interest [14–16]. Recent

MR analyses have suggested a causal effect of insomnia

symptoms on coronary heart disease [17] and of short

(< 6 h) sleep duration on myocardial infarction risk [18].

The aim of this study was to determine the possible

causal effect of sleep traits on metabolomic traits. We

compared findings from adjusted multivariable regres-

sion (AMV) and MR analysis, to determine the relation-

ships between self-reported insomnia symptoms (usually

vs. sometimes/rare/never), total habitual sleep duration

(per 1 h longer), and chronotype (evening vs. morning

preference) and 113 nuclear magnetic resonance (NMR)

metabolomic traits. Cross-sectional AMV was performed

with adjustment for age, sex, and BMI in 17,370 individ-

uals from 10 cohorts of mostly Europeans. Two-sample

MR used summary results from genome-wide associ-

ation studies (GWAS) of different sleep traits in 1,331,

010 (insomnia) [19], 446,118 (sleep duration) [20], and

651,295 (chronotype) [21] European adults and summary

results from four GWAS of 113 circulating metabolomic

measures from NMR in 38,618 European adults. In sec-

ondary analyses, we explored effects of short (< 7 vs. 7-

< 9 h) and long (≥ 9 vs. 7- < 9 h) sleep duration on the

metabolomic traits. We highlight results that were con-

sistent across both methods, as the different key sources

of bias of the two methods (e.g. residual confounding in

AMV and unbalanced horizontal pleiotropy in MR,
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respectively) mean that, where there is consistency, this

is more likely to reflect a causal effect [22].

Methods
Studies used for AMV

Cross-sectional AMV analyses were performed using

data from 10 cohorts: the Active and Healthy Ageing

(AGO) study [23], the Dutch Hunger Winter Families

Study (DWFS) [24], the Healthy Life in an Urban Setting

(HELIUS) Study [25], the Leiden University Migraine

Neuro-Analysis (LUMINA) [26], Netherlands Study of

Depression and Anxiety (NESDA) [27], the Netherlands

Twin Register (NTR) [28], the Netherlands Epidemi-

ology of Obesity (NEO) Study [29], and the Rotterdam

Study cohorts 1, 2, and 3 (RS1, RS2 and RS3) [30]. Study

characteristics of each study are given in Additional file 1:

Table S1. Each participating study obtained written in-

formed consent from all participants and received ap-

proval from the appropriate local institutional review

boards. Before the analyses, we excluded all participants

with diabetes (defined as self-report/hospital record,

fasting plasma glucose > 7mmol/L and/or use of

hypoglycaemic medication) given the known distur-

bances on many metabolomic traits. In more detail:

Active and Healthy Ageing (AGO) Study

The “Actief en Gezond Oud (AGO)” study is a random-

ized controlled trial of the effect of a 3-month Web-

based intervention program with the intention to im-

prove physical activity in inactive older adults. A more

detailed description of the study setting and selection of

study participants is described in more detail elsewhere

[23]. In short, individuals were eligible for study inclu-

sion when they were between 60 and 70 years of age,

had no history of diabetes or use of glucose-lowering

mediation, had no disabilities impending increase in

physical activity, and were in the possession of a per-

sonal computer with access to the internet. All eligible

individuals were screened for the presence of an inactive

lifestyle using the general practice physical activity ques-

tionnaire (GPPAQ). Eligible individuals with an active

lifestyle were not included in the study. After study in-

clusion, participants were randomized into an interven-

tion and control (waitlist) group. For the present study,

we only included the baseline sample prior to

randomization during which information on sleep was

collected using the PSQI questionnaire and fasting blood

was taken. In the final sample for the present study, we

included 221 participants.

Healthy Life in an Urban Setting (HELIUS)

The HELIUS study is a prospective cohort study among

six large ethnic groups living in Amsterdam, the

Netherlands. Between 2011 and 2015, a total 24,789

participants (aged 18–70 years) were included at baseline

[31, 32]. Similar-sized samples of individuals of Dutch,

African Surinamese, South-Asian Surinamese, Ghanaian,

Turkish, and Moroccan origin were included using

stratified random sampling from the Amsterdam muni-

cipal records. Response rate was about 28% of those in-

vited and 50% of those with whom some form of contact

was established.

Participants filled in an extensive questionnaire and

underwent a physical examination that included the col-

lection of biological samples (biobank). Participants were

asked to provide information on the average number of

hours they usually sleep at night. Sleep duration was

assessed using the item “How many hours do you sleep

on average per night?” Sleep duration was categorized

according to the standard recommendations of the Na-

tional Sleep Foundation. For adults, 7–9 h per night is

recommended. Short sleep is defined as having less than

7 h of sleep per night and long sleep as having 9 or more

hours of sleep per night. Venous blood samples were ob-

tained after overnight fasting (minimum 4 h), processed

within 4 h and then stored at − 80 °C. Samples were

freeze-thawed no more than 1 time prior to shipment.

For the present study, 500 participants with African-

Surinamese or Ghanaian ethnicity living in the

Netherlands with pre-diabetes were included.

The Dutch Hunger Winter Families Study (DHWF)

DHWF consists of 2417 singleton births with detailed

birth records, born between 1 February 1945 and 31

March 1946 to mothers who were exposed to the Dutch

famine of 1944–1945 during or immediately preceding

pregnancy and an additional 890 births that occurred

between 1943 and 1947 and who were selected on the

basis that their mothers were not exposed to famine

during this pregnancy. For 70% of the individuals, an ad-

dress could be obtained, and they were invited to partici-

pate together with a same-sex sibling not exposed to the

famine. In total, 1075 (33% of original identified births)

interviews and 971 (29%) clinical examinations were per-

formed between 2003 and 2005. Fasting (minimum 9 h)

venous blood samples were obtained, and then stored at

− 80 °C. Samples were freeze-thawed no more than one

times prior to shipment. Sleep habits were ascertained as

per NHANES I questionnaire during hospital interview

at the Leiden University Medical Center [24]. A total of

963 participants with data on sleep traits and nuclear

magnetic resonance (NMR) metabolites were included

in analyses presented in this paper.

The Leiden University Migraine Neuro-Analysis (LUMINA)

Participants of the Leiden University Migraine Neuro-

Analysis (LUMINA) study were recruited through a ded-

icated, nationwide website inviting migraine patients and
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non-migraine controls to participate in migraine re-

search. Additional participants were recruited from pa-

tients attending the Leiden University Medical Center

(LUMC) dedicated headache clinic. Blood venous sam-

ples were drawn and after centrifugation at room

temperature plasma was aliquoted and stored at − 80 °C.

Samples were freeze-thawed no more than once prior to

NMR analyses. Sleep was assessed using the Pittsburgh

Sleep Quality Index (PSQI), the Munich ChronoType

questionnaire (MCTQ) and the Insomnia Severity Index

(ISI). In total, 248 participants with sleep and NMR data

were included in the analyses presented here.

The Netherlands Study of Depression and Anxiety (NESDA)

NESDA is an observational longitudinal cohort study on

the long-term course and consequences of depressive

and anxiety disorders [27]. In total, 2981 participants

aged 18 to 65 years were recruited between 2004 and

2007 through different settings: community, primary

care, and specialized mental health clinics in order to

obtain a representative sample of persons with and with-

out depressive and anxiety disorders. Plasma samples

were obtained at baseline, stored in the EDTA detergent,

stored at − 80 °C until further analyses, and shipped in

two batches (April and December 2014, further referred

to as batch 1 and batch 2, respectively) to the NMR

metabolomics lab for assessment. Insomnia symptoms

were based on the 4-item Women’s Health Insomnia

Rating Scale. This questionnaire addresses trouble falling

asleep, waking up during the night, early morning awak-

enings, trouble getting back to sleep after waking up,

and sleep quality. Sleep duration was based on one self-

report question. At the 2-year follow-up assessment,

chronotype was based on the Munich Chronotype

Questionnaire.

In total, 2483 respondents with sleep information and

NMR metabolomics data were included.

The Netherlands Twin Register (NTR)

The NTR (http://www.tweelingenregister.org/) has col-

lected (longitudinal) data on young and adult twins and

their families [28, 33]. A 2015 estimate suggests that the

NTR includes ~ 25% (~ 2,000,000 individual participants,

including family members of twins/multiples). An initial

NTR biobank project (BB1) obtained blood samples

from 9530 participants, from 3477 families, via home

visits between January 2004 and July 2008. A second

project (BB2) collected blood samples from 517 partici-

pants between January 2011 and December 2011. This

sample included 210 MZ twin pairs and 64 twin-spouse

pairs [4]. Visits were scheduled between 7:00 am and 10:

00 am to collect fasted (overnight) venous samples (fer-

tile women were bled on days 2–4 of the menstrual cycle

or in their pill-free week). Samples were stored at −

80 °C. Sleep variables were assessed using the Dutch

Groningen Sleep Questionnaire [34]. In total, 3398 par-

ticipants with sleep and NMR data were included in the

analyses presented here.

The Netherlands Epidemiology of Obesity (NEO) Study

The NEO study is a prospective population-based cohort

study. In this paper, we used cross-sectional data ob-

tained at the baseline assessment. The NEO study

started in 2008 and included 6671 individuals aged 45–

65 years, with an oversampling of individuals with a BMI

of 27 or higher. The study design and population are de-

scribed in more detail elsewhere [29]. Men and women

living in the greater area of Leiden (in the West of the

Netherlands) were invited to participate if they were

aged between 45 and 65 years and had a self-reported

body mass index (BMI) of 27 kg/m2 or higher. In

addition, all inhabitants aged between 45 and 65 years

from one municipality (Leiderdorp) were invited to par-

ticipate irrespective of their BMI, allowing for a refer-

ence group with a normal BMI distribution. Data on

sleep was collected using the standardized PSQI ques-

tionnaire and fasting blood was collected on the baseline

visit to the study centre. A total of 5094 participants had

complete data and contributed to the present analysis.

The Rotterdam Study

From 1989, all inhabitants aged 55 and older from a well-

defined suburb in the city of Rotterdam, the Netherlands,

were invited to participate in the Rotterdam Study. The

initial cohort comprised 7983 (78% of those invited) par-

ticipants (RS-I) and was extended in 2000 (RS-II: 3011

participants (67%)) and 2006 (RS-III: 3932 participants

(65%), aged 45 years and older). In total, the Rotterdam

Study comprises 14,926 participants aged 45 years or over.

The Rotterdam Study has been registered at the

Netherlands National Trial Register (NTR; www.

trialregister.nl) and the WHO International Clinical Trials

Registry Platform (ICTRP; www.who.int/ictrp/network/

primary/en/) under shared catalogue number NTR6831.

Between 2002 and 2014, overnight fasted venous

blood samples were obtained and analysed using

NMR technique from 5381 participants across all

three cohorts. Samples were aliquoted and then

stored at − 80 °C. Samples were not freeze-thawed

prior to shipment to Brainshake Ltd./Nightingale

Health for NMR analyses. Sleep traits were measured

during a home interview using the Pittsburgh Sleep

Quality Index (PSQI). The assessment of chronotype

was based on a single question from a sleep diary. A

total of 4730 participants from across the three co-

horts with data on sleep traits and NMR were in-

cluded in this study.
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Studies used for MR analyses

We performed two-sample MR analyses using publicly

available summary-level data [14] from the following

GWAS:

Sleep trait GWAS

We selected genome-wide significant (p value< 5e−8)

variants as instrumental variables from the following

GWAS. All associations had been adjusted for age, sex, a

maximum of 10 principal components, and, additionally,

in UK Biobank for genotype platform:

� Insomnia: A GWAS that pooled data from two large

biobanks (UK Biobank and 23andMe) and included

1,331,010 unrelated European-ancestry adults. This

GWAS identified 248 variants (Additional file 1:

Table S2; total F-statistic = 6918) for experience of

insomnia symptoms (usually vs. sometimes/rare/

never) [19].

� Sleep duration: A GWAS undertaken in UK Biobank

of 446,118 unrelated European-ancestry adults [20].

This GWAS identified 78 variants for total sleep

duration (mean 7.2 h; SD1.1 h; Additional file 1:

Table S3; total F-statistic = 2567). In addition, this

GWAS identified 27 variants for short sleep duration

(< 7 h vs. 7 to < 9 h; N = 106,192 cases; Additional

file 1: Table S4; total F-statistic = 646) and 8 for long

sleep duration (≥ 9 h vs. 7 to < 9 h; N = 34,184 cases;

Additional file 1: Table S5; total F-statistic = 208).

� Chronotype: A GWAS that pooled data from two

large biobanks (UK Biobank and 23andMe) and

included 697,828 unrelated European-ancestry adults

(651,295 of whom were in the combined (both bio-

banks) GWAS of morning versus evening preference

that we have used in this two-sample MR study.

This GWAS identified 351 variants for chronotype

[21] (Additional file 1: Table S6; total F-statistic =

13,967). Because previous observational studies have

found increased risk of cardiometabolic diseases and

risk factors in those with an evening preference, we

transformed the GWAS results to reflect alleles as-

sociated with evening preference.

NMR Metabolite GWAS

� MAGNETIC consortium (N = 24,925) [35] with

summary-level GWAS data downloaded from http://

www.computationalmedicine.fi/data#NMR_GWAS

� In addition, to increase statistical power in the MR

analyses, we generated new summary-level GWAS

data from three cohorts using similar analyses pro-

cedures to the MAGNETIC consortium: Oxford

Biobank (N = 6616) [36], NEO (N = 4734) [29], and

Pravastatin in Elderly Individuals at Risk of Vascular

Disease (PROSPER) (N = 2343; placebo arm only) [37].

All GWASs were undertaken in participants of European

ancestry, and there was no overlap between the cohorts

included in the sleep trait GWAS and those included in the

NMR GWAS. In more detail:

MAGNETIC consortium

We used publicly available summary statistics from the

MAGNETIC NMR GWAS dataset (downloaded from:

http://www.computationalmedicine.fi/data#NMR_

GWAS), which comprises the additive (per-allele) beta

coefficients with accompanying standard errors of the

associations between genome-wide single nucleotide poly-

morphisms (SNPs) and 123 metabolic measures [35]. This

GWAS meta-analysed data from 24,925 European ances-

try participants of 14 cohorts. The 123 metabolic mea-

sures in the studies included in the MAGNETIC NMR

GWAS were quantified by an earlier version of the same

high-throughput proton NMR metabolomics platform as

that used in the multivariable regression studies meta-

analysis (https://nightingalehealth.com/research/blood-

biomarker-analysis).

In addition to the publicly available data from the

MAGNETIC consortia, we were also able to obtain sum-

mary GWAS data for the same NMR platform metabo-

lites from 3 additional cohorts. GWAS analyses in these

additional cohorts were run by co-authors for this paper

and these results have not yet been published/made pub-

lic. In each GWAS, only those of European ancestry

were included, metabolites were log-transformed and re-

sults were the per-allele difference in mean metabolite in

standard deviation (SD) units of the logged variables.

Additive linear regression analyses were performed ad-

justed for age, sex and the first 10 principal components

to correct for population stratification. Descriptions of

these three studies are provided below.

NEO Study

The general description of the NEO study is provided

above. Genotyping was performed in participants form

European ancestry, using the Illumina HumanCoreExome-

24 BeadChip (Illumina Inc., San Diego, California, USA).

Related individuals as well as individuals of a non-European

ancestry were excluded for genotyping [38]. Subsequently,

genotypes were imputed to the 1000 Genome Project refer-

ence panel (v3 2011). 4734 NEO participants were included

in the GWAS that provided data for this study.

Oxford Biobank (OBB)

OBB is a population-based cohort study of randomly se-

lected healthy men and women living in Oxfordshire,

UK. The study includes 7185 individuals aged 30 to 50

Bos et al. BMC Medicine           (2021) 19:69 Page 5 of 20

http://www.computationalmedicine.fi/data#NMR_GWAS
http://www.computationalmedicine.fi/data#NMR_GWAS
http://www.computationalmedicine.fi/data#NMR_GWAS
http://www.computationalmedicine.fi/data#NMR_GWAS
https://nightingalehealth.com/research/blood-biomarker-analysis
https://nightingalehealth.com/research/blood-biomarker-analysis


years old. The exclusion criteria for the OBB were his-

tory of myocardial infarction, diabetes mellitus type 1 or

2, heart failure, untreated malignancy, other ongoing sys-

temic diseases, or ongoing pregnancy. Study recruitment

criteria and population characteristics are described in

detail elsewhere [36]. OBB was approved by the Oxford-

shire Clinical Research Ethics Committee and all partici-

pants provided informed consent. SNP array data have

been generated using the Illumina Infinium Human Ex-

ome Beadchip 12v1 array platform for the first consecu-

tive 5900 DNAs, and Affymetrix UK Biobank Axiom

Array chip on the first consecutive 7500 participants. A

total of 6616 participants were included in the GWAS

that provided data for this study.

PROSPER

PROSPER is a prospective multicentre randomized pla-

cebo-controlled trial that was established to determine the

effect of pravastatin (a statin) on the risk of major vascular

events in elderly adults. Between December 1997 and May

1999, potential participants were screened and enrolled in

Scotland (Glasgow), Ireland (Cork), and the Netherlands

(Leiden). Men and women aged 70–82 years were re-

cruited if they had pre-existing vascular disease or in-

creased risk of such disease because of smoking,

hypertension, or diabetes [37, 39]. A total of 23,770 indi-

viduals were assessed for eligibility. A total number of

5804 (24.4% of the invited eligible participants) adults

were randomly assigned to pravastatin or placebo. Partici-

pants were followed for an average 3.5 years. Genotyping

was performed using the Illumina Beadchip 660 K. Outly-

ing individuals were excluded on the basis of relatedness,

non-European ancestry, and sex discrepancy. Genotyped

data was subsequently imputed to the HRC reference

panel. 2343 PROSPER participants were included in the

GWAS that provided data for this study. Analyses were

adjusted for age, sex, and the first 10 principal compo-

nents to correct for population stratification.

Sleep traits

In both AMV and MR analyses, sleep traits were self-

reported and analysed in the same units/categories. Con-

tributing cohorts either collected some individual question

on habitual sleep duration (e.g. HELIUS) or collected

more aspects of sleep using the PSQI questionnaire. In-

somnia symptoms were assessed with a question similar

to “Do you have trouble falling asleep at night or do you

wake up in the middle of the night?” with the following

answers possible: “never/rarely”, “sometimes”, “usually”, or

“prefer not to answer”. In the AMV and GWAS analyses,

participants who answered “usually” were defined as hav-

ing insomnia symptoms and were compared to those an-

swering “never/rarely” or “sometimes”. Habitual sleep

duration was assessed using a question similar to “On an

average day, how many hours of sleep do you get?”. For

our main analyses, we examined effects of total self-

reported sleep duration (per 1 h longer) on metabolomic

measures. In secondary analyses, we explored associations

of short (< 7 vs. 7- < 9) and long (≥ 9 vs. 7- < 9 h) habitual

sleep. These latter two analyses were considered explora-

tory because of lower statistical power and possible weak

instrument bias in the MR analyses. For chronotype, a

question similar to “Are you naturally a night person or a

morning person?” with the possible responses “Night owl/

night person”, “Early bird/morning person”, “Neither/not

sure” was used in most studies. A variation on the ques-

tion in UK Biobank included more responses: “Definitely a

morning person”, “More a morning than evening person”,

“More an evening than a morning person”, “Definitely an

evening person”, “Do not know”. Participants were classi-

fied as having a ‘morning preference’ (“Early bird/morning

person”, “Definitely a morning person” or “More a morn-

ing than evening person”), the reference group, or an

‘evening preference’ (“Night owl/night person”, “More an

evening than a morning person” or “Definitely an evening

person”). For all traits those responding “do not know”,

“unsure” or “prefer not to answer” were excluded.

NMR-based metabolomic profiling

In both the metabolite GWAS and studies included in

the AMV meta-analysis, metabolites were quantified

using a high-throughput proton (1H) NMR metabolo-

mics platform [40] (https://nightingalehealth.com/) to

quantify a maximum of 148 (excluding ratios) lipid and

lipoprotein and metabolite concentrations in fasting

serum or plasma samples. The quantitative NMR mea-

sures include numerous lipid species and fatty acids, as

well as some amino acids, markers of glucose homeosta-

sis, fluid balance, and an inflammatory marker. This

platform has been used widely in population-based stud-

ies of cardiometabolic diseases and has been described

in detail elsewhere [40–42]. There were 113 metabolo-

mic trait measurements that were available for both

AMV and MR analyses.

Statistical analyses

In both AMV and MR analyses, we estimated the same

effect: the difference in mean NMR metabolites (SD

units of the natural log-transformed metabolomic traits;

as dependent variables) comparing (i) usually experien-

cing insomnia symptoms to sometimes, rarely or never,

(ii) per 1 h longer habitual sleep duration, and (iii) an

evening to a morning preference. All analyses were per-

formed in R (v3.6.1) [43].

Multivariable-adjusted regression meta-analysis

Cross-sectional AMV was performed by each of the in-

dividual cohorts according to a pre-specified analysis
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plan and standardized analysis script. Results were col-

lected centrally for quality control subsequent fixed-

effect meta-analyses using the R “rmeta” package, using

similar procedures as described previously [44]. Add-

itionally, we performed random-effect meta-analyses

using the same software to incorporate possible

between-cohort heterogeneity. AMV analyses adjusted

for age, sex, and BMI.

Mendelian randomization analyses

We excluded all palindromic single nucleotide polymor-

phisms (SNPs) and those in linkage disequilibrium at

R
2 > 0.001 (based on the 1000genomes (phase 1) panel).

After these exclusions, we searched for all remaining in-

dependent sleep-associated variants (149 for insomnia,

57 for total sleep duration [and an additional 25 and 71

variants for short and long habitual sleep duration, re-

spectively] and 208 for chronotype) in the GWAS of

NMR metabolomic measures, and the directions of the

summary data were harmonized (i.e. making sure that

each effect estimate was coded in the same direction

with respect to the effect allele as SNP associations from

the summary sleep trait data) with those of the sleep

trait summary data.

The MRCIEU/TwoSampleMR package was used for

harmonization of the exposure and outcome SNPs and

to perform the MR analyses [16]. For our main analyses,

we used the multiplicative random effects inverse

variance-weighted (IVW) approach [45]. This method

generates a causal estimate of the sleep traits on metabo-

lomic traits by regressing the SNP-sleep trait association

on the SNP-metabolomic measure association, weighted

by the inverse of the SNP-metabolomic measure associ-

ation, and constraining the intercept of this regression

to zero. Standard errors are corrected to take into ac-

count any between SNP heterogeneity and assume that

there is no directional horizontal pleiotropy. To explore

this assumption further, we performed sensitivity ana-

lyses using MR-Egger [46] and weighted-median estima-

tor [47] methods. MR-Egger is similar to the IVW

method but does not force the regression line (i.e. of the

SNP-sleep trait association on the SNP-metabolomic

measure association) through an intercept of zero. It is

statistically less efficient (providing wider confidence in-

tervals) but provides a causal estimate (i.e. the regression

slope) that is corrected for directional horizontal plei-

otropy, and a non-zero intercept is an indication of the

existence of directional pleiotropy. The weighted-median

estimator is valid if more than 50% of the weight of the

genetic instrument is from valid variants (i.e. if one sin-

gle SNP or several SNPs jointly contributing 50% or

more of the weight in the MR analysis exhibit directional

horizontal pleiotropy the calculated effect estimate may

be biased). For each of the dataset, we assessed between-

SNP heterogeneity using the Q-statistics test.

We performed MR analyses for all sleep traits with

each of the 4 metabolomic GWAS data sources (MAGN

ETIC, Oxford Biobank, NEO, and PROSPER), and the

results were subsequently meta-analysed using fixed-

effect meta-analyses as implemented in the R package

rmeta.

Comparing multivariable regression and MR analysis

results

Circos plots were used to summarize and visually com-

pare the AMV and the IVW MR results. Circos plots

were created using EpiViz (version 0.1.0, https://github.

com/mattlee821/EpiViz/), a Shiny web application and R

package built using R (version 3.6.2), and Shiny (version

1.4.0). Shiny is an R package that enables development

and deployment of web applications written in the R

programming language. EpiViz adapts and builds on the

Circlize [48] and ComplexHeatmap [49] R packages to

create Circos plots compatible with association analysis

data.

We also generated scatter plots of the AMV vs. MR

results for each metabolite and compared the linear fit

across all metabolites to a slope of perfect concordance

and used R
2 as a measure of goodness of fit (agreement)

between the two methods across all 113 metabolomic

traits.

Having compared results for the AMV and IVW MR

methods across all metabolites, we then selected all sleep

trait-metabolite associations that reached a pre-defined

p value threshold in AMV or IVW MR. We then com-

pared results across AMV, IVW MR, MR-Egger, and

weighted median MR for those selected associations.

Whilst we focus on results reaching a pre-defined p

value threshold in either AMV or IVW MR in the main

paper and our conclusion, a full set of all results (AMV,

unadjusted MV, IVW MR, and all MR sensitivity ana-

lyses) are presented in Additional file 1: Tables S7 to

S16. We applied the same Bonferroni multiple testing

corrected p value threshold separately to the AMV and

MR analyses. The threshold was determined taking into

account the correlation structure of the metabolomic

measures by using information from previous studies

that have identified 17 principal components, which ex-

plain 95% of the metabolomic traits data variance [50].

Therefore, the two-sided threshold of P < 0.05 adjusted

for multiple testing becomes P < 0.0029 (0.05/17). For

any association that passed this threshold with either

AMV or IVW MR, we considered the result from the

second method to be consistent if the point estimate

had a similar direction of effect and the p value for the

second association was < 0.05. This was justified on the

basis that once one method passed the Bonferroni
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threshold, we were treating that result as a hypothesized

effect and seeking replication and triangulation in the

second method.

Results
Full results of all AMV and MR analysis, including MR

sensitivity analysis results, are presented in Additional

file 1: Tables S7 to S16.

Insomnia symptoms

Visually inspecting the circos plot shows there was dir-

ectional consistency between the AMV and IVW MR re-

sults for most of the metabolomic traits (Fig. 1). With

both methods, insomnia symptoms were associated with

higher concentrations of small and medium very large

density lipoprotein (VLDL) particles, small HDL

particles and glycoprotein acetyls, and with lower con-

centrations of large HDL particles. Across all 113 meta-

bolomic traits, there was good concordance of effect size

and direction (Fig. 2; R2 = 0.57).

Associations of insomnia symptoms with the 113

metabolomic traits passed the multiple testing threshold

(P < 0.0029) for 13 in the AMV analyses, and for 3 in the

MR analyses (glycoprotein acetyls passed the threshold

in both). Based on our pre-specified definition of

consistency (i.e. same direction and p value < 0.05 in MR

for any AMV results reaching the corrected p value, and

vice versa), we found consistent evidence from AMV

and MR analyses for 4 associations. Specifically, usual vs.

sometimes/rare/never insomnia symptoms lowered cit-

rate (− 0.08SD [95% CI − 0.12, − 0.03] in AMV and −

0.03SD [− 0.07, − 0.003] in MR), increased glycoprotein

Fig. 1 IVW Mendelian randomization estimates and age-, sex-, and BMI-adjusted multivariable regression estimates for the associations between

insomnia symptoms and 113 NMR-derived metabolomic measures. Results are expressed as the difference in mean metabolite concentrations (in

standard deviation units) between those reporting usually versus sometimes/rarely/never experiencing insomnia symptoms. Abbreviations: AMV,

adjusted (age, sex, BMI) multivariable regression; BMI, body mass index; IDL, intermediate density lipoprotein; IVW MR, Inverse variance weighted

Mendelian randomization; LDL, low-density lipoprotein; NMR, nuclear magnetic resonance; VLDL, very large density lipoprotein
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acetyls (0.08SD [95% CI 0.03, 0.12] in AMV and 0.06

[0.03, 0.10] in MR), and lowered total very large HDL

particles (− 0.04SD [− 0.08, 0.00] in AMV and − 0.05SD

[− 0.09, − 0.02] in MR) and phospholipids in very large

HDL particles (− 0.04SD [− 0.08, 0.002] in AMV and −

0.05SD [− 0.08, − 0.02] in MR) (Fig. 3). MR sensitivity

analyses were generally consistent with the main IVW

analyses though point estimates for the MR-Egger result

with glycoprotein acetyls appeared weaker and that for

phospholipids in very large HDL was weakly in the op-

posite direction. That said, as expected, confidence inter-

vals were wide for all of the MR-Egger results (Fig. 3).

Sleep duration

Several associations of total sleep duration with metabo-

lomics traits were directionally consistent in the AMV

and MR analyses (Fig. 4). Where association directions

were consistent, the MR results often had a stronger

magnitude of association than the AMV results.

Consistency of magnitude (as well as direction) was poor

to moderate between the two methods (Fig. 5, R2 = 0.37).

Associations for total sleep duration passed the mul-

tiple testing threshold for 8 of the 113 metabolomic trait

associations in AMV analyses and one in MR. Only one

of the 8 AMV associations replicated in the MR analyses

(difference in mean creatinine for a 1 h longer sleep was

0.02SD [0.01, 0.03] in AMV and 0.15 [0.02, 0.29] in

MR). Isoleucine was the one metabolite to pass the mul-

tiple testing threshold in IVW MR analyses, but it did

not replicate in AMV analyses (0.01SD [− 0.001, 0.02] in

AMV and 0.22 [0.08, 0.36] in MR analyses]) (Fig. 6). For

the associations with creatinine, the weighted median

MR result was consistent with that of the main (IVW)

results but MR-Egger was in the opposite direction

(though with very wide confidence intervals). For isoleu-

cine, both MR sensitivity analyses had point estimates

that were directionally, and in magnitude, similar to the

main IVW MR results (Fig. 6).

In exploratory analyses, most associations of short sleep

duration (< 7 h) were close to the null in both AMV and

MR analyses, with very little overall agreement between

the two methods (R2 = 0.09, Additional file 2: Figures S1

and S2). Two associations of short sleep passed the mul-

tiple testing corrected p value in AMV analyses (22:6 doc-

osahexaenoic acid (DHA) and omega-3 fatty acids), with

short sleep duration associated with lower levels for both

of these; none passed the multiple testing threshold in the

MR analyses. For docosahexaenoic acid (DHA) and

omega-3 fatty acids, there was an inverse association in

IVW MR analyses that had a larger effect estimate than in

the AMV analyses but with wide confidence intervals that

included the null (Additional file 2: Figure S3).

A total of 31 of the 113 metabolites passed the multiple

testing threshold in the AMV analyses of long sleep dur-

ation (≥ 9 h), including higher concentrations of most ex-

tremely large, large and medium VLDL, triglycerides, and

concentrations of glycoprotein acetyls and isoleucine (Add-

itional file 2: Figures S4). MR analyses did not support a

causal effect for any of these, with MR analysis point esti-

mate close to the null or in the opposite direction (Add-

itional file 2: Figure S6). We did not identify any metabolic

traits passing the multiple testing threshold in IVW MR.

Fig. 2 Comparison of the point estimates of the IVW Mendelian

randomization and age-, sex-, and BMI-adjusted multivariable

regression analyses for the associations between insomnia

symptoms and 113 NMR-derived metabolomic measures. Each

green dot in the scatter plot represents a metabolic trait and the

positions of the dots are determined by the differences in mean

metabolite concentrations (in standard deviation units) between

those reporting usually versus sometimes/rarely/never experiencing

insomnia symptoms. These are estimated by Inverse variance

weighted (IVW) Mendelian randomization (vertical axes) and age,

sex, and BMI adjusted multivariable regression (horizontal axes). The

vertical grey lines for each dot indicate the 95% confidence intervals

(CI) for the Mendelian randomization estimates and the horizontal

grey lines for each dot indicate the 95% CI for the adjusted

multivariable regression estimates. A linear fit (red dashed line)

summarizes the similarity between the two estimates. A slope of 1

with an intercept of 0 (dashed grey line), with all green dots sitting

on that line (R2 = 1), would indicate identical magnitude and

direction between the two methods. R2 indicates goodness of linear

fit and is a measure of the consistency between the two estimates.

Abbreviations: AMV, adjusted (age, sex, BMI) multivariable regression;

BMI, body mass index; CI, confidence interval; DHA, 22:6,

docosahexaenoic acid; IVW MR, inverse variance weighted

Mendelian randomization, SD, standard deviation
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Chronotype

There was very little consistency in direction and magni-

tude of association between AMV and MR analyses of

chronotype with the metabolomic traits (Figs. 7 and 8,

R
2 = 0.17). Chronotype was associated with isoleucine

after multiple testing correction in the AMV analyses

(difference in mean comparing evening to morning pref-

erence (0.13SD [0.04, 0.21]), but this was not supported

in MR analyses (− 0.02 [− 0.05, 0.02])) (Fig. 9). No asso-

ciations of chronotype with the metabolomics traits

passed the multiple testing threshold in the IVW MR

analyses.

Fig. 3 Mendelian randomization and age-, sex-, and BMI-adjusted multivariable regression analyses results for select associations of

insomnia symptoms with NMR-derived metabolomic measures. Figure shows inverse variance weighted (IVW) Mendelian randomization,

Mendelian randomization sensitivity (weighted median (WM) and MR-Egger), and adjusted multivariable (AMV) regression analysis results.

Results presented were selected on the basis of passing multiple testing threshold for either IVW or AMV (p values < 0.0029). The

estimates are the difference in mean metabolite (in standard deviation units) between those reporting usually versus sometimes/rarely/

never experiencing insomnia symptoms. Abbreviations: AMV, adjusted (age, sex, BMI) multivariable regression; BMI, body mass index; IVW

MR, inverse variance weighted Mendelian randomization; NMR, nuclear magnetic resonance; SD, standard error; VLDL, very low-density

lipoprotein; WM, weighted median
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Between SNP-heterogeneity analyses

Across all four independent datasets, with MR results

for the 5 sleep exposures and 113 metabolites, there

were some Q-statistic p values that were less than the

conventional threshold of 0.05. For most of these, their

low p values were not seen for results across all four of

the GWAS summary datasets. For results where we

found MR evidence of an effect (i.e. for insomnia with

citrate, glycoprotein acetyls, very large HDL particles,

and phospholipids in very large HDL, and for sleep dur-

ation with creatinine and isoleucine) with two excep-

tions, there was no statistical evidence of between SNP

heterogeneity in results for any of the independent data-

sets. For the effect of insomnia on glycoprotein acetyls,

there was some evidence of between SNP heterogeneity

in the MAGNETIC summary dataset (Q-statistic p

value = 0.01; Supplementary Table S8) but not in other

datasets. Notably, the MR-Egger intercept did not sug-

gest evidence of any unbalanced pleiotropy (p = 0.47;

Supplementary Table S8). For the effect of total mean

sleep duration on isoleucine, there was some evidence of

between SNP heterogeneity in one of the smaller GWAS

(NEO; Q-statistic p = 2.3× 10−5; Supplementary Table

S10), but this was not seen for results from other data-

sets and the MR-Egger intercept was very close to zero

(p = 0.64; Supplementary Table S10).

Discussion
With the present multi-cohort effort, we intended to

identify the potential biochemical mechanisms linking

Fig. 4 IVW Mendelian randomization estimates and age-, sex-, and BMI-adjusted multivariable regression estimates for the associations between

total sleep duration and 113 NMR-derived metabolomic measures. Results are expressed as the difference in mean metabolite

concentrations (in standard deviation units) for each 1 h greater reported total sleep duration. For visualization purposes, the axes have

unequal scaling. Abbreviations: AMV, adjusted (age, sex, BMI) multivariable regression; BMI, body mass index; IDL, intermediate density

lipoprotein; IVW MR, inverse variance weighted Mendelian randomization; LDL, low-density lipoprotein; NMR, nuclear magnetic resonance;

VLDL, very large density lipoprotein
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sleep to cardiometabolic disease risk. We found consist-

ent evidence with both AMV and MR that usually (vs.

sometimes, rarely or never) experiencing insomnia

symptoms cause lower concentrations of citrate, total

very large HDL particles and phospholipids in very large

HDL particles and higher concentrations of glycoprotein

acetyls. There was little consistency between AMV and

MR results for total habitual sleep duration across all

metabolomic traits, though a longer total sleep duration

was associated with higher concentrations of creatinine

in both methods. For chronotype, whilst having an even-

ing preference was associated with higher isoleucine

concentrations at our multiple-testing threshold in the

AMV analyses, MR analyses did not support causality.

Chronotype did not pass multiple testing with any other

metabolites. Therefore, our findings do not support the

notion that sleep traits have widespread effects on the

investigated metabolomic traits. Nevertheless, they sug-

gest that insomnia symptoms may influence cardiometa-

bolic disease (as previously shown in MR [17]) through

increased inflammation and also result in lower citrate

levels.

The lack of a more widespread impact of sleep traits

on multiple metabolomic traits is in contrast with some

experimental sleep studies, although direct comparisons

are not possible. For example, targeted and untargeted

mass spectrometry measurements performed in fre-

quently sampled blood (every 2 h) from 12 healthy men

revealed that 109 out of 171 metabolites exhibited a cir-

cadian rhythm [51]. Furthermore, in controlled experi-

mental conditions, this circadian variation was

maintained for 78 out of these 109 metabolites over a

24-h period of total sleep deprivation. For 27 metabo-

lites, including some lipids (13 glycerophospholipids and

3 sphingolipids), as well as tryptophan, serotonin, tau-

rine, and 8 acylcarnitines, marked acute increases in

concentrations were observed during 24 h of sleep

deprivation compared with the 24 h of habitual sleep

[51]. Importantly, the MR analyses assessed long-term

(lifelong), rather than acute, effects of a predisposition

for unfavourable quality or quantity of sleep on meta-

bolic disturbances, which could explain the generally

stronger effects in the total sleep duration MR analyses.

Glycoprotein acetyls, which we identified as a novel

trait potentially influenced by insomnia symptoms, are

elevated in response to infection and inflammation. C-

reactive protein (CRP) is the most widely recognized

marker of acute and chronic inflammation in epidemio-

logical studies. Whilst observational studies have shown

that higher circulating CRP is associated with increased

cardiovascular disease risk, MR studies suggest this is

not a causal relationship [52, 53]. Glycoprotein acetyls

have emerged as a potentially better measure of cumula-

tive inflammation than CRP, since glycoprotein acetyls

increase late in the inflammatory process and levels are

relatively stable within individuals over many years [54,

55]. In AMV analyses in prospective cohorts, glycopro-

tein acetyls were positively associated with cardiovascu-

lar diseases and type 2 diabetes, independently of

established risk factors and CRP [55]. If these associa-

tions are shown to be causal, then it is possible that

cumulative chronic inflammation, as measured by glyco-

protein acetyls, mediates the effect of insomnia on cor-

onary heart disease identified in MR analyses [17].

Fig. 5 Comparison of the point estimates of the IVW Mendelian

randomization and age-, sex-, and BMI-adjusted multivariable

regression analyses for the associations between total sleep duration

and 113 NMR-derived metabolomic measures. Each green dot in the

scatter plot represents a metabolic trait and the positions of the

dots are determined by the differences in mean metabolite

concentrations (in standard deviation units) for each 1-h greater

reported total sleep duration. These are estimated by Inverse

variance weighted (IVW) Mendelian randomization (vertical axes) and

age, sex, and BMI adjusted multivariable regression (horizontal axes).

The vertical grey lines for each dot indicate the 95% confidence

intervals (CI) for the Mendelian randomization estimates and the

horizontal grey lines for each dot indicate the 95% CI for the

adjusted multivariable regression estimates. A linear fit (red dashed

line) summarizes the similarity between the two estimates. A slope

of 1 with an intercept of 0 (dashed grey line), with all green dots

sitting on that line (R2 = 1), would indicate identical magnitude and

direction between the two methods. R2 indicates goodness of linear

fit and is a measure of the consistency between the two estimates.

Abbreviations: AMV, adjusted (age, sex, BMI) multivariable regression;

BMI, body mass index; CI, confidence interval; IVW MR, inverse

variance weighted Mendelian randomization, SD, standard deviation
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However, we acknowledge that our results for the effect

of insomnia on glycoprotein acetyls require replication

in independent and larger studies and testing in ances-

tries other than Europeans.

The inverse association of insomnia symptoms with

citrate in both AMV and MR analyses is novel. A re-

cent narrative review highlighted the physiological

control of plasma citrate concentrations in health and

disease [56]. One possible mechanism through which

insomnia might influence citrate is via the relation-

ship of insomnia with night-time eating (which is also

accompanied with higher night physical activity) [57],

which would result in higher TCA cycle activity and

consequently lower plasma citrate concentrations.

However, despite a plausible role, there is a paucity

of clinical and epidemiological studies of the effect of

citrate levels on disease outcomes [56]. Citrate is con-

verted to Acetyl-CoA by the enzyme ATP citrate

lyase (ACLY). This action is on the path to choles-

terol biosynthesis up stream of HMGCR, the enzyme

that is the target of statins [58]. Both MR and RCT

evidence show ACLY inhibition reduce LDLc levels

and proportionately coronary heart disease risk by a

similar amount to statins [59–61]. However, this pro-

vides only indirect evidence for a role of citrate on

cardiovascular risk and it is notable that we found no

strong evidence in this study of an effect of insomnia

on LDLc. Therefore, the meaning of a possible effect

of insomnia on citrate levels, and whether it mediates

any effect of insomnia on cardiovascular disease risk

is hard to discern. Whether our findings for citrate

replicate would also be important to clarify.

Fig. 6 Mendelian randomization and age-, sex-, and BMI-adjusted multivariable regression analyses results for selected associations of total sleep

duration with NMR-derived metabolomic measures. Figure shows inverse variance weighted (IVW) Mendelian randomization, Mendelian

randomization sensitivity (weighted median (WM) and MR-Egger), and adjusted multivariable (AMV) regression analysis results. Results presented

were selected on the basis of passing multiple testing threshold for either IVW or AMV (p values < 0.0029). The estimates are the difference in

mean metabolite (in standard deviation units) per 1 h greater total sleep duration. Abbreviations: AMV, adjusted (age, sex, BMI) multivariable

regression; BMI, body mass index; DHA, 22:6, docosahexaenoic acid; HDL, high-density lipoprotein; IVW MR, inverse variance weighted Mendelian

randomization; NMR, nuclear magnetic resonance; SD, standard error; WM, weighted median
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We found evidence for associations of experiencing in-

somnia symptoms with higher concentrations of very

large total HDL particles and phospholipids in very large

HDL particles. MR and randomized controlled trials

suggest that circulating HDL cholesterol is not causally

related to cardiovascular disease [62–64]. The amount of

cholesterol carried in HDL particles increases with in-

creasing particle size and emerging evidence highlights

the importance of considering size, structure, and com-

position of lipoprotein particles when exploring their ef-

fects on cardiovascular disease [65]. In AMV analyses,

inverse associations of very large, large, medium, and

small HDL particles with cardiovascular disease have

been observed, but these attenuated to the null with ad-

justment for lipids used by clinicians [42]. Thus, the

relevance of possible insomnia effects on very large HDL

particle concentrations, and specifically phospholipids in

these particles, is unclear and require additional studies.

We found evidence in both AMV and MR analyses of

a possible association of longer total sleep duration with

higher creatine concentrations, a biomarker used to esti-

mate kidney function. Established cardiovascular risk

factors, such as high blood pressure and type 2 diabetes,

are associated with higher creatinine concentrations

[66]. Findings from multivariable regression suggest that

the association of kidney function with cardiovascular

disease largely reflects confounding and/or reverse caus-

ality [67]. Thus, our observations possibly suggest that

longer sleep duration is an additional risk factor for

chronic kidney disease rather than cardiovascular dis-

eases, though we acknowledge MR sensitivity analyses

did not support a causal effect. It is also possible longer

Fig. 7 IVW Mendelian randomization estimates and age-, sex-, and BMI-adjusted multivariable regression estimates for the associations between

chronotype and 113 NMR-derived metabolomic measures. Results are the difference in mean metabolite concentrations (in standard deviation

units) between those reporting an evening versus morning preference. Abbreviations: AMV, adjusted (age, sex, BMI) multivariable regression; BMI,

body mass index; IDL, intermediate density lipoprotein; IVW MR, inverse variance weighted Mendelian randomization; LDL, low-density

lipoprotein; NMR, nuclear magnetic resonance; VLDL, very large density lipoprotein
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sleep duration results in higher creatine concentrations

via dehydration, though we might then have expected

similar effects on more of the other metabolite concen-

trations. We also found a novel association of longer

total sleep duration with the branched-chain amino acid

isoleucine in MR analyses, though this association was

not observed in the AMV analyses. This raises the possi-

bility of masking (negative) confounding in the AMV

analyses, though it would be surprising for this to

specifically affect this one branch chain amino acid. It is

also possible that the MR analyses are biased by unbal-

anced pleiotropy, although the MR-Egger intercept being

very close to zero would argue against that. Higher con-

centrations of branched-chain amino acids, including

isoleucine, are associated with increased risk of cardio-

vascular disease [42], though this has not been explored

in MR studies. MR analyses supports a causal effect of

the branched-chain amino acids on type 2 diabetes [68],

and our results suggest that longer total sleep duration

may mediate some of this effect. Although the mechan-

ism of action how sleep induces higher isoleucine con-

centrations, speculatively, this might be the result of

protein degradation required for gluconeogenesis. More

research is required to further elaborate on this

hypothesis.

Key strengths of our study are its novelty and the

comparison of results from the largest AMV study of

sleep traits with multiple circulating metabolomic mea-

sures [22] with equivalent results from MR. We harmo-

nized questionnaire-based sleep data across all

contributing studies and the NMR metabolomic plat-

form was consistent across studies in both the AMV and

MR analyses. We were able to increase the power of our

two-sample MR analyses by combining unpublished

summary-level GWAS results from three cohorts (total

N = 13,693) with those of the largest published GWAS

of the same NMR platform (N = 24,925) to date [35].

Two-sample MR assumes that the two samples are from

the same underlying population and independent of each

other. Given all GWAS were undertaken in adults of

European ancestry and the lack of overlap in studies

contributing to the metabolite GWAS with any of the

sleep trait GWAS, we are confident this assumption is

largely met. Most observed differences in mean metabo-

lomic concentrations were close to the null, and in gen-

eral (true) null results are less subject to bias than non-

null results [69].

Important limitations include the lack of statistical

power, particularly to explore possible non-linear associ-

ations for sleep duration. The platform misses a high

proportion of currently quantifiable metabolites in hu-

man serum/plasma, including markers of energy balance,

microbiota metabolism, vitamins, co-factors, and xenobi-

otics, that may be influenced by sleep traits [51]. Still,

the NMR platform used in the analyses covers consider-

ably more of the lipidome than conventional clinical

chemistry measures (total cholesterol, LDL-C, HDL-C,

and triglycerides) that have previously been explored

and in addition includes amino acids, glycolysis metabo-

lites, ketone bodies, and an inflammatory marker. Whilst

we adjusted for age, sex, and BMI, the results obtained

in multivariable-adjusted regression may be exaggerated

by residual confounding from unobserved confounders

Fig. 8 Comparison of the point estimates of the IVW Mendelian

randomization and age-, sex-, and BMI-adjusted multivariable

regression analyses for the associations between chronotype and

113 NMR-derived metabolomic measures. Each green dot in the

scatter plot represents a metabolic trait and the positions of the

dots are determined by the differences in mean metabolite

concentrations (in standard deviation units) comparing those

reporting an evening preference versus morning preference. These

are estimated by Inverse variance weighted (IVW) Mendelian

randomization (vertical axes) and age, sex, and BMI adjusted

multivariable regression (horizontal axes). The vertical grey lines for

each dot indicate the 95% confidence intervals (CI) for the

Mendelian randomization estimates and the horizontal grey lines for

each dot indicate the 95% CI for the adjusted multivariable

regression estimates. A linear fit (red dashed line) summarizes the

similarity between the two estimates. A slope of 1 with an intercept

of 0 (dashed grey line), with all green dots sitting on that line (R2 =

1), would indicate identical magnitude and direction between the

two methods. R2 indicates goodness of linear fit and is a measure of

the consistency between the two estimates. Abbreviations: AMV,

adjusted (age, sex, BMI) multivariable regression; BMI, body mass

index; CI, confidence interval; IVW MR, inverse variance weighted

Mendelian randomization, SD, standard deviation
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such as socioeconomic position, smoking, and physical

activity. As the AMV results were cross-sectional, it is

also possible that variation in metabolomic traits influ-

ences sleep patterns, and some of the multivariable re-

gression results not verified in MR are due to reverse

causality. In addition, we restricted the analyses to co-

horts containing mostly European participants (one co-

hort contributing to AMV meta-analysis, HELIUS,

included non-European participants, whereas all MR

analyses were restricted to Europeans). This reduces the

potential for population stratification to bias our MR

analyses, but hampers generalization of our findings to

other ancestry groups. In addition, the cohorts contrib-

uting in the AMV meta-analysis vary in participant char-

acteristics, in particular by age. In the cohorts used in

the AMV analyses only, 2.4% reported taking medication

to aid sleep. This very small proportion means these are

very unlikely to have introduced any bias into our ana-

lyses. However, it is known that many prescribed, and over

the counter medications, can influence sleep, and in our

study, as in others exploring sleep, we were not able to do

a detailed assessment of all medications. The MR results

which reflect a potential lifelong genetic tendency should

be less influenced by medication use. Furthermore, the

use of questionnaire-based data on sleep traits might have

increased measurement error. As people do not know the

concentrations of their circulating metabolites or genetic

variants related to those, such error is likely to be random

and would therefore be expected in both analyses to bias

towards the null. Accelerometer-based sleep measures

could be useful to further explore the effects we have

studied, but previous observational and genetic studies

suggest only moderate agreement between questionnaire-

based and accelerometer-based sleep duration [21, 70],

and it is unclear whether the two are measuring the same

construct. The MR results may have been influenced by

weak instrument bias, which, if present, would be ex-

pected to bias results towards the null. The very large F-

statistics for our main analyses (2537 to 13,967), and even

for our secondary analyses of short and long duration (208

and 646, respectively), suggest that weak instrument bias

is unlikely to have a major impact. Sensitivity analyses ex-

ploring possible bias due to directional horizontal plei-

otropy were mostly consistent with the main IVW

findings, though MR-Egger estimates were imprecise as

expected with this method which is statistically less effi-

cient than the main IVW method.

Conclusions
Taken together, our findings do not suggest widespread

metabolic disruption caused by sleep traits. However,

the evidence for possible effects of insomnia symptoms

on glycoprotein acetyls and citrate and longer total sleep

duration on creatinine and isoleucine might explain

some of the effects, found in MR analyses, of these sleep

traits on cardiometabolic diseases. These warrant further

investigation.
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